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Transportation is the largest source of U.S. GHGs

Most transportation 
emissions are from cars & 
light trucks

Transportation and electric 
power together produce 
most U.S. GHG emissions

Source: US EPA 2022 US GHG emissions by sector
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EVs link the two largest sources

Electrification is the most 
promising for light-duty vehicles 
(technologically & economically)

When we electrify vehicles, we 
reduce tailpipe emissions in the 
transportation sector but increase 
demand for electric power

We can assess the net effect with 
life cycle assessment (LCA)

Source: US EPA 2022 US GHG emissions by sector
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Two distinct kinds of LCA ask different questions

http://nap.nationalacademies.org/26402
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Policy assessment needs consequential LCA

Consequential LCA assesses how a change (e.g.: vehicle or 
policy adoption) will affect emissions

NASEM report recommends using consequential LCA to 
assess policy impact

http://nap.nationalacademies.org/26402
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Literature & terminology

http://nap.nationalacademies.org/26402
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Estimating marginal effects
Holland et al. (2022) use short-run marginal 
emission factors and find that marginal rates are 
not falling even as the grid cleans up

They apply these marginal rates to estimate the 
effect of electrifying 50% of the vehicle fleet

Gagnon et al. (2022) critique that large changes will 
induce long run infrastructure investment decisions, 
so long run analysis is needed, resulting in much 
lower marginal rates

Conflation of three issues

1) Marginal vs. non-marginal changes
2) Period over which the change takes place
3) Short run vs. long run effects
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Literature & terminology

http://nap.nationalacademies.org/26402
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To understand long run effects of 

large changes, we need work here



Two studies in R&R on long-run non-marginal 
effects of EV charging on power systems

1. Exogeneous EV load timing (National) 
Hanig, L., C. Harper, D. Nock and J. Michalek (2025) "Driving the grid 
forward: How electric vehicle adoption shapes power system 
infrastructure and emissions," in review. 

2. Endogenous EV load timing (PJM)
Chen, J., M. Craig, J. Michalek, M. Bruchon and P. Vaishnav (2025) 
"Negative electric vehicle emissions: Vehicle-to-grid can incentivize 
enough wind and solar investment to reverse EV charging 
emissions," in review.

9



Exogenous EV Load Timing
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Hanig, L., C. Harper, D. Nock and J. Michalek (2025) "Driving the grid forward: 
How electric vehicle adoption shapes power system infrastructure and 
emissions," in review. 



Modeling assumptions
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EV adoption scenarios
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↑EV adoption : ↑wind, solar, gas & storage capacity
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Scenarios with increasing EV adoption trajectories

Baseline



But…

Load timing matters, and flexible loads could have substantial 
implications
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Endogenous (Flexible) EV Load Timing
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Chen, J., M. Craig, J. Michalek, M. Bruchon and P. Vaishnaiv (2025) "Negative 
electric vehicle emissions: Vehicle-to-grid can incentivize enough wind and solar 
investment to reverse EV charging emissions," in review.



EVs have substantial potential as flexible load
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Uncontrolled charging: The EV owner begins charging at full power 
following the last trip of the day until the vehicle is fully charged

Controlled charging: The EV owner allows the utility to decide charge timing 
following the last trip of the day, so long as it is fully charged prior to the first 
trip the following day. Charge timing is optimized to minimize operational 
cost

Vehicle to grid (V2G): Identical to controlled charging except that charging 
can be negative (sold back to the grid or displacing home load)



PJM case study

To understand the effects of flexible load on power system outcomes, we zoom in to a 
detailed case study with the resolution and tractability to model the effects of flexible load

PJM is the largest RTO in the US, 
serving 65M people in 13 states + DC

Grid mix similar to North America as a whole

5 transmission-constrained subregions

NHTS data on vehicle travel patterns

Weighted representative sample of vehicles
selected to optimally match fleet statistics
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Optimization model

Minimize operation costs (generation, startup, and generator, storage and vehicle  reserves)  
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subject to

● Reserve constraints
● Startup and shutdown constraints
● Ramp rate constraints
● Uptime and downtime constraints
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subject to

● Demand-supply constraints
● Transmission constraints
● Wind and solar availability constraints
● Storage energy and power constraints
● PEV battery SOC constraints
● PEV fully charged constraint for first trip 

of the day
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We find the maximum profitable wind+solar 
capacity under each scenario
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Flexible load increases incentives to invest in wind 
and solar capacity

+ utility-controlled charging: 
Profitable to add 3GW of wind and solar

+ V2G: Profitable to 
add 15GW of wind 
and solar

If 10% of the PJM 
fleet were electrified: 
Not much incentive to 
build new wind & solar



Allowing capacity expansion changes the effects of flexible 
EV load on generation

Without induced 
capacity expansion, 

flexible EV load allows 
coal to displace gas

With induced 
capacity expansion, 
flexible EV load allows 
wind & solar to 
displace gas
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Induced capacity expansion lowers emissions, flips sign

Flexible load and especially 
V2G can make it profitable to 
build so much more wind & 
solar that the net effect of 
adding EV load is to reduce 
total grid emissions



Robustness checks
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Caveats
Simulation/Optimization: Cannot capture all possible effects that determine power system 
operations in practice, but our unit commitment models are similar in many ways to those 
used by system operators

Capacity Expansion: Solving for optimal capacity expansion with the time scope, resolution, 
and vehicle resolution needed to assess load flexibility is intractable, but it is also not critical. 
We instead model scenarios of wind and solar expansion at ratios suggested by the 
interconnection queue, and we test alternative assumptions. Key findings are robust.

Perfect Information: Charging control scenarios represent best-case outcomes with perfect 
lookahead, optimal dispatch, and full participation – an aspirational bound we might 
approach with improved data and forecasting.

Non-Market Factors: Capacity investment scenarios examine what is profitable to build. 
Actual investment is affected by many other factors (regulation, permitting, politics, etc.)
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