The Impact of the US-China Trade War on Taiwan's International Trade

Loretta Fung¹ Jin-Tan Liu²⁵ Heiwai Tang³ Chun-Yen Wu⁴

¹National Tsing Hua University
 ²National Taiwan University
 ³University of Hong Kong
 ⁴Chung-Hua Institution for Economic Research
 ⁵NBER
 [Preliminary and incomplete.
 Please do not cite without the author's permission.]

March 26, 2025

Fung, Liu, Tang, and Wu

< 行

Motivation

- This paper investigates third-country effects of the US-China trade war.
 - Taiwan: close trade relation with both the US and China and has been named as one of the beneficiaries of the Trade War (Nicita, 2019).
- US tariffs on China and China's retaliation:
 - Reduce bilateral trade
 - Diverse trade to third countries
 - Restructure of global supply chains
- Supply chain restructuring:
 - The East Asian supply chain is shifting from a China-centric model to a diversified one.
 - Firms are reshoring, nearshoring, and implementing "China+1" strategies to mitigate risks.
- Focus on trade diversion and reallocation using Taiwanese customs data.

Fung, Liu, Tang, and Wu

- Key role in global supply chains:
 - Taiwan is a major supplier of intermediate goods, particularly in hightech industries.
 - Strong integration in global production networks, supplying components to China, the US, and Southeast Asia.
- Export structure:
 - Taiwan's exports concentrate on intermediate and capital goods, with electronic parts and components accounting for approximately 40%.
 - Machinery, precision instruments, and chemicals also contribute significantly to export value.
 - Close trade relations with both the US (23%) and China (20%) in 2024.

Background: East-Asia Supply Chain

- Pre-Trade war: East-Asian supply chains were highly China-Centric
 - China served as the world's factory, handling final assembly, while Taiwan, Japan, and South Korea supplied key components.
 - Supply chain division: U.S. design → Taiwan, Japan and South Korea supply parts → China assembly → global export.
- Post-Trade war: Diversification and restructuring of the supply chain
 - Taiwanese firms reshoring: The government provided investment incentives, leading to a surge in Taiwan's exports to the U.S. (2018–2019).
 - China+1 strategy: Countries such as Vietnam and Mexico took over production capacity previously based in China.
 - Major firms expanded operations in Southeast Asia and the U.S. to avoid trade barriers.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Background: Anecdotes

- TSMC (advanced chip manufacturing and global market dominance)
 - After losing Huawei orders, TSMC expanded its wafer fabs in Arizona and Kumamoto to diversify risks.
- Foxconn (innovation integration design manufacturing, IIDM)
 - Expanded iPhone assembly to India and Vietnam to reduce reliance on China.
 - Established a new factory in Mexico to address U.S. tariffs and nearshoring trends.
- Is the US-China supply chain decoupled?
 - While Vietnam and Mexico have replaced some of China's exports, their imports of Chinese components have increased.
 - ► The supply chain has shifted to a China indirect supply → third-country assembly → US export model, demonstrating the rerouting effect.

- Assess the impact of the US-China trade war on the international trade of Taiwanese manufacturers:
 - Direct tariff effect (trade diversion): when the US imposed additional tariffs on imports from China, China's exports of such product may be replaced by exports from other countries.
 - Indirect tariff effects (restructure of supply chains): when the downstream products are subject to additional tariffs, exports of products that are upstream in the supply chain linkage may be redirected.
 - **③** Impact on investment and employment

Antecedents

- Examine the effect of trade diversion and reallocation for a closely related trading partner
 - Diversion effect: Nicita (2019), Cigna et al. (2022), Choi and Nguyen (2023)
 - Reallocation effect: Fajgelbaum et al. (2024), Utar et al, (2025)
- Address the heterogeneity of the firm and product in the effects of the trade war at the firm-product level
 - Impact of the trade war on the US: Amiti et al. (2019), Waugh (2020),
 Fajgelbaum et al. (2020), Cavallo et al. (2021), Handley et al. (2024)
 - Impact on China: Benguria et al. (2022), Jiao et al. (2024)
 - Financial market: Huang et al. (2023)
- Analysis impact of US trade policy on the reshaping of global supply chains
 - Impact of tariffs on imports from China: Freund et al. (2024)
 - Evolution of global supply chains: Alfaro and Chor (2023)

Using Taiwanese customs data from 2012 to 2022, we find that:

- Product-country-level: Positive effect of direct tariff on exports to the U.S. and positive effect of indirect tariff on exports to Southeast Asia, Mexico and Korea (and also China).
- Firm-product-country level: positive effects of indirect tariffs on China, Mexico and some Southeast Asian countries.

Contribution:

- Evaluate the impact of US-China trade war on restructure of global supply chains (redirection of exports of intermediate inputs).
- Assess the impact on firms' domestic investment and employment (ongoing).

• = • •

- Data Description
- Empirical Analysis:
 - Product-country level.
 - Firm-product-country level.
 - Impact on investment and employment.
- Conclusion

- Transaction-level customs data from 2006 to 2023, aggregated into annual data
- The dataset used in this study covers the period from January 2012 to December 2022
- Covers firm-product(HS6)-country-year level, allowing for granular trade pattern analysis
- The customs data are also merged with:
 - Corporate income tax files to obtain industry code and financial statement data
 - Individual income tax files to obtain the number of employees

Key Patterns in Taiwan's Exports

Table 1: Taiwan's Top 10 Export Destinations, 2012-2022

	Export Value in billion TWD														
			(Exp	ort Value	of elect	rical mach	ninery a	and electro	onics (H	IS-84&85)	in billi	on TWD)			
Rank	2012		2017		2018		2	2019	2	2020		2021		2022	
1	CN	2,136	CN	2,489	CN	2,741	CN	2,637	CN	2,800	CN	3,134	CN	3,004	
		(888)		(1,371)		(1,541)		(1,569)		(1,808)		(1,981)		(2,051)	
2	SEA	1,335	SEA	1,612	SEA	1,617	SEA	1,548	US	1,459	US	1,782	US	1,997	
		(690)		(921)		(877)		(882)		(835)		(992)		(1,172)	
3	ΗK	991	ΗK	1,112	US	1,156	US	1,386	SEA	1,458	SEA	1,763	SEA	1,989	
		(683)		(896)		(566)		(768)		(911)		(1,085)		(1,312)	
4	US	945	US	1,083	ΗK	1,107	ΗK	1,101	ΗK	1,256	ΗK	1,428	ΗK	1,401	
		(472)		(536)		(905)		(922)		(1,043)		(1,239)		(1,252)	
5	JP	517	JP	581	JP	648	JP	661	JP	618	EU	707	JP	801	
		(252)		(332)		(360)		(384)		(381)		(334)		(503)	
6	EU	484	EU	564	EU	625	EU	597	EU	537	JP	690	EU	772	
		(250)		(283)		(313)		(301)		(275)		(408)		(380)	
7	KR	377	KR	404	KR	438	KR	462	KR	417	KR	508	KR	583	
		(240)		(268)		(261)		(275)		(305)		(379)		(466)	
8	GB	107	GB	112	GB	115	GB	109	GB	98	IN	124	IN	146	
		(55)		(55)		(55)		(54)		(50)		(42)		(57)	
9	AU	100	IN	99	IN	111	IN	100	AU	84	GB	114	MX	132	
		(36)		(35)		(37)		(32)		(25)		(53)		(80)	
10	IN	97	AU	88	AU	97	AU	92	IN	77	AU	113	AU	126	
		(34)		(28)		(27)		(28)		(25)		(27)		(30)	

Note: The export value of electrical machinery and electronics (HS-84&85) is reported in parentheses. Source: Author's own calculations from Taiwanese customs data.

< □ > < 同 > < 回 > < 回 > < 回 >

- Measure of Direct Tariff
 - Tariff imposed by the United States on imports from China (MFN tariff rates plus the additional tariff increases caused by the trade war)
- Tariff Data
 - MFN tariff data are from USITC
 - The additional tariff data are from Bown (2021)
 - The tariff is aggregated to the 6-digit HS level (τ_{it}^{US})
 - In this paper, we consider measures that the US imposed on China summarized below:

Background: US Tariff on Chinese Imports

Table 2: US Tariff on Chinese Imports, 2018-2020

No.	Section	Effective Date	Tariff Rates	Type of Products
1	201	Feb 7, 2018	20%/30%	washing machines/solar cells
2	232	Mar 23, 2018	25%/10%	steel product/aluminum products
3	301*	Jul 6, 2018	25%	intermediate and capital goods
4	301*	Aug 23, 2018	25%	intermediate and capital goods
5	301*	Sep 24, 2018	10%	wide range of products
6	201	Feb 7, 2019	-2%/-5%	same as $\#1$
7	301*	Jun 1, 2019	15%	same as $\#5$
8	301*	Sep 1, 2019	15%	consumption
9	201	Feb 7, 2020	-2%/-5%	same as $\#1$
10	232	Feb 8, 2020	25%/10%	steel product/aluminum products
11	301	Feb 14, 2020	-7.5%	same as #8

Source: Compiled by the author based on Bown (2021). * refers to what is commonly known as the US-China trade war.

→ ∃ →

The Indirect Tariffs: Downstream Tariffs

- Tariffs that a product faces when the industries that use this product as an input are subject to tariff
- Supply chain linkage: 2012 use table from US BEA (405 industries)
- downstream tariffs:

$$w_{s,k}^{D} = \frac{f_{s,k}}{\sum_{k,s \neq k} f_{s,k}}$$
(1)
$$\tau_{s,t}^{D} = \sum_{k} w_{s,k}^{D} \times \tau_{k,t}^{US}$$
(2)

f_{s,k}: the use of product *s* in the production of product *k w_{s,k}*: the share of use of *s* in *k* in the total use of product *s τ^D_{s,t}*: weighted average downstream tariffs that the upstream product *s* faces

Summary Statistics: Tariff Data

Table 3: Tariff Rates (%)

		$\tau_{j,t}^{US}$			$\tau_{j,t}^D$	
Sector Category	2012	2017	2022	2012	2017	2022
Animal	3.27	3.27	16.52	4.07	4.02	19.60
Vegetable	3.10	3.11	19.10	5.66	5.55	24.85
Foodstuffs	9.77	9.73	28.58	9.71	9.57	28.69
Mineral	0.63	0.63	22.75	2.25	2.24	26.12
Chemicals	3.13	3.11	23.24	3.01	2.99	22.89
Plastics/Rubbers	4.08	4.07	27.68	4.04	4.03	25.48
${\sf Leathers}/{\sf Furs}/{\sf Hides}$	4.43	4.56	26.66	3.18	3.20	21.71
Wood	1.08	1.07	24.00	2.34	2.30	23.12
Textiles	9.07	9.07	27.66	4.17	4.16	22.17
Footwear/Headgear	8.36	8.34	17.86	2.94	2.93	22.82
Stone/Glass	3.79	3.78	25.17	3.12	3.00	24.97
Metals	1.85	1.85	26.45	2.33	2.30	26.71
Machinery/Electrical	1.77	1.67	26.16	2.44	2.37	26.26
Transportation	3.30	3.30	27.03	2.74	2.72	26.13
Miscellaneous	2.66	2.41	18.05	2.18	1.97	21.04

Source: Based on the author's calculations using USITC's annual tariff data and Bown (2021).

• • • • • • • • • • • •

Empirical Analysis: Product-Country Level Exports

$$\Delta y_{jct} = \alpha + \beta \Delta \tau_{jt}^{US} + \gamma \Delta \tau_{jt}^{D} + F_s + F_{ct} + \epsilon_{jct}$$
(3)

- Level: product (j)/ country (c)/ sector (s)/ year (t)
- Y: export value in TWD
- τ_{jt}^{US} , τ_{jt}^{D} : direct and downstream tariff rates
- Δ: 5 years difference
 - ▶ *t* = 1, 2
 - $\Delta y_{jc,1} \equiv ln Y_{jc,2017} ln Y_{jc,2012}$ and $\Delta y_{jc,2} \equiv ln Y_{jc,2022} ln Y_{jc,2017}$ • the same operation is performed for τ_{it}^{US} and τ_{it}^{D}
- Interact with: *I_c*, a dummy variable indicating whether country/region
 c belongs to the destination

Table 4: The Impact of Tariff Rates on Exports: Product-Country Level Analysis

	World		interac	t with US	interact with CN		interact with KR		interact with MX		interact with SEA	
Dep. Δy_{jct}	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\Delta \tau_{jt}^{US} (\hat{\beta}_1)$	0.0022**	0.0017	0.0021*	0.0015	0.0023**	0.0016	0.0023**	0.0018	0.0022**	0.0017	0.0026**	0.0019
	(0.0011)	(0.0015)	(0.0011)	(0.0016)	(0.0011)	(0.0015)	(0.0011)	(0.0015)	(0.0011)	(0.0015)	(0.0011)	(0.0016)
$\cdots imes I_c (\hat{\beta}_2)$			0.0071*	0.0123**	-0.0038	0.0053	-0.0033	-0.0085	-0.0004	0.0012	-0.0030	-0.0018
			(0.0038)	(0.0058)	(0.0044)	(0.0057)	(0.0048)	(0.0056)	(0.0066)	(0.0074)	(0.0020)	(0.0022)
$\Delta \tau_{it}^D (\hat{\gamma}_1)$	0.0026	0.0062	0.0020	0.0066	0.0019	0.0054	0.0024	0.0054	0.0022	0.0058	0.0031	0.0030
	(0.0027)	(0.0056)	(0.0027)	(0.0056)	(0.0027)	(0.0057)	(0.0027)	(0.0057)	(0.0027)	(0.0056)	(0.0029)	(0.0060)
$\cdots \times I_c (\hat{\gamma}_2)$			0.0190**	-0.0239	0.0256**	0.0367**	0.0107	0.0493**	0.0338**	0.0367	-0.0029	0.0241**
			(0.0085)	(0.0203)	(0.0101)	(0.0185)	(0.0109)	(0.0193)	(0.0161)	(0.0328)	(0.0049)	(0.0107)
$\hat{\beta}_1 + \hat{\beta}_2$			0.0092**	0.0138**	-0.0015	0.0069	-0.0010	-0.0067	0.0018	0.0029	-0.0004	0.0001
			(0.0037)	(0.0058)	(0.0045)	(0.0058)	(0.0048)	(0.0059)	(0.0067)	(0.0075)	(0.0020)	(0.0025)
$\hat{\gamma}_1 + \hat{\gamma}_2$			0.0209**	-0.0172	0.0275***	0.0421**	0.0131	0.0546***	0.0360**	0.0424	0.0001	0.0271***
			(0.0086)	(0.0204)	(0.0102)	(0.0182)	(0.0109)	(0.0191)	(0.0163)	(0.0329)	(0.0048)	(0.0100)
Sample	All	HS-84&85	All	HS-84&85	All	HS-84&85	All	HS-84&85	All	HS-84&85	All	HS-84&85
N	193,064	58,206	193,064	58,206	193,064	58,206	193,064	58,206	193,064	58,206	193,064	58,206
R-sq	0.027	0.037	0.027	0.037	0.027	0.037	0.027	0.037	0.027	0.037	0.027	0.037

Note: Sector, and Country-Xhar FEs are included in all regressions. We denote significance at the 10%, 5%, and 1% with +, ++, and +++, respectively. Standard errors clustered at HS-6 digits product level are reported in parentheses. The constant term is included but not reproduct

A D > A A > A > A

Evidence: Product-Country Level Exports

Table 5: The Impact of Tariff Rates on Exports to 6 Major SEA Countries:Product-Country Level Analysis

	interact with VN		interact	with TH interact		t with SG interact		with MY interact		with PH	interact with ID	
Dep. Δy_{jct}	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\Delta \tau_{jt}^{US} \left(\hat{\beta}_1 \right)$	0.0020*	0.0016 (0.0015)	0.0022** (0.0011)	0.0017 (0.0015)	0.0023** (0.0011)	0.0017 (0.0015)	0.0023** (0.0011)	0.0017 (0.0015)	0.0023** (0.0011)	0.0018 (0.0015)	0.0022** (0.0011)	0.0017 (0.0015)
$\cdots imes I_c (\hat{eta}_2)$	0.0083* (0.0042)	0.0078 (0.0056)	0.0027 (0.0043)	-0.0004 (0.0047)	-0.0067 (0.0045)	0.0011 (0.0062)	-0.0061 (0.0042)	-0.0039 (0.0060)	-0.0060 (0.0048)	-0.0099* (0.0056)	-0.0023 (0.0051)	-0.0015 (0.0050)
$\Delta \tau^{D}_{jt} \left(\hat{\gamma}_{1} \right)$	0.0025 (0.0027)	0.0052 (0.0057)	0.0028 (0.0027)	0.0053 (0.0057)	0.0023 (0.0027)	0.0062 (0.0056)	0.0028 (0.0027)	0.0058 (0.0057)	0.0025 (0.0027)	0.0052 (0.0057)	0.0028 (0.0027)	0.0057 (0.0057)
$\cdots imes I_c (\hat{\gamma}_2)$	0.0008 (0.0108)	0.0461* (0.0246)	-0.0107 (0.0106)	0.0452* (0.0265)	0.0140 (0.0102)	-0.0005 (0.0214)	-0.0089 (0.0097)	0.0187 (0.0246)	0.0047 (0.0126)	0.0515** (0.0233)	-0.0138 (0.0126)	0.0299 (0.0222)
$\hat{\beta}_1 + \hat{\beta}_2$	0.0103**	0.0094	0.0048	0.0013	-0.0044	0.0028	-0.0037	-0.0021	-0.0037	-0.0081	-0.0000	0.0002
	(0.0042)	(0.0058)	(0.0043)	(0.0048)	(0.0045)	(0.0061)	(0.0042)	(0.0060)	(0.0048)	(0.0057)	(0.0051)	(0.0051)
$\hat{\gamma}_1 + \hat{\gamma}_2$	0.0033	0.0514**	-0.0078	0.0505*	0.0163	0.0057	-0.0060	0.0246	0.0072	0.0567**	-0.0110	0.0357
	(0.0109)	(0.0243)	(0.0106)	(0.0262)	(0.0102)	(0.0214)	(0.0097)	(0.0245)	(0.0126)	(0.0232)	(0.0127)	(0.0218)
Sample	All	HS-84&85	All	HS-84&85								
N	193,064	58,206	193,064	58,206	193,064	58,206	193,064	58,206	193,064	58,206	193,064	58,206
R-sq	0.027	0.037	0.027	0.037	0.027	0.037	0.027	0.037	0.027	0.037	0.027	0.037

Note: Sector, and Country: Year FEs are included in all regressions. We denote significance at the 10%, 5%, and 1% with +, ++, and +++, respectively. Standard errors clustered at HS-6 digits product level are reported in parentheses. The constant term is included but not reported.

< ロト < 同ト < ヨト < ヨト

Summary: Tariff Impacts by Product-Country

Direct Tariff:

- Trade diversion effect: increase of Taiwan's exports to the US.
- A 1% increase in the US tariff rate on Chinese imports (25% increase on average from 2017 to 2022) may boost Taiwan's electrical machinery and electronics exports to the US by 1.38%.
- Downstream Tariff:
 - 1% increase in downstream tariffs led to a more than 5% increase in exports for Taiwan's upstream products in South Korea and Vietnam, implying a redirection of supply chains.

$$\Delta y_{ijct} = \alpha + \beta \Delta \tau_{jt}^{US} + \gamma \Delta \tau_{jt}^{D} + F_i + F_s + F_{ct} + \epsilon_{ijct}$$
(4)

- Level: firm (i)/ product (j)/ country (c)/ sector (s)/ year (t)
- Y: export value in TWD
- τ^{US}_{jt} , τ^{D}_{jt} : direct and downstream tariff rates
- Δ: 5 years difference
 - ▶ *t* = 1, 2
 - $\Delta y_{jc,1} \equiv ln Y_{jc,2017} ln Y_{jc,2012}$ and $\Delta y_{jc,2} \equiv ln Y_{jc,2022} ln Y_{jc,2017}$ • the same operation is performed for τ_{it}^{US} and τ_{it}^{D}
- Interact with: *I_c*, a dummy variable indicating whether country/region *c* belongs to the destination

2025.3.26 21 / 28

Evidence: Firm-Product-Country Level Exports

Table 6: The Impact of Tariff Rates on Exports: Firm-Product-Country Level Analysis

	World		interact	with US	interact with CN		interact with KR		interact with MX		interact with SEA	
Dep. Δy_{jct}	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\Delta \tau_{jt}^{US} (\hat{\beta}_1)$	-0.0008	-0.0030**	-0.0008	-0.0027*	-0.0010	-0.0033**	-0.0008	-0.0028**	-0.0008	-0.0031	-0.0011	-0.0036**
	(0.0007)	(0.0014)	(0.0006)	(0.0015)	(0.0007)	(0.0014)	(0.0007)	(0.0014)	(0.0007)	(0.0014)	(0.0008)	(0.0015)
$\cdots imes I_c (\hat{eta}_2)$			-0.0001	-0.0029	0.0015	0.0031	-0.0032	-0.0053	-0.0002	0.0126	0.0012	0.0043*
			(0.0016)	(0.0037)	(0.0016)	(0.0034)	(0.0026)	(0.0044)	(0.0031)	(0.0089)	(0.0012)	(0.0025)
$\Delta \tau_{jt}^{D}(\hat{\gamma}_{1})$	0.0117***	0.0225***	0.0109***	0.0206***	0.0117***	0.0207***	0.0115***	0.0224***	0.0114***	0.0223***	0.0120***	0.0208***
	(0.0024)	(0.0056)	(0.0023)	(0.0055)	(0.0024)	(0.0055)	(0.0024)	(0.0056)	(0.0024)	(0.0057)	(0.0026)	(0.0059)
$\cdots \times I_c (\hat{\gamma}_2)$			0.0071	0.0148	0.0009	-0.0007	0.0092	0.0009	0.0281**	0.0202	-0.0013	0.0127
			(0.0045)	(0.0110)	(0.0046)	(0.0089)	(0.0066)	(0.0148)	(0.0116)	(0.0292)	(0.0034)	(0.0070)
$\hat{\beta}_1 + \hat{\beta}_2$			-0.0009	-0.0056	0.0005	-0.0002	-0.0040	-0.0081*	-0.0010	0.0095	0.0001	0.0007
			(0.0016)	(0.0035)	(0.0016)	(0.0033)	(0.0027)	(0.0048)	(0.0031)	(0.0086)	(0.0011)	(0.002)
$\hat{\gamma}_1 + \hat{\gamma}_2$			0.0180***	0.0355***	0.0126**	0.0220**	0.0206***	0.0233	0.0395***	0.0425	0.0107***	0.0335***
			(0.0051)	(0.0120)	(0.0050)	(0.0105)	(0.0071)	(0.0157)	(0.0114)	(0.0279)	(0.0031)	(0.0073)
Sample	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic
N	409,920	88,962	409,920	88,962	409,920	88,962	409,920	88,962	409,920	88,962	409,920	88,962
R-sq	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063

Note: Firm, Sector, and Country×Year FEs are included in all regressions. We denote significance at the 10%, 5%, and 1% with *, **, and ***, respectively. Standard errors clustered at HS-6 digits product level are reported in parentheses. The constant term is included but not reported.

Table 7: The Impact of Tariff Rates on Exports to 6 Major SEA Countries:Firm-Product-Country Level Analysis

	interact with VN		interact	with TH	interact	with SG interact		with MY intera		with PH	th PH interact v	
Dep. Δy_{jct}	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\Delta \tau_{jt}^{US} (\hat{\beta}_1)$	-0.0010	-0.0033**	-0.0008	-0.0030**	-0.0009	-0.0031**	-0.0008	-0.0030**	-0.0009	-0.0033**	-0.0009	-0.0030**
	(0.0007)	(0.0014)	(0.0007)	(0.0014)	(0.0007)	(0.0014)	(0.0007)	(0.0014)	(0.0007)	(0.0014)	(0.0007)	(0.0014)
$\cdots imes I_c (\hat{\beta}_2)$	0.0027	0.0112**	-0.0007	0.0007	0.0009	0.0026	-0.0012	-0.0009	0.0017	0.0169***	0.0032	-0.0031
	(0.0019)	(0.0051)	(0.0019)	(0.0042)	(0.0025)	(0.0044)	(0.0020)	(0.0047)	(0.0027)	(0.0044)	(0.0023)	(0.0071)
$\Delta \tau_{jt}^D(\hat{\gamma}_1)$	0.0118***	0.0227***	0.0116***	0.0218***	0.0116***	0.0223***	0.0115***	0.0217***	0.0116***	0.0220***	0.0122***	0.0228***
	(0.0024)	(0.0053)	(0.0024)	(0.0056)	(0.0024)	(0.0057)	(0.0024)	(0.0057)	(0.0024)	(0.0056)	(0.0024)	(0.0056)
$\cdots imes I_c (\hat{\gamma}_2)$	-0.0016	-0.0057	0.0020	0.0252**	0.0052	0.0070	0.0082	0.0297**	0.0056	0.0277	-0.0286***	-0.0387
	(0.0068)	(0.0168)	(0.0062)	(0.0120)	(0.0070)	(0.0166)	(0.0062)	(0.0145)	(0.0070)	(0.0178)	(0.0092)	(0.0285)
$\hat{\beta}_1 + \hat{\beta}_2$	0.0017	0.0079	-0.0015	-0.0023	-0.0000	-0.0005	-0.0020	-0.0039	0.0008	0.0136***	0.0023	-0.0061
	(0.0019)	(0.0053)	(0.0019)	(0.0043)	(0.0025)	(0.0040)	(0.0020)	(0.0045)	(0.0026)	(0.0042)	(0.0023)	(0.0071)
$\hat{\gamma}_1 + \hat{\gamma}_2$	0.0102	0.0169	0.0136**	0.0470***	0.0167**	0.0293*	0.0197***	0.0514***	0.0172***	0.0497***	-0.0164*	-0.1589
	(0.0067)	(0.0170)	(0.0067)	(0.0135)	(0.0069)	(0.0163)	(0.0063)	(0.0142)	(0.0067)	(0.0181)	(0.0086)	(0.0288)
Sample	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic
N	409,920	88,962	409,920	88,962	409,920	88,962	409,920	88,962	409,920	88,962	409,920	88,962
R-sq	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063	0.066	0.063

Note: Sector, and Country×Year FEs are included in all regressions. We denote significance at the 10%, 5%, and 1% with *, **, and ***, respectively. Standard errors clustered at HS-6 digits product level are reported in parentheses. The constant term is included but not reported.

Summary: Tariff Impacts by Firm-Product-Country

- The U.S.:
 - The impact of direct tariffs on US exports is not evident at the firmproduct-country level, as our results primarily reflect manufacturers with a long history of exporting the same products to the US.
 - A 1% increase in downstream tariffs causes a 3.6% increase on upstream exports in electronics to the US-greater effect than direct tariffs. The averaging tariff increment was 24% in the 2017-2022 period.
- China:
 - Positive effects of downstream tariffs: exports to China still increase, implying the supply chain is unlikely to easily disrupted.
- Southeast Asia:
 - Positive effects of downstream tariffs on Taiwanese firms' electronics and machinery exports to the Southeast Asia: the impact of supply chain adjustments.

Empirical Analysis: Firm Level Factor Inputs

$$\Delta y_{it} = \alpha + \beta \Delta \tau_{it}^{US} + \gamma \Delta \tau_{it}^{D} + F_s + F_t + \epsilon_{it}$$
(5)

- Y: capital (K), labor (L), and R&D intensity (RD)
- τ^{US}_{it}, τ^D_{it}: firm-level direct and downstream tariff rates
 τ_{it} ≡ ∑_j w_{ij,0} · τ_{jt}
 w_{ij,0}: share of product j in firm i's total export value in the initial year
- Δ: 5 years difference

•
$$\Delta y_{i,1} = ln Y_{i,2017} - ln Y_{i,2012}$$
 and $\Delta y_{i,2} = ln Y_{i,2022} - ln Y_{i,2017}$

• the same operation is performed for τ_{it}^{US} and τ_{it}^{D}

Table 8: The Impact of Trade War Tariffs on Investment and Employment

Dep.	Δ	InK	Δ	InL	$\Delta ln(RD)$			
	(1)	(2)	(3)	(4)	(5)	(6)		
$\Delta \tau_{it}^{US}$	-0.0003	-0.0042*	0.0014***	-0.0003	0.0001	0.0000		
	(0.0010)	(0.0025)	(0.0004)	(0.0011)	(0.0001)	(0.0002)		
$\Delta \tau^{D}_{it}$	0.0013	0.0122**	-0.0001	0.0025	-0.0001	-0.0008		
	(0.0019)	(0.0056)	(0.0009)	(0.0024)	(0.0001)	(0.0005)		
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes	Yes	Yes		
Sample	Manuf.	Electronic	Manuf.	Electronic	Manuf.	Electronic		
Ν	32,658	4,477	32,700	4,705	32,439	4,441		
R-sq	0.005	0.006	0.017	0.000	0.001	0.001		

Note: Sector and year FEs are included in all regressions. We denote significance at the 10%, 5%, and 1% with *, **, and **, respectively. Standard errors clustered at firm level are reported in parentheses. The constant term is included but not reported.

A D F A B F A B F A B

- A 1% increase in downstream tariffs has, on average, led to a 1.22% impact on capital growth by electronics firms, indicating the role of supply chain restructuring in driving their capital investments.
- The US tariffs on China have not only created a trade diversion effect for manufacturers but have also contributed to employment growth, albeit to a limited extent.

Conclusion

- Trade diversion effect:
 - The US tariff policy on China positioned Taiwan as an alternative trade source
 - Taiwan's exports to the US, especially in electronics and machinery, experienced substantial growth
- Supply chain restructuring:
 - Downstream tariffs have influenced Taiwan's upstream exports: expand upstream component exports to Southeast Asia, Korea, and Mexico, which have absorbed parts of the shifting Chinese supply chain.
- Investment and employment:
 - When electronics firms face additional downstream tariffs, their production demand rises, with investment growth being especially notable.