Social Ties and Residential Choice: Micro Evidence and Equilibrium Implications

Martin Koenen and Drew Johnston

July 25, 2025

- Why don't more people move to places offering better economic outcomes?

- Why don't more people move to places offering better economic outcomes?
- There are vast differences in economic opportunities across areas (e.g Chetty and Hendren, 2018; Card et al., 2023; Diamond and Moretti, 2021)

- Why don't more people move to places offering better economic outcomes?
- There are vast differences in economic opportunities across areas (e.g Chetty and Hendren, 2018; Card et al., 2023; Diamond and Moretti, 2021)
- Yet, people often do not move to places offering "better" outcomes (e.g Sjaastad, 1962; Autor et al., 2013; Yagan, 2019; Sprung-Keyser et al., 2022)

- Why don't more people move to places offering better economic outcomes?
- There are vast differences in economic opportunities across areas (e.g Chetty and Hendren, 2018; Card et al., 2023; Diamond and Moretti, 2021)
- Yet, people often do not move to places offering "better" outcomes (e.g Sjaastad, 1962; Autor et al., 2013; Yagan, 2019; Sprung-Keyser et al., 2022)
- Canonical Rosen-Roback framework emphasizes compensating differentials

- Why don't more people move to places offering better economic outcomes?
- There are vast differences in economic opportunities across areas (e.g Chetty and Hendren, 2018; Card et al., 2023; Diamond and Moretti, 2021)
- Yet, people often do not move to places offering "better" outcomes (e.g Sjaastad, 1962; Autor et al., 2013; Yagan, 2019; Sprung-Keyser et al., 2022)
- Canonical Rosen-Roback framework emphasizes compensating differentials
- Today: Social networks (friends and family) help explain these facts

- Use individual-level Facebook data on social networks and locations to show that:

- Use individual-level Facebook data on social networks and locations to show that:
 - 1. Social networks drive residential choices [Partial Equilibrium]
 - Descriptive + quasi-experimental evidence

- Use individual-level Facebook data on social networks and locations to show that:
 - 1. Social networks drive residential choices [Partial Equilibrium]
 - Descriptive + quasi-experimental evidence

- 2. Networks explain patterns of migration [General Equilibrium]
 - Incorporate results from (1) into spatial equilibrium model
 - ightarrow explain why people live in places with limited economic opportunities

- Use individual-level Facebook data on social networks and locations to show that:
 - 1. Social networks drive residential choices [Partial Equilibrium]
 - Descriptive + quasi-experimental evidence

- 2. Networks explain patterns of migration [General Equilibrium]
 - Incorporate results from (1) into spatial equilibrium model
 - ightarrow explain why people live in places with limited economic opportunities

- To study how social networks influence where people live, need to observe...

- To study how social networks influence where people live, need to observe...

1. ... who people's social ties are

2. ... where people live

- To study how social networks influence where people live, need to observe...
 - 1. ... who people's social ties are
 - Facebook: Individual-level data on users' friends
 - Accurate + comprehensive measure of networks
 - 2. ... where people live

- To study how social networks influence where people live, need to observe...
 - 1. ... who people's social ties are
 - Facebook: Individual-level data on users' friends
 - Accurate + comprehensive measure of networks
 - 2. ... where people live
 - Facebook: Measure place of residence each month between 2012-2023 at CZ level
 - Primarily inferred from IP addresses (not self-reported!)
 - Migration patterns line up with Census / IRS data Details

- To study how social networks influence where people live, need to observe...
 - 1. ... who people's social ties are
 - Facebook: Individual-level data on users' friends
 - Accurate + comprehensive measure of networks
 - 2. ... where people live
 - Facebook: Measure place of residence each month between 2012-2023 at CZ level
 - Primarily inferred from IP addresses (not self-reported!)
 - Migration patterns line up with Census / IRS data Details
- Focus on active U.S. users, born 1985-1997 ($\approx 85\%$ coverage)

Employment growth Other CZs Sprung-Keyser et al.

Employment growth

Other CZs

Sprung-Keyser et al.

Employment growth

Other CZs

Sprung-Keyser et al.

Employment growth

Other CZs

Sprung-Keyser et al.

- Alice and Bob both have a friend moving to Austin around the time they graduate, but Alice's friend moves before she graduates while Bob's friend moves after

- Alice and Bob both have a friend moving to Austin around the time they graduate, but Alice's friend moves before she graduates while Bob's friend moves after
- Alice and Bob know friends ≥ 1 year before graduation

- Alice and Bob both have a friend moving to Austin around the time they graduate, but Alice's friend moves before she graduates while Bob's friend moves after
- Alice and Bob know friends ≥ 1 year before graduation

- Regress graduates' location choices upon graduation on friends' moves at different t

- Regress graduates' location choices upon graduation on friends' moves at different t
 - \rightarrow Obtain series of b_t estimates

- Regress graduates' location choices upon graduation on friends' moves at different t \rightarrow Obtain series of b_t estimates \rightarrow $b_{pre} b_{post} = \beta$ causal effect of friend
- ID assumption: Conditional on having a friend move to given CZ around graduation, timing of move orthogonal to potential outcomes

- ID Assumption: Conditional on having a friend move to given CZ around graduation, timing of move orthogonal to potential outcomes

- Use individual-level Facebook data on social networks and locations to show that:
 - 1. Social networks drive residential choices [Partial Equilibrium]
 - Reduced form evidence on effects of social networks on residential choice

- 2. Networks explain patterns of migration [General Equilibrium]
 - Incorporate results from (1) into spatial equilibrium model
 - ightarrow explain why people live in places with limited economic opportunities

Spatial Equilibrium Model with Social Ties

- Generalize Rosen-Roback style spatial equilibrium model to incorporate social ties
- Model comprises local production Details, local housing market Details, and workers

Spatial Equilibrium Model with Social Ties – Workers

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

Spatial Equilibrium Model with Social Ties – Workers

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j : wages

Spatial Equilibrium Model with Social Ties – Workers

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- *r_j*: rents

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- r_j : rents
- A_j : local amenities

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- r_j : rents
- A_i : local amenities
- ϵ_{ij} follows type I EV distribution
 - $\rightarrow \mathsf{logit}\;\mathsf{framework}$

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

$$\tilde{U}_{ij} = \tilde{\alpha}_w \ln(w_j) - \tilde{\alpha}_h \ln(r_j) + \tilde{A}_j + \tilde{\beta}_{n_{ij}} + \tilde{\epsilon}_{ij}$$

- w_j: wages
- r_j : rents
- A_i : local amenities
- ϵ_{ij} follows type I EV distribution
 - $\rightarrow \mathsf{logit} \mathsf{\ framework}$

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- r_j : rents
- A_j : local amenities
- ϵ_{ij} follows type I EV distribution
 - $\to \mathsf{logit}\;\mathsf{framework}$

Network Model

$$\tilde{U}_{ij} = \tilde{\alpha}_w \ln(w_j) - \tilde{\alpha}_h \ln(r_j) + \tilde{A}_j + \tilde{\beta}_{ij} + \tilde{\epsilon}_{ij}$$

- n_{ij} : proportion of friends living in CZ j

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- *r_j*: rents
- A_i : local amenities
- ϵ_{ij} follows type I EV distribution
 - $\to \mathsf{logit}\;\mathsf{framework}$

$$\tilde{U}_{ij} = \tilde{\alpha}_w \ln(w_j) - \tilde{\alpha}_h \ln(r_j) + \tilde{A}_j + \tilde{\beta}_{ij} + \tilde{\epsilon}_{ij}$$

- n_{ij} : proportion of friends living in CZ j
- $ilde{eta}$ estimated in quasi-experiment

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- r_j : rents
- A_j : local amenities
- ϵ_{ij} follows type I EV distribution
 - ightarrow logit framework
- Find α_w , α_h , A_j as well as $\tilde{\alpha}_w$, $\tilde{\alpha}_h$, \tilde{A}_j so that both models match data wrt ...
 - ... populations, wages, rents, observed wage elasticity (+ networks for network model)

Details

$$\tilde{U}_{ij} = \tilde{\alpha}_w \ln(w_j) - \tilde{\alpha}_h \ln(r_j) + \tilde{A}_j + \tilde{\beta}_{n_{ij}} + \tilde{\epsilon}_{ij}$$

- n_{ij} : proportion of friends living in CZ j
- $ilde{eta}$ estimated in quasi-experiment

Basic Model

$$U_{ij} = \alpha_w \ln(w_j) - \alpha_h \ln(r_j) + A_j + \epsilon_{ij}$$

- w_j: wages
- r_j : rents
- A_j : local amenities
- ϵ_{ij} follows type I EV distribution
 - ightarrow logit framework
- Find α_w , α_h , A_j as well as $\tilde{\alpha}_w$, $\tilde{\alpha}_h$, \tilde{A}_j so that both models match data wrt ...
 - ... populations, wages, rents, observed wage elasticity (+ networks for network model)
 - A_j and \tilde{A}_j : residuals so that model implied pop. match observed pop.

$$\tilde{U}_{ij} = \tilde{\alpha}_w \ln(w_j) - \tilde{\alpha}_h \ln(r_j) + \tilde{A}_j + \tilde{\beta}_{n_{ij}} + \tilde{\epsilon}_{ij}$$

- n_{ij} : proportion of friends living in CZ j
- $ilde{eta}$ estimated in quasi-experiment

Distribution of WTP for A_j , \tilde{A}_j

Distribution of WTP for A_j , \tilde{A}_j

Distribution of WTP for A_j , \tilde{A}_j

Correlations Between CZ-Covariates and A_j , \tilde{A}_j

Correlations Between CZ-Covariates and A_j , \tilde{A}_j

Conclusion

- Why don't more people move to places offering better economic outcomes?

Conclusion

- Why don't more people move to places offering better economic outcomes?
- One reason: Social networks drive residential choices + networks concentrated locally
 - High "social cost" of leaving places with strong social network

Conclusion

- Why don't more people move to places offering better economic outcomes?
- One reason: Social networks drive residential choices + networks concentrated locally
 - High "social cost" of leaving places with strong social network
- Social cost higher for less-educated individuals because networks more concentrated
 - → Less responsive to local economic shocks