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Abstract

Fundamental knowledge in the life sciences is generally discovered in
universities and hospitals, and has profound implications for welfare by its
effect on clinical medicine, newmedical innovations, and subsequent scientific
knowledge. To assess whether the institution where research is produced
causally increases the productivity of scientists, we employ a scientist-mover
design and find that 40−50% of the variation in research productivity between
institutions is causally attributable to institutions. A significant share, 20−25%
of the institutional effect reflects star researchers, with a small role for research
expenditures. Institution effects are highly localized– a scientist’s productivity
is unaffected by the productivity of scientists outside the institution but in
the same city. The magnitude of these effects has not decreased in the wake
of technologies that make cross-institutional collaborations easier.
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Fundamental discoveries in life sciences such as the discovery of DNA, genes,
mRNA, antibodies, and CRISPR have enabled new drugs and increased our cumula-
tive understanding of physiology and disease (Zerhouni, 2005). This research is
usually conducted in universities and hospitals and naturally raises the question
of whether some institutions are causally more productive than others. Moreover,
because fundamental science discoveries are likely to be underprovided by the
market – understanding the forces that produce these limited discoveries has large
implications for welfare, and how limited public and philanthropic resources should
be allocated.

The location of where research is performed can increase the productivity of a
scientist if it reduces the cost of inputs such as access to students, facilities, equip-
ment, mentors, and collaborators (Furman and Stern, 2011). Location also captures
the proximity to other researchers and institutions that can facilitate learning,
knowledge spillovers, and collaborations (Zucker et al., 1998). However, if more
productive scientists prefer to live in places where they received their education,
where the weather is better, or places where solving dual-career challenges is
easier, then it may appear that some locations or institutions are more productive
at producing knowledge, but this is confounded by the locational preferences of
their scientists.

To understand whether the association between where a scientist works and
their research productivity is causal, we implement a movers design by estimating
an event study specification of an individual researcher’s productivity on their
“size of move”, defined as the difference in institutional productivity between the
origin and destination location. If institutional factors explain 100% of a scientist’s
productivity, then moving to an institution that is 20% more productive should
increase a scientist’s productivity by 20%; conversely, if productivity in producing
fundamental knowledge is entirely a scientist-level phenomenon, then moving to
institutions of higher or lower productivity will not affect an individual’s research
productivity. Because the movers design links changes in an individual scientist’s
productivity to changes in their location, it controls for confounders like individual
and time effects. This design can also reveal whether scientists who are becom-
ing more productive move to more productive institutions, which would not be
desirable for the identification of institution effects.

Our contribution is closely related to Lerner et al. (2024) who pioneered using a
scientist-mover design of “wandering scholars” to estimate that university-level
factors account for a fifth of the variation across universities in the production of
commercially relevant knowledge, as measured by the degree to which patents
cite academic research. Like them, we are interested in life sciences research
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but focus on the creation of knowledge regardless of whether it has commercial
implications; fundamental research is of interest in its own right even if it has no
commercial implications. Moreover, even if it does affect patents, clinical practice,
or therapeutics, may do so over many decades and in complex and non-linear ways
that may render their estimates, which focus on relatively direct and immediate
connections, quite conservative (Myers and Lanahan, 2022).1

To perform this analysis, we need to define fundamental science research, mea-
sure it in a systematic manner, and link it to the institution to which it was
attributed. We define fundamental science research using the definition of the
National Academy of Medicine2 This definition encompasses traditional wet labo-
ratory research (such as cell division and protein degradation), and translational
research, which encompasses early testing of therapies in humans. The definition
highlights several reasons for why fundamental research may be underprovided
relative to the social optimal: fundamental science research understands biological
processes and objects, such as transcription and genes, that are not patentable be-
cause they are natural phenomena for which patents are impermissible(Kesselheim
et al., 2013). Some discoveries may be removed from commercial applications, mak-
ing them unsuitable for the ‘useful’ criterion (also known as Section 101 criteria)
to obtain a patent(Budish et al., 2015). Disclosing these discoveries in scientific
journals also means that others may use the knowledge and combine it with other
knowledge to make their own discovery. The combination of positive externalities
and limited appropriability means that firms are unlikely to pursue fundamental
science research, which makes understanding the institutions where such research
is produced even more consequential(Nelson, 1959; Akcigit et al., 2021; Azoulay
and Li, 2022; Myers and Lanahan, 2022).

We measure research productivity as the frequency with which a scientist is
listed as the first or last author in a paper, adjusting for citation counts to the
paper and journal impact factors (we show that these weighting choices are not
consequential for our results). We gather publication data from OpenAlex, a com-
prehensive open catalog of global research (Priem et al., 2022). Our sample consists
of 563,702 papers from 15 journals from 1945 to 2023 that were cited 65,046,333
times, and we show similar results in a smaller sample of papers published in

1Another reason for studying knowledge creation in the life-sciences is that it is an industry where
the complete life-cycle of R&D– from academic research to patents to clinical trials, to new drug
approvals– is observed. This would not be true for industries that rely on trade secrets over patents
or where fundamental knowledge is not published in journals.

2The National Academy of Medicine (NAM) defines fundamental research in the life-sciences as
“new understandings of disease mechanisms gained in the laboratory into the development of new
methods for diagnosis, therapy, and prevention and their first testing in humans” Sung et al. (2003).
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the leading three outlets— Cell, Nature and Science (henceforth, CNS) that were
cited 31,449,839 times. We used information on the location of 556,769 first and
last authors (212,904 US-based researchers) and their research productivity before
and after moving from one institution to another (we validate this approach by
examining the coauthorship patterns of scientists and whether a move predicts a
change in coauthorship).

These data reveal that the production of fundamental science research in life
sciences is highly concentrated (Carlino and Kerr, 2015). At an aggregate level, the
United States (US) dominates the field, producing more than half of the world’s
output. Notably, the gap in output between the US and its closest competitor
in recent times, China, is more than five-fold. Three countries (US, China and
the UK) account for 70 percent of the world’s research output. Within the US,
there is sharp geographic disparities in where productive researchers on average
are located. California, Massachusetts, and New York disproportionately attract
the most productive researchers, and within these states, the most productive
researchers are located in the metropolitan areas of Boston, the Bay Area, and
New York. We find that fundamental research from more productive cities also
receives higher citations in patents, so this research is both of higher scientific
quality (as measured by citations) and of higher commercial quality (as measured
by paper-to-patent citations), which establishes the link between fundamental
research and subsequent innovation in the life sciences.

Our estimates suggest that 40 − 50% of the geographic variation in fundamental
research productivity is accounted for by institutional-specific factors, which sug-
gests that a scientist’s location has a significant and independent influence on their
research output, even after accounting for individual-level factors like experience
and talent. The effect is asymmetric: researchers who relocate to more productive
environments, as measured by a positive move size, experience a larger increase in
their productivity than the decline in productivity when a researcher locates to a
less productive institution. Disentangling the effect of institutional productivity
further, we find that 20 − 25% of the estimated institutional effect is driven by the
presence of star researchers, who are at the 95th percentile of research productivity.
Finally, our results suggest that productivity spillovers from researchers outside the
institution, at other institutions, have little influence on a scientist’s productivity;
institutions affect scientist’s productivity in a highly localized manner, whereas
highly productive researchers at other institutions in the same city, do not.

We correlate our place effects with various institution-level variables such as
the amount of R&D spending. This correlational evidence reveals a weakly positive
association between place effects and factors like institutional R&D spending,
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the number of researchers receiving grants, and the presence of a supportive
ecosystem for commercializing scientific research. In other words, institutional
research expenditure is not a first-order factor in influencing place effects.

These results have implications for a number of allocations that pertain to
science-policy. There is an active debate on whether limited public funds should
be distributed evenly across institutions, as would be the case if the key input
for scientific discovery is money, or prioritized for institutions which are causally
more productive, as would be the case if some institutions are able to do more than
others with the same amount of funding. Our results imply that efforts to distribute
research funding without regard to the productivity of the location receiving it
would be an inefficient allocation relative to the goal of producing the most research
(but may achieve other social objectives that are unrelated to producing knowledge).
At the same time, we find that institutional effects on scientist’s productivity are
localized, and do not spillover onto other scientists in the same city. This suggests
that individual institutions in smaller locations can be consequential producers
of fundamental science knowledge, for there is little evidence that clusters matter
for research productivity. Finally, there is growing recognition of the importance
of public support for the scientific workforce and early-career scientists through
targeted funding and mentorship programs (Azoulay et al., 2011, 2019, 2021). If
institutions exert a causal effect on scientists’ productivity, then such may be more
effective when used in the most productive institutions.

I. Data and Measurement

A. Measuring Fundamental Science Research

The NAM definition of fundamental science research, which we noted earlier,
includes two types of research: the discovery of biological and chemical phenomena
that are not specifically focused on therapeutics or diseases. These include studies
of anatomy, organisms, and other biological processes such as RNA, DNA, genes,
cell signaling, and viral replication (this portion of the definition accords with the
general notion of basic science research that is removed from therapeutics and
diseases). The second component is translational science research that explores
how these basic science insights can be used to produce new medicines.3

3The NAM definition is focused on the life-sciences and excludes all social science research such
as health-services research, public-health research, methods research including econometrics,
biostatistics and epidemiology, and economics research such as this paper and most of its references.
Many excluded papers have public good attributes that are similar to the fundamental research
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We operationalize the NAM definition of fundamental science research by query-
ing Medical Subject Headings (MeSH) that are assigned to each publication in
PubMed. MeSH are a hierarchically organized classification created by the NIH
National Library of Medicine (NLM) for the purpose of indexing and cataloging
biomedical articles in PubMed. We specifically query for the MeSH terms Anatomy,
Chemicals and Drugs, Organisms, Phenomena and Processes, Diseases, Anesthesia and
Analgesia, and Therapeutics. Reassuringly, the principal MeSH terms represented
in our sample of fundamental science articles were receptors, DNA, RNA, neurons,
and brain.

We include journal articles and clinical trials published between 19454 and 2023.
This focus on journal articles excludes publications classified as comments, case
reports, technical notes, letters, and reviews. We further adjust for research quality
in a simple and transparent manner by limiting our query to publications from
fifteen top life-sciences journals: Cell, Nature, Science, Nature Cell Biology, Nature
Genetics, Nature Medicine, Nature Biotechnology, Nature Chemical Biology, Nature
Neuroscience, Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological
Chemistry and the FASEB Journal.5 As a sensitivity analysis (Appendix Section
D), we find qualitatively similar results when we subset to a limited set of high-
quality papers published in the leading three outlets— Cell, Nature, and Science
(henceforth, CNS). Our core sample consists of 563,754 publications, authored
by 1,434,267 different scientists; the CNS sample includes 119,730 publications
by 333,020 authors. As shown in Appendix Table A1, the share of fundamental
science articles published in these journals ranges from 37% (for Science) to 98%

(for Oncogene), with the remaining articles pertaining to the physical and social
sciences.

After obtaining the relevant set of fundamental science papers from PubMed,
we gather detailed metadata on the authors of these articles using OpenAlex, a
comprehensive and openly accessible catalog of the global research system devel-
oped by the nonprofit OurResearch (Priem et al., 2022). OpenAlex catalogs scholarly
entities including academic works, authors, institutions, journals, and research
concepts, all interlinked for ease of analysis. These data come from aggregating

definition used by NAM.
4This is the earliest year in which MeSH terms are reliably assigned to articles in PubMed.
5We determined this list by asking 5 leading scientists at Harvard Medical School to list the 10
leading fundamental science in the life-sciences and taking the intersection of their responses.
There was unanimous agreement on the inclusion of 9 journals including Cell, Nature, and Science,
and most disagreement on the inclusion of PLOS One and Oncogene which were endorsed by only
1 scientist. Articles in clinical journals such as the Journal of the American Medical Association
(JAMA) or the New England Journal of Medicine are excluded from our analyses because the NAM
definition of fundamental science excludes clinical research, including advanced Phase 3 trials.
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and standardizing information from more than 249,000 sources, such as publication
databases like PubMed and Microsoft Academic Graph (MAG) as well as metadata
database organizers like Crossref and ORCID.6 As of the latest data release, Ope-
nAlex indexes over 250 million works by 95 million authors affiliated with 109,000
different institutions. These data are updated frequently, often every few hours
through its API.

OpenAlex offers several advantages over comparable databases like PubMed or
Web of Science for identifying the geography of research because of intentional
efforts made to disambiguate authors and standardize institutional affiliations. Us-
ing the author information from MAG, Crossref, PubMed, ORCID, and publisher
websites, OpenAlex uses an algorithm based on an author’s name, their publication
record, citation patterns, and (where available) their ORCID to identify all publica-
tions belonging to a specific author. For instance, J. Smith and John Smith writing
about structural biology would be treated as the same author, while John J. Smith
who writes about mathematics would be treated as a different author. OpenAlex
also parses the raw affiliation strings from the metadata and employs a machine
learning algorithm to extract geographical and institutional information. This al-
lows consistent treatment of affiliations like “MIT, Boston, US” and“Massachusetts
Institute of Technology”. These features of OpenAlex provide a more comprehen-
sive set of author affiliations throughout our analyzed time frame relative to other
sources.

Finally, we use OpenAlex to impute the age of fundamental science researchers
to understand how institutions affect life-cycle productivity. This is done by identi-
fying the first time that a researcher appears in a paper indexed by OpenAlex. We
assign a researcher’s age to be 25 in the year that they first publish a paper7.

B. Measuring Scientist’s Research Productivity

We move from publications to the research productivity of individual scientists in
these publications by characterizing the “effective” research contribution of each
author associated with a publication. We first divide a paper by the number of
6Crossref is a nonprofit organization that provides Digital Object Identifiers (DOIs) to index scholarly
content which facilities linking metadata, while ORCID (Open Researcher and Contributor ID) is a
unique alphanumeric identifier system that helps researchers mange their professional information
and publication records.

7We validate our 25 at age of first publication assumption with a few checks. Scraping through
OpenAlex for papers that are listed as dissertations, we find a very linear relationship between our
definition of publication birth and the researcher’s PhD graduation year. Moreover, the productivity
age profile using our definition matches that found in previous research (Jones, 2009)
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authors and then adjust for research impact by assigning paper-specific weights
based on the latest 5-year impact factor of the journal from Clarivate (2023) and the
average citation count per year since publication (the two weights imply that larger
weights are assigned to papers in journals with higher 5-year impact factors, and
also allows a given paper to be weighted more if it generated more cites). These
weights are constructed in a manner that ensures our final measure of research
productivity still sums to the total number of papers in our sample. Appendix
Section B explains in detail the math behind our productivity measure. In addition,
the top panel of Appendix Table A2 presents various methods of weighting our
productivity measure and shows that these are all tightly correlated at the country,
city, and institution-level.

For our main analysis, we restrict our core sample to researchers listed either as
the first or as the last author on a publication; the first author typically represents
the person who contributed the most to the work and writing, while the last
author usually represents the principal investigator. This approach accounts for the
varying tendencies to include additional coauthors across locations. Consequently,
the total number of authors on a paper is at most two (Section E replicates our
analysis for the full set of authors). Our focus on first and last authors results
in conservative estimation of place effects, for we find that place-specific factors
are around 10% smaller for them relative to the sample of middle authors. This is
likely driven by the fact that the first and last authors are more likely to represent
influential researchers, who are less affected by place effects, relative to the middle
authors.

C. Measuring Institutional Productivity

We are interested in identifying the home institution where scientists physically
carry out their research which is challenging because some authors are affiliated
with multiple institutions at the same time. We infer each author’s principal
institution by gathering the full publication history of each author and using
publication metadata to identify the most consistent affiliation for an author in
any given year. If there is a unique modal affiliation for an author in a given year,
we choose that one. We break ties by first identifying any “sandwich” patterns in
consecutive years. For example, if institution A appears in 2008 and 2010 but not
in 2009, we designate institution A as the principal affiliation for all years. If an
author is affiliated with both institutions A and B in a given year, we first assign the
principal institution as A if A appeared in the prior year. If there is no affiliation
from the previous year, we assign the principal institution as A if A appears in the
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subsequent year. Finally, if there are any remaining multiple affiliations after all
these steps, we randomly choose one and assign it as the principal institution. This
last step affects less than 1% of author-years.

Having assigned each author to a unique institution in a year, we are able to
examine research productivity at broader levels including cities and countries. Our
definition of cities aims to capture economic areas around the world. Thus, for
areas within the US we use Metropolitan Statistical Areas (MSAs) as our definition
of cities, and combine major MSAs to integrated labor-markets. In the rest of the
paper, we refer to these classifications as “cities”. For example, we define the Bay
Area, CA city as the combination of San Francisco-Oakland-Hayward and San
Jose-Sunnyvale-Santa Clara (similarly, we define the Research Triangle Park, NC
as the combination of Durham-Chapel Hill and Raleigh-Cary).

Finally, we account for differential changes in productivity across life-sciences
subfields stemming from breakthrough discoveries we categorize each author-
year into one of five life-sciences research fields (for example, relative to the
fields of structural or cancer biology, there could be larger advances in the field of
genetics because of the mapping of the human genome). The five life-sciences fields
represent (1) molecular and cellular biology, (2) cancer biology, (3) genetics and
genomics, (4) neuroscience and physiology, and (5) structural biology. We use paper
titles, MeSH terms, abstracts, and OpenAlex concept terms of each author’s papers
as inputs for a k-means textual clustering algorithm. By running this algorithm
at the author-year level rather than the author level, we allow for changes in a
scientist’s research focus over time. Appendix Section C describes the tokenized
features that define each research field.

To illustrate our approach, consider the following two papers that contributed to
the development of the CRISPR-Cas9 genome editing technique, a groundbreaking
discovery that earned Emmanuelle Charpentier and Jennifer A. Doudna the 2020
Nobel Prize in Chemistry. The first paper, “A Programmable Dual-RNA–Guided
DNA Endonuclease in Adaptive Bacterial Immunity”, was published in Science in 2012
and has been cited 13,832 times. To construct our measure of research productivity,
we first allocate an effective contribution of 0.5 to both Martin Jinek (the first
author) who was at UC Berkeley (in the Bay Area) and Emmanuelle Charpentier
(the last author) who was at Umeå University. In 2012, both Martin Jinek and
Emmanuelle Charpentier were classified as working in the subfield of molecular
and structural biology8. Using the latest 5-year impact factor of Science (54.5)

8Based on our subfield classification, Martin Jinek starts his research in neuroscience and physiology
before working a bit in genetics and genomics and focusing on molecular and cellular biology. Em-
manuelle Charpentier starts her career working in neuroscience and physiology before expanding
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and the average citation count per year since publication (13832/12 ≈ 1152), we
reweight our measure of productivity to represent the relative influence of this
paper in comparison to other works in our sample. Consequently, both Martin Jinek
and Emmanuelle Charpentier (and their affiliated institutions) receive a recalibrated
contribution of 57.25 articles for this publication. As another example, the paper
“DNA interrogation by the CRISPR RNA-guided endonuclease Cas9” was published
in Nature in 2014 and has been cited 1,647 times. We focus on Samuel Sternberg
(the first author) and Jennifer A. Doudna (the last author), who were both at UC
Berkeley. In 2014, both Samuel Sternberg and Jennifer A. Doudna were classified
as working in the subfield of molecular and structural biology9. After adjusting
for Nature’s impact factor (60.9) and the average citation count per year since
publication (1647/12 ≈ 137), both Samuel Sternberk and Jennifer A. Doudna (and
their affiliated institutions) are given an effective contribution of 6.6 articles for this
publication. To put these magnitudes of research productivity into context, Table
1 shows that the average author in an elite set of scientific papers has an annual
productivity of 0.72 articles and a lifetime productivity of 1.64 articles (measured
up until the end of our time frame in 2023).

II. Productivity Variation in Fundamental Science
Discovery

A. Geographic Variation in Research Productivity

Figure 1 shows the aggregate share of output produced by each country since
194510. The data reveal that the US has consistently dominated fundamental science
production, accounting for more than half of the global output and exceeding other
countries by a substantial margin.11 Thus, given the US’ large role in fundamental

her research to molecular and cellular biology and genetics and genomics
9Throughout his career, Samuel Sternberg shifts from molecular and cellular biology to genetics
and genomics. Jennifer Doudna begins her career in neuroscience and physiology, before moving
to molecular and cellular biology, and finally working mainly in genetics and genomics.

10The large spike around the 1970s in share of research output from “remaining” countries is the
publication of Cleavage of structural proteins during the assembly of the head of bacteriophage T4 in
Nature whose sole-author was Swiss scientist Ulrich K. Laemmli in 1970. Laemmli’s historic paper,
with over 300,000 citations, documents his discovery of SDS polyacrylamide gel electrophoresis—
one of the most widely used and important techniques in modern biology

11While this fact highlights the pivotal role of the US in producing fundamental science research,
also note the emergence of new entrants and the decline of others. As depicted in Figure 1, the
decline in the US’ share of production from 70% in the early 1990s to 50% today is partially the
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science research, we do not view our restriction to US-based scientists as a major
limitation (in our original sample of 563,754 papers, 272,604 were authored by
213,690 US-based researchers).

To explore how researcher productivity varies across different geographies, we
analyze the cross-sectional variation in our productivity measure at the author-
level.12 Table 2 presents the top 20 cities by average researcher productivity. Our
measure of research productivity is interpreted as the “effective” number of publi-
cations for an author. Thus, the average researcher in the Boston metropolitan area
is effectively publishing over three times as much as those in the DC metropolitan
area. Table 3 further highlights the top five institutions in the ten most produc-
tive cities. These results show that the average researcher at NIH is effectively
publishing twice as many publications per year than the average researcher at the
University of Pennsylvania. Moreover, we see that there is balanced presence of
highly productive researchers at universities, research organizations, government
agencies, and biotechnology companies within a city. Appendix Table A4 provides
the list of the top 50 institutions by average researcher productivity.

III. Empirical Strategy

A. Econometric Model

We present an empirical framework using a “movers” analysis that closely follows
that of (Finkelstein et al., 2016) and (Lerner et al., 2024) and decomposes the ob-
served variation in fundamental research productivity into place- and person-based
components. Place-based components capture local institutional factors such as
firm-level R&D expenditures and person-based components capture individual
characteristics such as educational background and motivation.

We motivate our estimating equation for an individual scientist’s log productiv-

consequence of China’s growing presence in fundamental science production. Since the early
2000s, when China first entered the set of large producers of science, China has made remarkable
strides in producing fundamental science research— even surpassing the UK as the second largest
producer in recent years. Also noteworthy is the shrinking of the United Kingdom’s role from the
post-WWII era when it produced about 25% of global science to the most recent period where its
share is less than 10%.

12When calculating average productivity across author-years within a given geography, we weight
each author-year by the number of authors in that region. This adjustment accounts for the fact
that larger cities often have more outliers, with some authors contributing fewer publications,
which skews the distribution.
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ity, 𝑦𝑖𝑗 𝑡 , at institution 𝑗 in year 𝑡 as:

𝑦𝑖𝑗 𝑡 = 𝛼𝑖 + 𝛾𝑗 + 𝜏𝑡 + 𝜖𝑖𝑗 𝑡 (1)

where 𝛼𝑖 is an individual fixed effect, 𝛾𝑗 is an institution fixed effect, and 𝜏𝑡 is a
calendar year fixed effect. This model can be expanded to capture observable
researcher characteristics by including 𝑥𝑖𝑡𝛽 where the researcher-level averages
would be 𝛼𝑖 + 𝑥𝑖𝑡𝛽 rather than 𝛼𝑖. For expositional convenience, we describe the
motivating theory with the simplified model, but in the estimation, we incorporate
subfield fixed effects which would fall under 𝑥𝑖𝑡𝛽.

To decompose the variation in average log productivity across institutions into
place- and person-based components, we define 𝑦𝑗𝑡 as the average of 𝑦𝑖𝑗𝑓 𝑡 across
researchers working at institution 𝑗 in year 𝑡, and 𝑦𝑗 as the average of 𝑦𝑗𝑡 across
time. Similarly, 𝛼𝑗𝑡 and 𝛼𝑗 represent researcher-level averages. The difference in
average productivity between any two institutions 𝑗 and 𝑗 ′ is given by:

𝑦𝑗 − 𝑦𝑗 ′ = (𝛾𝑗 − 𝛾𝑗 ′) + (𝛼𝑗 − 𝛼𝑗 ′).

We define the share of the difference attributable to the institution as:

𝑆𝑝𝑙𝑎𝑐𝑒(𝑗 , 𝑗
′
) =

𝛾𝑗 − 𝛾𝑗 ′

𝑦𝑗 − 𝑦𝑗 ′

and the share attributable to researchers as:

𝑆𝑟𝑒𝑠(𝑗 , 𝑗
′
) =

𝛼𝑗 − 𝛼𝑗 ′

𝑦𝑗 − 𝑦𝑗 ′
.

The key parameters of interest in this model are the institution fixed effects,
𝛾𝑗 which are only identified if our sample includes scientist-movers who relocate
between institutions; without movers, we cannot separately identify the impact of
place from the unobserved heterogeneity across individuals.

In order to interpret these place effects causally, we require that changes in
unobserved person-based determinants of research productivity are not correlated
with the difference in average productivity between destination and origin institu-
tions chosen by the researcher. This assumption would be violated if “rising stars”
systematically relocate from low- to high-productivity institutions. Violations of
this kind will appear in the pre-trends when we estimate our model empirically
with an event study specification. The second assumption in our model is that 𝛼𝑖
and 𝛾𝑗 are additively separable in log productivity, which implies that the level
of place and person characteristics affects productivity multiplicatively. In other
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words, moving to a place that is more conducive to productivity matters more for
those researchers starting with a lower level of productivity. Finally, our approach
assumes that the 𝛾𝑗 estimated for movers is the same as that for non-movers. If
this assumption is violated, then our estimates would only apply to the set of
researchers who relocate rather than the entire population of researchers.

B. Scientist Movers

We define movers (“wandering scientists”) as researchers affiliated with different
institutions in two consecutive years. Since this geographic panel is constructed
from publication history, there is a concern that publication lags could affect the ac-
curacy of identifying author move times. As a validation exercise, we plot the share
of a mover’s fundamental science coauthors from both their origin and destination
institutions over time. In theory, the number of coauthors from the destination
institution should not increase prior to the move. We find that movers begin accu-
mulating coauthors from their future destination institution approximately three
years before the first publication affiliated with that institution. Therefore, we
define the move year as three years before the first observed publication with the
destination institution. Figure 3 illustrates this approach, showing that the share of
coauthors from the destination institution only increases after our newly defined
move year.

Among the set of US-based researchers, we are able to identify 31,627 scientist-
movers. On average, these movers relocate 1.4 times in their lifetime. Due to the
role that the accuracy of OpenAlex’s author disambiguation algorithm and our
affiliation imputation method play in identifying movers, our empirical analysis
focuses on a set of 19,325 researchers who only move once. Table 1 provides
summary statistics on movers and non-movers in our sample. On average, movers
tend to come from slightly smaller clusters but produce more output on average
than non-movers. Additionally, one-time movers represent about 60% of the mover
sample and are generally representative of the broader mover population.

C. Event Study Estimation

We implement an event study approach to visually observe the dynamic evolution
of place effects on scientist’s productivity, and assess the robustness of our assump-
tions through the pre-trends. To implement the event study approach, we need
to scale log productivity, 𝑦, so that the direction and magnitude of the jump on
the move are informative regardless of the origin and destination. This is crucial
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because not all movers have the same origin and destination location and, without
scaling, moves from 𝑗 to 𝑗 ′ would be canceled out by moves from 𝑗 ′ to 𝑗 . Thus, we
define the move size, 𝛿𝑖, for a mover 𝑖 who goes from institution 𝑜(𝑖) to institution
𝑑(𝑖) as the difference in the average log productivity between the other researchers
in the mover’s destination and origin:

𝛿𝑖 = 𝑦𝑑(−𝑖) − 𝑦𝑜(−𝑖).

Following (Bronnenberg et al., 2012), we scale productivity for mover 𝑖 as

𝑦
𝑠𝑐𝑎𝑙𝑒𝑑
𝑖𝑗𝑓 𝑡 =

𝑦𝑖𝑗𝑓 𝑡 − 𝑦𝑜(𝑖)

𝛿𝑖
.

This expression implies that 𝑦𝑠𝑐𝑎𝑙𝑒𝑑
𝑖𝑡 will equal 0 if the researcher’s productivity

exactly equals the average productivity at their origin institution and exactly
equals 1 if the researcher’s productivity exactly equals the average productivity at
their destination institution. Thus, plotting the averages of 𝑦𝑠𝑐𝑎𝑙𝑒𝑑

𝑖𝑡 by relative year,
𝜃𝑟(𝑖,𝑡) would produce an event study figure where the size of the jump at the time of
the move corresponds to the average value of 𝑆𝑝𝑙𝑎𝑐𝑒 across all movers. Here, if mover
𝑖 relocates in year 𝑡∗𝑖 , the relative year is defined as 𝑟(𝑖, 𝑡) = 𝑡 − 𝑡∗𝑖 . Thus, 𝑟(𝑖, 𝑡) = −1

represents the last year in the origin institution and 𝑟(𝑖, 𝑡) = 0 represents the first
year in the destination location.

In our data, we see from Figure A1 that 𝛿𝑖 is often close to 0, which will make a
regression with 𝑦𝑠𝑐𝑎𝑙𝑒𝑑

𝑖𝑡 on 𝜃𝑟(𝑖,𝑡) behave poorly. Thus, we rearrange our equation to
avoid dividing by 𝛿𝑖 as follows:

𝑦𝑖𝑗𝑓 𝑡 = 𝑦𝑜(𝑖) + 𝛿𝑖𝜃𝑟(𝑖,𝑡) + 𝜖𝑖𝑗𝑓 𝑡

Taking this equation to our data, we include a set of fixed effect controls and
the sample analogue of 𝛿𝑖 to obtain our baseline event study specification of:

𝑦𝑖𝑗𝑓 𝑡 = 𝛼𝑖 + 𝜏𝑓 𝑡 + 𝜌𝑟(𝑖,𝑡) + 𝜃𝑟(𝑖,𝑡)�̂�𝑖 + 𝜖𝑖𝑗𝑓 𝑡 (2)

where 𝜏𝑓 𝑡 and 𝜌𝑟(𝑖,𝑡) are field by year and relative year fixed-effects, respectively.
We combine 𝑦𝑜(𝑖) and 𝛼𝑖 into a single individual-level fixed effect, 𝛼𝑖. By including
relative-year fixed effects in our specification, we also allow for a common trend in
productivity for movers either pre- or post-move as long as this trend is common
across all movers regardless of the size and direction of their move. This is important
if we think that there are specific reasons correlated with one’s productivity that
lead a researcher to relocate when they do. Finally, we include field-by-year fixed
effects to estimate our results within a researcher’s field.
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The parameters of interest from Equation 2 are the relative year coefficients,
𝜃𝑟(𝑖,𝑡), that are normalized to zero in the year before the move 𝑟(𝑖, 𝑡) = −1. These
coefficients measure changes in productivity (expressed as a percent ) in the years
around the move scaled by the size and direction of the move, 𝛿𝑖. Moreover, the
relative quality of one’s destination should not be predictive of productivity before
a move but should be predictive of productivity after a move, and 𝜃𝑟(𝑖,𝑡) should be
statistically indistinguishable from zero preceding a move and non-zero following
a move. The magnitude of the jump in 𝜃𝑟(𝑖,𝑡) after a move on average captures how
much place-specific factors influence productivity. 𝜃𝑟(𝑖,𝑡) = 1 would imply that the
mover’s productivity has fully converged to that at the destination location, and
an estimate of 𝜃𝑟(𝑖,𝑡) = 0 would imply no convergence. We report robust standard
errors clustered at the institution level.

IV. Estimates of Institution and Researcher Effects

A. Baseline results

We motivate the event study estimates from the movers analysis by first showing
the identifying variation behind our movers specification. Appendix Figure A1
presents the distribution of �̂�𝑖, the difference in average log productivity in amover’s
destination and origin institution, which is the key dependent variable. A value of
0 means that the destination institution has the same average research productivity
as the origin institution, and since our research productivity captures “effective”
paper contributions, a measure of 5 means that the researchers in the destination
institution produce 5 more papers on average than in the mover’s origin institution.
The standard deviation is 1.33, with a significant number of large moves in either
direction. This distribution is centered around -0.11 and is relatively symmetric,
indicating an approximately equal number of moves from low-to-high productivity
institutions (�̂�𝑖 > 0) as there are moves from high-to-low productivity institutions
(�̂�𝑖 < 0). To put the -0.11 into perspective, the typical “wandering scholar” in our
sample is moving from the University of Southern California to UT-Austin (see
Appendix Table A4).

As an initial exploration of the impact of moving to a new institution on a
scientist’s productivity, we plot the post-move change in scientist productivity (on
the y-axis) against the size of the move, which is the same �̂�𝑖 (on the x-axis). We
define a scientist’s change in productivity as their average post-move productivity
minus their average pre-move productivity. The slope of this graph indicates
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the extent to which moving to an institution with higher average productivity
influences a scientist’s productivity. If geographic variation in research productivity
was entirely due to the impact of place, then the slope would 1. Conversely, if
individual researcher factors fully explained the variation, the slope would be 0.
Figure 4 plots this relationship and depicts a slope of around 0.45. This simple
analysis suggests that, on average, nearly half (46%) of the variation in scientist
productivity can be attributed to institutional factors, while the remaining slightly
more than half (54%) is due to individual differences. Moreover, the linear and
symmetric nature of the relationship above and below a move size of zero supports
our assumption of the additive separability of 𝛼𝑖 and 𝛾𝑗 in equation 1.

We report event study results from equation 2 in Figure 5a for the 1945-2023
time period. The figure plots the estimates of 𝜃𝑟(𝑖,𝑡) and their 95% confidence inter-
vals, after normalizing 𝑟(𝑖, 𝑡) = −1 to be zero. The standard errors are clustered
at the institution level to account for intra-institutional correlation in research
productivity among scientists.

The figure shows that there is no significant trend in 𝜃𝑟(𝑖,𝑡) in the eight years
before relocation. This supports our identifying assumption that unobserved person-
based determinants of research productivity are not correlated with the productivity
difference between the destination and origin institutions chosen by the researcher.
There is no significant effect of place until three years after the move, for which
there is then a discontinuous jump to about 0.3. This estimate remains relatively
stable in the following year, with an increase to around 0.45– together, these
findings suggest that the average institutional share of the variation in research
productivity overtime is approximately 30-45%. This magnitude is slightly less
than the static measure we see from Figure 4 because we’re observing the dynamic
change in place-specific factors and we’re controlling for observable researcher
and field characteristics.

To examine whether the results are different for more recent years, particularly
in the internet era, which may have made it easier to collaborate with scientists at
different institutions, Figure 5b focuses on scientists who moved in more recent
years, from 1995 to 2023. Despite the digital age making collaboration easier, the
role of institutions in explaining scientists’ research productivity remains similar
in magnitude. This consistency suggests that even in the era of advanced digital
communication, the institutional environment continues to play a crucial role in
influencing research productivity.
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B. Extensions

To understand the underlying mechanisms of how place influences research pro-
ductivity, we examine whether our effects vary according to the type of move and
the characteristics of the researcher.

The first mechanism we explore is based on the direction of the move. In our
setting, a positive move (�̂�𝑖 > 0) is one in which a researcher moves to an institution
with a higher research productivity, whereas a negative move (�̂�𝑖 < 0) is one in
which a researcher moves to a lower productivity institution. Higher productivity
institutions likely have more resources and better help facility scientists to work at
the frontier of the field with more advanced research techniques. Assuming that
researchers incorporate these benefits into their own research when moving to
higher productivity places but don’t unlearn these skills when moving to lower
productivity places, then we would expect to see larger place effects for positive
moves. We illustrate the estimated place effects by move size in Figure A2. These
plots confirm our theory as we see a stark difference in place effects between
scientists moving to higher- versus lower-productivity institutions. The estimated
place effect for positive moves is significantly larger and goes from 0.4 to 0.6,
whereas the place effect for negative moves is closer to 0.3.

Given the complementary strand of research on the role of “star” researchers
in driving innovation, we also examine the influence of stars in explaining our
place effect estimates (Azoulay et al., 2019, 2011). To do this, we define “stars” as
researchers in the top 95th percentile of productivity and modify our definition
of 𝛿𝑖 to represent the difference between the average productivity of stars in the
destination and origin institutions. Appendix Figure A1 illustrates the distribution
of this revised move size, while Figure 6a presents the estimated place effect using
this new definition. The results indicate that stars significantly contribute to the
productivity of movers, with the estimated place effect being around 0.2. In other
words, stars and everything associated with them, are driving around 50% of the
place effect we see in our baseline results.

Motivated by prior research on the life-cycle productivity of researchers and
agglomeration effects (Dietz and Bozeman, 2005; Jones, 2010, 2009; Levin and
Stephan, 1991; Myers, 2020; Carlino and Kerr, 2015; Kerr and Robert-Nicoud, 2020;
Moretti, 2021), we also examine heterogeneity in place effects by mover age and
cluster size. These results show similar magnitudes of place effects, regardless of
whether researchers move before or after the age of 40 or whether they relocate to
larger or smaller clusters. This suggests that neither age nor cluster size significantly
impacts the role of place effects in changing researcher productivity.
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Having explored the heterogeneity in place-effects, we follow the standard
practice in movers designs and examine correlates of these place-based effects. We
project the institution-level fixed effects on various institution characteristics from
the annual Higher Education Research and Development (HERD) survey conducted
by the National Science Foundation. Appendix Figure A3 presents the results of
these bivariate regressions, which, despite limited statistical power, show a weakly
positive correlation between institutional R&D expenditure and place effects.

C. Fundamental Science and Commercial Relevance

So far, we have not established whether fundamental science research has direct
implications for commercial activity, as opposed to being knowledge that is funda-
mental but that is quite distant from inventions. Building on work by (Bryan et al.,
2020), (Marx and Fuegi, 2020), we measure the propensity of published research
to be cited in patents. This measure of “papers in patents” productivity is similar
to our measure of research productivity, except that the paper-specific weights
adjust for the number of times the paper has been cited within the body text of
patents. Patents cite research papers on the front page of the application (“front-
page citations”) and in the body of the text (“body citations”). We focus on body
citations because prior research has shown that these are more likely to capture an
inventor’s knowledge and better represent the diffusion of knowledge, as they are
included by the inventors themselves (in contrast, front-page citations are typically
added by patent lawyers (Bryan et al., 2020)). As before, we rescale these weights
to sum to 1 to ensure that the sum of our “papers in patents” measure equals the
total number of papers in our sample.

We plot the city-level relationship between fundamental science research pro-
ductivity and “papers in patents” productivity in Figure 2. The slope is effectively
1, which allows us to infer that clusters that produce more fundamental science
research are also more likely to produce research papers that are cited in patents.
This underscores the commercial and welfare implications of fundamental science
research.13

13We also examined the sensitivity of our results to using front page vs. patent body citations –
regardless of the chosen measure, we see in Appendix A3 there is a strong correlation between
producing fundamental science research and having it cited in patents at the country, city, and
institution-level.
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D. Robustness

We assess the sensitivity of our results by constructing the move size at different
levels of aggregation. Rather than defining 𝛿𝑖 at the institution-level, we define
an alternative move size at the city-level excluding a mover’s own institutional
productivity in both the origin and destination city. This alternative measure
captures the impact of productivity changes driven by researchers outside of the
mover’s institutions. Appendix Figure A1 presents the distribution of this move
size and Figure 6b displays the estimated place effects. The results show that the
estimated place effects remain consistently around zero, supporting our theory that
the impact of place on a researcher’s productivity is primarily localized to their
institution, with minimal influence from surrounding researchers in the same city.

V. Conclusion

Our study sheds light on the critical role of place in influencing the productivity of
fundamental science research. We estimate that place-specific factors account for
40-50% of the observed variation in productivity. These effects have not diminished
over time, even as across-institution collaborations have become easier. Our find-
ings underscore the significant role of institutional factors in shaping the landscape
of fundamental life-sciences research. By focusing limited public and philanthropic
resources on more productive institutions, policymakers and philanthropists can
enhance the impact of funding.

Our results contribute to a larger research effort that measures various aspects
of the production function that generates innovation. We focus on one determinant
of fundamental science research– the location where it happens, but there is a
rich literature noting other determinants (Iaria et al., 2018; Azoulay et al., 2019;
Bloom et al., 2020; Myers, 2020; Akcigit et al., 2021; Arora et al., 2021; Hill and Stein,
2023, 2024; Acemoglu, 2023). This literature complements other research that has
focused on patenting, which is a downstream but adjacent consequence of such
research. The research on patenting has uncovered the role of public-funding on
subsequent patents, the role of university licensing offices on patenting, the role of
parental income in encouraging children’s patenting propensity, and the gender
composition of scientific teams on patents (Azoulay et al., 2013, 2019; Myers and
Lanahan, 2022; Gross and Sampat, 2023; Moretti et al., 2023; Jacob and Lefgren, 2011;
Jensen and Thursby, 2001; Thursby et al., 2007; Lerner et al., 2024; Whittington,
2009; Koning et al., 2020; Bell et al., 2019; Williams, 2017; Bryan andWilliams, 2021).
If the same forces that influence patenting also influence fundamental science
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research– because they are often undertaken by the same people and are likely
to be complementary activities– it would mean that they are even larger than
previously estimated.

Our analysis raises several questions for future research. One area of interest is
the factors that influence the mobility of scientists. Previous studies have pointed
to the importance of funding availability, personal circumstances, and institutional
support systems. Another important topic is the role of institutional characteristics
in fostering high research productivity. Exploring how different institutions struc-
ture their research environments and the impact of these structures on productivity
can inform best practices for maximizing the effectiveness of research funding.
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Table 1: Summary Statistics

Mean Std. Dev.

A. Individual-Level

Everyone (N = 182,921)
Years Actively Publishing 2.04 2.68
Average Team Size 1.98 0.13
Annual Cluster Size 7174.40 7157.17
Annual Productivity 0.72 3.78
Lifetime Productivity 1.64 9.79
Number of Moves 0.24 0.61

Non-Movers (N = 151,294)
Years Actively Publishing 1.44 1.49
Average Team Size 1.98 0.13
Annual Cluster Size 7202.66 7402.22
Annual Productivity 0.69 3.93
Lifetime Productivity 1.01 5.92

Movers (N = 31,627)
Years Actively Publishing 4.92 4.55
Average Team Size 1.96 0.12
Annual Cluster Size 7039.19 5842.69
Annual Productivity 0.86 2.96
Lifetime Productivity 4.68 19.38

One-time Movers (N = 19,086)
Years Actively Publishing 3.94 3.40
Average Team Size 1.97 0.12
Annual Cluster Size 7078.44 5965.63
Annual Productivity 0.82 2.62
Lifetime Productivity 3.48 15.24

B. City-Level

Number of Institutions 79.01 80.14
Annual Cluster Size 7110.81 7635.02
Annual Productivity 0.86 4.60
Lifetime Productivity 132.52 958.16

Notes: Table shows summary statistics for our sample. Panel A presents the individual-level statistics and Panel B presents
the city-level statistics.
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Table 2: Cities with Most Productive Researchers on Average

Rank City Average Author Productivity

1 Boston-Cambridge-Newton, MA-NH 3.02
2 Bay Area, CA 1.95
3 New York-Newark-Jersey City, NY-NJ-PA 1.82
4 Washington-Arlington-Alexandria, DC-VA-MD-WV 0.86
5 San Diego-Carlsbad, CA 0.78
6 Los Angeles-Long Beach-Anaheim, CA 0.59
7 Baltimore-Columbia-Towson, MD 0.49
8 Seattle-Tacoma-Bellevue, WA 0.43
9 Houston-The Woodlands-Sugar Land, TX 0.41
10 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.41
11 New Haven-Milford, CT 0.36
12 Research Triangle Park, NC 0.36
13 Chicago-Naperville-Elgin, IL-IN-WI 0.34
14 St. Louis, MO-IL 0.28
15 Dallas-Fort Worth-Arlington, TX 0.25
16 Ithaca, NY 0.23
17 Ann Arbor, MI 0.21
18 Pittsburgh, PA 0.16
19 Trenton, NJ 0.15
20 Atlanta-Sandy Springs-Roswell, GA 0.13

Notes: Table shows the top 20 cities by average author-year productivity in fundamental science research in life sciences journals. The productivity measure is
weighted by the total number of researchers in each location. Journals included are: Cell, Nature, Science, Nature Cell Biology, Nature Genetics, Nature Medicine, Nature
Biotechnology, Nature Chemical Biology, Nature Neuroscience, Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological Chemistry, and the FASEB Journal
between 2015 and 2023.

24



Table 3: Leading Institutions in the Ten Most Productive Cities by Average Re-
searcher Productivity

Rank Institution Average Researcher Productivity

I. Boston-Cambridge-Newton, MA-NH
1. Harvard University 4.61
2. Massachusetts Institute of Technology 2.80
3. Mass General Brigham 1.77
4. Dana-Farber Cancer Institute 0.86
5. Boston Children’s Hospital 0.38

II. Bay Area, CA
1. Stanford University 3.02
2. University of California, San Francisco 1.93
3. University of California, Berkeley 1.14
4. Lawrence Berkeley National Laboratory 0.17
5. Google (United States) 0.17

III. New York-Newark-Jersey City, NY-NJ-PA
1. Columbia University 1.35
2. Memorial Sloan Kettering Cancer Center 0.94
3. Rockefeller University 0.81
4. New York University 0.77
5. Icahn School of Medicine at Mount Sinai 0.60

IV. Washington-Arlington-Alexandria, DC-VA-MD-WV
1. National Institutes of Health 2.09
2. University of Maryland, College Park 0.21
3. Carnegie Institution for Science 0.12
4. Georgetown University 0.08
5. National Aeronautics and Space Administration 0.06

V. San Diego-Carlsbad, CA
1. University of California, San Diego 1.36
2. Scripps Research Institute 0.56
3. Salk Institute for Biological Studies 0.53
4. La Jolla Institute For Allergy & Immunology 0.13
5. Sanford Burnham Prebys Medical Discovery Institute 0.11

VI. Los Angeles-Long Beach-Anaheim, CA
1. University of California, Los Angeles 0.79
2. California Institute of Technology 0.59
3. University of Southern California 0.35
4. University of California, Irvine 0.21
5. Cedars-Sinai Medical Center 0.11

VII. Baltimore-Columbia-Towson, MD
1. Johns Hopkins University 1.66
2. University of Maryland, Baltimore 0.09
3. Lieber Institute for Brain Development 0.01
4. Osiris Therapeutics (United States) 0.01
5. Avidea Technologies (United States) 0.01

VIII. Seattle-Tacoma-Bellevue, WA
1. University of Washington 1.00
2. Fred Hutch Cancer Center 0.25
3. Allen Institute 0.10
4. Institute for Systems Biology 0.09
5. Seagen (United States) 0.04

IX. Philadelphia-Camden-Wilmington, PA-NJ-DE-MD
1. University of Pennsylvania 1.05
2. Children’s Hospital of Philadelphia 0.10
3. The Wistar Institute 0.07
4. Thomas Jefferson University 0.06
5. Fox Chase Cancer Center 0.04

X. Houston-The Woodlands-Sugar Land, TX
1. The University of Texas MD Anderson Cancer Center 0.66
2. Baylor College of Medicine 0.60
3. The University of Texas Medical Branch at Galveston 0.09
4. The University of Texas Health Science Center at Houston 0.07
5. Rice University 0.06

Notes: Table shows the leading institutions in the ten most productive cities by average author-year productivity in fundamental science research in life sciences
journals. The productivity measure is weighted by the number of researchers in each geography. Journals included are: Cell, Nature, Science, Nature Cell Biology,
Nature Genetics, Nature Medicine, Nature Biotechnology, Nature Chemical Biology, Nature Neuroscience, Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological
Chemistry, and the FASEB Journal between 2015 and 2023.
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Figure 1: Country-Level Trends in Fundamental Science Production (1945-2023)
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Notes: Figure shows the trends in the share of total fundamental science research output from 1945 to 2023 using three-year bins and publications in a set of 15 top
life-sciences journals (Cell, Nature, Science, Nature Cell Biology, Nature Genetics, Nature Medicine, Nature Biotechnology, Nature Chemical Biology, Nature Neuroscience,
Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological Chemistry, and the FASEB Journal). Our measure of productivity has been adjusted for number of
authors, citation count, and the journal’s latest 5-year impact factor. We only count a paper toward a scientist’s productivity if they are either the first or last author
listed on a publication. Shares are shown separately for the top two producers (as well as China), the remaining top 10 producers, and everywhere else.
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Figure 2: Fundamental Science Research Cited in Patents (1945-2023)
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Notes: Figure shows a scatter plot of the number of papers in patents citations against the citation-adjusted measure of fundamental science research produced at the
MSA-level. Around 15.5% of papers in our sample have ever been cited in a patent. There are N = 304 MSAs in our sample.
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Figure 3: Share of Fundamental Life Science Coauthors from Origin vs. Destination
Institution)
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Note: Figure plots the share of coauthors that are affiliated with the mover’s origin and destination institution over time. Move year is defined as three year prior to
the first publication at the mover’s destination.
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Figure 4: Change in Log Productivity by Move Size
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Notes: Figure shows the change in log productivity relative to a mover’s productivity move size. Move size is defined as the difference in average produtivity between
a mover’s origin and destination institution.
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Figure 5: Productivity Change in Response to Move

(a) 1945-2023
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(b) 1995-2023
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Notes: Figure shows the coefficients �̂� estimated from equation 2. The coefficient for relative year -1 is normalized to 0. The dependent variable is log productivity
and we control for a set of year, field, field x year, and author fixed effects in our specification. Standard errors are clustered at the institution-level. We focus on
scientists who only moved once between 1945-2023 (N = 16,066). Panel (a) shows the results for movers publishing anytime between 1945-2023 and panel (b) shows
the results for movers publishing between 1995-2023 (N = 10,873).
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Figure 6: Place Effect Mechanisms

(a) Role of Star Researchers
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(b) Role of Surrounding Institutions in a City
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Notes: The first subfigure shows the coefficients �̂� estimated from equation 2 for movers between 1945-2023 using 𝛿𝑖 defined off the top 95th percentile of researchers
in an institution. The second subfigure shows the coefficients �̂� estimated for movers by the change in their origin and destination cluster size between the time
period 1945-2023 using the city-level 𝛿𝑖 excluding the author’s own institution productivity. In both, the dependent variable is log productivity and we control for a
set of year, field, field x year, and author fixed effects. Standard errors are clustered at the institution-level.
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Appendix

A. Additional Exhibits

Appendix Table A1: Journal Sample Sizes

Sample Journal % Fundamental # Fundamental

CNS
Science 37.11 39,470
Nature 64.42 64,093
Cell 93.92 16,167

Leading Life-Sciences Journals

Neuron 93.16 8,465
Nature Genetics 90.59 5,775
Nature Medicine 57.11 4,625
Nature Biotechnology 43.16 3,447
Nature Neuroscience 87.08 4,252
Nature Cell Biology 84.97 3,182
Nature Chemical Biology 78.45 2,235
Cell Stem Cell 89.24 1,642

Other Life-Sciences Journals
PLOS One 81.45 210,349
Journal of Bio Chem 95.09 171,724
Oncogene 97.93 15,606
The FASEB Journal 69.08 12,722

Notes: Table shows the share of fundamental science research published in each journal. Our full sample for each journal consists of all articles and clinical trials that
appear in OpenAlex between 1945 and 2023.

Appendix Table A2: Measure Weighting Robustness

Country-Level City-Level Institution-Level

Research Productivity
Unweighted vs. Impact Factor Weighted 0.9932 0.9471 0.9262
Unweighted vs. Impact Factor & Citation Weighted 0.9951 0.8993 0.8602
Papers-in-Patents Citations
All Cites vs. Front Page Cites 0.9996 0.9961 0.9896
All Cites vs. Body Cites 0.9992 0.9920 0.9784

Notes: Table shows the correlation between different measures of the fundamental science research share produced at the country, city, and institution level for
articles published in a set of top 15 life-sciences journals (Cell, Nature, Science, Nature Cell Biology, Nature Genetics, Nature Medicine, Nature Biotechnology, Nature
Chemical Biology, Nature Neuroscience, Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological Chemistry, and the FASEB Journal).

Appendix Table A3: Correlation of Productivity and Papers-in-Patents Citation

State-Level City-Level Institution-Level

Research Productivity vs. Papers-in-Patents Citations
Impact Factor & Citation Weighted vs. All Cites 0.9950 0.9915 0.9589
Impact Factor & Citation Weighted vs. Front Page Cites 0.9939 0.9922 0.9669
Impact Factor & Citation Weighted vs. Body Cites 0.9935 0.9848 0.9294

Notes: Table shows the correlation between our main measure of fundamental science productivity and different versions of papers-in-patents citation counts at the
state, city, and institution level for articles published in a set of top 15 life-sciences journals (Cell, Nature, Science, Nature Cell Biology, Nature Genetics, Nature Medicine,
Nature Biotechnology, Nature Chemical Biology, Nature Neuroscience, Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological Chemistry, and the FASEB
Journal).
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Appendix Table A4: Top 50 Institutions by Average Researcher Productivity

Rank Institution Researcher Productivity

1 Harvard University 4.61
2 Stanford University 3.02
3 Massachusetts Institute of Technology 2.80
4 National Institutes of Health 2.09
5 University of California, San Francisco 1.93
6 Mass General Brigham 1.77
7 Johns Hopkins University 1.66
8 University of California, San Diego 1.36
9 Columbia University 1.35
10 Yale University 1.33
11 University of California, Berkeley 1.14
12 University of Pennsylvania 1.05
13 University of Washington 1.00
14 Memorial Sloan Kettering Cancer Center 0.94
15 Washington University in St. Louis 0.87
16 Cornell University 0.87
17 The University of Texas Southwestern Medical Center 0.87
18 Dana-Farber Cancer Institute 0.86
19 Rockefeller University 0.81
20 University of California, Los Angeles 0.79
21 New York University 0.77
22 University of Michigan–Ann Arbor 0.75
23 Duke University 0.67
24 The University of Texas MD Anderson Cancer Center 0.66
25 Baylor College of Medicine 0.60
26 Icahn School of Medicine at Mount Sinai 0.60
27 California Institute of Technology 0.59
28 Scripps Research Institute 0.56
29 University of North Carolina at Chapel Hill 0.55
30 University of Chicago 0.54
31 Salk Institute for Biological Studies 0.53
32 Princeton University 0.51
33 New York Genome Center 0.49
34 University of Wisconsin–Madison 0.44
35 Northwestern University 0.41
36 Cold Spring Harbor Laboratory 0.41
37 Boston Children’s Hospital 0.38
38 University of Pittsburgh 0.38
39 University of Southern California 0.35
40 Beth Israel Deaconess Medical Center 0.34
41 University of Minnesota 0.32
42 Emory University 0.31
43 Vanderbilt University 0.30
44 University of Massachusetts Chan Medical School 0.30
45 Boston University 0.30
46 St. Jude Children’s Research Hospital 0.27
47 Albert Einstein College of Medicine 0.26
48 University of Utah 0.26
49 Fred Hutch Cancer Center 0.25
50 The University of Texas at Austin 0.24

Notes: Table shows the top 50 institutions by average author-year productivity in fundamental science research in life sciences journals. The productivity measure is
weighted by the number of researchers at each institution. Journals included are: Cell, Nature, Science, Nature Cell Biology, Nature Genetics, Nature Medicine, Nature
Biotechnology, Nature Chemical Biology, Nature Neuroscience, Neuron, Cell Stem Cell, PLOS One, Oncogene, Journal of Biological Chemistry, and the FASEB Journal
between 2015 and 2023.
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Appendix Figure A1: Distribution of 𝛿𝑖
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Notes: Figure shows the distribution of 𝛿𝑖 computed at various levels for scientist-movers. Here, 𝛿𝑖 measures the size of the move and is constructed as the average
difference in productivity between the destination and origin location. We show the distributions for 𝛿𝑖 at institution-level in purple, for stars at the institution-level
in orange, and for cities without the mover’s focal institution in blue.
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Appendix Figure A2: Productivity Change based on Move Size
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Notes: Figure shows the coefficients �̂� estimated from equation 2 for movers moving from high to low productivity places and from low to high productivity places
for the time period between 1945-2023. The dependent variable is log productivity and we control for a set of year, field, field x year, and author fixed effects in our
specification. Standard errors are clustered at the institution-level. Panel (a) shows the results for high-to-low movers publishing (N = 7,501) and panel (b) shows the
results for low-to-high movers publishing (N = 8,773).
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Appendix Figure A3: Correlates of Institution Effects
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Notes: Figure figure shows results from regressing the estimated institution effects on various place-based factors from the NSF Higher Education Research and
Development (HERD) Survey.
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B. Productivity Weighting

Each observation in our data represents an author publishing paper 𝑖 in journal 𝑗 . We imple-
ment a dual-level weighting approach that accounts for both the journal’s overall prestige
and the specific paper’s influence when evaluating an author’s research productivity.

Letting 𝑗 denote journals and 𝑖 denote papers, define

• 𝑁 be the raw number of papers in our sample
• 𝑁𝑗 be the raw number of papers in journal 𝑗
• 𝐼𝐹𝑗 be the latest 5-year impact factor of journal 𝑗
• 𝐶𝑖𝑗 be the average annual citation count for paper 𝑖 in journal 𝑗
• 𝐴𝑖 be the number of authors for paper 𝑖

We first adjust the distribution of journal representation in our sample according to
their impact fact. This redistribution results in a sample that shifts weight toward journals
with higher impact factors, regardless of their original number of papers. This helps adjust
for the fact that higher impact journals may publish less often than lower impact journals.
For instance, PLOS One and Journal of Biological Chemistry have raw journal sample sizes
that each represent 31% to 37% of our full sample but have relative small impact factors of
3.8 and 4.8, respectively. In contrast, the two highest impact factor journals in our sample,
Nature Medicine and Nature, have impact factors over 60 but are only represented 0.8%
and 10% in our raw sample. Thus, for journal 𝑗 we reweight it’s paper count 𝑊𝑗 as

𝑊𝑗 =
𝐼𝐹𝑗

∑𝑘 𝐼𝐹𝑘
∑

𝑘

𝑁𝑘

where the summations are over the 𝑘 journals in our sample. Note,∑𝑘 𝑊𝑘 = ∑𝑘 𝑁𝑘 = 𝑁 .

To incorporate a paper’s citation count, we first calculate a relative citation weight
𝑅𝐶𝑊𝑖𝑗 which is the paper’s average annual citation count relative to the total average
annual citation count in our sample.

𝑅𝐶𝑊𝑖𝑗 =
𝐶𝑖𝑗

∑𝑖∑𝑗 𝐶𝑖𝑗

This measure captures the relative impact of each paper in the life-sciences as determined
by annual citation performance.

In order to account for the fact that there may be journal-specific factors that influence
citation rates, we create a journal-specific relative citation weight for each paper that
quantifies each paper’s citation impact within the context of its specific journal. A higher
journal-specific relative citation weight indicates that a paper is cited more frequently
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relative to other papers in the same journal. We calculate this as

𝐽𝑅𝐶𝑊𝑖𝑗 =
𝑅𝐶𝑊𝑖𝑗

∑𝑖 𝑅𝐶𝑊𝑖𝑗

where the denominator is the sum of 𝑅𝐶𝑊𝑖𝑗 across all papers 𝑖 in journal 𝑗 . Thus, for each
journal the sum of 𝐽𝑅𝐶𝑊𝑖𝑗 across all papers in journal 𝑗 is 1. By creating this intra-journal
citation weight, we’re effectively placing more weight on papers that may not have received
high citation counts because it was published within a low-impact journal but was relatively
influential within that low-impact journal.

Finally, we divide these paper-level weights by the number of authors 𝐴𝑖 on a paper.
Our final impact-factor and citation weighted productivity measure is equal to

𝑊𝑗 ⋅ 𝐽𝑅𝐶𝑊𝑖𝑗 ⋅
1

𝐴𝑖
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C. Constructing Life-Sciences Subfields

We implement K-means++, which improves on the original k-means algorithm by choosing
a smarter initial centroid than k-means. This tends to produce more well-separated and
balanced clusters than the original k-means algorithm. For each author-year we combine
all the text (mesh, qualifier, title, abstract) from their papers.

1. Molecular and Cellular Biology: cells, cell, expression, activation, protein, human,
signaling, receptor, apoptosis, stem, kinase, growth, metabolism, gene, increased

2. Cancer Biology: cancer, breast, tumor, cells, cell, expression, tumors, lung, cancers,
survival, growth, human, carcinoma, therapy, genetics

3. Genetics and genomics: genes, gene, genetics, dna, genetic, genome, expression,
mutations, human, variants, identified, sequencing, sequence, loci, disease

4. Physiological and Neuroscience: physiology, disease, metabolism, species, neurons,
increased, brain, infection, higher, drug, high, among, blood, also, human

5. Structural biology: protein, binding, proteins, domain, structure, complex, residues,
enzyme, acid, site, receptor, cells, membrane, amino, sequence

39



D. Results for Cell, Science, and Nature

Appendix Figure A4: Productivity Change in Response to Move
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Notes: Figure shows the coefficients �̂� estimated from equation 2 for the sample of authors publishing in CNS. The coefficient for relative year -1 is normalized to
0. The dependent variable is log productivity and we control for a set of year, field, field x year, and author fixed effects in our specification. Standard errors are
clustered at the institution-level. We focus on scientists who only moved once between 1945-2023 (N = 3,809).
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E. Results Including All Authors

Appendix Figure A5: Productivity Change in Response to Move
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Notes: Figure shows the coefficients �̂� estimated from equation 2 for the sample of all authors publishing in the top 15 journals. The coefficient for relative year -1 is
normalized to 0. The dependent variable is log productivity and we control for a set of year, field, field x year, and author fixed effects in our specification. Standard
errors are clustered at the institution-level. We focus on scientists who only moved once between 1945-2023 (N = 42,635).
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