A Lost Decade of Fiscal Misallocation

Kosuke Aoki¹ Ippei Fujiwara² Zhenhe Lin³ Zheng (Michael) Song³ Chendong Wang³

¹University of Tokyo

²Keio University

³The Chinese University of Hong Kong

NBER Japan, July 29, 2025

Government-Private Allocation of Consumption and Investment

Figure 1: Government-to-Private Consumption and Investment Ratios (%)

► Government consumption: government actual final consumption (excluding social transfers in kind) Expenditure GDP Ratio

Misallocation of Government and Private Capital

Figure 2: Aggregate Returns to Government and Private Capital (%)

Spatial Misallocation of Government Investment

► Capital Return: $R_{it}^G \equiv \alpha_G \frac{\partial Y_t}{q_{t-1}\partial G_{it}} + \frac{q_t}{q_{t-1}}(1-\delta) - 1$, $\frac{\partial Y_t}{\partial G_{it}}$ follows equation (16)

Correlations

Table 1: $\frac{I_{it}^G}{G_{it}} \sim R_{it+1}^G$ 1983-1992 1993-2002 2003-2012 R_{it+1}^G -0.008 -0.084*** -0.002 (0.033)(0.023)(0.011)Observations 47 47 47 R^2 0.001 0.223 0.001

Spatial Allocation of Government Consumption

- Spatial allocation of government consumption is highly persistent.
 - ▶ Growth of C_{it}^G : strong correlation across periods
 - ▶ Growth of I_{it}^G : zero correlation

ightharpoonup Abstract away from C_{it}^G

Interest Rate Cuts

Real rate = Nominal rate - inflation.

More Government Borrowing

Figure 5: Government Borrowing (in percent of GDP)

 Central and local government borrowing (excluding Fiscal Investment and Loan Program (FILP) bonds)

Fiscal Windfalls from "Constrained" Government's Perspective (to fix ideas)

► Government budget constraint and fiscal windfalls

$$C_t^G + I_t^G = NB_t + B_t - r_t^D D_t, (1)$$

Windfall_t =
$$\Delta \mathbb{E}_t [NB_t] + \Delta \mathbb{E}_t [B_t] - \Delta \mathbb{E}_t [r_t^D D_t]$$
. (2)

- $ightharpoonup \mathbb{E}_t [X_{t+i}]$: expectation of X_{t+i} in period t.
- ▶ $B_t \equiv D_{t+1} D_t$: government borrowing.
- ► *NB_t*: government non-borrowing income

In this paper

- ▶ Much lower government borrowing cost relaxes government budget constraint through lower interest payment and more borrowing.
- ► A simple model to show "Government Resource Curse": More resource, more misallocation.
- Quantitative results:
 - "Fiscal windfalls" largely explain the deterioration in fiscal allocation during the Lost Decade;
 - ► Transferring fiscal windfalls to households could increase aggregate TFP by 0.23% and welfare by 0.87% during the Lost Decade.

One-Period Model: The Economy

▶ There are N regions. For each region i, the production function is given by:

$$Y_i = A_i G_i^{\alpha} \tag{3}$$

► The representative household's utility function follows:

$$U^{H} = u(C), \quad C = \left(C^{H}\right)^{\rho} \left(C^{G}\right)^{1-\rho}$$
 (4)

- u' > 0, u'' < 0
- ► Recource constraint:

$$C^G + C^H + G = W^G + W^H + Y,$$
 (5)

▶ Aggregation: $G \equiv \sum_i G_i$ and $Y \equiv \sum_i Y_i$

First-Best Allocation

- ▶ A benevolent planner maximizes U^H by choosing $\{G_i\}_i, C^G, C^H$, subject to (5).
- ► FOC w.r.t. *G_i* yields:

$$R_i^G \equiv \frac{\partial Y}{\partial G_i} = \alpha \frac{Y_i}{G_i} = 1. \tag{6}$$

- Aggregate TFP $A \equiv \frac{Y}{G^{\alpha}}$ maximized by equalizing R_i^G : $\bar{A} \equiv \left(\sum_i A_i^{\frac{1}{1-\alpha}}\right)^{1-\alpha}$.
- \triangleright FOC w.r.t. C^G and C^H yields:

$$\frac{C^G}{C^H} = \frac{1 - \rho}{\rho}.\tag{7}$$

Political Economy

► Government objective function:

$$U^{G} = u(C) + \sum_{i} \kappa_{i} v(G_{i})$$
 (8)

- v' > 0, v'' < 0
- $ightharpoonup \kappa_i > 0$: local lobbying capacity (e.g., Sato (2002); Ihori et al. (2009))
- Budget constraint:

$$C^G + \sum_i G_i + T = W^G + \tau Y, \tag{9}$$

where T and τ : lump-sum transfers and output tax rate.

▶ Government chooses C^G and $\{G_i\}$. T and τ are exogeneous.

Wedges

Consumption wedge

Consumption Wedge =
$$\frac{\rho}{1-\rho} \frac{C^G}{C^H} - 1$$
 (10)

- ightharpoonup Positive consumption wedge: distorted consumption allocation favoring C^G
- ► FOC w.r.t. C^G and $\{G_i\}$:

$$\left[1 + \underbrace{\frac{\kappa_{i}C^{G}}{(1-\rho)\alpha Y_{i}} \frac{v'(G_{i})G_{i}}{u'(C)C} + (1-\tau) \times \text{Consumption Wedge}}_{\text{Government Capital Wedge}}\right] R_{i}^{G} = 1 \quad (11)$$

au o 1 or consumption wedge = 0: overinvestment of $\{G_i\}$ relative to the first-best allocation

"Government Resource Curse"

- Assumption: $u(\cdot) = v(\cdot) = \log(\cdot)$, sufficiently high τ
- \triangleright Oversupply of Government Capital: The discrepancy between G_i and its first-best level increases monotonically with government wealth W^G .
- ightharpoonup Spatial Misallocation of Government Capital: Aggregate TFP A decreases monotonically with government wealth W^G .
 - ▶ As $W^G \to \underline{W}^G$, $\{G_i\}$ converges to $G_i \propto A_i^{\frac{1}{1-\alpha}}$: efficiency-driven allocation rule.
 - As $W^G \to \infty$, $\{G_i\}$ converges to , $\{G_i\}$ converges to $v'(G_i) \propto \frac{1}{\kappa_i}$: purely politically-driven allocation.

Sketch of Full-Blown Model

- ▶ The central government at period t, subject to an exogenous exit rate, allocates C_{t+i}^{G} , B_{t+j} , and $\{I_{it+i}^{G}\}$ for $j \geq 0$;
- Overlapping generations of households:
- Small open economy with mobile labor and private capital across regions; ovidence

- ▶ Region-specific and time-varying parameters κ_{it} , τ_{it}^K , , τ_{it}^L calibrated to match I_{it}^G , K_{it} , and L_{it} ;
- MIT shocks.

Household

► The representative household solves

$$\max_{C_{t,t}^{H},C_{t,t+1}^{H},W_{t+1}^{H}}U_{t}^{H} = \log\left(\left(C_{t,t}^{H}\right)^{\rho}\left(C_{t}^{G}\right)^{1-\rho}\right) + \beta\log\left(\left(C_{t,t+1}^{H}\right)^{\rho}\left(C_{t+1}^{G}\right)^{1-\rho}\right)$$

subject to the budget constraint $C_{t,t}^H + W_{t+1}^H = Y_t^H + T_t$ and $C_{t,t+1}^H = (1 + r_{t+1})W_{t+1}^H$.

- $ightharpoonup T_t$: lump-sum government transfer or tax
- ▶ Household takes $\{C_t^G, C_{t+1}^G\}$ as given

Closed-form solutions:

$$C_{t,t}^{H} = \frac{1}{1+\beta} \left(Y_{t}^{H} + T_{t} \right), \quad C_{t,t+1}^{H} = \frac{\beta \left(1 + r_{t+1} \right)}{1+\beta} \left(Y_{t}^{H} + T_{t} \right).$$
 (12)

Firm

Local output by the production of a representative firm:

$$Y_{it} = A_{it} G_{it}^{\alpha_G} K_{it}^{\alpha_K} L_{it}^{\alpha_L}$$
 (13)

- ▶ Land's share in production is $1 \alpha_G \alpha_K \alpha_L$.
- ▶ The firm faces a proportional tax rate τ_t , labor and private capital wedges τ_{it}^L and τ_{it}^K :

$$\max_{K_{it},L_{it}} \left(1 - \tau_t\right) Y_{it} - \left(1 + \tau_{it}^K\right) \left(1 + r_t^K\right) K_{it} - \left(1 + \tau_{it}^L\right) w_t L_{it}$$
 (14)

Local and Aggregate Output

- Exogenous rental rate of capital r_t^K and exogenous aggregate labor supply $L_t \equiv \sum_i L_{it}$.
- Firm's first-order conditions imply

$$Y_{it} \propto \left(\frac{A_{it}}{\left(1 + \tau_{it}^{K}\right)^{\alpha_{K}} \left(1 + \tau_{it}^{L}\right)^{\alpha_{L}}}\right)^{\frac{1}{1 - \alpha_{K} - \alpha_{L}}} G_{it}^{\frac{\alpha_{G}}{1 - \alpha_{K} - \alpha_{L}}}.$$
 (15)

 $Y_t \equiv \sum_{i=1}^N Y_{it}$. The marginal product of G_{it} at the aggregate level is

$$\frac{\partial Y_t}{\partial G_{it}} = \frac{\alpha_G}{1 - \alpha_K - \alpha_L} \frac{Y_{it}}{G_{it}} - \frac{\alpha_G \alpha_L}{(1 - \alpha_K - \alpha_L)(1 - \alpha_K)} \frac{L_{it}}{L_t} \frac{Y_t}{G_{it}},\tag{16}$$

Fiscal Institution

Central government objective function:

$$U_t^C = \omega \log \left(\left(C_{t-1,t}^H \right)^{\rho} \left(C_t^G \right)^{1-\rho} \right) + \sum_{j=0}^{\infty} \beta_C^j \left(U_{t+j}^H + \sum_{i=1}^N \kappa_{it+j} \log G_{it+j+1} \right)$$
(17)

- \triangleright $\beta_C = \beta p$, $p \in (0,1)$ is the probability of staying in office next period.
- \triangleright κ_{it} : Institutional parameter for local governor's lobbying capacity.
- $m{\omega}$: The weight on the current old generation. We assume $\omega=\frac{\beta}{\beta c}$ such that the central government's preference is time-consistent.

Budget

Central government budget constraint:

$$C_{t}^{G} + \sum_{i=1}^{N} q_{t}^{G} I_{it}^{G} + T_{t} + \Phi_{t} = \tau_{t} Y_{t} + D_{t+1} - (1 + r_{t}^{D}) D_{t} + D_{t+1} - (1 + r_{t}^{D}) D_{t} - \frac{\psi_{t}^{D}}{2} \left(r_{t+1}^{D} D_{t+1} - \overline{rD} \right)^{2},$$

$$(18)$$

- Quadratic adjustment cost parameter: ψ_t^D ; Ov.s. r^D
- $\blacktriangleright \Phi_t$: Residual component.

Government Optimization

► FOCs imply:

$$\frac{C_{t+j+1}^G}{C_{t+j}^G} = \beta_C \frac{1 + r_{t+j+1}^D}{1 - \psi_{t+j}^D r_{t+j+1}^D \left(r_{t+j+1}^D D_{t+j+1} - \overline{rD}\right)},\tag{19}$$

$$\frac{C_{t+j+1}^{G}}{C_{t+j}^{G}} = \beta_{C} \left(\tau_{t+j+1} \frac{\partial Y_{t+j+1}}{\partial G_{it+j+1}} + q_{t+j+1}^{G} (1 - \delta) \right) + \frac{1}{(1 - \rho)(1 + \omega) q_{t+j}^{G}} \left(\beta_{C} \rho \frac{C_{t+j+1}^{G}}{C_{t+j+1,t+j+1}^{H}} \frac{\partial Y_{t+j+1}^{H}}{\partial G_{it+j+1}} + \kappa_{it+j} \frac{C_{t+j+1}^{G}}{G_{it+j+1}} \right).$$
(20)

► RHS of equation (20): Economic returns; spillover effects through household consumption; political gains.

External Calibration: Time-Invariant Parameters

Table 2: Externally Calibrated Time-Invariant Parameters

Parameters	Value	Target	
α_K	0.312	$lpha_{\it G}+lpha_{\it K}=lpha=$ 0.362 (Hayashi and Prescott (2002))	
$\alpha_{\it G}$	0.050	Song and Xiong (2024)	
$lpha_L$	0.538	land share $= 0.1$	
annualized δ	0.089	capital depreciate rate in Hayashi and Prescott (2002)	
annualized eta	0.980		
annualized $\beta_{\it C}$	0.850	25% probability of staying in office in a full decade	
ho	0.965	government to household consumption ratio in 1983-1992	
annualized g_A	0.005	0.5% annual TFP growth	

External Calibration: Time-Varying Parameters

Table 3: Externally Calibrated Time-Varying Parameters

Parameters	t = 0 (83-92)	t = 1 (93-02)	t = 2 (03-12)	Target	
q_t	1.40	1.41 1.45 relative price of fixed capital for		relative price of fixed capital formation	
$ au_t$ (%)	23.26	21.26	21.17	total government revenue to GDP ratio	
r_t^K (annualized, %)	3.56 1.77 0.61 rental rate of private		rental rate of private capital		

Table 4: Calibration of Regional Parameters

Parameters	Target
A_{it}	$\log A_{it} = \log Y_{it} - \alpha_G \log G_{it} - \alpha_K \log K_{it} - \alpha_L \log L_{it}$
$ au_{it}^{K}$	$1+ au_{it}^{K}\propto rac{Y_{it}}{K_{it}}, \ \sum_{i=1}^{N} au_{it}^{K}K_{it}=0$
$ au_{it}^L$	$1+ au_{it}^{m{L}} \propto rac{Y_{it}}{L_{it}}$, $\sum_{i=1}^{m{N}} au_{it}^{m{L}} L_{it} = 0$

Expectation

- ▶ Variables for t > 2 (t = 1 for Lost Decade):
 - $ightharpoonup A_{it} = \hat{A}_{it}A_t$, where A_t grows at the constant rate g_A for t > 2.
 - $ightharpoonup X_t = X_2$ for the other time-varying parameters with t > 2.
- Expectations:
 - Perfect foresight for aggregate TFP growth.
 - ▶ MIT-shock on $X_t = \{i_{t+1}, \pi_t, i_t(m), \psi_t^D, \tau_t, \Phi_t, T_t, \{\tau_{it}^K\}, \{\tau_{it}^L\}, \{\hat{A}_{it}\}\}, \{\hat{A}_{it}\}\}$

$$\mathbb{E}_{t}\left[X_{t+j}\right] = X_{t}, \quad \forall j \geq 1. \tag{21}$$

Expected Interest Rate

Expected real interest rate: $\forall j \geq 1$,

$$\triangleright \mathbb{E}_t[r_{t+j}^D] = \mathbb{E}_t[i_{t+j}^D - \pi_{t+j}]$$

Table 5: Expected Interest Rates (%)

	t = 1 (93-02)	t = 2 (03-12)	t = 3 (13-22)
i_t^D	3.71	1.40	0.95
$\mathbb{E}_0[i_t^D]$	5.03	4.60	4.60
$\mathbb{E}_1[i_t^D]$	-	1.12	0.85
$\mathbb{E}_2[i_t^D]$	-	-	0.96
r_t^D	3.53	1.53	0.94
$\mathbb{E}_0[r_t^D]$	3.24	2.80	2.80
$\mathbb{E}_1[r_t^D]$	-	0.95	0.67
$\mathbb{E}_2[r_t^D]$	-	-	1.09

Internal Calibration

▶ The remaining parameters are interally calibrated to match the observed data:

- $\blacktriangleright \{\kappa_{it}\}_{i=1}^{N} \text{ to match } \{G_{it+1}\}_{i=1}^{N};$
- $ightharpoonup \Phi_t$ to match C_t^G ;
- $ightharpoonup T_t$ to match C_t^H ;
- ψ_t^D to match D_{t+1} ;
- $ightharpoonup \overline{rD}$ to match an average adjustment cost that accounts for half of interest payments and management fees.

Prefecture-level κ_{it}

Counterfactual: Lobby Incentives and Prefecture-level Wedges

- Set the local lobby capacity parameter in the lost decade to the average of preand post-Lost Decade levels: $\kappa_{i1} = \frac{1}{2}(\kappa_{i0} + \kappa_{i2})$
- Set the local private capital or labor wedge in the lost decade to the average of pre- and post-Lost Decade levels: $\tau_{i1}^K = \frac{1}{2}(\tau_{i0}^K + \tau_{i2}^K)$ or $\tau_{i1}^L = \frac{1}{2}(\tau_{i0}^L + \tau_{i2}^L)$

Counterfactual: Lobby Incentives

Figure 7: $\kappa_{i1} = \frac{\kappa_{i0} + \kappa_{i2}}{2}$

"Fiscal Windfalls"

► Following equation (2), $\forall j \geq 0$:

$$\mathbb{E}_{t}\left[\mathsf{Windfall}_{t+j}\right] = -\Delta \mathbb{E}_{t}\left[r_{t+j}^{D}D_{t+j}\right] + \Delta \mathbb{E}_{t}\left[B_{t+j}\right] + \Delta \mathbb{E}_{t}\left[\mathsf{N}B_{t+j}\right] \tag{22}$$

where $NB_t \equiv \tau_t Y_t - \Phi_t - T_t$.

Table 6: "Fiscal windfalls" perceived at 1993-2002 (t = 1, in percent of GDP)

	t+j=1 (93-02)	t+j=2 (03-12)	t+j=3 (13-17)	steady state
$\Delta \mathbb{E}_1[-r_{t+j}^D D_{t+j}]$	-0.27	1.40	1.39	1.47
$\Delta \mathbb{E}_1[B_{t+j}]$	5.55	7.68	1.38	1.08
$\Delta \mathbb{E}_1[\mathit{NB}_{t+j}]$	-1.79	-2.14	-2.14	-2.88
$\mathbb{E}_1[Windfall_{t+j}]$	3.49	6.94	0.63	-0.33

Counterfactual: Transferring "Fiscal Windfalls"

▶ Government commits to transferring "windfalls" perceived during 1993-2002 $(\mathbb{E}_1[\mathsf{Windfall}_{1+j}], j \geq 0)$.

Government prohibited from adjusting its borrowing (the same debt trajectory).

▶ Government can only optimize C_{t+j}^G and $\{G_{it+j+1}\}_i$ for $j \ge 0$ in each period $t \ge 1$.

Counterfactual: $I_{it}^G \sim R_{it+1}^G$ at 1993-2002

Figure 8: $\kappa_{i1} = \frac{\kappa_{i0} + \kappa_{i2}}{2}$

Figure 9: Transferring "Fiscal Windfalls"

Counterfactual: Welfare Analysis

Table 7: Aggregate TFP, output and welfare changes (%)

	$\kappa_{i1} = \frac{\kappa_{i0} + \kappa_{i2}}{2}$	$ au_{i1}^K = rac{ au_{i0}^K + au_{i2}^K}{2}$	$\tau_{i1}^L = \frac{\tau_{i0}^L + \tau_{i2}^L}{2}$	transfers
	(1)	(2)	(3)	(4)
Aggregate TFP change in 03-12	0.12	-0.28	-0.08	0.23
Aggregate output change in 03-12	-0.35	-0.60	-0.17	-1.46
Households income change in 93-02	0	-1.18	-0.49	4.41
in 03-12	-0.26	-0.77	-0.28	8.92
Welfare change (φ)	-0.04	-0.38	-0.14	0.87

The End of the Decade of Fiscal Misallocation

▶ Our story: Low interest rate regime (windfalls are gone)

► FILP Reform

- ▶ "Trinity Reforms" on central government transfers to local governments
 - Sticks: Fiscal restructuring (Yubari city)
 - ► Carrots: "Great Heisei Mergers"

Conclusion

- ▶ Low-interest-induced misallocation as an understudied channel
 - Complementary to the literature on low interest rate and stagnation (zombie lending, Caballero, Hoshi and Kashyap (2008); overvalued (intangible) assets, Kiyotaki, Moore and Zhang (2021); misallocation via financial frictions, Asriyan et al. (2024))

- Implications for today's China
 - $ightharpoonup \kappa_{it}$ as career incentives (Song and Xiong (2024))
 - Potential fiscal misallocation and welfare losses by debt swap and low interest rate

Reference L

- Asriyan, Vladimir, Luc Laeven, Alberto Martin, Alejandro Van der Ghote, and Victoria Vanasco. 2024. "Falling interest rates and credit reallocation: lessons from general equilibrium." *Review of Economic Studies*, rdae065.
- Caballero, Ricardo J, Takeo Hoshi, and Anil K Kashyap. 2008. "Zombie lending and depressed restructuring in Japan." *American economic review*, 98(5): 1943–1977.
- Hayashi, Fumio, and Edward C Prescott. 2002. "The 1990s in Japan: A lost decade." *Review of Economic Dynamics*, 5(1): 206–235.
- Ihori, Toshihiro, et al. 2009. The Public Sector in Japan. Edward Elgar Publishing.
- Kiyotaki, Nobuhiro, John Moore, and Shengxing Zhang. 2021. "Credit horizons." National Bureau of Economic Research.
- **Sato, Motohiro.** 2002. "Intergovernmental transfers, governance structure and fiscal decentralization." *The Japanese economic review*, 53(1): 55–76.
- **Song, Zheng, and Wei Xiong.** 2024. "The Mandarin Model of Growth." Working Paper.

Forecasts Using Bond Issuance Data

Figure 10: Nominal borrowing rate

Mobile Factors

Table 8: Cross-Region Allocation

	1978-82	1983-87	1988-92	1993-97	1998-02	2003-07	2008-12	2013-17
	log K _{it}							
log G _{it}	1.091***	1.126***	1.188***	1.225***	1.230***	1.266***	1.276***	1.270***
	(0.072)	(0.075)	(0.081)	(0.086)	(880.0)	(0.099)	(0.104)	(0.107)
Observations	47	47	47	47	47	47	47	47
R ²	0.838	0.834	0.828	0.818	0.813	0.784	0.770	0.758
				$\log L_{it}$				
$\log G_{it}$	1.030***	1.108***	1.184***	1.186***	1.194***	1.249***	1.284***	1.291***
	(0.046)	(0.051)	(0.057)	(0.057)	(0.062)	(0.073)	(0.075)	(0.076)
Observations	47	47	47	47	47	47	47	47
R ²	0.918	0.912	0.904	0.907	0.892	0.868	0.867	0.865

Government Expenditure GDP Ratio

Figure 11: Government-to-Private Consumption and Investment Ratios (%)

Nature Rate of Interest and Expected Growth Rate

Figure 12: Natural Rate of Interest and Expected Growth Rate

Chart 1-1-1: Natural Rate of Interest

Sources: Bank of Japan; Ministry of Finance; Ministry of Health, Labour and Welfare; Cabinet Office; Ministry of Internal Affairs and Communications; Bloomberg; Consensus Forecasts: "Consensus Forecasts "Forecasts"

Note: The estimates are based on staff calculations using the models proposed in the different papers.

Chart 1-1-4: Expected Growth Rate

Source: Cabinet Office

Note: The "expected growth rate" is the average of firms' forecasts of the real growth rate of industry demand over the next five years. The shaded area indicates the 20-80 percentile band of the expected growth rate.

D v.s. r^DD

Figure 13: D and r^DD (in percent of GDP)

