Contagious Deregulation

Jakub Hajda, HEC Montréal Joseph Kalmenovitz, University of Rochester Billy Xu, University of Rochester

Paper available on $\underline{\mathrm{SSRN}}$

Economics of (de)regulation: important & understudied

- Recently, a massive push to deregulate & defang regulatory agencies
- Little is known about the economics of deregulation
- Suppose we exempt some firms from regulation X
- Typical paper will show the effect on deregulated firms
 - Lower overhead, free cash flows...
- Our paper: **contagion effect** on non-deregulated firms

How does deregulation affect non-deregulated firms?

- New dataset on federal awards
 - Granular recipient-level dataset, covering 23.7 trillion during 1997-2022
 - Recipients above a threshold must be audited ("Single Audit")
- Study a **major deregulation reform** of federal awards
 - The audit threshold was raised from $500\mathrm{K}$ to $750\mathrm{K}$
 - Auditors who lost deregulated clients issued more positive audits to the surviving, non-deregulated clients \Leftarrow Contagion effect
 - Likely channel: lower demand for auditors motivated leniency
- **Structural model** to quantify the implications
 - Higher monitoring costs incentivize leniency, regardless of client's misconduct
- Implications for other deregulatory efforts
 - Compliance industry transmits deregulation shocks

Overview of the talk

① Data & setting

- 2 Empirical evidence
- 3 Structural model
- **Quantitative implications**

Federal awards: important source of cheap capital

- Many nonprofit organizations crucially rely on **Federal awards***
- Especially important for universities; in FY 2022/2023,
 - UT Austin expended 0.985 billion in Federal awards (42% of operating revenues)
 - U Chicago: \$0.64 billion (10% of operating revenues)
 - **NYU**: \$1.5 billion (10% of operating revenues)
 - Duke: \$1.2 billion (12% of operating revenues)
 - UNC-Chapel Hill: \$1.1 billion (23% of operating revenues)
- The funds are typically **free** and **lightly monitored**:
 - Only awards above a fixed threshold require monitoring
 - Monitoring done by private auditors, not by the government

^{* &}quot;Federal award" (aka "Federal financial assistance") includes any funds received directly from a Federal agency or indirectly from a pass-through entity, in the form of grants, donations, or loans. Precise definition: 2 CFR §200.1.

Federal awards and the Single Audit threshold

- The government has privatized the monitoring of federal awards
- The process is called Single Audit^{*}
 - Recipient hires a private auditor
 - Auditor reviews financial statements & regulatory compliance
 - Outcome: **positive** ("unqualified") or **negative** ("qualified" or "adverse") opinion
 - Severe issues can lead to funding freeze & exclusion from future awards
- Single Audit is required only if awards exceed a **fixed dollar threshold**
- The threshold was raised in 2016, from \$500k to \$750k
 - Deliberate attempt to deregulate small entities
 - We use this setting to identify the contagion effect

^{*} In 1984, the Single Audit system replaced the need to conduct a separate audit for each federal award.

New dataset: Federal Audit Clearinghouse

- The central repository with all Single Audit reports
- For each report: recipient & auditor details; expenditures of federal awards; audit results
- 573,050 reports, from 1997 to 2022, covering \$23.6 trillion
- Federal awards disbursed among 51,318 unique clients; monitored by 52,870 unique auditors

	count	mean	sd	p50
Amount (\$1,000)	$573,\!045$	9,166	$24,\!444$	$2,\!617$
Relations:				
Pair Survival Rate	554,266	60.3	48.9	100.0
Client Switch Rate	$554,\!266$	13.3	34.0	0.0
Auditor Attrition Rate	$554,\!266$	12.9	33.6	0.0
Client Attrition Rate	$554,\!266$	13.5	34.1	0.0
Opinions:				
Unqualified Opinion	$573,\!045$	87.5	33.1	100.0
Qualified Opinion	$573,\!045$	9.1	28.7	0.0
Adverse Opinion	$573,\!045$	1.5	12.1	0.0

Amount is the amount of federal awards spent by the recipient in 2023 USD. Pair Survival Rate is the likelihood a client continues to hire the same auditor in the next year; Auditor Attrition Rate (Client Attrition Rate) is the likelihood the auditor (client) ceases to exist in the sample next year; and Client Switch Rate is the likelihood a client changes its auditor next year, conditional on both client and auditor continuing to exist. Unqualified Opinion=1 if the client receives a positive audit, Qualified Opinion=1 for an adverse opinion (more severe).

Overview of the talk

① Data & setting

2 Empirical evidence

3 Structural model

Quantitative implications

6 Conclusion

• Pre-reform, Client1 had to hire an auditor

- Pre-reform, Client1 had to hire an auditor
- Post-reform, Client1 has been deregulated

- Pre-reform, Client1 had to hire an auditor
- Post-reform, Client1 has been deregulated
- We focus on Client2, who was never deregulated

- Pre-reform, Client1 had to hire an auditor
- Post-reform, Client1 has been deregulated
- We focus on Client2, who was never deregulated
- Reduced demand motivates the auditor to offer Client2 leniency
- **Contagion effect** spreads from Client1 to Client2 through the treated auditor

Difference-in-differences specification

$$NegativeAudit_{a,c,t} = \alpha + \beta \cdot Treated_a \times Post_t + \lambda_a + \lambda_c + \lambda_t,$$

- Panel of client×auditors, 2013-2018 (± 3 years around the reform)
- NegativeAudit = 1 if auditor *a* issued a negative opinion for client *c*
- Post = 1 from 2016 onwards
- Treated = 1 for treated auditors and 0 for control auditors
- $\beta = \text{contagion effect:}$
 - Change in outcome for auditors who lost their deregulated clients, relative to similar auditors who did not lose clients (hypotheses)
- We add year, client, and auditor FE (absorbing *Post* and *Treated*)
- SE double-clustered at the auditor and client level

Main result: Contagion effect

Treatment reduced negative audits, especially ones with severe issues

		Negativ		Qualified	Adverse	
	(1)	(2)	(3)	(4)	(5)	(6)
Treated \times Post	-3.035^{***} (0.919)	-3.102^{***} (0.948)	-1.894^{**} (0.811)	-2.013^{***} (0.759)	-1.453^{**} (0.701)	-1.648^{**} (0.833)
Auditor FE	Yes	No	No	No	No	No
Client FE	Yes	No	No	No	No	No
Year FE	Yes	Yes	No	No	Yes	Yes
Pair FE	No	Yes	Yes	Yes	Yes	Yes
Entity Type \times Year FE	No	No	Yes	No	No	No
Entity State \times Year FE	No	No	No	Yes	No	No
2015 Mean	7.24	7.18	7.18	7.18	5.23	1.95
Effect $(\%)$	-41.91	-43.21	-26.39	-28.04	-27.79	-84.58
Observations	106899	104063	104003	104058	104063	104063

NegativeAudit = 1 if the auditor provided a negative audit of the client. Qualified = 1 (Adverse = 1) if the negative opinion was specifically "qualified" ("adverse"), which represents less (more) severe compliance concerns. Treated = 1 if the auditor had at least one client with expenditures below \$750K in 2015. Treated = 0 if the auditor had no clients below \$750K but had at least one client between \$1 million and \$1.5 million, in 2015. Post = 1 from 2016 onwards.

Main result: Contagion effect

Treatment reduced negative audits, especially ones with severe issues

		Negativ	Qualified	Adverse		
	(1)	(2)	(3)	(4)	(5)	(6)
Treated \times Post	-3.035^{***} (0.919)	-3.102^{***} (0.948)	-1.894^{**} (0.811)	-2.013^{***} (0.759)	-1.453^{**} (0.701)	-1.648^{**} (0.833)
Auditor FE	Yes	No	No	No	No	No
Client FE	Yes	No	No	No	No	No
Year FE	Yes	Yes	No	No	Yes	Yes
Pair FE	No	Yes	Yes	Yes	Yes	Yes
Entity Type \times Year FE	No	No	Yes	No	No	No
Entity State \times Year FE	No	No	No	Yes	No	No
2015 Mean	7.24	7.18	7.18	7.18	5.23	1.95
Effect (%)	-41.91	-43.21	-26.39	-28.04	-27.79	-84.58
Observations	106899	104063	104003	104058	104063	104063

NegativeAudit = 1 if the auditor provided a negative audit of the client. Qualified = 1 (Adverse = 1) if the negative opinion was specifically "qualified" ("adverse"), which represents less (more) severe compliance concerns. Treated = 1 if the auditor had at least one client with expenditures below \$750K in 2015. Treated = 0 if the auditor had no clients below \$750K but had at least one client between \$1 million and \$1.5 million, in 2015. Post = 1 from 2016 onwards.

What can generate the contagion effect?

- Following deregulation, we see **better audit outcomes**
 - Decline in negative audits among treated auditors
- Channel #1: Increase in **auditor leniency**
 - Resource constraints limit ability to conduct rigorous audits
 - Marginal cost of losing clients is higher
- Channel #2: Decline in **client misconduct**
 - Clients who hire treated auditors are less prone to misconduct
- Subsequent tests are more consistent with Channel #1, for example:
 - Negative audits, in general, push clients away costly audits
 - The reform increased risk of client desertion Client desertion
 - Channels not mutually exclusive, not fully observable

Overview of the talk

① Data & setting

2 Empirical evidence

③ Structural model

Quantitative implications

Model setup

- A risk-neutral auditor is engaged by the client to audit a project funded by a federal award
- Auditor chooses a negative $(d_t = 1)$ or positive $(d_t = 0)$ audit
- State variables (x_t) are auditor size (a_t) and yesterday's audit (d_{t-1})
 - Both variables affect the auditor's costs
- The auditor's utility function is:

The auditor's cost function

- **Recurring cost** θ : fixed cost^{*} of effort & risk of revenue loss
 - Incurred iff negative opinion today $(d_t = 1)$
- Switching cost η : extra effort & risk from changing audit rigor
 - Incurred iff shifting from positive $(d_{t-1} = 0)$ to negative $(d_t = 1)^*$
 - In the data: high autocorrelation of audit outcomes
- Scale discount δ : increases with auditor size a_t
 - Economies of scale, marginal client matters less
 - In the data: large auditors more likely to issue a negative audit

^{*} Similar results if recurring costs increase with project size, and if there is also a cost for switching from negative to positive.

Accounting for client misconduct

- The auditor's utility includes the term $\varepsilon_t(d_t)$
 - A private information shock, unobserved by the econometrician
 - Its value depends on the audit outcome
- Imagine the client engaged in misconduct:
 - We do not observe it, but it is included in ε_t
 - Auditor derives positive utility from negative audit $(\varepsilon_t(1) > 0; e.g., satisfaction)$
 - Auditor derives negative utility from positive audit ($\varepsilon_t(0) < 0$; e.g., reputational costs)
- Our goal is to estimate the structural parameters:
 - Recurring cost (θ) , switching cost (η) , and scale discount (δ)
 - They are scaled by the $\sigma,$ the SD of ε
 - Focus on **relative values**, e.g., how parameters change across subsamples

^{*} Standard feature of dynamic discrete choice models (Rust, 1994)

Overview of the talk

1 Data & setting

- 2 Empirical evidence
- 3 Structural model
- **Quantitative implications**

Optimal audit policy

- Audit outcomes are **persistent**, due to the switching cost η
 - More costly to switch positive \Leftrightarrow negative
- However, large auditors are **more flexible**
 - More likely to switch positive \Leftrightarrow negative
 - Due to the substantial scale discount δ

Model-implied probability of issuing a negative opinion today (d_t) , as a function of the audit outcome yesterday (d_{t-1}) and auditor size (a_t) . Panel A (Panel B) corresponds to an auditor who issued a positive (negative) opinion yesterday.

Deregulation increases auditor costs

		θ	η	δ
Pre-treatment:	Estimate	0.369	7.635	-0.178
	Std. error	(0.037)	(0.362)	(0.019)
Post-treatment	Estimate	1.017	4.929	-0.065
	Std. error	(0.034)	(0.393)	(0.021)
SL test— p -value	0.000 (1st stage)			

- Recurring costs[↑] for all auditors; switching costs[↑] for large auditors
 - Recurring cost θ more than doubled ((1.017 0.37)/0.37)
 - Scale discount δ decreased in absolute value by 63% ((-0.065+0.178)/-0.178)
 - Model-implied treatment effect similar to data-implied one
- The model is agnostic on "why" costs have risen; likely due to Competition

We estimate the model using the NFXP algorithm (Rust (1987)) and report the p-values from testing whether parameter estimates across different subsamples are different (Swait and Louviere (1993)). In short, we verify that the scales of two data sets are equal (first stage), and whether parameters differ after accounting for differences in scale (second stage).

Designing contagion-free deregulation

- The goal: deregulate one segment without spillovers to other segments
 - Compensate auditors who issue negative audits, to offset their rising costs
- Takeaways:
 - Contagion-free policy trades off recurring and switching costs (move in opposite directions)
 - Actual post-reform costs (blue star) led to contagion
 - Actual pre-reform costs (**red square**) were offset by scale discount

We hold the scale discount δ fixed at the post-treatment level, and compute combinations of θ and η which preserve the pre-treatment negative audit rate. The red square indicates the actual parameter estimates from the *pre*-treatment sample: $(\theta, \eta) = (0.369, 7.635)$. The blue asterisk indicates the actual parameter estimates from the *post*-treatment sample: $(\theta, \eta) = (1.017, 4.929)$.

Overview of the talk

① Data & setting

- 2 Empirical evidence
- 3 Structural model
- **Quantitative implications**

What did we learn from the paper?

- 1. **New dataset** on federal awards
 - An **understudied & crucial** source of capital
 - Of interest, e.g., to studies on nonprofit & municipal finance
- 2. Deregulation has a **contagion effect** on non-deregulated awards
 - Natural experiment points to weaker monitoring by auditors
 - Structural model shows how deregulation raises auditing costs
 - Adds to studies on the direct effect on deregulated firms
- 3. Future work on contagious deregulation
 - Deregulation reduces demand for compliance professionals
 - Their response will spill over to non-deregulated sectors
 - Consolidation? Regulatory arbitrage?

Deregulation has a contagion effect on non-deregulated firms

Appendix

How would deregulation affect audit outcomes?

 $NegativeAudit_{a,c,t} = \alpha + \beta \cdot Treated_a \times Post_t + \lambda_a + \lambda_c + \lambda_t,$

- Null hypothesis: no contagion \Rightarrow same rate of negative audits ($\beta = 0$)
 - The surviving clients continue to abide by the same regulatory requirements
- H1a: deregulation \Rightarrow fewer negative audits ($\beta < 0$)
 - Leniency: auditors compete for the surviving clients by offering leniency*
 - Compliance: recipients of large awards engage in fewer misconduct
- H1b: deregulation \Rightarrow more negative audits ($\beta > 0$)
 - Effort: auditors compete for the surviving clients by offering more effort (Hallman et al. (2022))

* Alternatively, they may offer lower price which would inadvertently force them to compromise on audit quality.

No detectable pre-trends

- Before the treatment (2015 or earlier), insignificant differences between the groups
- Only after the treatment (2016 or later), the treated group demonstrates substantially lower rates of negative audits
- Gap persists up to 3 years after the reform

Results from estimating a dynamic diff-in-diff specification: $NegativeAudit_{p,t} = \alpha + \sum_{\tau=2013}^{2018} \beta^{\tau} \cdot Treated_p \times 1_{t=\tau} + \overrightarrow{X}_{p,t} + \lambda_t + \lambda_p.$

Robustness: alternative control groups

	Negative Audit						
Upper bound:	\$1.5M	\$1.6M	\$1.7M	\$1.8M	\$1.9M	\$2.0M	
	(1)	(2)	(3)	(4)	(5)	(6)	
Treated \times Post	-3.102^{***}	-2.879***	-2.865^{***}	-2.782***	-2.645^{***}	-2.735^{***}	
	(0.948)	(0.942)	(0.934)	(0.932)	(0.931)	(0.927)	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
Pair FE	Yes	Yes	Yes	Yes	Yes	Yes	
2015 Mean Effect (%)	7.18 -43.21	7.21 -39.91	7.25 - 39.50	7.28 -38.20	$7.30 \\ -36.24$	7.30 -37.48	
Observations	104063	105768	106843	107850	108723	109279	

This table is identical to the main specification, except for the definition of control auditors. Here, the control group (Treated=0) includes auditors who did not have any clients under the \$750K threshold in 2015, and had at least one client in 2015 with expenditures between \$1 million and the specified upper bound (\$1.6M to \$2.0M). Post = 1 from 2016 onwards.

Contagion effect at the auditor level

	Any Negative	Negatives (#)	Negatives (%)
	(1)	(2)	(3)
Treated \times Post	-6.110***	-0.665***	-2.594***
	(1.602)	(0.143)	(0.733)
Auditor FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
2015 Mean	22.38	0.71	6.45
Effect (%)	-27.30	-93.86	-40.23
Observations	10786	10786	10786

Effect drives both extensive and intensive margins of auditing

Results from estimation at the auditor level, rather than auditor-client level. The outcome is an indicator for any negative audit issued by the auditor to any of their clients (column 1), the number of negative audits (column 2), and the rate of negative audits defined as the number of negative audits divided by number of clients (column 3). Treated = 1 if the auditor had at least one client with expenditures below \$750K in 2015. Treated = 0 if the auditor had no clients below \$750K but had at least one client between \$1 million and \$1.5 million, in 2015. Post = 1 from 2016 onwards.

Client compliance #1: Placebo test

- Perhaps compliant clients generally apply for large awards?
- We find no differences around the \$750K threshold in 2004-2012 (pre-pre-reform)

		Negative Audit					
	(1)	(2)	(3)	(4)	(5)	(6)	
Above 750K	-0.005 (0.003)	-0.007^{**} (0.003)	0.000 (0.003)	-0.004 (0.004)	0.002 (0.002)	0.003 (0.002)	
Year FE	No	Yes	Yes	Yes	Yes	Yes	
Entity Type FE	No	Yes	No	No	No	Yes	
Entity State FE	No	No	Yes	No	No	Yes	
Relationship Age FE	No	No	No	Yes	No	Yes	
Auditor FE	No	No	No	No	Yes	Yes	
Sample Mean	0.097	0.097	0.097	0.097	0.097	0.097	
Observations	217693	217688	217693	217693	205608	205604	

Sample covers the years 2004-2012. NegativeAudit is an indicator variable that takes one if the auditor provided a negative audit of the client in a given year, and zero otherwise. Above 750K is an indicator variable that takes one if a client's expenditure is above \$750,000, and zero otherwise. Robust standard errors are adjusted for clustering at the auditor and client level and are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Client compliance #2: Fixed pool of clients

- Perhaps compliant clients applied for large awards after the reform?
- Contagion effect holds for clients with large awards before & after

	Negative Audit					
Client:	Baseline	Exists pre & post	Above 750K pre & post			
	(1)	(2)	(3)			
Treated \times Post	-3.102^{***}	-3.102^{***}	-2.587^{***}			
	(0.948)	(0.948)	(0.814)			
Year FE	Yes	Yes	Yes			
Pair FE	Yes	Yes	Yes			
2015 Mean Effect (%)	7.18 -43.21	$6.95 \\ -44.61$	6.06 -42.66			
Observations	104063	95567	60708			

We estimate our main diff-in-diff specification in three different subsamples. Column 1 is the baseline sample. Column 2 uses only clients that existed both before and after the reform. Column 3 uses only clients that were above the \$750,000 threshold at all times, even before the reform took place. Robust standard errors are adjusted for clustering at the auditor and client level and are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Auditor leniency #1: negative audits are costly

		Retained						Switched
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
NegativeAudit	-11.215^{***} (0.731)	-3.529^{***} (0.869)	-2.885^{***} (0.761)	-2.563^{***} (0.756)	-3.428^{***} (0.473)	-3.815^{***} (0.502)	2.148^{***} (0.491)	2.558^{***} (0.421)
Year FE	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Entity Type FE	No	Yes	No	No	No	Yes	Yes	Yes
Entity State FE	No	No	Yes	No	No	Yes	Yes	Yes
Relationship Age FE	No	No	No	Yes	No	Yes	Yes	Yes
Auditor FE	No	No	No	No	Yes	Yes	Yes	Yes
Sample Mean	60.31	64.76	60.31	60.306	63.49	67.39	12.57	22.79
Effect (%)	-18.60	-5.45	-4.78	-4.25	-5.40	-5.66	17.09	11.22
Observations	554266	483649	554266	554266	526373	464624	464624	404469

Client×auditor panel, 1997-2021. NegativeAudit = 1 if the auditor provided a negative audit of the client at time t. Retained = 1 if the client continues to hire the auditor in t + 1, Exited = 1 if the client exits the sample in t + 1, and Switched = 1 if the client did not exit but chose a new auditor in t + 1. Set double-clustered at the auditor and client level.

Auditor leniency #2: change in clientele

	1(Lost client)	1(fewer clients)	Clients (\$M)	Clients $(\#)$	Clients if Fewer
	(1)	(2)	(3)	(4)	(5)
Treated \times Post	12.540^{***} (1.675)	15.162^{***} (1.647)	7.518^{**} (3.491)	-1.696*** (0.226)	-1.946^{***} (0.395)
Auditor FE	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes
2015 Mean	54.55	32.26	11.04	103.64	198.62
Effect (%)	22.99	46.99	68.07	-1.64	-0.98
Observations	9491	9841	9841	9841	2896

Results from estimating auditor-level regressions with different outcomes: indicator for losing any client (even if the total number of clients went up or did not change) and for having fewer clients (columns 1-2), dollar value of clients (column 3), number of clients (column 3), and number of clients conditional on losing clients (column 5).

Suggestive evidence: the reform increased auditor competition

	Auditor-c	lient ratio
	(1)	(2)
Exposure \times Post	0.147^{***}	0.147***
	(0.046)	(0.046)
Exposure	-0.274^{*}	
	(0.143)	
Post	-0.218^{***}	
	(0.021)	
Year FE	No	Yes
State FE	No	Yes
2015 Mean	0.25	0.25
Effect $(\%)$	59.29	59.29
Observations	1300	1300

Sample of state×year observations. Outcome is the number of auditors per clients in the state. Exposure is the ratio of treated auditors to total unique auditors in that state, as of 2015 (pre-period). Post = 1 after 2016. SE clustered at the state level.

