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Transportation is the largest source of U.S. GHGs

Most transportation
emissions are from cars &
light trucks

Transportation and electric
power together produce
most U.S. GHG emissions

57% Light duty
vehicles

23% Medium

28% & heavy-duty
Residential & Transportation vehicles
Commercial

I 9% Aircraft

6% Other
3% Marine

2% Rail

Industry

25% Electric
Power

Source: US EPA 2022 US GHG emissions by sector

Carnegie Mellon University
Engineering & Public Policy



EVs link the two largest sources

Electrification is the most
promising for light-duty vehicles
(technologically & economically)

When we electrify vehicles, we
reduce tailpipe emissions in the
transportation sector but increase
demand for electric power

We can assess the net effect with
life cycle assessment (LCA)
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Two distinct kinds of LCA ask different questions

The National Acadensics

of . . .
SCENCES - ENGINEERING - MEDICNE Attributional Consequential

Current Methods for Life-Cycle Analyses
of Low-Carbon Transportation Fuels
in the United States

C
Impacts = A Impacts =B -C
What part of the global What is the change in
environmental burdens global environmental
should be assigned to burdens resulting from a
the product? change in the use or

production of a product?
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Policy assessment needs consequential LCA

The National Acadensies of
SCIENCES - ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

Current Methods for Life-Cycle Analyses
of Low-Carbon Transportation Fuels
in the United States

Consequential LCA assesses how a change (e.g.: vehicle or
policy adoption) will affect emissions

Recommendation 2-2: When a decision-maker wishes to understand the consequences of a pro-
posed decision or action on net GHG emissions, CLCA is appropriate. Modelers should provide
transparency, justification, and sensitivity or robustness analysis for modeling choices for the sce-
narios modeled with and without the proposed decision or action.

NASEM report recommends using consequential LCA to
assess policy impact

Recommendation 3-2: Public policy design based on LCA should ensure through regulatory im-
pact assessment that, at a minimum, the consequential life-cycle impact of the proposed policy is
likely to reduce net GHG emissions and increase net benefits to society. Regulatory impact assess-
ments should consider changes in production and use of multiple fuel types (e.g., gasoline, elec-

tricity, biofuels, hydrogen).
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Emissions Estimates Based On

No change
(average)

Marginal change
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Non-marginal change
(via simulation)

Samaras and Meisterling (2008)
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Estimating marginal effects

Holland et al. (2022) use short-run marginal
emission factors and find that marginal rates are
not falling even as the grid cleans up

They apply these marginal rates to estimate the
effect of electrifying 50% of the vehicle fleet

Gagnon et al. (2022) critique that large changes will

induce long run infrastructure investment decisions,

so long run analysis is needed, resulting in much
lower marginal rates

Conflation of three issues

1)
2)
3)

Marginal vs. non-marginal changes
Period over which the change takes place
Short run vs. long run effects

z

L)
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Two studies in R&R on long-run non-marginal
effects of EV charging on power systems

1. Exogeneous EV load timing (National)
Hanig, L., C. Harper, D. Nock and J. Michalek (2025) "Driving the grid
forward: How electric vehicle adoption shapes power system
infrastructure and emissions," in review.

2. Endogenous EV load timing (PJM)
Chen, J., M. Craig, J. Michalek, M. Bruchon and P. Vaishnav (2025)
"Negative electric vehicle emissions: Vehicle-to-grid can incentivize
enough wind and solar investment to reverse EV charging
emissions," in review.
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Exogenous EV Load Timing

Hanig, L., C. Harper, D. Nock and J. Michalek (2025) "Driving the grid forward:
How electric vehicle adoption shapes power system infrastructure and
emissions," in review.
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Modeling assumptions
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EV adoption scenarios
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TEV adoption : Twind, solar, gas & storage capacity

Scenarios with increasing EV adoption trajectories

AEO IRA White House EPA Net Zero
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But...

Load timing matters, and flexible loads could have substantial
implications
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Endogenous (Flexible) EV Load Timing

Chen, J., M. Craig, J. Michalek, M. Bruchon and P. Vaishnaiv (2025) "Negative
electric vehicle emissions: Vehicle-to-grid can incentivize enough wind and solar
investment to reverse EV charging emissions," in review.

Carnegie Mellon University
Engineering & Public Policy



EVs have substantial potential as flexible load

Uncontrolled charging: The EV owner begins charging at full power
following the last trip of the day until the vehicle is fully charged

Controlled charging: The EV owner allows the utility to decide charge timing
following the last trip of the day, so long as it is fully charged prior to the first
trip the following day. Charge timing is optimized to minimize operational

cost

Vehicle to grid (V2G): Identical to controlled charging except that charging
can be negative (sold back to the grid or displacing home load)

Carnegie Mellon University
Engineering & Public Policy



PJM case study

To understand the effects of flexible load on power system outcomes, we zoom in to a
detailed case study with the resolution and tractability to model the effects of flexible load

PJM is the largest RTO in the US,
serving 65M people in 13 states + DC

Grid mix similar to North America as a whole
5 transmission-constrained subregions
NHTS data on vehicle travel patterns

Weighted representative sample of vehicles
selected to optimally match fleet statistics

Carnegie Mellon University
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Optimization model

Minimize operation costs (generation, startup, and generator, storage and vehicle reserves)

Minimize Z = Y, Y, (CVARCENORN | (STARTUR ., (GENEES ;0FN)

teT i€l
ADIDICLLHEDIDIP el M

teT kek teT veV reR
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subject to

Reserve constraints

Startup and shutdown constraints
Ramp rate constraints

Uptime and downtime constraints

Subject to

Generator constraints:
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subject to

Demand-supply constraints
Transmission constraints

Wind and solar availability constraints
Storage energy and power constraints
PEV battery SOC constraints

PEV fully charged constraint for first trip

of the day

System constraints:
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— Power system scenarios design

Exogenously determined with SonTgiations with
EIASGQ, NEEDS, PIJM Datamlner_ _ different wind and solar
excl. wind & solar PV output and installation penetration

A range of power system

Power system operation simulation
Unit commitment economic dispatch (UCED) model

— Assessment of annual wind and solar revenues and costs _—

Annual revenues:

Calculated energy revenues with UCED prices, plus capacity market revenues
Annual costs:

Estimated with ATB annualized capital costs and O&M costs

!

~—ldentify maximum economically viable wind and solar penetration——
Revenue

Assume the generator revenues of this year
. represent annual revenues over the lifetime
PACIY " of the project

s Identify the point with the maximum

I
Wind and solar economically viable wind and solar

Aggregate
revenue and cost

L penetration penetration
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We find the maximum profitable wind+solar
capacity under each scenario

Wind and solar annual total revenues against annualized fixed costs

7.5
Wind and Solar @&
Annualized &
Fixed
Costs

™
o
1
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(¢}
1

e
o
1

Total wind and solar revenue or cost ($ BN per year)

5.5
(NoPE\XZ
5.0 T T
88 94

Total wind and solar capacity installations (GW)
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Flexible load increases incentives to invest in wind
and solar capacity

If 10% of the PJM + utility-controlled charging: + V2G: Profitable to
fleet were electrified: Profitable to add 3GW of wind and solar add 15GW of wind
Not much incentive to and solar

build new wind & solar Induced wind and solhr capacity investment

b
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Allowing capacity expansion changes the effects of flexible
EV load on generation
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Induced capacity expansion lowers emissions, flips sign

Flexible load and especially R | -
. . 500 A - .
V2G can make it profitable to i 5
. . I o
build so much more wind & .§a . ! . 85
ue T i 2 o
solar that the net effect of £3 | Eg
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. . O [ @

total grid emissions S i BE
|
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55 | g &
;u 5 -1500 A H Eu:g
O : - -60007"‘:,
i g
-2000 - ! %

: [ __PMZ.5  JEEERY

1

ucC CcC Va2G ucC CcC va2G
Induced wind and solar Induced wind and solar
capacity investment ignored capacity investment included
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Robustness checks

Table 2: Sensitivity Analysis: Robustness of V2G Results to Parameter Variations.
Estimates are relative to the base case V2G effect estimates.

Input Baseline Tested Induced wind  Annual system  Annual Interpretation
parameters value value and solar cost reduction  emissions

capacity per PEV externality

investment per year reduction

per PEV per PEV
Stationary 54 GW 14 GW -74% -80% -71% PEV V2G has smaller (but positive) benefits
storage capacity 42 GWh 56 GWh for power systems with more stationary storage.
Transmission Varies 2x baseline +21% +25% +32% PEV V2G has larger benefits in power systems
capacity with more transmission capacity.
PEV fleet 10% 20% -15% -19% -32% Larger PEV fleets yield diminishing returns.
penetration
Wind to solar 1.17 1.43 +4% +14% +4% PEV V2G benefits vary with assumed
capacity ratio 0.96 +20% +14% +4.5% wind-to-solar ratio.
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Caveats

Simulation/Optimization: Cannot capture all possible effects that determine power system
operations in practice, but our unit commitment models are similar in many ways to those
used by system operators

Capacity Expansion: Solving for optimal capacity expansion with the time scope, resolution,
and vehicle resolution needed to assess load flexibility is intractable, but it is also not critical.
We instead model scenarios of wind and solar expansion at ratios suggested by the
interconnection queue, and we test alternative assumptions. Key findings are robust.

Perfect Information: Charging control scenarios represent best-case outcomes with perfect
lookahead, optimal dispatch, and full participation - an aspirational bound we might
approach with improved data and forecasting.

Non-Market Factors: Capacity investment scenarios examine what is profitable to build.
Actual investment is affected by many other factors (regulation, permitting, politics, etc.)

Carnegie Mellon University
Engineering & Public Policy

27



More information

Jeremy Michalek

email
imichalek@cmu.edu

bluesky
@jmichalek.bsky.social

twitter/X
@jjmichalek

Carnegie Mellon Vehicle Electrification Group
publications | policy briefs | videos | media
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