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Abstract

Patents and inventor data are vital for studying innovation, but often lack
socio-demographic information, such as nationality, gender, and occupational
history, limiting their research potential. Moreover, the availability of digi-
tized patent data has historically been restricted to recent decades, constrain-
ing long-term analyses of technological change. The emergence of digitized
patent records (e.g., Google Patents) and accessible census micro-data has
created new opportunities for integrating innovation data with demographic
information. This has sparked interest in the academic community, with few
attempts to produce patent census datasets. By building on these efforts, this
work compiles a patents-census linked dataset for the US over the period 1840
to 1950. It contributes to the existing literature by enhancing the scale and
quality of linked patent-census datasets. First, we compile a patent-inventor
dataset with over 2.5 million records by triangulating multiple data sources.
Second, we create a patent-census linked dataset containing approximately
1.4 million records—substantially larger than those used in prior research.
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1 Introduction
Innovation and technological change are fundamental drivers of economic growth and
essential factors in explaining the long-term prosperity of countries (Romer 1990).
Patents, and inventor data more broadly, have been extensively used in economic
literature to measure innovation, and despite certain well-documented limitations
(J. Acs and Audretsch 1989), they remain a unique and almost irreplaceable source
of information to analyse how innovation processes unfold over time and across
space.

The reason can be attributed to several factors. First, patent documents provide
long-time series with standardized information that allows to make comparisons over
time and across geographical locations. Second, patent records detail inventors’ full
names, addresses (work or home), and locations, enabling precise geolocalization of
innovative activity. Likewise, data on the invention’s owner (i.e. the patent as-
signee) is also included (Morrison, Riccaboni, and Pammolli 2017). Third, patent
documents contain detailed descriptions of technological features, including refer-
ences to prior inventions or scientific publications, allowing researchers to track
knowledge linkages (Marx and Fuegi 2020). Despite patent documents provide ex-
tremely rich information, they also lack certain relevant pieces of information. For
example, patents documents lack information on inventors’ nationality, country of
birth and gender - with few exceptions (Fink, Miguélez, and Raffo 2013) -, as well
as occupational history before or after patenting. Consequently, researchers are lim-
ited in their possibilities when investigating the interplay between socio-demographic
factors—such as migration, fertility, gender, and racial discrimination—and inno-
vation processes. To address such questions, researchers must match inventor and
assignee data with external sources, such as employer-employee linked administrative
data. However, both administrative micro-data and patent data have been available
only for recent time periods until very recently. For instance, digitized patent data
(e.g. from the USPTO or EPO) was only available from the early 1970s onward until
recently, limiting any long-term analysis of technological change. Historical studies,
therefore, have typically relied on self-collected datasets from archival records, which
restricts them in temporal range and technological scope (Nuvolari and Vasta 2017;
Sokoloff 1988).

The release of digitized patent data via Google Patents, along with accessible
population census micro-data for numerous countries, particularly the USA, has
opened new avenues for research and sparked significant scholarly interest. Re-
cent years have seen original efforts to construct long-term patent datasets and link
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them with other databases, including census data. Two main strands of this liter-
ature are discernible: one focusing on constructing historical patent databases and
the other on linking patent data to historical census micro-data. This paper seeks
to contribute to the latter by presenting a preliminary version of a dataset linking
USPTO patent-inventor data to U.S. census micro-data for the period 1840–1950.
As said, there have been already some efforts that have generated historical patent
datasets, and some of them have linked patents to census data. For example, Pe-
tralia, Balland, and Rigby (2016) produced a pioneering dataset, i.e. “HistPat”,
by geolocating USPTO patent documents for U.S.-resident inventors from 1790 to
1978. HistPat is a publicly available dataset containing over 1.5 million records. An-
other recent example is “PatentCity” by Bergeaud and Verluise (2022). PatentCity
expanded existing datasets to include also the patenting activity of France, the UK,
and Germany. By employing advanced NLP techniques, they enriched the dataset
for example with information on occupation and citizenship 1.

To our knowledge, only four datasets have linked U.S. patents to U.S. cen-
sus data: Akcigit, Grigsby, and Nicholas (2017b), Sarada, Andrews, and Ziebarth
(2019), Arkolakis, Lee, and Peters (2020), and Hartog et al. (2024) (see Section 1.1
for an overview). Akcigit, Grigsby, and Nicholas (2017b) use a patent-census dataset
to investigate factors underpinning the emergence of the U.S. technological leader-
ship in the twentieth century, examining inventor life cycles and socio-economic pro-
cesses like spatial and social mobility and inequality. Sarada, Andrews, and Ziebarth
(2019) provide an overview of inventors’ socio-demographic characteristics, compar-
ing them to general census populations regarding factors such as gender, spatial
mobility, and race. Arkolakis, Lee, and Peters (2020) supplement the patent-census
dataset with immigration records and passenger lists between Europe and the US,
allowing insights into the skill profiles of immigrant inventors. Finally, Hartog et al.
(2024) examine the emergence of research labs in US companies and analyse how
research activity shifted from an individual to a collective endeavour by integrating
multiple datasets.

These studies, while addressing distinct research questions, share a core method-
ology: linking U.S. census data with historical patent data. Nonetheless, their
dataset construction strategies differ to some extent. First, temporal coverage varies:
Akcigit, Grigsby, and Nicholas (2017b) examine 1880–1940, whereas Hartog et al.
(2024) begin in 1850 and Arkolakis, Lee, and Peters (2020) conclude their analysis
in 1920. Second, they draw on different patent data sources. For instance, Sarada,
Andrews, and Ziebarth (2019) and Hartog et al. (2024) use inventor data from

1for an review of earlier studies see Andrews (2021)
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the Annual Reports by the Commissioner of Patents , while Akcigit, Grigsby, and
Nicholas (2017b) and Arkolakis, Lee, and Peters (2020) rely on USPTO documents.
Third, the methodologies used for matching inventors to census records vary: for
example all studies use some kind of sub-national geographical scale (e.g., state,
county) to identify potential matches, except Hartog et al. (2024), who match each
inventor to all census records in the US for a certain vintage. Additional differences
arise in matching procedures, such as matching patents to one or multiple census
waves or employing various inventor name fields (e.g. surname, initials, forename).
Finally, some studies implement matching scores and accuracy measures to select
potential candidates (e.g., Hartog et al. (2024); Arkolakis, Lee, and Peters (2020);
Sarada, Andrews, and Ziebarth (2019)), while others do not (e.g., Akcigit, Grigsby,
and Nicholas (2017b)).

We claim that our work contributes to these efforts in two main ways. First,
we expand the patent dataset, achieving higher-quality data extracted from Google
Patents. This is done by collecting more patent documents and by triangulating
multiple data sources (e.g. OCR of patent images and information from Google
Patent pages), resulting in a patent-inventor dataset with over 2.5 million records.
Second, our matching procedure produce a larger patent-census linked dataset, con-
taining approximately 1.4 million records—significantly more than in prior studies.
Three factors have contributed to this outcome: a) a larger initial patent-inventor
dataset; b) the use of two (and occasionally three) census waves to match patents;
c) and a more comprehensive candidate-matching methodology employing a wider
predictors set than other studies.

Our matching rates range from 28,7% to about 45,2%, with lower rates observed
for early census waves, where evidence suggests some under-reporting by enumer-
ators, especially in rural areas of the US. We also find variation by nationality,
suggesting potential inaccuracies in the census reporting of foreign names, as also
noted in Akcigit, Grigsby, and Nicholas (2017b). We find also that States with
higher patenting rates generally show higher matching rates as well, which is per-
haps not surprising.

Our findings indicate that inventors were predominantly middle-aged white men,
consistent with prior studies. For example, Sarada, Andrews, and Ziebarth (2019)
and Akcigit, Grigsby, and Nicholas (2017b) report that 95–97.9% of inventors were
male and approximately 97% were white, with an average age of around 41. As in
Akcigit, Grigsby, and Nicholas (2017b) we also found that immigrants accounted
for about 20% of inventors. These results suggest that, despite some discrepancies,
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our data align well with previous findings, providing a coherent view of historical
inventor demographics.

The paper is structured as follows. Section 1.1 provides a brief overview of
previous studies that have attempted to match US patent data with US census data.
Section 2 discusses the methodology used to construct our patent dataset. It details
the data sources (Section 2.1), the methodology used to extract information from
the patent documents (Section 2.2 and subsections therein), and how gender was
assigned to the inventor (Section 2.3). Section 3 discusses the differences between
our dataset and other publicly available patent datasets. In Section 4, we present
the full count US Census dataset of Ipums, which was used to match our patent-
inventor dataset. The matching procedure is presented in Sections 5 and 6 and
their subsections. In particular, Section 5 discusses the blocking procedure used to
generate candidate matches. Section 6 discusses in detail the matching strategy.
Section 7 discusses the machine learning model used to select among the many
multiple candidates found during the matching procedure. Section 8 presents some
demographics of the inventors with the sole purpose of validating our methodology.
Section 9 illustrates some robustness checks of the ML model. Section 10 concludes.

1.1 Other attempts to match USPTO patents to US Census
data

In recent years, four other studies have attempted to match historical USPTO
patents to US census data. In this section, we aim to provide as complete an
overview as possible of their strategies and outcomes.

The earliest attempt is made by Akcigit, Grigsby, and Nicholas (2017a) and
Akcigit, Grigsby, and Nicholas (2017b), who match the first inventor appearing on
patents granted in the same year as the census was conducted for each census year
between 1880 and 1940. Their initial matching criteria require inventors to have the
same first name, last name, and state and county of residence as census individuals.
If multiple candidates remain for an inventor after this initial match, they apply
additional filters sequentially: (1) only individuals with the same middle initial (if
available) are retained, (2) only those residing in the same city or township are
kept, (3) only those aged 16 to 85 are retained, and (4) only those aged 16 to 65 are
retained. Any inventors with duplicate matches after all these filters are removed
from the dataset. This methodology yields a matching rate of 29–46%.

Rather than using patent documents, Sarada, Andrews, and Ziebarth (2019)
begin their analysis with lists of patent grantees from the Annual Report of the
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Commissioner of Patent. Similar to Akcigit, Grigsby, and Nicholas (2017a), they
restrict their matches to inventors granted patents in the same census years, covering
1870 to 1940. Their matching process requires an exact match on state of residence
and initials of both the first and last name, supplemented by a fuzzy match based on
full first and last names and the name of the town of residence. Each of these char-
acteristics are scored for quality and weighted using a subset of manually matched
inventors from Vermont in 1900. To be matched an inventor must have an overall
score above the average match score of all possible matches. This results in a match
rate varying around 10%, with most matches being unique around 70% of them
being perfect. Since the Annuals do not report the abstract of the patent or the
technological class, the dataset lack such information.

Arkolakis, Lee, and Peters (2020) Arkolakis et al. (2020) link patents (only for
male inventors) to census data for the years from 1880 to 1920. Patents are matched
to a census record if they were filed within the same decade and State Economic
Area (SEA), using the Jaro-Winkler distance to assess similarity between the first
and last names of the patent inventor and the census individual. A Jaro-Winkler
score above 0.8 is required, and the individual’s age at the time of filing must be
over 16. To ensure unique matches, they exclude cases with multiple candidates
who have a Jaro-Winkler score above 0.85 or are over 80 years old. Their matching
rate varies between 8% and 60%.

The most recent attempt is by Hartog et al. (2024). Similar to Sarada, Andrews,
and Ziebarth (2019), they begin with yearly lists of patent grantees, matching these
to the two closest census waves based on each patent’s grant date for census years
between 1850 and 1940. For each inventor, they generate an initial set of census
candidates by identifying all individuals in a census wave with similar last names,
yielding an average of 326,697 candidates per inventor. Next, to establish a ground
truth for inventor-census matches, they incorporate additional information on a sub-
set of inventors (i.e., birth date, birthplace, and family ties) obtained from Wikidata.
Using this ground truth, they employ a two-stage XGBoost model. In the first stage,
they predict an initial match quality score based on name similarity (first and last
name, initials) and geographic distance between the inventor’s and census individ-
ual’s counties of residence. In the second stage, they apply another XGBoost model
that uses the first-stage quality scores along with a different set of ground truth
observations to generate a refined matching score for each inventor-candidate pair.
The final match is made by selecting the pair with the highest score from the second
stage, provided the candidate is over 16 years old. This approach allows them to
successfully match 46% of inventors.
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2 Historical USPTO data
Since the release of digitized patents, a number of attempts have been made to con-
struct long time series of historical patent data, particularly using US patent data.
Building on some of these attempts (Petralia, Balland, and Rigby (2016), Bergeaud
and Verluise (2024), we present our historical patent dataset in the following sec-
tions. We discuss the methodological steps taken to extract and standardise relevant
information from patent documents. We also compare our dataset with other pub-
licly available datasets along some key dimensions (e.g. number of patents).

2.1 Data sources

The dataset for our study is based on USPTO patent documents filed between 1836
and 1950.2 We obtained these documents as PDF files from Google Patents. Since
these files are image-based and do not contain selectable text, we used the Python
library PDFMiner, specifically the pdf2txt.py function, to extract text data.3

The files were downloaded and processed in batches of 20.000 patents, since
the overall amount of data (2.521.306 patents) could not be stored on the working
machine. Since it was only possible to work with publications, the application was
iterating on a progressive number ranging from one to the last published patent in
the time-frame we were interested to (end of 1950 in our exercise).

Aside PDF download, we enriched the dataset by downloading the main pieces of
information relative to the patents in exam as assignees, cpcs, references, citations,
concepts, priorities and the timeline of events related to that patents.

2.2 Extracting inventor data

This section describes the procedure used to extract inventor information (e.g. name,
address) from patent documents. Since the format in which this information is
reported in the patent changes over time, we had to first parse the document to
extract the relevant text where the information was plausibly found (see Section
2.2.2), and then analyse it to extract the relevant inventor information (see Section
2.2.3).

2The USPTO was formally established on July 4, 1836.
3Note that Google Patents PDFs now often come pre-OCRed.
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2.2.1 Pre-processing

To link patent inventors with individuals in census records, we parsed the patent doc-
uments to extract relevant inventor information. Until approximately 1925, patent
documents typically began with one or more technical drawings signed by the inven-
tor and two witnesses, followed by a detailed description of the invention (Bazerman
1997). The first page of text was headed by “United States Patent Office” and in-
cluded subheadings with the inventor’s name and the title of the invention. This was
followed by a formal phrase, Specification of Letters Patent [number], dated [date],
introducing the document. The main text often began in the style of a formal let-
ter with the salutation To all whom it may concern, leading into an introductory
declaration (see Figure 1a):

Be it known that I, [name], of [city, county and state], have invented [...]

In 1925, with the transition of the Patent Office from the Department of the
Interior to the Department of Commerce, a modernization phase began, aimed at
fostering industrial growth and innovation in the United States.4 As part of this
transition, the patent document format was simplified. In the revised layout, as
shown in Figure 1b, the inventor’s name and location were placed directly below
the “United States Patent Office” heading, eliminating the formal preamble and
streamlining the overall document structure.

4https://www.commerce.gov/about/history/evolution
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Figure 1: Headers of patents US10001 and US1683266

(a) Header of patent US10001, filed on September 6, 1853

(b) Header of patent US1683266, filed on August 5, 1925

Mirroring these evolving document structures, we adopted flexible regular ex-
pressions to identify and extract paragraphs containing bibliographic information
on inventors, while excluding extraneous elements such as witness signatures. The
approach also addressed common formatting inconsistencies and corrected typical
OCR errors. The box below provides a snapshot of the code used.
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if pat_no <=1583766:
start_pars = [

'Know all men by these presents:',
'That I,', 'Beit known that I', 'Beit known that, I',
'That we,', 'Beit known that we', 'Beit known that, we',
'To all whom it may concern:',
'To all, whom it inval / concern: '
]

endparagraph = re.compile('([a-z][a-zA-Z]( |)[.]| [0-9][.])$')
MisspelledFormula = re.compile("^(7|T)OALL((A|)
WOHM|OTHON|TUHOT|WHOM)(,|)IT(MAY|INCTLY)
(CONCERN|60N6ERN|CONCE'N)(:|;|)")
alternative_ends = ['WITNESS', 'WHATICLAIM', 'WHATDOICLAIM' ]
alternative_begin = 'LETTERSPATENT'

else:
start_pars = ['UNITED STATES',

'UNITED STATES PATENT OFFICE',
'UNITED STATES PATENT OFF']

endparagraph = re.compile('Application Filed')
MisspelledFormula = re.compile(
"^(7|T)OALL((A|)WOHM|OTHON|TUHOT|WHOM)(,|)
IT(MAY|INCTLY)(CONCERN|60N6ERN|CONCE'N)(:|;|)")
alternative_ends = [

'APPLICATIONFILED', 'SERIALNO',
'APPLICATIONFLED', 'INVENTIONRELATES', 'FOREXAMPLE']

alternative_begin = 'UNITED STATES PATENT OFF'

The code differentiates patents by number, adjusting the parsing rules accord-
ingly:

• For earlier patents (numbered ≤ 1583766), the code searches for the initial
legal phrases (e.g., “Know all men by these presents”) and ends with phrases
such as “WITNESS” or “WHAT I CLAIM.”

• For later patents, the code searches for text beginning with “UNITED STATES
PATENT OFFICE” and ending with phrases like “APPLICATION FILED”
or “SERIAL NO.”

For example, in the case of patent US10001 (see Figure 1a), the code extracted
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the following paragraph:

Be it known that I, THOMAS ALLISON, of Milton, in the county
of Ulster and State of New York, have invented a new and useful

In contrast, for patent US1683266, the code extracted:

UNITED STATES 1,683,266 PATENT OFFICE. LEWIS H.
SHIPMAN, OF BOSTON, MASSACHUSETTS, HEATING AP-
PARATUS. Application filed August 5, 1925. Serial No. 48,323.

2.2.2 Post-processing with SpaCy

After extracting paragraphs containing data on inventors, the texts were processed
to eliminate noise introduced by OCR technology. Subsequently, these texts were
analyzed using SpaCy, an open-source software library dedicated to advanced natural
language processing (Honnibal and Montani 2017).

For this purpose, we constructed a training set utilizing the HistPat dataset
developed by Petralia, Balland, and Rigby (2016).5 The training set comprises a
dictionary associating each paragraph with the start and end character indices of
the inventor’s name within the text. The training set includes approximately 21,000
annotated cases. Below is a sample record from the annotated training set:

TRAIN_DATA = [
("Be it known that I, JoHN ALLEN CLARK,
a citizen of the United States, residing at Columbus,
in the county of Franklin and State of Ohio,
have invented a new and",
"entities": [(20, 36, "PERSON")]),
(...),

]

After training the model, we leveraged the Named Entity Recognition (NER)
capabilities of SpaCy to extract the names of inventors, identified by SpaCy as a
PERSON, from all paragraphs outlined in section 2.2.1.

Similarly, we utilized SpaCy to identify the locations of inventors, which are
recognized as geopolitical entities (GPE). For American inventors, addresses are
detailed at the city, county, and state levels, whereas for non-US inventors, only city

5https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
BPC15W
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and country are specified. We cross-verified and supplemented the information on
inventors’ locations using the dataset created by Bergeaud and Verluise (2022) and
Bergeaud and Verluise (2024).6

Finally, we enriched the dataset with information on the patents’ technological
classes, retrieved from Google Patents and PATSTAT. Where available, citizenship
information was also obtained by leveraging the dataset developed by Petralia, Bal-
land, and Rigby (2016) and Diodato, Morrison, and Petralia (2021).

It is important to note that our unit of analysis is the “patent-inventor name”
pair. We did not attempt to disambiguate individual inventors before matching
them with census records.

Table 1: Number of patents in the data set by location of inventors

Located in the US Located elsewhere Total
Patent-inventor pairs 2,559,849 524,455 3,084,304

Patents 2,237,296 428,222 2,519,800
Note: This table reports the number of patents published between 1840 and 1950
(inclusive) in our dataset, categorized by the location of the inventors. Note that the
sum of patents with inventors located in the United States and those with inventors in
other countries exceeds the total reported in the last column, as some patents include
inventors from both the United States and abroad.

2.3 Our set of historical patents

The methodology described in the previous sections resulted in a final dataset of
3,084,304 patent-inventors and 2,519,800 patent documents, as shown in Table 1. At
this stage, we have not undertaken any effort to disambiguate the names of inven-
tors. The identification of individual inventors will indeed be possible with greater
accuracy after we have matched them with the census records. For this purpose, we
will only use patent-inventor pairs located in the US, which are the only ones we can
expect to find in the US census. This results in a total of 2,559,849 patent-inventor
records, which is more than 80% of the total. It is worth noting that the number of
records in our dataset is larger than those already in the public domain. For example,
Petralia, Balland, and Rigby (2016) have about 1.5 million patent inventors, while
Bergeaud and Verluise (2024) have approximately 2.8 millions patent-inventors 7.

6https://cverluise.github.io/projects/patentcity/
7This number refers to the US patent data, excluding duplicate co-inventors
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2.4 Assigning gender to inventors

While census data (see below, section 4) provides gender information for individuals,
this information is not available for USPTO inventors. Since gender is a relevant
feature in our matching and blocking strategy (see below, section 5), we assigned
gender to inventors by utilizing two sources of information. The first source is the list
of the 1,000 most common male and female names from 1880, as reported by the U.S.
Social Security Administration.8 The second source used is the World Gender-Name
Dictionary (WGND) developed by Lax-Martinez et al. (2021).9 Specifically, we used
the WGND_nocountry version of the dictionary, which contains 177,042 unique names
that are non-conflicting across sources and countries. We supplemented this list with
a manually curated list of names to cover cases not captured by these sources.

Tables A1 and A2 in the Appendix report the number and percentage distri-
bution of patent-inventor pairs by decade and inventor gender. Despite our use of
an extensive name list, a significant share of inventors’ genders could not be deter-
mined, particularly in the decades before 1870. This is likely due to OCR issues in
transcribing names or the presence of obsolete names from the early 19th century
that are not included in our name dictionary.

3 Comparing with other data sets
As discussed in the introduction, several historical USPTO patent datasets have
been compiled over the past decade. To contextualize our dataset (BHMNT) within
this landscape, it is essential to evaluate how it compares to these alternative sources.
Our comparison focuses on three publicly available datasets.10

• The first dataset, HISTPAT, was compiled by Petralia, Balland, and Rigby
(2016).11 HISTPAT provides geographic information on patents granted by
the United States Patent and Trademark Office (USPTO) from 1836 to 1975.
Similar to our approach, HISTPAT is constructed using digitized records of

8https://www.ssa.gov/OACT/babynames/decades/names1880s.html
9For details on the methodology used by the authors, please see https://github.com/

IES-platform/r4r_gender/blob/main/wgnd/README.md
10Another data set publicly available is the KPSS dataset, created by Kogan et al. (2017),

which provides patent-level data from 1926 to 2023. Data is available at https://github.com/
KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data.
KPSS is distinct in that it focuses specifically on patents assigned to publicly traded firms, and
therefore it does not contain the full universe of patents. For this reason, we leave it outside this
comparison.

11Specifically, we used version 8.0 of this dataset, which is available at https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BPC15W.
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original patent documents that are publicly accessible.

• The second dataset, PATENTCITY, was developed by Bergeaud and Verluise
(2022) and Bergeaud and Verluise (2024). Like HISTPAT, PATENTCITY
is based on digitized images of USPTO patents.12 PATENTCITY includes
U.S. patents dating back to 1836 and provides extracted information such as
inventors’ names, locations, occupations, and citizenship.

• The third dataset, SAZ, was compiled by Sarada, Andrews, and Ziebarth
(2019).13 Differently from the other existing data sets, it takes patent data
from the Annual Reports of the Commissioner of Patents and Annual Indices
of Patents. The time span covered goes from 1870 to 1942. The data set
provides information for each patent on inventor names, inventor location at
the state and town levels, invention title, and type (i.e., utility patent, design
patent, plant patent, and so on). For this comparison, we selected only utility
patents.

3.1 Patent counts

The most straightforward dimension for comparison is coverage in terms of the
number of patents. Figure 2a shows the number of patents in our dataset (BHMNT)
alongside HISTPAT, PATENTCITY, and SAZ.

All datasets exhibit similar trends, showing cyclical patterns in patenting activ-
ity consistent with previous literature. Patent counts tend to increase over time, with
noticeable declines during periods of economic downturns and wars, such as World
Wars I and II. The BHMNT and PATENTCITY datasets are closely aligned in
terms of patent counts, whereas HISTPAT and SAZ generally contain fewer patents
than these two in most years.

To further evaluate the coverage of the BHMNT dataset, we benchmark it
against aggregate patent counts provided by the USPTO. Figure 2b illustrates the
difference between patent publications in our dataset and the official counts reported
by the USPTO.14 Our dataset aligns closely with official USPTO counts for most
years, with only a few exceptions in 1881, 1900, 1926, and 1928. In these years, the

12The dataset is publicly available at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/PG6THV, and we used version 2.1. Notably, this dataset also
includes historical patent records for Germany, France, and the UK.

13The data set is publicly available at https://www.openicpsr.org/openicpsr/project/
120556/version/V1/view?path=/openicpsr/120556/fcr:versions/V1/READ_ME.txt&type=
file.

14See https://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_counts.htm.
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Figure 2: Number of patents

(a) Number of patents in different data sets

(b) Difference between BHMNT and official USPTO counts

Note: Figure 2a compares the count of patents for each year in our data set (BHMNT) with
the data set built by Petralia, Balland, and Rigby (2016) (HISTPAT), that built by Sarada,
Andrews, and Ziebarth (2019) (SAZ) and that developed by Bergeaud and Verluise (2022) and
Bergeaud and Verluise (2024) (PATENTCITY). Figure 2b illustrates the difference in terms of
patent publications between our data set and the official patent counts reported by the USPTO
(See https://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_counts.htm.).
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differences never exceed 57 patents in absolute terms or 0.9% of the official counts,
making the discrepancies negligible for practical purposes. However, 1950 presents
a significant exception: our dataset is missing approximately 10,986 patents, or 25%
of the official total for that year. This gap occurs because our dataset’s time series
ends at patent US2524969, with a publication date of 1950-10-10.

3.2 Number of inventors

Another comparative dimension relates to the identification and count of inventors.
The HISTPAT datasets does not provide inventor names, whereas PATENTCITY
and SAZ do. Although HISTPAT does not record inventor names, it does allow for
the identification of patents with multiple inventors. In this dataset, each inventor’s
location is listed as a separate row in the data file, so patents with multiple rows
indicate multiple inventors.

Figure 3a reports the share of patents with more than one inventor across the
three datasets. The differences are notable. According to HISTPAT, nearly all
patents before 1920 have only a single inventor. This could be due to a limitation in
recording only the first inventor’s name before 1920 or because the dataset aggregates
inventors from the same location into a single record. In contrast, PATENTCITY
shows that approximately 25-30% of patents before 1880 were produced by teams
of inventors. This share then declines sharply until 1925, after which there is a
further significant drop. In our dataset, however, the share of patents produced by
teams remains relatively stable at around 15% until 1920, after which it begins to
rise significantly. The SAZ database stands in between our data set and HISTPAT,
reporting a share of patents made by teams around 8-10% until 1920.

A similar trend is observed in Figure 3b, which shows the average number of
inventors per patent. In our dataset, the average number of inventors per patent
remains steady, with minor fluctuations, at around 1.2 until 1920, after which it
starts to increase. On the other hand, PATENTCITY reveals an opposite trend,
with an average of approximately 1.3 inventors per patent before 1880, followed by
a gradual decline until 1926.

To investigate the likely causes of these discrepancies, we randomly selected a few
patents where the number of inventors differed between our dataset and PATENTC-
ITY, and inspected the inventor names reported in each. An illustrative example
is patent US209237 (see Appendix, Figure A1). As shown in Table 2, this patent
has 7 inventors listed in PATENTCITY but only 2 in our dataset. Some of the in-
ventor names in PATENTCITY are duplicated, and these duplications are marked
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Figure 3: Inventors per patent

(a) Share of patents filed by teams of inventors

(b) Average number of inventors per patent

Note: Figure 3a illustrates the yearly trends in the share of patents with multiple inventors,
comparing data from our dataset (BHMNT) against the datasets compiled by Petralia, Balland,
and Rigby (2016) (HISTPAT), Sarada, Andrews, and Ziebarth (2019) (SAZ), and Bergeaud and
Verluise (2022) and Bergeaud and Verluise (2024) (PATENTCITY). Figure 3b displays the average
number of inventors per patent across these four datasets.
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by the variable is_duplicate. However, even after excluding all entries marked
as duplicates (i.e., where is_duplicate is set to True), PATENTCITY still lists 4
inventors for this patent.

This discrepancy arises for two main reasons: (a) Ep@ar PULASKI Da- VIS and
EDGAR P. DAVIS are not identified as the same person due to OCR and name recog-
nition errors, and (b) Hiram A. STURGES is incorrectly labeled as an inventor, even
though he is actually a witness (see Figure A1).

Table 2: Comparing inventor names, US Patent 238207

PATENCITY BHMNT
name_text is_duplicate name
Hiram A. STURGES False
WALTER JOHN GODFREY True
WALTER J. GODFREY False WALTER J. GODFREY
WALTER J. GODFREY True
Ep@ar PULASKI Da- VIS False
EDGAR PULASKI DAVIS True EDGAR PULASKIDAVIS
EDGAR P. DAVIS False

Therefore, for patents filed before 1926, PATENTCITY appears to overesti-
mate the number of inventors for two key reasons. First, by searching for inventor
names throughout the entire patent document, it leads to duplicate entries for the
same inventor. Second, the named entity recognition system used in PATENTCITY
sometimes misclassifies witnesses as inventors, further inflating the inventor count.

3.3 Intersection of data sets

In this section, we examine whether the datasets under review contain identical
patents—that is, whether patents included in one dataset are also present in the
others. Since each dataset records patent numbers, identifying patents that appear
in one dataset but not in another is straightforward. Figure 4 and Table A5 in
the Appendix present pairwise comparisons among the BHMNT, HISTPAT, and
PATENTCITY datasets.

The results show that the majority of patents are common across all three
datasets. However, BHMNT and PATENTCITY exhibit a substantial degree of
overlap, while HISTPAT is missing a notable number of patents relative to these
two datasets.
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Figure 4: Intersection between data sets

Note: Figure 4 reports the number of patents appearing in one data set but not in the other.

4 Census data
We obtained the full count U.S. Census microdata from 1840 to 1940 from IPUMS
(Integrated Public Use Microdata Series) at the University of Minnesota. Specifi-
cally, we were given access to the restricted version of decennial censuses.

Compared to the IPUMS Full Count dataset, the additional variables in the
restricted-use files include:

• namefrst: 16-character first name (and possibly middle initial)

• namelast: 16-character last name

• histid: 36-character person identifier of the individuals included in each cen-
sus for matching across IPUMS versions (but not census decades)

• street: street address.

All census tables were converted to parquet format to facilitate querying data.

We also use the information included in the IPUMS Full Count dataset, which
provides both person and household level variables. The dataset contains over 800
million individual-level records for the period 1850-194015. Person-level variables
provide information on the status of the household members, such as demography
and family relationships, income and occupation, and education. Household-level

15See https://usa.ipums.org/usa/full_count.shtml
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variables provide information on the composition of the household, its geographical
location, and its economic characteristics. It should be noted that not all the vari-
ables are available for the period 1850-1940, in particular those relating to economic
characteristics of the household, personal income and work, which are missing from
most (if not all) census waves in the time period 1850-1940. As an illustration,
Table 3 reports some of the most relevant variables with a brief description of their
content16.

Furthermore, with the IPUMS Multigenerational Longitudinal Panel (MLP)
project , individuals’ records have been linked across different censuses. We plan to
exploit this feature of the MLP using the records that have links across the censuses
of 1850 through 1940.17

16A detailed description of the variables and how they are coded can be found here: https:
//usa.ipums.org/usa-action/variables/group

17More details can be found here: https://usa.ipums.org/usa/mlp/mlp.shtml
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Table 3: IPUMS Full Count US Census (1850-1940): description of selected variables

Type Category Name Description

P Demography RELATE Relationship to household head: e.g., head, spouse, child
SEX Sex: male/female
AGE Age of the person
MARST Marital status: e.g., married, separated, divorced
BIRTHYR Year of birth

Race, Ethnicity,
and Nativity

RACE Race: e.g., White, Black/African American, American Indian, Chinese

BPL Birth place: name of a U.S. state or a foreign country
CITIZEN Citizenship status: e.g., born abroad of American parents, naturalized citizen, not a citizen
YRIMMIG Year of immigration
SPEAKENG Speaks English: e.g., No/Yes

Education SCHOOL School attendance: e.g., No, not in school; Yes, in school
LIT Literacy: e.g., No, illiterate/Yes, literate

Work LABFORC Labor force status: e.g., No/Yes
OCC1950 Occupation class (1950 basis): e.g., accountants and auditors

Occupational
standing

OCCSCORE Occupational income score: 2-digit numeric variables

ERSCOR50 Occupational earnings score (1950 basis): 4-digit numeric variable
H Geography STATEFIP State: 2 digit State FIPS code

COUNTYFIP County: 3-digit numeric variable
CITY City: 4-digit numeric variable
CITYPOP City population

Economic
characteristics

FARM Farm status: e.g., Not a farm; Yes, farm

Household
composition

NFAMS Number of families in household

NFATHERS Number of fathers in household
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4.1 Cleaning census names

Both the USPTO and census datasets underwent rigorous cleaning and standardiza-
tion to enable accurate comparisons between inventors and census individuals. For
the census data, one of the primary challenges was handling variations in how names
were recorded, including differences in spelling, capitalization, and punctuation. To
address this, we normalized the names by converting all text to lowercase and re-
moving non-alphanumeric characters (except for spaces). Digits were also removed
where necessary to ensure consistency. This step facilitated more effective matching
by ensuring that minor differences in how names were recorded did not interfere
with identifying potential matches.

In addition, to allow for more granular comparisons during the matching process,
we maintained the separation of first and last names in the census data. This ap-
proach helped refine the matching process, as it enabled more flexibility in handling
discrepancies between how names were entered across the two datasets.

Lastly, we enhanced the census data by attaching county and state of residence
information to each individual using the crosswalks developed by Berkes, Karger,
and Nencka (2023) as part of the Census Place Project18. These crosswalks pro-
vide standardized, geocoded locations for individuals based on raw place names
found in the census data, significantly improving the geographic precision of our
matches. This geolocation data was critical for enabling more refined and accurate
comparisons, especially for common names that might otherwise produce ambiguous
results.

This pre-processing step yielded a set of tables, one for each decennial census,
with the following variables:

histid 36-char identifier of individual
clean_fn Lower-case, cleaned first name
clean_ln Lower-case, cleaned last name
county_fips_code County FIPS code
age Age
birthyr Year of birth
sex Sex (M, F, U)
city City

As for the county_fips_code this is a 5-digit code obtained from joining state
and county FIPS code of individuals from Berkes, Karger, and Nencka (2023). It

18Data is publicly available at https://www.openicpsr.org/openicpsr/project/179401/
version/V2/view
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is also worth noting that gender is not available for all individuals in decennial
censuses. In a relatively limited number of cases, gender is unknown (U).

5 Blocking USPTO and Census
After collecting and standardizing data on USPTO inventors and individuals from
the census, the first step in the matching process involved implementing a blocking
technique to generate candidate matches. This initial step is crucial for reducing the
computational complexity of the matching task, which involves billions of potential
pairs between the two datasets. Blocking involves partitioning the data into smaller
subsets based on shared attributes such as geographic location, gender, or age so
that comparisons are made only within these subsets rather than across the entire
dataset.

In what follows, we describe in detail the steps taken.

Step 1: We first divided the set of inventors into three subsets based on assigned
gender: female (F), male (M), and unknown (U). Similarly, we splitted
individuals in the Census into gender-specific tables. This approach al-
lows us to reduce the overall number of pairs to evaluate by matching
inventors and Census individuals within the same gender groups. Specif-
ically, male (M) inventors were matched only with male (M) individuals
in the Census, and female (F) inventors only with female (F) individuals.
For the relatively small number of inventors with unknown (U) gender,
we matched them with both male and female individuals in the Census.
This division of data enabled us to create separate matching pipelines
for each gender group, thereby drastically reducing the computational
complexity.

Step 2: Inventors were further divided into separate sets based on 21-year moving
windows aligned with each decennial Census. For a given Census year t,
we retained for matching only those inventors with patents filed within
the window t− 10 to t + 10—that is, 10 years before and 10 years after
the Census year.

Step 3: For each decennial Census, we retained only individuals aged between
8 and 80 at the time of the Census. Formally, for a given Census year
t, we included individuals who reported an age between 8 and 80. This
age-based filtering is designed to ensure that individuals could plausibly
match with inventors in the surrounding 21-year window.
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The rationale for this rule is that an individual who was 8 years old at
time t would be 18 years old at t + 10, the upper end of the matching
window. For example, an individual who was 8 years old in the 1860
Census could potentially match with an inventor who filed a patent in
1870, when the individual would be 18. Conversely, an individual who
was 80 years old at time t would have been 70 years old at t − 10, the
lower end of the matching window. Thus, an individual who was 80 years
old in the 1860 Census could plausibly be matched with an inventor who
filed a patent in 1850, when the individual would have been 70 years old.

Step 4: Finally, inventors and Census individuals were further divided into sub-
sets based on county and state of residence, as reported in the patent
document and the Census, respectively. To achieve this, we utilized
FIPS codes assigned to each inventor and Census individual, as detailed
in Section 4.1.19 The purpose of this geographic blocking rule is to re-
duce the number of pairs to compare and thereby decrease computational
complexity.

While this approach effectively reduces processing requirements, it also
introduces a potential limitation: we may miss true matches if an inven-
tor’s address on the patent reflects a state different from the one reported
in the Census, for example, due to a move across state lines before or after
the patent was filed. Nevertheless, we believe the gains in computational
efficiency outweigh this drawback.

To summarize, this blocking strategy effectively reduces computational com-
plexity by segmenting inventors and Census individuals according to gender, age,
and geographic location. In the following section, we provide a detailed overview of
the specific matching algorithms applied to each of these segmented groups.

6 Identifying candidates

6.1 Matching algorithms

To match inventors with census records, we employed two primary techniques:

(1) Cosine similarity using FAISS

(2) Fuzzy string matching with RapidFuzz

19Note that this approach excludes inventors located outside the United States when matching
with the Census (see Table 1).
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These complementary approaches offer distinct methods for comparing names
across the two datasets. In the following sections, we provide a detailed discussion
of each technique.

6.2 Cosine Similarity with FAISS

The first method used FAISS (Facebook AI Similarity Search), a highly efficient
tool for large-scale similarity search.20. For each of the segmented groups outlined
above (section 5), inventor and census names were converted to lowercase, special
characters were removed, and standardized (e.g., titles such as “Dr.” or “Prof” were
stripped).

The cleaned names were then vectorized using TF-IDF (Term Frequency-Inverse
Document Frequency) with character-based 3-grams. In text processing, 3-grams are
sequences of three consecutive characters extracted from a string. They capture local
context and are particularly useful for comparing names where spelling variations
or minor typos might exist. For example, the names William and Wiliam would
result, respectively, in the following trigrams:

wil, ill, lli, lia, iam

wil, ili, lia, iam

Both names share three 3-grams: wil, lia, and iam. Despite the missing “l”
in the second version, these common 3-grams would yield a higher similarity score
in vectorized space. As mentioned above, this approach is suitable to the context
of our data in which transcription of names through OCR can result in variations,
typos, and other errors.

The vectorized names from Census and patent records were indexed in FAISS,
with each inventor’s name compared against Census names within the same county
to identify the top 30 nearest neighbors by cosine similarity.21 Limiting the number
of potential matching candidates to the top 30 most similar individuals struck a
balance between maintaining manageable computational complexity and maximiz-
ing recall.22 This step produced 27 tables (9 Census years × 3 gender groups), each

20See https://ai.meta.com/tools/faiss/
21This method was particularly effective for large datasets, as GPU acceleration allowed for

parallel similarity computations, significantly speeding up the matching process.
22Although the code was executed on an HPC server equipped with two GPUs, the process

still required several weeks to complete. This computational complexity motivated the decision to
limit the computation of cosine similarity to the county level. Extending this comparison to the
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containing potential Census matches for every patent-inventor pair.

6.3 Fuzzy string matching with RapidFuzz

The second matching technique utilized the RapidFuzz library, which offers a wide
range of algorithms for string matching.23 Specifically, we implemented fuzzy string
matching based on the normalized Levenshtein distance. The Levenshtein distance
calculates the minimum number of single-character edits (insertions, deletions, or
substitutions) required to transform one string into another, making it particularly
suited to handling name variations, typographical errors, and other inconsistencies
present in our data.

For example, consider the names (a case from our sample): george h rodgers
and george h rogers. To convert the first name into the second, only one edit
is required—the deletion of the d in rodgers. Thus, the normalized Levenshtein
distance is calculated as follows:

Normalized Levenshtein distance =
Number of edits

Length of longest string =
1

16
= 0.0625

In calculating the normalized Levenshtein distance, we applied the following
parameters:

• A score cutoff of 0.2, meaning that only matches with a similarity score of 0.2
or lower (indicating closer matches) were retained. This threshold was chosen
to ensure that only the most similar candidate matches from the Census were
kept for each inventor while maximizing the possible recall rate.

• A maximum limit of 500 matches per inventor. In other words, if an inventor
had more than 500 potential matches with a similarity score below 0.2, only
the top 500 closest matches were retained.

The Levenshtein distance was computed for each of the segmented groups de-
scribed in Section 5. Additionally, this score was calculated separately at both the
state and county levels. This step produced 54 tables (9 Census years × 3 gender
groups × 2, i.e. state and county), each containing potential Census matches for
every patent-inventor pair

state level—or worse, to the entire country—would have dramatically increased the computational
time.

23See https://rapidfuzz.github.io/RapidFuzz/
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6.4 Initial set of matching candidates

The procedure outlined above generated an initial, broad set of potential matching
candidates. The metrics and cutoffs were deliberately chosen to maximize recall,
even at the expense of precision. For all patent-inventor pairs where the inventor
reports a FIPS code within the United States and the patent has a publication
date between 1840 and 1950 (inclusive), at least one candidate match is found in
the Census (see Figure 5 and Table A6 in the Appendix). Our matching strategy
ensures that each inventor has some corresponding matches, consisting of the nearest
neighbors based on cosine similarity (see Section 6.2) and the closest census names
according to Levenshtein distance, with a cutoff of 0.2 and a maximum of 500
matches.24

Figure 6 presents the mean and median number of matches per inventor (left
y-axis), along with a whisker plot for each Census year showing the distribution
of matched historical IDs (HISTID) per inventor (right y-axis). The data on the
right y-axis are log-transformed to normalize and improve visualization. This chart
highlights the broad scope of our initial matching strategy, with the average number
of matched individuals per inventor going from around 80 in the 1850 Census to
approximately 110 in the 1940 Census. Additionally, the considerable gap between
the mean and median points to substantial variability, indicating that some inventors
have an exceptionally high number of matches (see also the right y-axis).

Finally, Table 4 provides a summary of the results from the initial high-recall
matching stage. In total, we identified at least one candidate match in the Census for
2,546,332 patent-inventors, representing approximately 99.4% of the population of
patent-inventors located in the US during the period 1840–1950. This exceptionally
high matching rate reflects the design of this initial stage, which aimed to maximize
recall. The primary objective at this stage was to narrow the pool of candidates to
a manageable size, smaller than the entire Census population, while ensuring that
any true matches would remain within the set of candidates. In the next section,
we describe the filtering procedures applied to this initial set to remove the most
obvious false positives.

24It should be noted, however, that 13,517 patent-inventor pairs, despite reporting a location
within the United States, did not receive a preliminary match with any Census individual. This dis-
crepancy arises because the FIPS codes associated with these patents are absent from the Census.
Consequently, due to the blocking strategy used to partition inventors and Census participants,
these inventors could not be matched to any individuals.
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Figure 5: Patent-inventor pairs with at least one match (%)
Initial matching (High Recall)

Note: This graph shows the percentage of patent-inventor pairs with at least one matching can-
didate, obtained by retrieving the top 30 nearest neighbors based on cosine similarity (Section
6.2) and the closest census names according to Levenshtein distance, with a cutoff of 0.2 and a
maximum of 500 matches (Section 6.3). Table A6 reports the absolute numbers.
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Figure 6: Distribution of matched Census HISTID per patent-inventor
Initial matching (High Recall)

Note: This graph displays the mean and median numbers of matched Census individuals (HISTID)
per inventor on the primary (left) y-axis. The lines representing mean and median values are plotted
against specific census years. On the secondary (right) y-axis, the graph presents the distribution
of the number of matched HISTIDs per inventor, which has been log-transformed to normalize the
data and enhance visualization. Each boxplot corresponds to a specific census year and visually
summarizes the distribution for that period. The median of the distribution is represented by the
central line in each box. The box itself, indicating the interquartile range (IQR), extends from the
first quartile (25th percentile) to the third quartile (75th percentile). The whiskers extend from the
edges of the box to the furthest points within 1.5 times the IQR from the quartiles, thus illustrating
the range of the majority of the data. Data points that appear beyond the whiskers are considered
outliers, emphasizing observations that deviate significantly from the general distribution.
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Table 4: Initial matching stage: summary

Description Observations

Start of process
Number of patent-inventors (1840-1950) 3,084,304
Number of US patent-inventors (1840-1950) 2,559,849

Initial matching stage (High recall)
US patent-inventors unmatched in any Census 13,517
US patent-inventors matched in at least one Census 2,546,332

of which:
Matched in exactly one Census 700,303
Matched in more than one Census 1,846,029

Matched patent-inventors × Census pairs 4,527,402

Note: This table summarizes the steps undertaken in the matching process, re-
porting the number of patent-inventors at the initial matching stage (high recall).
Due to the blocking strategy adopted (see Section 5), a single patent-inventor can
potentially be matched in multiple Censuses. For instance, a patent-inventor with
a publication year of 1901 could theoretically be matched with both the 1900 and
1910 Censuses. To account for this, the rows labeled “Matched patent-inventors ×
Census pairs” report the total number of patent-inventors multiplied by the number
of Censuses in which they are matched. For example, a patent-inventor matched in
only one Census is counted once, while a patent-inventor matched in two Censuses
is counted twice, and so forth.

6.5 Refining the set of matching candidates

As discussed, the initial matching process was intentionally broad to maximize the
recall rate, which resulted in a number of obvious false positives. To refine the initial
set of potential matches, we applied a series of filters as described below.

For each inventor–Census name pair, we computed the following string distance
metrics using the RapidFuzz library:

1. The normalized Levenshtein distance (see Section 6.3 for the definition).
This metric ranges from 0 (identical strings) to 1 (maximum distance).

2. The fuzz.ratio similarity score, computed as:

(1− normalized Levenshtein distance)× 100

This metric ranges from 0 (minimum similarity) to 100 (identical strings).

3. The token sort ratio similarity score, which is robust against differences
in word order. It first splits strings into tokens (typically by spaces), sorts
them alphabetically, and then re-joins them before comparing. For example,
"Doe, John" and "John Doe" would both be tokenized, sorted to ["Doe,",
"John"], and then rejoined for comparison.
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4. The Double Metaphone similarity.25 Double Metaphone is a phonetic algo-
rithm designed to match similar-sounding names despite spelling differences.
It returns primary and secondary phonetic codes, which are especially useful
for matching names that may vary across languages or cultures. For example:

Catherine Zeta-Jones and Kathryn Zita Johns

The algorithm produces the codes:

Catherine Zeta-Jones: ('K0RNSTJNS', 'KTRNSTJNS')
Kathryn Zita Johns: ('K0RNSTJNS', 'KTRNTSTJNS')

Since both names share at least one phonetic code, they are considered phonet-
ically equivalent despite differences in spelling. This measure was implemented
for all inventor–Census candidate pairs.

Using these metrics, we applied a series of sequential filters to progressively
eliminate unlikely matches, focusing on name similarity and consistency to enhance
the accuracy of our results.26

Filter 0: Remove cases where the normalized Levenshtein distance is greater than
0.2 and the token sort ratio is less than 90. This step removes records
that are dissimilar both in direct comparison and when rearranged. While
one matching algorithm used a normalized Levenshtein cutoff of 0.2, an-
other retrieved the top 30 most similar Census names based on 3-gram
cosine similarity. This filter ensures that low-similarity cases are ex-
cluded, reducing false positives.

Filter 1: If both names have three parts, check for matching middle initials. If
the initials differ and consist of a single letter, the pair is removed. For
example:

John A. Smith vs. John B. Smith

If the initials match or do not meet the single-letter condition, further
evaluation is conducted.

Filter 2: Remove matches where both names contain only two tokens (first and
last names) and the last names have a low similarity score or differ pho-
netically. For example:

John Smith vs. John Johnson

25See https://github.com/dedupeio/doublemetaphone
26The code and thresholds for determining name similarity are available upon request. For

readability, specific threshold values are omitted here.
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This filter ensures that the last names are nearly identical or phonetically
consistent, helping to improve accuracy for common first names.

Filter 3: Exclude pairs where the last names are identical but the first names have
a low similarity score or differ phonetically, specifically when both names
have two tokens. For example:

John Smith vs. James Smith

This filter refines matches, ensuring that first names closely match or are
phonetically identical.

Filter 4: Remove pairs where the inventor’s name has three tokens (first name,
middle initial, surname) and the Census name has two tokens, focusing
on cases where the last names differ significantly. For example:

John A. Smith vs. John Saratoga

This filter targets mismatches involving middle initials and differing last
names.

Filter 5: Similar to Filter 4, but applies where the inventor’s name has two to-
kens and the Census name has three tokens (including a middle initial),
focusing on cases where the last names differ significantly.

John Smith vs. John A. Saratoga

Filter 6: Remove pairs where the last names are identical but the first names are
substantially different, specifically for names where the inventor name
consists of three tokens (first name, middle initial, surname) and the
Census name has only two tokens. For example:

John A. Smith vs. James Smith

Filter 7: Exclude matches where the last and middle names are the same, but
the first names differ significantly, specifically when both names contain
three tokens.

John A. Smith vs. James A. Smith

Filter 8: Remove pairs where the first name matches, but the middle initial and
last names differ, applicable to names with three tokens.

John A. Smith vs. John B. Johnson

Filter 9: Filter based on the inventor’s age at the time of patent publication,
retaining only pairs where the inventor’s age is plausible (between 18
and 80). Pairs with ages outside this range are removed.
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Filter 10: For cases where first names match but middle initials differ, both con-
sisting of a single character, the pair is removed.

James A. [...] vs. James B. [...]

Filter 11: Exclude pairs where the first two elements of each name are initials that
differ between the inventor and Census records.

J.D. Butler vs. E.A. Butler

Filter 12: Finally, exclude pairs where first names differ substantially, applying a
threshold of 40 for the Levenshtein distance to retain only records with
similar first names.

James Butler vs. John Butler

This filter reduces false positives by eliminating pairs with highly different
first names.

6.6 Matching candidates after filtering

The application of the filters described above significantly reduced the number of po-
tential matching candidates per inventor, as well as the percentage of patent-inventor
pairs with at least one match (see Figure 7). Interestingly, the decrease in matched
inventors was relatively moderate for male patent-inventors: the percentage of pairs
with at least one match declined from approximately 97-99% before filtering to
around 76-83% afterward (compare Figures 5 and 7). In contrast, the reduction was
notably more pronounced for female and unknown-gender patent-inventors. This
discrepancy may be attributed to several factors, including under-enumeration of
females in the census, surname changes due to marriage, or name misspellings for
inventors with unknown gender.

For the remaining inventors with at least one matching candidate, Figure 8
presents the mean and median number of matches per inventor (left y-axis), along
with a whisker plot for each Census year showing the distribution of matched his-
torical IDs (HISTID) per inventor (right y-axis). The data on the right y-axis are
log-transformed to normalize and enhance visualization. The chart highlights the
substantial reduction in the number of candidates per inventor after filtering. On
average, the number of potential matches per inventor ranges from approximately
14 in 1850 to about 28 in 1910. As before, the median number of matches is con-
siderably lower then the mean due to the presence of some inventors with a large
number of potential matches, ranging from 3 in 1850 to 5 for the censuses after
1900.
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Figure 7: Percentage of patent-inventor pairs with at least one match
After filtering

Note: This figure shows the percentage of patent-inventor pairs with at least one matched candidate
in the Census by gender of inventors after applying the filters described in Section 6.5. Table A7
in the Appendix reports the absolute numbers.
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Figure 8: Distribution of matched Census HISTID per patent-inventor
After filtering

Note: This graph displays the mean and median numbers of matched Census individuals (HISTID)
per inventor on the primary (left) y-axis, after applying the filters described in Section 6.5. The lines
representing mean and median values are plotted against specific census years. On the secondary
(right) y-axis, the graph presents the distribution of the number of matched HISTIDs per inventor,
which has been log-transformed to normalize the data and enhance visualization. Each boxplot
corresponds to a specific census year and visually summarizes the distribution for that period. The
median of the distribution is represented by the central line in each box. The box itself, indicating
the interquartile range (IQR), extends from the first quartile (25th percentile) to the third quartile
(75th percentile). The whiskers extend from the edges of the box to the furthest points within 1.5
times the IQR from the quartiles, thus illustrating the range of the majority of the data. Data
points that appear beyond the whiskers are considered outliers, emphasizing observations that
deviate significantly from the general distribution.
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Since the filtered set of matches serves as the foundation for our ML model, we
further examined the factors influencing the inclusion or exclusion of inventors from
this set. Table 5 compares the characteristics of inventor names with and without at
least one matching candidate after applying the filters described in Section 6.5. The
table reveals some distinct patterns. Patent-inventor pairs without valid matching
candidates in the Census after filtering tend to have names that are longer, contain
a higher number of tokens, or begin with a single letter. Due to errors in parsing
inventor names from OCRed patent documents (see Section 2.2.1), these names
may result in excessively long strings or include numerous tokens, often bearing
little resemblance to the actual inventor’s name. Conversely, patent-inventor pairs
with commonly occurring first or last names among inventors are more likely to be
retained after applying the filters.

Table 5: Name features by matched status
After filtering

Variable Matched Mean Std Min Max Obs T-stat

Number of characters No 16.394 4.75 1 469 435029 184.32***Yes 15.026 2.58 4 37 2111303

Number of tokens No 2.904 0.85 1 81 435029 83.87***Yes 2.792 0.48 1 7 2111303

Starts with single letter No 0.036 0.19 0 1 435029 99.98***Yes 0.007 0.08 0 1 2111303

Frequency of first name No 19776.008 44394.04 1 182660 435029 -460.28***Yes 56960.022 64914.33 1 182660 2111303

Frequency of last name No 569.253 1893.76 1 24475 435029 -227.8***Yes 1402.233 3290.19 1 24475 2111303

Note: The table presents a comparison of name features based on whether they were
included in the matching set after applying the filters described in Section 6.5. The Number
of characters refers to a count of all characters in the inventor’s name, including spaces.
The Number of tokens counts the number of words in the inventor’s name. The variable
Starts with a single letter is binary and takes the value one if the inventor’s name begins
with a single letter. The Frequency of first name represents the count of occurrences of
the first word (or token) of the inventor’s name within the inventor population. Lastly, the
Frequency of last name represents the count of occurrences of the last word (or token) of
the inventor’s name within the inventor population.

As a further illustration, Figures 9a and 9b present bubble charts showing the
percentage of inventors with at least one matching candidate after filtering, by name
length and number of tokens, respectively. The bubble sizes in the charts are pro-
portional to the number of inventors in each category. These charts clearly show
that the probability of having a match is high (above 0.9-0.95) for names with 10
to 15 characters and with 2 to 3 tokens. This probability declines rapidly for names
with fewer or more characters or tokens.

Finally, in Table 6, we present the results of a logit regression where the de-
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pendent variable equals one if a patent-inventor name has at least one matching
candidate after applying the filtering procedure, and zero otherwise. The results
indicate an inverted U-shaped relationship between name length and the number
of tokens, on the one hand, and the probability of being matched, on the other,
with turning points at approximately 13 characters and 2.15 tokens, respectively.
Additionally, the results confirm that names with more frequently occurring first
and last names are more likely to have at least one match in the Census, while
names starting with a single letter are less likely to match. Finally, the analysis
shows that male inventors are significantly more likely to be matched than female
or unknown-gender inventors.

37



Figure 9: Percentage with matching by features of name

(a) Percentage with matching by number of characters in name

(b) Percentage with matching by number of tokens in name
Note: The charts report the percentage of inventors with at least one matching candidate after the
filtering process described in Section 6.5 by character (Figure 9a) and token counts (Figure 9b)
within names. The size of bubbles is proportional to the number of inventors in each category.
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Table 6: Probability of having at least one match
After filtering

Variable Model 1 Model 2

Number of characters 0.545***
(0.004)

Number of characters squared -0.021***
(0.000)

Number of tokens 2.792***
(0.021)

Number of tokens squared -0.650***
(0.004)

Starts with single letter -1.584*** -1.377***
(0.015) (0.015)

Frequency of first name (log) 0.297*** 0.310***
(0.001) (0.001)

Frequency of last name (log) 0.247*** 0.275***
(0.001) (0.001)

Male inventor 0.205*** 0.137***
(0.011) (0.011)

Unknown gender -0.023* -0.051***
(0.012) (0.012)

Patents 1840-1849 -1.021*** -1.056***
(0.033) (0.034)

Patents 1941-1950 -0.284*** -0.230***
(0.006) (0.006)

Constant -5.170*** -4.790***
(0.034) (0.031)

Number of Observations 2546332 2546332
Number of 1s 2111303 2111303
Number of 0s 435029 435029
Log Likelihood -878240.00 -882950.00

Note: This table presents the results of logit regressions where the dependent variable equals 1
if a patent-inventor name is included in the refined set of inventors with at least one matching
candidate in any Census after the application of filters described in Section 6.5. The regressors
include the total number of characters in the inventor’s name (Number of characters), the
number of words in the inventor’s name (Number of tokens), a binary variable set to one if the
inventor’s name begins with a single letter (Starts with a single letter), a variable representing
the frequency of the first word (or token) of the inventor’s name within the inventor population
(Frequency of first name), and a variable representing the frequency of the last word (or token)
of the inventor’s name within the inventor population (Frequency of last name). Additionally,
two dummy variables, d1840 and d1940, take the value one if the patent was published before
1850 or after 1940, respectively, to account for the fact that these inventors had only one
Census against which to be matched.
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6.7 Identifying candidates: summary

The methodology used to filter out false positives resulted in 2,111,303 patent-
inventors with at least one match to the census, representing approximately 83% of
the matches obtained in the pre-filtering stage and 82% of the population of patent
inventors resident in the US during the period 1840-1950 (see Table 7). As shown
in Figure 7, the reduction mainly affected female inventors for the reasons discussed
above (e.g. name change after marriage). This procedure has allowed the pool of
candidates to be narrowed down reasonably, but there is still a significant number of
matches that have multiple candidates. In the next section, we describe a procedure
that uses machine learning tools to build predictions and help us select from multiple
candidates.

Table 7: Post-filtering stage: summary

Description Observations

Start of process
Number of patent-inventors (1840-1950) 3,084,304
Number of US patent-inventors (1840-1950) 2,559,849

Initial matching stage (High recall)
US patent-inventors unmatched in any Census 13,517
US patent-inventors matched in at least one Census 2,546,332

of which:
Matched in exactly one Census 700,303
Matched in more than one Census 1,846,029

Matched patent-inventors × Census pairs 4,527,402

Post-filtering stage
US patent-inventors unmatched in any Census 435,029
US patent-inventors matched in at least one Census 2,111,303

of which:
Matched in exactly one Census 825,829
Matched in more than one Census 1,285,474

Matched patent-inventors × Census pairs 3,500,614

Note: This table summarizes the steps undertaken in the matching process, report-
ing the number of patent-inventors at each stage. Due to the blocking strategy
adopted (see Section 5), a single patent-inventor can potentially be matched in mul-
tiple Censuses. For instance, a patent-inventor with a publication year of 1901 could
theoretically be matched with both the 1900 and 1910 Censuses. To account for this,
the rows labeled “Matched patent-inventors × Census pairs” report the total number
of patent-inventors multiplied by the number of Censuses in which they are matched.
For example, a patent-inventor matched in only one Census is counted once, while
a patent-inventor matched in two Censuses is counted twice, and so forth.
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7 Machine learning
In this section we present the machine learning model used to select between candi-
date matches. Specifically, we illustrate the main stages of this process, beginning
with the construction of a manually curated dataset that will be used to train the
ML model (Section 7.1). After presenting the characteristics of the ML model and
the features used to predict matches (Section 7.2), we test the performance of the
model (Section 7.4) and perform a series of robustness checks (Section 9).

7.1 Developing a ground truth dataset

To train our machine learning model to identify the most likely true match, we
manually curated a subset of patent-inventor-census matches. Ensuring the accuracy
of this subset is critical, as false matches could negatively impact the training of the
model. To achieve high confidence in the accuracy of these matches, we gathered
additional inventor information from two sources: the 1906 and 1921 edition of
American Men of Science (Cattell 1906; Cattell and Brimhall 1921), and 19th and
20th century American inventors listed on Wikipedia (Wikipedia, 2024a; Wikipedia,
2024b).

7.1.1 American Men of Science

The American Men of Science (AMS) is a biographical reference work on notable
scientists in the United States and Canada, published by Gale. It includes profes-
sionals from fields such as physical and biological sciences, engineering, mathematics,
statistics, computer science, and public health. We randomly selected 500 scientists
from AMS who had complete information on first and middle names, surnames, date
and place of birth, and city and state of residence. Where available, we also col-
lected additional details, including field of study, educational background, degrees,
and positions held with corresponding dates. We identified all patents filed by these
scientists published between 1911 and 1929, retaining only those for which we had
high confidence.

7.1.2 Wikipedia pages on American inventors

Wikipedia offers category pages that organize links to individuals or topics within
specific categories, including dedicated pages for 19th- and 20th-century Ameri-
can inventors. For each inventor listed on these pages, we scraped their personal
Wikipedia page to collect relevant biographical details and references to patent pub-
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lications. Biographical information is generally well-structured within the ”infobox”
on the right side of a Wikipedia page. It includes a person’s full name, date and
place of birth and death, and occasionally details about their occupation, field of
study, or affiliated companies are provided. Inventors for which we were unable to
extract information on place or date of birth were discarded.

Identifying references to an inventor’s patented inventions (if applicable) was
less straightforward, as patent publication numbers are not listed in a standardized
way on Wikipedia. Therefore, we searched the full text for hyperlinks to Google
Patents or phrases such as “patent no.” or “patent US” followed by a number, to
identify patent publication numbers. When patent number(s) were identified, we
linked the Wikipedia inventor to our patent database, while making sure that the
patent-inventor’s name closely matched the name of the Wikipedia inventor. If an
inventor’s page did not mention a patent number, we manually searched for relevant
patent publications using the inventor’s name, biographical information, and field of
expertise. Wikipedia inventors without any patent references after this search were
excluded from the training dataset, as well as patents published before 1840 or after
1950.

7.1.3 Ground truth vs. full patent dataset

The retrieval of inventors from AMS and Wikipedia led to the construction of a
ground truth dataset of 4,595 patent-inventor-census matches in total, where a
patent-inventor pair have been matched where possible to multiple histids in dif-
ferent census editions. Thus in total 2,808 distinct patent-inventor pairs were suc-
cessfully matched to the census.

Figure 10 displays the temporal distribution of the ground truth dataset com-
pared to the full patent dataset. As shown, the ground truth dataset places slightly
more emphasis on the period between 1910 and 1930, due to the inclusion of the
AMS. The emphasis on this specific period could to some extent explain the observed
differences in distributions across technological classes between the two datasets, as
illustrated in Figure 11. The full dataset seems to have higher shares of patents
in relatively older technological classes, such as Mechanical or Apparel & Textile,
whereas the ground truth dataset seem to have higher shares of patents in more
modern technologies, such as Electrical & Electronic or Computers & Communica-
tions.
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Figure 10: Temporal distribution of the ground truth dataset and the full patent
dataset

Note: Figure 10 reports the number of patents published per year for the full dataset (right y-axis)
and those included in the ground truth dataset (left y-axis.

7.1.4 Training dataset

Currently, the ground truth dataset contains only true matches. However, to use it
as a training dataset for the machine learning model, it also needs to include false
matches. Specifically, for each patent-inventor in the ground truth dataset, we add
the census candidates identified using the procedure outlined in Section 6.

For 879 patent-inventors in the ground truth dataset, either no candidates re-
mained after filtering, or the correct match was not included among the candidates.
These cases were excluded from the training dataset. As a result, the final training
dataset comprises 1,929 true matches and 96,478 false matches.

7.2 ML models

In this section we illustrate the characteristics of the ML model and its perfor-
mance. We referred to the Scikit-Learn model selection guide available at https://
scikit-learn.org/stable/machine_learning_map.html to determine the most
suitable machine-learning model. Given the size of our dataset and the predictive
task, we tested both regression-based models (XGBoost and Random Forest) and a
classification model (SVC). This approach is appropriate as our task can be viewed
both as a classification problem (match vs. non-match) and as a problem of esti-
mating the probability of a match.
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Figure 11: Distribution across technological classes of the ground truth dataset and
the full patent dataset

Note: Figure 11 shows the share of patents per technological class for both the ground truth and
full patent dataset.
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Our problem mainly involves 1 : N type linkages, where identifying the highest
probability match is crucial. The Random Forest model was particularly well-suited,
as it provides probabilities for potential matches between Census IDs (HISTID) and
patent-inventor IDs (PatInvID).

To validate the model selection, we used the TPOT Python library (Olson et al.
2016), which confirmed the suitability of the Random Forest model for estimating
match probabilities in our dataset. The Random Forest model has also characteris-
tics that are very relevant for our exercise:

1. Robustness: It handles outliers and nonlinear relationships well.

2. Interpretability: It provides insights into which features are most important.

3. Performance: The ensemble technique often results in strong predictive per-
formance.

In our analysis we used 22 features that can be roughly grouped in four categories
(see more details in Table 8). First, some of the features relate to measures of string
similarity between inventor and census names, namely: the normalized Levenshtein
distance, the token sort ratio, and the interaction between the two.

Second, we included geographical features, such as the distance in kilometers
between the centroids of the counties of the inventor and census respondents’ resi-
dences. Third, characteristics of the inventor, such as the inventor’s age at the time
of patent publication, defined as the difference between the patent’s publication year
and the birth year reported in the Census.

Finally, we added features that can describe the activity of the inventor. To this
aim we created 14 occupational groups, by using the occ1950, the ind1950, and
the occstr variables available in the Census. We defined occupational categories
that could be easily linked to broad technological classes (i.e. mechanical, chemi-
cal, medical), or occupation for which we assumed they are likely held by patent
applicants (i.e. engineer, inventor, manager). The definition of these occupational
categories is reported in the Appendix in Table A8.

To refine the assignment of occupations to certain categories, we created both
broad and specific versions of the occupational categories. The broad version in-
cluded all occupations with even a slight connection to a category, while the specific
version applied stricter criteria for inclusion. We evaluated the model’s performance
with both versions and ultimately selected the broad version based on its superior
results. Additionally, using a subset of these occupational features, we created a
binary feature that indicates whether the technological class of the patent is related
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Table 8: Features included in the ML model

Feature Description
diff_length Difference in length between census and inventor names
leven_simil Levenshtein similarity score between census and inventor

names
inter Product of Levenshtein similarity and token sort ratio
tkratio Token ratio (Rapidfuzzy)
tksortratio Token sort ratio (Rapidfuzzy)
county_distance Geographical distance between inventor’s and census

counties
age_at_pat Age of the individual at the time of patent
occ × tech Indicator if occupation is related to patent technology
Occupational features (1 if related, 0 otherwise):
agriculture Agriculture field
apparel Apparel industry
chemistry Chemistry field
civil_eng Civil engineering
comm_comp Commercial computing
electricity Electrical engineering
mechanical Mechanical engineering
medical Medical field
engineering General engineering
physics Physics field
science Scientific research
inventors Inventive professions
managers Management occupations
manufacturing Manufacturing industry

Note: This table reports the features used in the ML models and their descriptions. For
the definition of occupational variables, see Table A8 in the Appendix. To define the
occupational features, we employed the following variables from the Census: ind1950, the
industry where the person was employed, occ1950, the occupational code of the person,
and occstr, the original unedited occupational string entry from the census manuscript.
See, https://usa.ipums.org/usa-action/variables/group/hist_tech fore details.

to the occupation of the matched census candidate.

For each patent-inventor (PatInvID), we selected the individual in the Census
(histid) with the highest probability of match. We only matched records with a
probability greater than a specified threshold, which is detailed in Table 9. The
choice of this threshold was strategically determined with the objective of creating
two versions of the matched data: one emphasizing recall rate (High Recall) and the
other emphasizing precision (High Precision). The former aims to capture as many
true positives as possible, thus reducing the risk of missing relevant matches, while
the latter aims to ensure that the matches made are highly likely to be correct, thus
minimizing the inclusion of false positives. This dual approach allows us to assess the
trade-offs between capturing all potential matches and ensuring the accuracy of those
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matches, which is crucial in fields where the consequences of false identifications can
be significant. By employing this dual-threshold strategy, we effectively tailor the
matching process to meet diverse analytical needs and stakeholder requirements,
ensuring a flexible and robust approach to patent-inventor linkage. In the following
sections, we will focus exclusively on presenting statistics for the ”High Recall”
scenario. For training purposes we used 80% of the sample, keeping 20% of the
records for testing the results.

Finally, we paid particular attention to the tuning of hyperparameters, a crucial
step for enhancing the performance of machine learning models. For the Random
Forest model, key hyperparameters include the number of trees (RFC_estimators),
the maximum depth of each tree (RFC_depth), the function to measure the quality
of a split (RFC_criterion), and the number of features to consider when looking for
the best split (RFC_features). We conducted a randomized search to optimize these
hyperparameters and subsequently fine-tuned them manually. The parameters for
each of the two models, High Recall and High Precision, are summarized in Table
9.

Table 9: Model parameters: high precision and high recall scenarios

Parameter High precision High recall
ML model Random forest Random forest
Probability threshold 0.5 0.2
RFC estimators 800 300
RFC criterion Entropy Entropy
RFC features 15 13
RFC depth 20 20

Note: This table reports the parameters used in the ML models for scenarios focusing on high
precision and high recall, respectively. The Probability threshold represents the threshold for
making a decision, such as whether to accept or reject a match. RFC estimators refer to the
number of trees in the forest; higher numbers generally lead to better performance but require
more computation. RFC criterion indicates the function used to measure the quality of a split.
RFC features denotes the number of features considered when looking for the best split. RFC
depth limits the maximum depth of the trees, preventing overfitting by restricting how complex
the models can become.

7.3 ML matching summary

Table 10 reports a summary of the ML model. As far as the post-ML model appli-
cation is concerned, there is a significant number of unmatched patent-inventors—
980,734 out of a total of 2,111,303—highlighting a substantial reduction in the pool
of patent-inventors matched to census records when compared to the initial and
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post-filtering stages. This underscores the stringency of the ML model in refining
matches to ensure higher reliability and accuracy.

Of the patent-inventors matched to at least one census, 788,959 were matched
in exactly one census, while a smaller number, 341,610, were matched in more than
one census. This distribution suggests that the ML model effectively minimized
redundant or less certain matches, thereby enhancing the precision of single census
linkages.

The total number of matched pairs, 1,508,780, also indicates a focused and
stringent selection by the ML model, which likely emphasizes precision and relevance
of the linkages over mere quantity. This reduction in total matched pairs, from over
3.5 million in the post-filtering stage to about 1.5 million, illustrates a significant
tightening in matching criteria.

7.4 ML model performance

The performance of the machine learning model, as configured for both High Preci-
sion and High Recall scenarios, is reported in Table 11. This is crucial for validating
the effectiveness of the matching process.

The High Precision model achieved a precision of 0.899 and a recall of 0.741,
with an F1 score of 0.813. These metrics indicate that the model is highly effective
in ensuring that the identified matches are likely correct but at the cost of missing
a quite significant number of potential true matches (lower recall). The detailed
classification report reported in the Appendix, Table A12 reinforces this, showing
that for class 1.0 (true matches), the precision is very high at 0.899, which means
that when a match is predicted, it is very likely to be a true match. However,
the recall for this class is lower, suggesting that the model fails to capture all true
matches (see also, the confusion matrix reported in Table A10 in the Appendix).

Conversely, the High Recall model shows a different trade-off, prioritizing the
capture of true matches as indicated by a recall of 0.907 and a precision of 0.805,
leading to an F1 score of 0.853. This model configuration aims to minimize the risk
of missing true matches but accepts a higher rate of false positives, as evidenced
by the slightly lower precision. The classification report for the High Recall sce-
nario highlights an excellent ability to identify true matches (high recall for class
1.0), which is crucial in scenarios where missing a true match carries significant
consequences (see Tables A11 and A9 in the Appendix).
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Table 10: Results of ML matching: summary

Description Observations

Start of process
Number of patent-inventors (1840-1950) 3,084,304
Number of US patent-inventors (1840-1950) 2,559,849

Initial matching stage (High recall)
US patent-inventors umatched in any Census 13,517
US patent-inventors matched in at least one Census 2,546,332

of which:
Matched in exactly one Census 700,303
Matched in more than one Census 1,846,029

Matched patent-inventors × Census pairs 4,527,402

Post-filtering stage
US patent-inventors unmatched in any Census 435,029
US patent-inventors matched in at least one Census 2,111,303

of which:
Matched in exactly one Census 825,829
Matched in more than one Census 1,285,474

Matched patent-inventors × Census pairs 3,500,614

After the ML model
US patent-inventors unmatched in any Census 980,734
US patent-inventors matched in at least one Census 1,130,569

of which:
Matched in exactly one Census 788,959
Matched in more than one Census 341,610

Matched patent-inventors × Census pairs 1,508,780

Note: This table presents the number of patent-inventors matched with Census
HISTIDs following the application of the ML model. Due to the blocking strategy
employed (see Section 5), a single patent-inventor can be matched to individuals
in multiple Censuses, although within each Census, they are matched to only one
individual. For instance, a patent-inventor with a publication year of 1901 could be
matched to an individual in the 1900 Census and another in the 1910 Census. To
account for this, the rows labeled “Matched patent-inventors × Census pairs” report
the total number of patent-inventors multiplied by the number of Censuses in which
they are matched. For example, a patent-inventor matched in one Census is counted
once, while a patent-inventor matched in two Censuses is counted twice, and so on.

7.5 Match rates

Figure 12 shows the match rates by decennial Census year from 1850 to 1940. The
match rate ranges from a low of 28.7% in 1860 to a high of 45.2% in 1940. Several
factors contribute to this wide variation, with two primary explanations: potential
biases in the matching procedure or issues related to census data collection. Re-
garding the latter, it is well-documented that census enumeration methods were
inconsistent during this period, with significant developments over time that influ-
enced the quality of the data collected in each census. Interestingly, the trend in
match rates, as shown in Figure 12, aligns well with certain historical events and
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Table 11: Summary of model performance

Metric High precision High recall
Precision 0.899 0.805
Recall 0.741 0.907
F1 Score 0.813 0.853
Note: This table displays metrics of model performance, including Precision, Recall, and F1
Score. Precision measures the accuracy of positive predictions, Recall assesses how well the
model can identify all relevant cases, and the F1 Score balances the trade-offs between Preci-
sion and Recall. The first column is optimized for higher Precision, while the second column is
focused on maximizing Recall. Higher scores, closer to 1.0, indicate better performance across
these metrics, demonstrating the model’s efficacy in distinguishing and retrieving relevant in-
stances.

procedural changes in census enumeration. For instance, the match rate remains
relatively stable between 1850 and 1870 but rises notably in 1880—a year often re-
garded as a ”turning point” in census enumeration practices (King and Magnuson
1995, p. 28). Although subsequent improvements were less profound, the enumer-
ation process continued to evolve from 1890 to 1940, with refinements introduced
in each new census that likely contributed to a steady increase in match rates. In
addition, the lack of an increase in the match rate in the 1920 census may be due
to specific challenges during that census wave. As noted by Akcigit, Grigsby, and
Nicholas (2017a), the 1920 census was conducted in winter, which may have led to
an undercount. In addition, the end of the First World War and its impact on the
mobility of individuals may have further affected the match rate for that year. In
support of this interpretation, we note that Hartog et al. (2024) report a similar
jump in 1880 and a more stable trend around 1920.

While the overall trend in match rates across years aligns well with findings
from other studies, the percentage of patent inventors we match with the census
population differs from some prior work. In particular, compared to Hartog et al.
(2024) we tend to have lower match rates. For example, for the census years 1900 to
1930 their match rate is around 50%, while ours is close to 40%. Instead, our rates
are closer to those found by Akcigit, Grigsby, and Nicholas (2017b), who report an
average match rate of about 40% for the census years 1880 to 1910.

Figure 13 shows the match rates by state. As in Akcigit, Grigsby, and Nicholas
(2017b) we observe considerable heterogeneity across states. At first glance, we see
that match rates tend to be lower in predominantly rural areas (e.g., the Midwest),
while coastal areas such as California or Massachusetts have significantly higher
match rates. This may partly reflect the fact that patents are relatively scarce in
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Figure 12: Match rate by census wave

Note: Figure 12 reports for each census year the percentage of patents that were matched to an
individual in the census.
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these rural areas compared to the others.

Figure 13: Match rate by state

Note: Figure 13 reports for each state the percentage of patents that were matched by compiling
all years.

Figure 14 shows the match rate by the origin of the inventors. Match rates
are higher for Anglo-Saxon citizens, possibly reflecting a bias towards this group,
as they were more likely to have popular names, as also found by Akcigit, Grigsby,
and Nicholas (2017b). Other differences, such as the lower match rates for German
names as compared to Russian names, may indicate a bias towards ethnic groups
that were more likely to live in urban areas.

Figure 15 presents the match rates according to the distance between the pub-
lication year of the patent and the census year to which the patent was matched.
We find that the closer the distance, the higher the match rate. This finding may
suggest that inventors were mobile, so the further away from the date of publication
of the patent, the more likely we are not match the patent because they changed
their home address.

Finally Figure 16 shows the match rates according to the technological classes
in which the inventor patented. Ideally, in this case we would like to see an even
distribution, as there should be no particular reason why match rates should be
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Figure 14: Match rate by nationality of inventor

Note: Figure 14 reports the match rate by the nationality of the inventor. Here we use the
nationality reported on the patent document. Information on nationality is mainly available for
patents published before 1926, thereafter it was rarely mentioned.
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higher for certain technologies than for others. The findings show some variability
between classes (from a low of 45,8% to 63.4%), though many are in a smaller
range. Differences may reflect the over-representation of new technological classes
(e.g. communication),as also found in the ground truth.

Figure 15: Match rate by nr. of years between patent grant year and census year

Note: Figure 15 reports the match rate by the number of years between patent publication and
the census year it was matched to.

8 Inventor demographics
In this section we present some demographics of patentees. We compare them with
the general census and also with findings of previous studies. Our exercise serves
primarily as a validation of our matching process. If inventor demographics had
closely mirrored those of the general population, it would have indicated that our
procedure was essentially assigning inventors to individuals at random.

Table 12 presents the general characteristics of a typical inventor in the early
19th century compared to the average person in the 1900 census27. A typical inven-
tor was a white male born in the U.S., though a significant portion—approximately
25% —were foreign-born. Since the immigrant population was about 14% in the
total population, this result indicates that immigrants were overrepresented in the
inventor population. The most prominent immigrant groups were British and Ger-
man, each accounting for about 6% of the inventor population. These findings align

27The statistics are computed using the patents matched to the 1900 census
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Figure 16: Match rate by technological class

Note: Figure 16 shows the match rate for each technological class, i.e. the percentage of patents
matched to at least one census.
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with the results of Akcigit, Grigsby, and Nicholas (2017b) and Sarada, Andrews,
and Ziebarth (2019).

Figure 17 illustrates the distribution of inventors’ nationalities compared to
the census population. The solid line represents the census data, while the dotted
line corresponds to inventors. The two lines exhibit similar, nearly parallel trends
over the period. However, each nationality shows distinct dynamics reflecting well-
documented migration patterns. For instance, Russian migration increased toward
the end of the 19th century, coinciding with a decline in British inflows. These
patterns suggest, as noted in previous studies, that inventors tended to follow the
migration patterns of their respective ethnic groups.(Diodato, Morrison, and Pe-
tralia (2021))

Table 12: Characteristics of Inventors (1900 Census)

Inventors Full U.S.
Percent of Population 0.11% 99.89%
Percent Male 98.24% 51.08%
Percent White 98.23% 87.91%
Percent Native Born 74.05% 86.39%
Percent Foreign Born 25.95% 13.61%
Percent Born in Canada 3.04% 1.55%
Percent Born in Great Britain 6.38% 1.54%
Percent Born in Germany 6.77% 3.50%

Note: Statistics are computed using all inventors matched to the 1900 census and
the full population in the 1900 census.
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Figure 17: Distribution by birthplace

(a) Population vs. inventors

(b) Male population vs inventors

Note: The figure displays the distribution of Census respondents (solid lines) and inventors (dashed
lines) across Census years by birthplace (BPL). Only respondents aged 18 to 70 were included in
the general population.
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Figure 18 shows the literacy rates of inventors and compares them with the total
population in the census (panel a) and with the male population (panel b) over the
period 1850 to 1940. As expected, the vast majority of inventors, particularly male
inventors, are literate - over 90% of inventors throughout the time span analyzed.
In contrast, literacy rates for the total population are significantly lower, ranging
from approximately 40% in 1850 to about 80% in 1940.
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Figure 18: Literacy rates (% distribution)

(a) Population vs. inventors

(b) Male population vs inventors

Note: This figure illustrates the distribution of education levels (EDUC) across three groups: the to-
tal population, the male population, and inventors. It shows the percentage of individuals in each
group across different levels of educational attainment. The EDUC variable, which quantifies educa-
tional attainment, is available starting with the 1940 Census. For a detailed description of the EDUC
variable, see https://usa.ipums.org/usa-action/variables/EDUC#description_section. In-
ventors were categorized into the following education levels based on their EDUC codes: ’Less than
high school’ (codes 10–26), ’High school’ (codes 30–64), and ’Some college or more’ (codes 65–
997). Respondents with codes outside these ranges were classified as having ’No education.’ Only
individuals aged 18 to 70 were included in the general and male populations.
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Figure 19: Education rates, 1940 (% distribution)

(a) Population vs. inventors

(b) Male population vs inventors

Note: The figure displays literacy rates (LIT), defined as the ability of Census respondents to read
and/or write in any language. It shows the percentage of literate individuals across three groups:
the total population, the male population, and inventors. In 1940, literacy is represented by the
percentage of individuals with an education level (EDUC) equivalent to grade 14 or higher. The
analysis includes only respondents aged 18 to 70 for the general and male populations.

Figure 19 compares the education levels across the three groups, i.e. total pop-
ulation, male population, inventors. It is important to note that this data are avail-
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able only for the 1940 census year. As expected, inventors generally exhibit higher
levels of educational attainment. For example, over 35% of inventors had a college
degree or higher compared to less than 10% of the total population. Conversely,
fewer than 5% of inventors lacked any formal education, in contrast to 15% of the
total population. The latter findings are comparable with those shown by Akcigit,
Grigsby, and Nicholas (2017b), though we have more educated inventors, which is
perhaps what should be expected. For instance, they found that approximately 40%
of inventors had a college degree or higher, like us, but also about 40% with less
than high school.

In Figures 20a and 20b are reported the occupational scores for two groups:
the census population, the inventor population. We use occupational scores solely
to compare the occupational standing of the average US citizen with that of the
average inventor. The ranking can be interpreted such that higher scores correspond
to better-rewarded occupations. It is clear that inventors tended to occupy relatively
higher-paying occupations. For example, between 20% and 40% of inventors were
in the top two occupational groups (i.e., purple and yellow) throughout the period.
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Figure 20: Occupation scores (% distribution)

(a) Population vs. inventors

(b) Male population vs inventors

Note: The figure shows the distribution by occupational scores (OCCSCORE) across three groups:
the general population, the male population, and inventors. Only respondents aged 18 to 70 were
included in the general and male populations.
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9 ML model: robustness checks
In the previous section we presented the performance measures of the ML model.
In this section, we further examine the results of the ML to identify potential biases
that need to be addressed in subsequent versions of the dataset. The overall aim
of the robustness checks is to demonstrate that the dataset is reliable for a variety
of research purposes. To check whether the ML model identifies true matches, we
perform three different types of analysis. First, we use the IPUMS crosswalks to
compare our matched pairs for adjacent census years with those in the crosswalk
(see Table 13). Second, we use a logit model to show the most important features
of the ML model (see Table 15). Third, we compare citizenship information from
USPTO patent records with place of birth from the census (see Table 16).

Table 13 shows the number of matches in both the ML and the census crosswalk
(Column 2) as well as the pairs that matched in the ML but not in the crosswalk
(Column 7). It also shows inconsistencies of the ML model across adjacent census
years in columns 3 to 6. The first thing we notice is that about a third of the ML
matches differ from the crosswalk (see Column 7 and Column 8). This proportion is
stable in the early adjacent census, but it tends to fall from the 1870-1880 onward.
In the last census period it falls to one fifth of the total number of pairs.
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Table 13: Inconsistencies between ML model and IPUMS crosswalks
High Recall

Adjacent census years ML model and
IPUMS crosswalk
match consistently

ML model matches histid
in year t with a different

histid in year t+ 10
compared to IPUMS

crosswalk

ML model matches histid
in year t+ 10 with a

different histid in year t
compared to IPUMS

crosswalk

Pairs matched by
ML model not in
IPUMS crosswalk

Overall pairs where
ML model matches
an inventor with
two adjacent
census histids

Crosswalk Steps Crosswalk Steps

Step 1 Step 2 Step 1 Step 2

1850-1860 1053 424 124 319 65 1129 3114
1860-1870 3640 1559 332 1092 256 3456 10335
1870-1880 7870 3019 609 2243 476 5767 19984
1900-1910 22511 10471 1905 7079 1280 13606 56852
1910-1920 29792 13403 2055 8629 1448 17215 72542
1920-1930 35872 16716 2101 10013 1558 18200 84460
1930-1940 46758 19396 2256 12206 1408 18834 100858

Note: The table presents the matched pairs and counts for adjacent census years, including detailed metrics for matches and mismatches
based on the ML model and IPUMS crosswalk data. For a detailed description of IPUMS Crosswalks, see Helgertz et al. (2022).
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Table 14 presents the descriptive statistics of the features used in the ML model.
Note that name features between matched and unmatched in Table 14 are more
similar now than in Table 5, despite a significant t-test due to a large number of
observations.

Table 15 shows the estimates of the features that are used in the ML model that
predicts true matches. It is worth noting that the signs of the coefficients are largely
consistent with the estimates presented in Table 6, where it was tested the same
model after filtering. There are two main differences. First, the magnitude of the
coefficients in Table 15 is smaller and second, the curvilinear relationship found in
the Model after filtering for the token variable (see Table 6) disappears in the ML
model.

Table 14: Name features by matched status
After ML model (High recall)

Variable Matched Mean Std Min Max Obs T-stat

Number of characters No 15.011 2.62 4 37 980734 -7.83***Yes 15.039 2.54 6 36 1130569

Number of tokens No 2.817 0.47 1 7 980734 72.25***Yes 2.77 0.48 1 7 1130569

Starts with single letter No 0.012 0.11 0 1 980734 74.96***Yes 0.003 0.05 0 1 1130569

Frequency of first name No 50119.813 62310.64 1 182660 980734 -143.96***Yes 62893.693 66523.9 1 182660 1130569

Frequency of last name No 1102.791 2808.67 1 24475 980734 -125.85***Yes 1661.989 3636.98 1 24475 1130569

Note: The table presents a comparison of name features based on whether they have been
matched with a Census HISTID after the ML model. The Number of characters refers to
a count of all characters in the inventor’s name, including spaces. The Number of tokens
counts the number of words in the inventor’s name. The variable Starts with a single letter
is binary and takes the value one if the inventor’s name begins with a single letter. The
Frequency of first name represents the count of occurrences of the first word (or token)
of the inventor’s name within the inventor population. Lastly, the Frequency of last name
represents the count of occurrences of the last word (or token) of the inventor’s name within
the inventor population.
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Table 15: Probability of having at least one match
After ML model (High Recall)

Variable Model 1 Model 2

Number of characters 0.020***
(0.004)

Number of characters squared -0.001***
(0.000)

Number of tokens -0.846***
(0.023)

Number of tokens squared 0.078***
(0.004)

Starts with single letter -0.993*** -0.755***
(0.023) (0.023)

Frequency of first name (log) 0.086*** 0.099***
(0.001) (0.001)

Frequency of last name (log) 0.118*** 0.132***
(0.001) (0.001)

Male inventor 0.457*** 0.433***
(0.013) (0.013)

Unknown gender 0.075*** -0.145***
(0.016) (0.017)

Patents 1840-1849 -0.684*** -0.865***
(0.032) (0.033)

Patents 1941-1950 -0.062*** -0.020***
(0.004) (0.004)

Constant -1.905*** -0.173***
(0.034) (0.033)

Number of Observations 2111303 2111303
Number of 1s 1130569 1130569
Number of 0s 980734 980734
Log Likelihood -1419800.00 -1410100.00

Note: This table presents the results of logit regressions where the dependent variable equals
1 if a patent-inventor name was matched with a Census HISTID after the application of the
ML model. The regressors include the total number of characters in the inventor’s name
(Number of characters), the number of words in the inventor’s name (Number of tokens),
a binary variable set to one if the inventor’s name begins with a single letter (Starts with a
single letter), a variable representing the frequency of the first word (or token) of the inventor’s
name within the inventor population (Frequency of first name), and a variable representing
the frequency of the last word (or token) of the inventor’s name within the inventor population
(Frequency of last name). Additionally, two dummy variables, d1840 and d1940, take the value
one if the patent was published before 1850 or after 1940, respectively, to account for the fact
that these inventors had only one Census against which to be matched.
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Table 16: Distribution of matched inventors by citizenship and birthplace

Birthplace
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Austria-Hungary 424 9 4 6 172 26 11 0 81 77 6 6 307 608 1737
Canada 1 439 7 2 5 74 0 5 0 8 10 3 228 9 791
Denmark 0 4 182 1 10 4 0 24 0 0 11 0 58 5 299
France 1 2 0 182 29 7 1 0 1 4 0 4 79 14 324
Germany 72 4 7 20 1666 24 5 5 18 62 20 9 565 105 2582
Great Britain 23 1454 10 8 108 3491 17 14 6 47 38 8 2771 191 8186
Italy 3 4 0 1 7 9 471 0 1 3 1 0 38 9 547
Norway 0 3 18 1 17 11 0 191 1 19 99 0 66 27 453
Poland 21 1 0 0 18 3 1 0 161 32 1 0 62 15 315
Russia 48 2 5 6 59 16 9 3 108 704 11 1 212 79 1263
Sweden 1 4 15 1 19 18 0 50 0 6 803 0 309 38 1264
Switzerland 7 3 0 12 36 9 2 1 4 12 5 294 93 2 480
Total 601 1929 248 240 2146 3692 517 293 381 974 1005 325 4788 1102 18241

Note: This table presents a cross-tabulation of inventors by their citizenship (rows) and birthplace (columns). The
analysis specifically excludes inventors with US citizenship and focuses on the most significant non-US citizenships
reported in patent documents. The column labels represent the birthplaces of census respondents who have been
matched with these inventors.
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Finally, Table 16 presents a further robustness check. Specifically, we extracted
the inventors who reported a US address and foreign citizenship in the patent docu-
ment. We then looked at the birthplaces reported in the Census by the respondents
who matched with these inventors. It is reasonable to expect that citizenship and
birthplace should overlap to some extent for these inventors, to the extent that the
ML matching model predicted matches accurately. For example, one could reason-
ably expect that an inventor reporting Italian citizenship would also be born in
Italy. The findings reported in Table 16 indicate that this expectation is met for
some nationalities, but not for many. For example 86% of inventors with an Italian
citizenship are matched with individuals in the census that are also born in Italy.
However, this percentages drops to around 55% for Canadians and around 42% for
Norwegians. All in all, this latter finding, as well as the one reported in Table 13
indicate that there are clearly some issues that deserves further investigation.

10 Conclusion
In this paper we have compiled a novel patent-census linked dataset for the US over
the period 1840 to 1950. The methodology employed allows for the construction of
a more comprehensive dataset than has previously been available. The dataset is
the result of two distinct efforts: first, we have built a novel patent dataset using
USPTO patent documents. We have compared our work with previous attempts and
discussed its merits and potential drawbacks. The patent dataset forms the basis for
the second effort, which matches patent-inventors to census data. To do this, we have
implemented a multi-stage methodology to identify potential candidates. We have
also trained a machine learning model to select matches with multiple candidates.
Several robustness checks were carried out to test the merits and potential biases
of the model. Overall, our results regarding the demographic characteristics of
inventors are reassuring and in line with previous work. Despite this achievement,
our work is still very preliminary and not without limitations. One key challenge
lies in the trade-off between the model’s recall and precision. The methodology
currently presented in this work prioritizes high recall to maximize the dataset’s
coverage. While this ensures the inclusion of as many inventor-census matches as
possible, it may introduce a higher rate of false positives, potentially affecting the
accuracy of downstream analyses. Addressing this limitation will require refining
the machine learning model to balance precision and recall more effectively. Second,
we aim at improving the accuracy of the machine learning model. For that we plan
to explore additional predictors that will improve the reliability of matches without
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compromising scale. Our ultimate goal is to produce a dataset that is openly shared
to the academic community for research purposes.
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Appendix



Figure A1: US Patent 209237
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Table A1: Gender distribution of inventors by decade

Decade Female Male Unknown Total
1830 22 1,908 304 2,234
1840 57 6,067 1,106 7,230
1850 217 21,093 6,694 28,004
1860 1,145 72,979 23,687 97,811
1870 2,114 134,647 12,133 148,894
1880 3,741 220,862 18,586 243,189
1890 5,472 263,732 17,060 286,264
1900 8,600 379,816 16,753 405,169
1910 11,557 441,183 33,696 486,436
1920 14,609 521,822 53,527 589,958
1930 12,274 454,863 53,496 520,633
1940 7,379 235,321 27,459 270,159
Total 67,187 2,754,293 264,501 3,085,981

Note: The table reports the number of patent-inventor pairs by inven-
tor’s gender and decade. Decades are defined by excluding the decade’s
first year and including the last. For example, the decade 1840 refers to
patents filed from 1841 through 1850, inclusive.

Table A2: Gender distribution of inventors by decade (%)

Decade Female Male Unknown Total
1830 1.0 85.4 13.6 100.0
1840 0.8 83.9 15.3 100.0
1850 0.8 75.3 23.9 100.0
1860 1.2 74.6 24.2 100.0
1870 1.4 90.4 8.1 100.0
1880 1.5 90.8 7.6 100.0
1890 1.9 92.1 6.0 100.0
1900 2.1 93.7 4.1 100.0
1910 2.4 90.7 6.9 100.0
1920 2.5 88.5 9.1 100.0
1930 2.4 87.4 10.3 100.0
1940 2.7 87.1 10.2 100.0

Note: The table reports the percentage of patent-inventor pairs by the
inventor’s gender and decade. Decades are defined by excluding the
decade’s first year and including the last. For example, the decade 1840
refers to patents filed from 1841 through 1850, inclusive.
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Table A3: Gender distribution of Census participants

Census Female Male Total
1850 9,738,515 10,242,920 19,981,435
1860 13,378,480 14,091,791 27,470,271
1870 19,048,383 19,473,433 38,521,816
1880 24,633,505 25,506,977 50,140,482
1900 37,180,647 38,644,065 75,824,712
1910 44,792,106 47,611,905 92,404,011
1920 51,883,728 53,861,405 105,745,133
1930 60,700,907 62,089,070 122,789,977
1940 65,767,108 66,136,802 131,903,910

Note: This table reports the count of individuals by gender
from various decades of the US decennial Census. It includes
all individuals, regardless of age.

Table A4: Gender distribution of Census participants (%)

Census Female Male Total
1850 48.7 51.3 100.0
1860 48.7 51.3 100.0
1870 49.4 50.6 100.0
1880 49.1 50.9 100.0
1900 49.0 51.0 100.0
1910 48.5 51.5 100.0
1920 49.1 50.9 100.0
1930 49.4 50.6 100.0
1940 49.9 50.1 100.0

Note: This table reports the percentage distribution of Cen-
sus participants by gender and US decennial Census. It in-
cludes all individuals, regardless of age.

Table A5: Intersection of data sets

Comparison Common patents Only in first Only in second
BHMNT vs
HISTPAT

2,212,421 307,379 10,722

BHMNT vs
PATENTCITY

2,453,373 66,427 10,537

HISTPAT vs
PATENTCITY

2,165,804 57,339 298,106

Note: This table reports the number of patents shared between each pair of data
sets, as well as those exclusive to each set.
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Table A6: Initial set of matched pairs

Census Gender Original data set With at least one matching Unique Census HISTID matched
Patent-inventors Patents Patent-inventors Patents

1850
M 25,883 23,730 25,401 23,336 1,027,132
F 233 231 227 225 12,587
U 7,254 6,629 6,926 6,351 215,353

1860
M 87,271 79,300 86,851 78,979 2,518,729
F 1,190 1,175 1,181 1,166 59,237
U 27,723 25,333 27,477 25,147 807,685

1870
M 193,094 174,559 190,178 172,093 4,666,559
F 2,912 2,875 2,846 2,810 140,003
U 33,149 30,828 32,533 30,282 975,042

1880
M 332,297 300,716 326,824 296,095 6,691,285
F 5,286 5,231 5,158 5,105 250,127
U 27,671 26,868 26,858 26,089 803,951

1900
M 527,615 477,029 525,653 475,391 10,834,226
F 11,098 10,939 11,056 10,897 533,898
U 23,071 22,494 22,791 22,233 619,348

1910
M 684,551 621,597 682,504 619,862 13,540,110
F 15,714 15,393 15,661 15,342 743,779
U 28,791 27,289 28,401 26,933 593,689

1920
M 783,930 710,864 781,630 708,858 15,033,778
F 19,288 18,887 19,221 18,821 873,666
U 48,136 45,285 47,479 44,688 1,123,283

1930
M 821,047 732,817 817,919 730,116 15,858,472
F 19,679 19,331 19,591 19,245 852,196
U 49,302 46,980 48,512 46,248 1,301,316

1940
M 725,923 632,692 722,794 630,083 14,413,892
F 16,881 16,624 16,796 16,542 722,372
U 35,518 34,680 34,934 34,121 985,731

Note: The table reports, for each Census year t, the number of patent-inventor pairs located in the US and relative patents
in our dataset for the period t− 10 to t+10. It also shows the number of patent-inventor pairs located in the US and relative
patents in our dataset that have at least one matched census candidate during this period, as well as the count of unique
matched candidates in the Census.
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Table A7: Matched pairs after filtering

Census Gender Original data set With at least one matching Unique Census HISTID matched
Patent-inventors Patents Patent-inventors Patents

1850
M 25,883 23,730 19,304 18,234 220,093
F 233 231 59 58 995
U 7,254 6,629 2,337 2,297 8,296

1860
M 87,271 79,300 65,695 61,523 594,600
F 1,190 1,175 347 345 6,802
U 27,723 25,333 11,796 11,521 52,883

1870
M 193,094 174,559 146,986 136,663 1,161,079
F 2,912 2,875 1,051 1,043 18,860
U 33,149 30,828 12,664 12,437 53,243

1880
M 332,297 300,716 255,067 236,570 1,796,765
F 5,286 5,231 2,258 2,241 39,615
U 27,671 26,868 10,717 10,612 54,181

1900
M 527,615 477,029 417,075 384,932 3,139,539
F 11,098 10,939 6,156 6,099 99,388
U 23,071 22,494 8,164 8,121 41,322

1910
M 684,551 621,597 550,756 510,406 3,862,672
F 15,714 15,393 9,108 9,020 136,797
U 28,791 27,289 4,737 4,707 27,326

1920
M 783,930 710,864 631,211 586,274 4,074,428
F 19,288 18,887 10,241 10,116 142,112
U 48,136 45,285 10,995 10,856 68,013

1930
M 821,047 732,817 674,155 616,529 4,215,594
F 19,679 19,331 10,407 10,276 134,493
U 49,302 46,980 14,513 14,340 81,735

1940
M 725,923 632,692 585,679 525,612 3,574,473
F 16,881 16,624 8,839 8,725 113,381
U 35,518 34,680 10,559 10,440 54,502

Note: The table reports, for each Census year t, the number of patent-inventor pairs and patents in our dataset for the period
t− 10 to t+ 10. It also shows the number of patent-inventor pairs and patents in our dataset that have at least one matched
census candidate during this period after applying the filters described in Section 6.5, as well as the count of unique matched
candidates in the Census.
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Table A8: Definition of occupations for ML model
occupation ind1950 occ1950 occstr
Agriculture 105, 116, 126, 356, 406, 407,

409, 416, 619, 636, 637
12, 13, 26, 52, 53, 61, 62, 69,
98, 100, 123, 500, 510, 532, 555,
640, 643, 644, 810, 820, 830,
840, 910, 950

FARM, AGRICULTUR, BIOLOG, VET-
ERINARY, DAIRY, MEAT

Apparel 436, 437, 438, 439, 446, 448,
449, 466, 487, 488, 489, 608,
656, 657, 847, 848

525, 543, 582, 590, 593, 633,
634, 645, 675, 684

TEXTILE, APPAREL, WEAVER, CLOTH,
COTTON, DRESS MAKER, DRESS-
MAKER, DRESS MAKING, DRESSMAK-
ING, TAILOR, FASHION, SEAMSTRESS,
SEAMSTER, SEWER, SEWING

Chemistry 466, 469, 476, 477, 478, 607,
618

7, 14, 26, 42, 49, 69 CHEM

Civil Engineering 206, 216, 226, 236, 239, 246,
317, 318, 326, 379, 506, 516,
546, 556, 567, 587, 588, 596,
687

3, 16, 17, 33, 35, 43, 48, 49, 63,
95, 96, 203, 240, 504, 505, 510,
511, 513, 541, 544, 553, 585,
601, 611, 620, 622, 624, 650,
660, 661, 681

CIVIL ENG, CIVIL-ENG, CIVIL MINING
ENGINEER, ARCHITECT, CONSTRUCT,
RAILROAD ENG, GEOPHYSIC, GEOLOG

Commercial
Computing

357, 387, 578, 579, 856 16, 18, 23, 25, 26, 44, 49, 67,
68, 69, 74, 76, 83, 95, 96, 360,
365, 370, 540, 562, 563, 571,
671

COMPUT, TELEGRAPH ENG, TELE-
PHONE ENG, RADIO ENG

Electricity 367, 586, 588, 616 16, 18, 23, 26, 33, 35, 44, 49,
67, 68, 69, 76, 95, 96, 360, 365,
370, 515, 540, 551, 552, 603,
672

ELECTRIC, ELECTRO, X RAY, X-RAY,
XRAY, PHYSICS

Engineering 206, 216, 226, 236, 239, 898,
587

2, 3, 16, 17, 26, 33, 35, 41, 42,
43, 44, 45, 46, 47, 48, 49, 69,
95, 96, 240, 503, 515, 520, 530,
531, 534, 540, 541, 544, 545,
550, 551, 552, 553, 554, 561,
583

ENGINEER, MACHIN, MANUFACT, MFR,
TECHNIC, MECHANIC

Inventors -999 -999 INVENTOR, INVENTIVE, INVENTION,
INVENTING

Managers -999 290 MANAGER, PROPRIETOR, OWNER
Manufacturing 306, 307, 308, 309, 316, 317,

318, 319, 326, 336, 337, 338,
346, 347, 348, 356, 357, 358,
367, 376, 377, 378, 379, 386,
387, 388, 399

-999 MANUFACT, MFR

Medical 467, 607, 669, 868, 869 8, 19, 26, 32, 34, 58, 59, 62, 69,
70, 71, 73, 75, 94

MEDIC, PHYSICIAN, SURGEON, DOC-
TOR, PHARMA, DRUGGIST, DENTIST,
DENTAL, NURSE

Mechanical 307, 336, 337, 338, 346, 347,
348, 356, 357, 358, 376, 377,
378, 379, 388, 399, 606, 617,
816, 817

2, 16, 23, 33, 35, 41, 45, 46,
47, 48, 49, 69, 74, 76, 95, 96,
240, 360, 365, 370, 503, 531,
534, 540, 541, 544, 545, 550,
551, 552, 553, 554, 555, 560,
561, 563, 571, 574, 575, 582,
583, 585, 591, 592, 600, 604,
605, 610, 612, 613, 622, 624,
635, 641, 642, 662, 674, 685

MECHANIC, TECHNIC

Physics -999 2, 16, 17, 23, 26, 41, 48, 63, 68,
69, 70, 74, 76, 360, 365, 370,
540, 545, 552, 562, 563, 571,
572, 671

PHYSICIST, PHYSICS

Science 888 12, 13, 14, 15, 16, 17, 18, 19,
23, 24, 25, 26, 27, 28, 29, 61,
62, 63, 67, 68, 69, 81, 82, 83,
84

SCIENCE, SCIENTIST, RESEARCH, PRO-
FESSOR, ACADEMIC, SCHOLAR, LAB-
ORATORY, ANALYST, TEACHER, EDU-
CAT
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Table A9: Confusion matrix for the Random Forest model
High recall

Predicted class
0 1

Actual class 0 18,036 85
1 36 350

Note: The table shows the confusion matrix for the Random Forest
model in the high-recall scenario. Rows represent the actual class la-
bels (0 and 1), and columns represent the predicted class labels. Actual
Class 0: Instances of the negative class. Actual Class 1: Instances of
the positive class. Diagonal values (18,036 and 350) indicate correct
predictions, while off-diagonal values (36 and 85) indicate misclassifi-
cations.

Table A10: Confusion matrix for the Random Forest model
High precision

Predicted class
0 1

Actual class 0 18,089 32
1 100 286

Note: The table shows the confusion matrix for the Random Forest
model in the high-precision scenario. Rows represent the actual class
labels (0 and 1), and columns represent the predicted class labels. Ac-
tual Class 0: Instances of the negative class. Actual Class 1: Instances
of the positive class. Diagonal values (18,089 and 286) indicate correct
predictions, while off-diagonal values (32 and 100) indicate misclassi-
fications.
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Table A11: Classification report for the Random Forest model (High Recall)

Class Precision Recall F1-Score Support

0.0 0.998 0.995 0.997 18,121
1.0 0.805 0.907 0.853 386

Accuracy 0.993 (18,507 samples)
Macro Avg 0.901 0.951 0.925 18,507

Weighted Avg 0.994 0.993 0.994 18,507

Note: This table presents the classification metrics for the Random Forest model in the
high recall scenario. Precision: Fraction of true positives among predicted positives. Recall:
Fraction of true positives among actual positives. F1-Score: Harmonic mean of precision
and recall. Support: Number of true instances for each class. Accuracy: Overall fraction of
correct predictions. Macro Avg: Arithmetic mean of metrics across classes. Weighted Avg:
Weighted mean of metrics, accounting for support.

Table A12: Classification report for the Random Forest model (High Precision)

Class Precision Recall F1-Score Support

0.0 0.995 0.998 0.996 18,121
1.0 0.899 0.741 0.813 386

Accuracy 0.993 (18,507 samples)
Macro Avg 0.947 0.870 0.904 18,507

Weighted Avg 0.993 0.993 0.993 18,507

Note: This table presents the classification metrics for the Random Forest model. Preci-
sion: Fraction of true positives among predicted positives. Recall: Fraction of true posi-
tives among actual positives. F1-Score: Harmonic mean of precision and recall. Support:
Number of true instances for each class. Accuracy: Overall fraction of correct predictions.
Macro Avg: Arithmetic mean of metrics across classes. Weighted Avg: Weighted mean of
metrics, accounting for support.
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