

Tracing the Flow of Knowledge from Science to Technology Using Deep Learning

Michael Rose - Erik Buunk - Sebastian Erhardt -Cheng Li - Mainak Ghosh- Dietmar Harhoff

Project Overview

Problem: How to identify patents and publications based textual content?

- Current solutions
 - Not scalable
 - Outdated methods
 - Domain-specific
 - proprietary

Solution: **Compare** cross-corpus machine learning models, trained on **patents** and scientific publications as horse race

- Represent texts numerically as embeddings
- Apply in a real world application
- · Store embeddings in vector database

The horses

Training the Pub-PaECTER

Goal: Fine-tune PaECTER model on dataset of SPECTER

600k random documents from SemanticScholar

1.	(focal	paper		random	cited	paper	random	negative)			
2.	(focal	paper	Ι	random	cited	paper	random	negative)			
3.	(focal	paper	I	random	cited	paper	random	negative)			
4.	(focal	paper	I	random	cited	paper	random	indirectly	cited	negative)
5.	(focal	paper	I	random	cited	paper	random	indirectly	cited	negative)

Training the Pat-SPECTER

Goal: Fine-tune SPECTER model on dataset of PaECTER

300k patent families from PATSTAT with Euro-PCT application

1.	(f	ocal	patent		random	cited	Χ/Υ	patent		ra
2.	(f	ocal	patent	I	random	cited	X/Y	patent	I	ra
3.	(f	ocal	patent	I	random	cited	X/Y	patent		ra
4.	(f	ocal	patent	I	random	cited	X/Y	patent		ra
5.	(f	ocal	patent		random	cited	A pa	atent		ra

random negative with same CPC)
random negative with same CPC)
random negative with same CPC)
random indirectly cited negative)
random indirectly cited negative)

The racing ground

Goal: For a given patents, rank 30 publications by semantic similarity

- 1000 randomly selected patents
- 5 actually cited publications (*Reliance on Science*)
- 25 randomly non-cited publications

(provided they all have an English abstract)

Ranking metrics:

- Rank First Relevant
- Mean Average Precision
- Mean Reciprocal Rank among 10

Results of the horse race

PatSPECTER

statistically dominates any other model

	Avg.	RFR	M	AP	MRR@10		
Model	CLS	Mean	CLS	Mean	CLS	Mean	
BERT	2.52	1.29	46.76	79.05	69.86	91.52	
$\operatorname{SciBERT}$	2.48	1.37	49.23	71.14	71.75	90.55	
BERT for Patents	1.20	1.10	78.51	85.99	93.14	96.97	
SPECTER	1.08	1.13	91.64	86.57	97.72	96.23	
SPECTER2	1.11	1.35	88.29	76.51	95.94	91.62	
Our Models							
Pat-SPECTER	1.05	1.12	91.38	87.24	98.04	96.06	
PaECTER	1.13	1.07	86.45	89.72	96.12	97.55	
Pub-PaECTER	1.32	1.25	76.49	79.57	92.51	94.15	

Applications

- 1. Separating patent paper pairs (PPP) from patent paper citations (PPC)
- 2. Predicting patent paper pairs (PPP)
- 3. Prior art search for publications

Leverage **Logic-Mill.net**: Database for approximate nearest neighbor searches for patents and publications

- 53M **DocDB** patent families w/ English abstract
- 120M **OpenAlex** works w/ English abstract

Caveat of OpenAlex: Many publications missing abstract; duplicates

1. Separating PPP from PPC

Goal: Based on textual similarity, separate

- 1. Patent Paper Pairs
- 2. Patent Paper Citations Paper/Non patent literature (NPL)
- 3. Patent with Random papers

Do the distributions of cosine similarities overlap?

- Distributions clearly separable
- Optimal similarity cutoff (based on F1 score): 0.949

2. Predicting patent-paper-pairs

Goal: Identify **papers that are very similar** or identical to **a patent**

- PPP has 4 confidence scores:
 - very high for category 4 (prediction greater than 0.99) to
 - category 1 (prediction between 0.70 and 0.80)
- For each of the 550k patents, we search for the 1000 approximate nearest neighbors of OpenAlex and calculate the rank of the actual connected paper

- Able to match: 342,252 pairs (≈62%) within the first 1000 ANNs
- For the matched PPPs, about 65% have a rank between 1 and 100, and nearly 90% have a rank between 1 and 500.
- Predictions with higher confidence is consistent with our findings.

3. Prior Art Search for publications

Goal: predict actual patent citations among all of OpenAlex

10k patents randomly from the PPC dataset

Consider only patent paper citations with highest confidence score (3.7k)

k	MRR	MAP		
5	0.162932	0.052162		
10	0.179573	0.066367		
20	0.190259	0.080288		
50	0.197886	0.093623		
100	0.200598	0.100609		

- In **37%** at least 1 result in top 100
- Distribution rather steep

Use Logic Mill

- Register at <u>https://logic-mill.net/</u>
- Check out documentation
- Use Python, R, Stata, ... to pull data through our API (website generates code snippets)

Use Pat-SPECTER

🛿 mpi-inno-comp/pat_specter 🗈 🛛 🖓 like 🛐 Follow	ring 🗧 Max Planck Institut	ie 9		
Sentence Similarity 3 sentence-transformers O PyTorch	😫 Transformers 🛛 🗧 m	pi-inno-comp/paecter_dataset 🖉 🌐 English 🛛 bert		
feature-extraction patent-similarity 🛛 🛛 text-embeddings-inference	Inference Endpoints	arxiv:2402.19411		
💗 Model card 🛛 🕫 Files 🥚 Community 🔅 Settings		: 🔍 Train - 🕫 Deploy - 🖵 Use this m		
	🖉 Edit model card			
pat_specter		Downloads last month 5,512		
This is a <u>sentence-transformers</u> model. This model is fine-tuned c	on	NEW View full history		
patent texts, leveraging SPECTER 2.0 as a base, which is provided				
by Allen Institute for AI. It maps patent text to a 768 dimensional	Inference Examples (3)			
dense vector space and can be used for patent-specific		Sentence Similarity		
downstream tasks. However, it is noteworthy that PaECTER		This model does not have enough activity to be deploye		
outperforms this model in terms of performance.	Inference API (serverless) yet. Increase its social visibilit check back later, or deploy to <u>Inference Endpoints (dedi</u> instead.			
Usage (Sentence-Transformers)				
Using this model becomes easy when you have sentence-		Dataset used to train mpi-inno-comp/pat_sp		
transformers installed:				

huggingface.co/mpi-inno-comp/pat_specter