An Anatomy of U.S. Establishments' Trade Linkages in Global Value Chains

Aaron Flaaen¹ Fariha Kamal² Eunhee Lee³ Kei-Mu Yi⁴

¹Federal Reserve Board

²U.S. Census Bureau

³Seoul National University

⁴University of Houston, Federal Reserve Bank of Dallas, and NBER

November 23, 2024 NBER International Trade and Investment Program Meeting

Disclaimer

Any opinions and conclusions expressed herein are those of the authors and do not represent the views of the U.S. Census Bureau, the Federal Reserve Bank of Dallas, the Board of Governors of the Federal Reserve System, or their research staff. The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product. This research was performed at a Federal Statistical Research Data Center under FSRDC Project Number 2631 (CBDRB-FY23-0248, CBDRB-FY24-P2631-R11288, CBDRB-FY24-P2631-R11530).

Motivation

- Global value chains (GVCs) are a pervasive feature of modern production and...
- Recent global shocks underscore their importance for evaluating economic outcomes and assessing appropriate policy responses

Motivation

- Global value chains (GVCs) are a pervasive feature of modern production and...
- Recent global shocks underscore their importance for evaluating economic outcomes and assessing appropriate policy responses
- Existing research measures and quantifies spillovers from GVCs using global input-output tables (e.g., WIOD, OECD-ICIO)

• IO tables are invaluable but embedded assumptions generate biases

Motivation

- Global value chains (GVCs) are a pervasive feature of modern production and...
- Recent global shocks underscore their importance for evaluating economic outcomes and assessing appropriate policy responses
- Existing research measures and quantifies spillovers from GVCs using global input-output tables (e.g., WIOD, OECD-ICIO)
 - $_{\circ}\,$ IO tables are invaluable but embedded assumptions generate biases
- Proposition: capturing actual GVC linkages require granular data
 - $_{\circ}~$ GVCs exist and evolve at the level of the firm/establishment
 - Micro-level heterogeneity shapes aggregate outcomes

- Construct novel granular estimates of GVC flows moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and exports to production for individual plants
 - Measure GVCs in the U.S. manufacturing sector (2002, 2007, 2012, 2017)

- Construct novel granular estimates of GVC flows moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and exports to production for individual plants
 - Measure GVCs in the U.S. manufacturing sector (2002, 2007, 2012, 2017)
- New insights from micro-level perspective
 - $_{\circ}\,$ Imported content of U.S. exports: 13 to 20 cents/\$1 of export from 2002 to 2017
 - \rightarrow Aggregation bias limits visibility of these patterns in aggregate data

- Construct novel granular estimates of GVC flows moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and exports to production for individual plants
 - Measure GVCs in the U.S. manufacturing sector (2002, 2007, 2012, 2017)
- New insights from micro-level perspective
 - $_{\circ}\,$ Imported content of U.S. exports: 13 to 20 cents/\$1 of export from 2002 to 2017
 - \rightarrow Aggregation bias limits visibility of these patterns in aggregate data
 - $_{\circ}\,$ GVC flows exhibit strong complementarities between input and output markets
 - Round-trip linkages
 - Regional trade agreements (RTA)
 - \rightarrow Proportionality assumptions limit visibility of these patterns in aggregate data

- Construct novel granular estimates of GVC flows moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and exports to production for individual plants
 - Measure GVCs in the U.S. manufacturing sector (2002, 2007, 2012, 2017)
- New insights from micro-level perspective
 - $_{\circ}\,$ Imported content of U.S. exports: 13 to 20 cents/\$1 of export from 2002 to 2017
 - \rightarrow Aggregation bias limits visibility of these patterns in aggregate data
 - $_{\circ}\,$ GVC flows exhibit strong complementarities between input and output markets
 - Round-trip linkages
 - Regional trade agreements (RTA)
 - \rightarrow Proportionality assumptions limit visibility of these patterns in aggregate data
- Explore fixed cost structures that account for these new micro-level patterns in existing "off-the-shelf" models of sourcing and exporting

Literature Review

- Input-Output Table-Based GVC: Hummels, Ishii, & Yi (2001); Johnson & Noguera (2011, 2017); Koopman, Wang, & Wei (2014); Timmer *et al.* (2014, 2016); de Gortari (2019); Antràs & de Gortari (2020)
 - Contribution: Establishment-level GVC measures for the U.S. manufacturing sector, trilateral impacts of RTAs on GVCs
- Firm-Level GVC: Kee & Tang (2016); Bems & Kikkawa (2021)
 - · Contribution: Export and import allocations for multi-industry firms
- Global Supply Chains and U.S Manufacturing: Bernard & Fort (2015); Boehm, Flaaen, & Pandalai-Nayar (2019); Handley, Kamal & Monarch (forthcoming); Ding, Fort, Redding, & Schott (2022); Feenstra & Jensen (2012); Fort (2017, 2023)
 - Contribution: Document and characterize changes in the imported content of U.S. manufactured exports by sector and country

Outline

Data and GVC Measurement

Understanding the Determinants of Multi-Country Supply Chains

Aggregation and Proportionality Assumptions

What Model Features Broadly Replicate Main Gravity Results?

Measuring Disaggregated GVC

GVC: use of imported inputs in producing goods that are exported

$$GVC_{esmnt} = \frac{\sum_{r} IMP_{emrt}^{I}}{GO_{est}} \sum_{p} EXP_{enpt}$$

- establishment e; product p; producing industry s; input commodity r; destination country n; source country m; year t
- GO: gross output
- ► *IMP*¹: **direct** imports of goods used in further production
- EXP: direct sales of goods produced to foreign markets

Data and Measurement Challenges

▶ Gross Output GO_{est}

• Source: CMF (2002, 2007, 2012, 2017)

Data and Measurement Challenges

▶ Gross Output GO_{est}

Source: CMF (2002, 2007, 2012, 2017)

▶ Imports IMP^I_{emrt}

- Source: LFTTD (2002, 2007, 2012, 2017)
- Challenges
 - 1. only firm-level identifiers
 - 2. no information on intended use of imports
 - \rightarrow Identify **inputs** imported by establishments

Data and Measurement Challenges

▶ Gross Output GO_{est}

Source: CMF (2002, 2007, 2012, 2017)

▶ Imports IMP^I_{emrt}

o Source: LFTTD (2002, 2007, 2012, 2017)

• Challenges

- 1. only firm-level identifiers
- 2. no information on intended use of imports
- \rightarrow Identify **inputs** imported by establishments

Exports *EXP*_{enpt}

- o Source: LFTTD (2002, 2007, 2012, 2017)
- Challenges
 - $1. \ only \ firm-level \ identifiers$
 - 2. no information on products by market
 - \rightarrow Identify manufactured exports

Imported Input Classification

Challenge: Separate inputs from final goods imports & connect imported inputs to establishment-level input usage

Solution: Match imports to establishment-level input usage from CMF Material Trailer

Imported Input Classification

Challenge: Separate inputs from final goods imports & connect imported inputs to establishment-level input usage

Solution: Match imports to establishment-level input usage from CMF Material Trailer

	Intermediate Share of Firm Imports	Import Cost Share
2002	56.9	14.0
2007	60.9	17.6
2012	62.9	16.9
2017	58.5	18.4

- ▶ About 40% of firms' imports are sold without further processing
- In 2017, imported inputs were about 18% of material costs for the representative (sales-weighted) plant Separating Inputs from Output

Produced Export Classification

Challenge: Connect exports to establishment-level production

Solution: Match exports to establishment-level shipments in from CMF Product Trailer

Produced Export Classification

Challenge: Connect exports to establishment-level production

Solution: Match exports to establishment-level shipments in from CMF Product Trailer

	"Produced" Export Share of Total	Export Share of Shipments
2002	69.8	7.7
2007	70.6	9.1
2012	69.8	10.3
2017	68.9	10.4

- About 30% of firms' exports are not produced by its manufacturing plants
- In 2017, produced exports were about 10% of total shipment value for the representative (sales-weighted) plant Overall Match

Construct Sectoral GVC

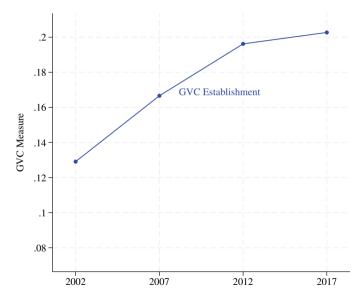
Start with *establishment-level* GVC:

$$GVC_{est} = \frac{\sum_{m,r} IMP_{emrt}^{I}}{GO_{est}} \sum_{n} EXP_{enst}$$

Construct Sectoral GVC

Start with *establishment-level* GVC:

$$GVC_{est} = \frac{\sum_{m,r} IMP_{emrt}^{I}}{GO_{est}} \sum_{n} EXP_{enst}$$

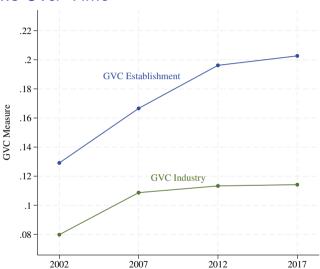

Aggregate and scale by overall exports in industry s:

$$gvc_{st}^{E} = \frac{\left[\sum_{e \in E_{st}} GVC_{est}\right]}{\sum_{e \in E_{st}} EXP_{est}}$$

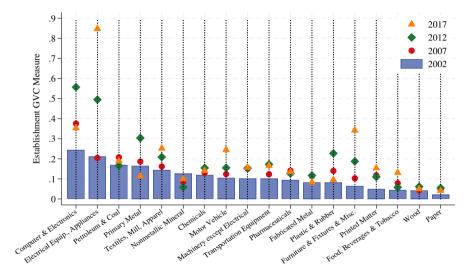
Generate industry-level analogues with our data:

$$gvc_{st}^{I} = \frac{\left[\left(\sum_{e \in E_{st}} EXP_{est}\right) \frac{\sum_{e \in E_{st}} IMP_{est}^{I}}{\sum_{e \in E_{st}} GO_{est}}\right]}{\sum_{e \in E_{st}} EXP_{est}}$$

GVC in U.S. Manufacturing Growing Over Time


Industry Aggregation Bias Grows Over Time

Establishment vs. Industry:


- higher levels
- gap widens over time

Simple Illustration

More Details on Aggregation Bias

Heterogeneous Trends in Establishment GVC Across Sub-Sectors

Data and GVC Measurement

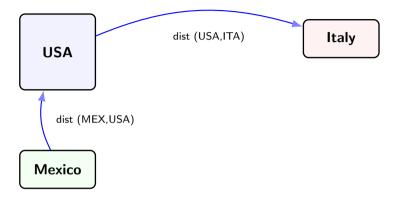
Understanding the Determinants of Multi-Country Supply Chains

Aggregation and Proportionality Assumptions

What Model Features Broadly Replicate Main Gravity Results?

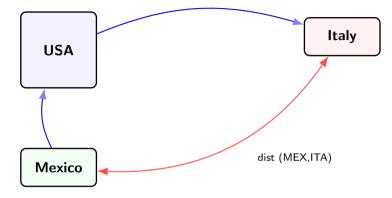
Unpacking Multi-Country (*m*, *US*, *n*) Supply Chains

- Construct bilateral GVC
 - Start with *establishment-level* GVC:

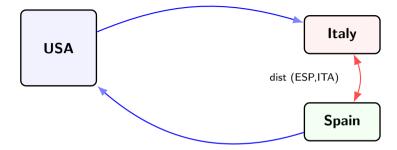

$$GVC_{emnt} = \frac{\sum_{r} IMP_{emrt}^{I}}{\sum_{s} GO_{est}} \sum_{p} EXP_{enpt}$$

• Aggregate to source country m and destination country n:

$$GVC_{mnt}^{E} = \sum_{e \in E_{mnt}} \left(\frac{\sum_{r} IMP_{emrt}^{I}}{GO_{est}} \sum_{p} EXP_{enpt} \right)$$


- Study patterns in multi-country supply chains with newly linked data Summary
- Adapt the well-known gravity framework to model determinants of GVCs using CEPII (Conte et al., 2022)

Gravity in Three Country GVC Relationships: Combined Distance


- Distance is typically used to proxy for trade frictions
- **Combined** distance from country *m* to US to country *n* : $d_{m,US,n} = d_{m,US} + d_{US,n}$

Gravity in Three Country GVC Relationships: Direct Distance

- New: How are input and output markets linked?
- **Direct** distance from country *m* to $n : d_{m,n}$

Gravity in Three Country GVC Relationships: Direct Distance

- Does proximity inhibit or support GVC flows?
- Inhibit (+ coeff.): higher relative costs of moving goods through USA
- ▶ Support (- coeff.): complementarities between input and output markets.

Gravity in Three Country GVC Relationships: Round-trip

round-trip (m = n): extreme example of potential complementarities between input and output markets

Examining GVC Flows within Three-Country Pairs

Formally, we evaluate gravity regressions of the form:

$$log(GVC_{mnt}) = \delta_{m,t} + \eta_{n,t} + \beta \mathbb{I}(m = n) + \gamma d_{m,US,n} + \lambda d_{m,n} + \varepsilon_{mnt},$$

Examining GVC Flows within Three-Country Pairs

Formally, we evaluate gravity regressions of the form:

$$log(GVC_{mnt}) = \delta_{m,t} + \eta_{n,t} + \beta \mathbb{I}(m = n) + \gamma d_{m,US,n} + \lambda d_{m,n} + \varepsilon_{mnt},$$

We also explore the role of regional trade agreements

- **RTA (m,n)**: Countries *m* and *n* have an RTA
- **RTA (m & US, n & US)**: Both countries have RTAs with U.S.
- **RTA (m, n, US)**: All three countries have RTA

GVC Flows and Distance: Pooled Sample, 2002–2017

Dependent Variable: Log Bilateral GVC							
	(1)	(2)	(3)	(4)			
Log Distance $(m \rightarrow US \rightarrow n)$	-1.64***			-0.414***			
,	(0.106)			(0.118)			
Log Distance (<i>m</i> to <i>n</i>)	. ,	-0.26***		-0.175***			
		(0.009)		(0.011)			
Round-trip $(m=n)$			2.33***	1.38***			
			(0.112)	(0.121)			
Observations	117,000	117,000	117,000	117,000			
R^2	0.86	0.86	0.86	0.86			

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

GVC flows...

- smaller between distant pairs (combined distance more important)
- larger within round-trip (even after controlling for distance)

GVC Flows and RTAs: Pooled Sample, 2002–2017

Dependent Variable: Log Bilateral GVC							
	(1)	(2)	(3)				
Log Distance $(m \rightarrow US \rightarrow n)$	-1.38***	-1.39***	-1.35***				
	(0.105)	(0.104)	(0.104)				
Round-trip (<i>m</i> = <i>n</i>)	2.20***	2.23***	2.21***				
	(0.112)	(0.111)	(0.112)				
RTA (<i>m & n</i>)	0.044**						
	(0.020)						
RTA (<i>m</i> & US, <i>n</i> & US)		0.198***					
		(0.059)					
RTA (<i>m</i> , <i>n</i> , US)			0.438***				
			(0.112)				
Observations	117,000	117,000	117,000				
R^2	0.86	0.86	0.86				

GVC flows in RTAs that...

- do NOT include the U.S. are very small
- include the U.S., but not all three countries, are larger
- include ALL three countries are largest

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

More Evidence

Outline

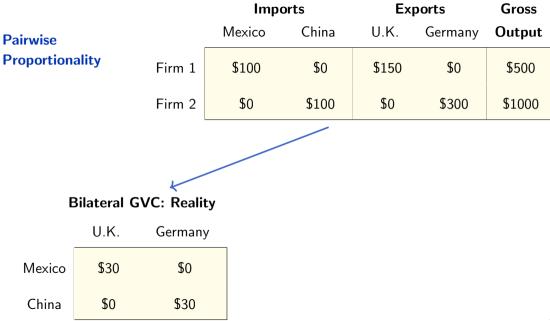
Data and GVC Measurement

Understanding the Determinants of Multi-Country Supply Chains

Aggregation and Proportionality Assumptions

What Model Features Broadly Replicate Main Gravity Results?

WIOD and Proportionality Assumptions


For benchmarking, we aggregate our data to the level of available detail in WIOD

- 18 manufacturing industries
- 43 countries plus ROW aggregate

Import Proportionality Assumption: Allocate commodity imports to using industries based on economy-wide import shares (A quick refresher)

Pairwise Proportionality Assumption: Connect source and destination countries through aggregate trade flows

		Impo	orts	Ex	Gross		
Pairwise	_	Mexico	China	U.K.	Germany	Output	
Proportionality	Firm 1	\$100	\$0	\$150	\$0	\$500	
	Firm 2	\$0	\$100	\$0	\$300	\$1000	

		Impo	orts	Ex	Gross	
Pairwise Proportionality		Mexico	China	U.K.	Germany	Output
	Firm 1	\$100	\$0	\$150	\$0	\$500
	Firm 2	\$0	\$100	\$0	\$300	\$1000
	Total	\$100	\$100	\$150	\$300	\$1500

Bilateral GVC: Reality

	U.K.	Germany
Mexico	\$30	\$0
China	\$0	\$30

			Im	ports		Gross						
Pairwise			Mexico	China	a	U.K.	Germany	Output				
Proportion	ality	Firm 1	\$100	\$0		\$150	\$0	\$500				
		Firm 2	\$0	\$100)	\$0	\$300	\$1000				
		Total	\$100	\$100)	\$150	\$300	\$1500				
E	Bilateral G	VC: Realit	y	Bil	ateral	GVC:	Aggregate	regated				
	U.K.	Germany			U.	K.	Germany					
Mexico	\$30	\$0		Mexico	\$2	\$10 \$2						
China	\$0	\$30		China	\$2	\$10 \$20						

Construct Bilateral GVC

Start with *establishment-level* GVC:

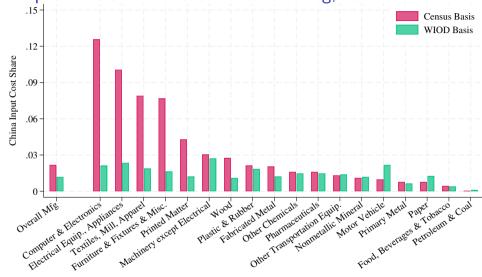
$$GVC_{emnt} = \frac{\sum_{r} IMP_{emrt}^{I}}{\sum_{s} GO_{est}} \sum_{p} EXP_{enpt}$$

Aggregate to source country m and destination country n:

$$GVC_{mnt}^{E} = \sum_{e \in E_{mnt}} \left(\frac{\sum_{r} IMP_{emrt}^{I}}{GO_{est}} \sum_{p} EXP_{enpt} \right)$$

WIOD analogue:

$$GVC_{mnt}^{WIOD} = \sum_{s} \left(\frac{\sum_{e \in E_{mst}} \sum_{r} IMP_{emrt}^{I}}{\sum_{e \in E_{st}} GO_{est}} \sum_{e \in E_{nst}} \sum_{p} EXP_{enpt} \right)$$


Excess smoothing of GVC linkages from pairwise proportionality

Benchmarking Import Proportionality Assumption Against Reality

- Country Cost Shares Across Industries
 - $_{\circ}$ WIOD reflects import proportionality
 - $_{\circ}\,$ Correlation of Census/WIOD country cost shares across industries: 0.64

Details

Chinese Input Cost Share in U.S. Manufacturing, 2012

Benchmarking Pairwise Proportionality Assumption Against Reality

- Country-Pair GVC Values Details
 - 。 WIOD reflects import proportionality and pairwise proportionality
 - Correlation of Census/WIOD GVC bilateral pairs across industries: 0.42
- Pairwise proportionality mismeasures extent of round-trip linkages

Aggregate Data Misses True Import-Export Linkages in U.S. GVCs

Dep. Variable:	Dep. Variable: Log Bilateral GVC									
Data Source	Census	WIOD								
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	-0.03								
Pound trip $(m-n)$	(0.104) 2.21***	(0.061) 0.08***								
Round-trip (<i>m=n</i>)	(0.112)	(0.015)								
RTA (<i>m</i> , <i>n</i> , US)	0.44*** (0.112)	-0.04 (0.064)								
Observation Unit Country Sample	Estab All–Data	Ctry-Ind WIOD–43								
Observations R-Squared	117,000 0.86	7,056 0.99								

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

- Multi-country input-output data (WIOD) masks patterns evident using microdata
- Visibility limited due to:
 - sample coverage
 - aggregation requiring pairwise and traditional import proportionality

		al GVC				
Data Source	(1) Census	(2)	(3)	(4)	(5)	(6) WIOD
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***					-0.02
Round-trip (<i>m</i> = <i>n</i>)	(0.104) 2.21***					(0.045) 0.08***
RTA (<i>m</i> , <i>n</i> , US)	(0.112) 0.44***					(0.008) -0.02
	(0.112)					(0.034)
Observation Unit Country Sample	Estab All–Data					Ctry-Ind WIOD-43
Observations R-Squared	117,000 0.86					7,056 0.99

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Includes Exporter-Year F.E. and Importer-Year F.E.

Our findings do not replicate in the WIOD

		al GVC				
Data Source	(1) Census	(2) Census	(3)	(4)	(5)	(6) WIOD
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	0.26				-0.02
	(0.104)	(0.280)				(0.045)
Round-trip (<i>m</i> = <i>n</i>)	2.21***	1.71***				0.08***
	(0.112)	(0.119)				(0.008)
RTA (<i>m</i> , <i>n</i> , US)	0.44***	-0.13				-0.02
	(0.112)	(0.220)				(0.034)
Observation Unit	Estab	Estab				Ctry-Ind
Country Sample	All–Data	WIOD-43				WIOD-43
Observations	117,000	7,100				7,056
R-Squared	0.86	0.94				0.99

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Includes Exporter-Year F.E. and Importer-Year F.E.

Importance of round-trip still evident with reduced sample

Dependent Variable: Log Bilateral GVC										
	(1)	(2)	(3)	(4)	(5)	(6)				
Data Source	Census	Census	Census	Census		WIOD				
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	0.26	0.11**	-0.011		-0.02				
	(0.104)	(0.280)	(0.049)	(0.045)		(0.045)				
Round-trip (<i>m</i> = <i>n</i>)	2.21***	1.71***	0.17***	0.21***		0.08***				
	(0.112)	(0.119)	(0.0426)	(0.0396)		(0.008)				
RTA (<i>m</i> , <i>n</i> , US)	0.44***	-0.13	0.16***	0.17***		-0.02				
	(0.112)	(0.220)	(0.046)	(0.045)		(0.034)				
Observation Unit	Estab	Estab	Ctry-Ind	Ctry-Ind		Ctry-Ind				
Country Sample	All–Data	WIOD-43	All–Poss	All–Data		WIOD-43				
Observations	117,000	7,100	139,000	117,000		7,056				
R-Squared	0.86	0.94	0.96	0.96		0.99				

 $\label{eq:result} \mbox{Robust standard errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. and Importer-Year F.E. } \mbox{ and Importer-Year F$

... but nearly disappears with aggregation and pairwise proportionality

	Dependent Variable: Log Bilateral GVC										
	(1)	(2)	(3)	(4)	(5)	(6)					
Data Source	Census	Census	Census	Census	Census	WIOD					
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	0.26	0.11**	-0.011	-0.28**	-0.02					
$Log Distance (m \to 0.5 \to n)$	(0.104)	(0.280)	(0.049)	(0.011)	(0.114)	(0.045)					
Round-trip $(m=n)$	2.21***	(0.280) 1.71***	0.17***	0.21***	0.18***	0.08***					
	(0.112)	(0.119)	(0.0426)	(0.0396)	(0.0282)	(0.008)					
RTA (<i>m</i> , <i>n</i> , US)	0.44***	-0.13	0.16***	0.17***	0.06	-0.02					
	(0.112)	(0.220)	(0.046)	(0.045)	(0.087)	(0.034)					
Observation Unit	Estab	Estab	Ctry-Ind	Ctry-Ind	Ctry-Ind	Ctry-Ind					
Country Sample	All–Data	WIOD-43	All–Poss	All–Data	WIOD-43	WIOD-43					
Observations	117,000	7,100	139,000	117,000	7,100	7,056					
R-Squared	0.86	0.94	0.96	0.96	0.99	0.99					

 $\label{eq:result} \mbox{Robust standard errors in parentheses *** } p{<}0.01, \mbox{** } p{<}0.05, \mbox{* } p{<}0.1. \mbox{ Includes Exporter-Year F.E. and Importer-Year F.E. } and Importer-Year F.E. \mbox{and Importer-Year F.E. } and Importer-Year F.E. \mbox{a$

... and is not about sample coverage

Outline

Data and GVC Measurement

Understanding the Determinants of Multi-Country Supply Chains

Aggregation and Proportionality Assumptions

What Model Features Broadly Replicate Main Gravity Results?

Summary of Model Features

How to incorporate these features to model with joint sourcing and exporting decisions?

Model Features

- Starting point is "Global Firms" model (cf. Bernard, Redding, Schott (JEL, 2018))
- Multi-country firm-level model: Eaton-Kortum on import sourcing side and Melitz on export side
 - $_{\circ}\,$ Firms can lower variable unit cost function via increased sourcing of inputs
 - Firms can increase sales via exporting to other markets
 - $_{\circ}\,$ Importing and exporting are subject to fixed and variable costs

Fixed Costs and Firm Profits

Firm-specific fixed costs of exporting and sourcing: F_{ifn}^X and F_{ifm}^I

 $_{\circ}~$ Fixed cost of production =0

Final goods from f in i chooses Ω_{if}^{NX} , $\Omega_{if}^{N_i}$, and prices, labor, and inputs to maximize:

$$\Pi_{if}^{F} = \sum_{n \in \Omega_{if}^{NX}} \left(\frac{1}{\sigma}\right) E_{ifn}^{F} - \sum_{n \in \Omega_{if}^{NX}} w_{i} F_{ifn}^{X} - \sum_{m \in \Omega_{if}^{NI}} w_{i} F_{ifm}^{I},$$

where $E_{ifn}^F = S_{ifn}^F w_n L_n$ is total sales of firm f in market n

Model Counterparts to Bilateral GVC Measures

Firm-level GVC (country *i*, firm *f*'s imports from *m* embodied in its exports to *n*):

$$GVC_{ifmn}^{M} = \frac{IMP_{ifm}^{M}}{GO_{if}^{M}} EXP_{ifn}^{M}$$
$$= \mu_{ifm}(\Omega_{if}^{NI})(1-\alpha)E_{ifn}^{F}.$$

• where μ_{ifm} is share of inputs sourced from *m*, and $1 - \alpha$ is share of intermediates in production

Bilateral GVC (imported inputs from *m* embodied in *i*'s exports to *n*):

$$GVC_{imn}^{M} = \sum_{f \in F_{imn}} \mu_{ifm}(\Omega_{if}^{NI})(1-\alpha)E_{ifn}^{F},$$

Model: Numerical Exercise

- Partial equilibrium (wages constant in each country)
- 14 symmetric countries plus "USA", which has higher wage, labor endowment and average productivity
- 1000 heterogeneous firms per country, productivity drawn from Pareto distribution (shape parameter = 4)
- Other parameters:
 - 1. $\theta = \sigma = 4$
 - 2. Variable trade costs range from 1 to 1.4; intermediate goods and final goods have same trade cost
- RTA indicator: Randomly choose 30% of country-pairs as having RTA. If chosen, then country pair's export and import variable costs set to 1.

Fixed Costs for Numerical Exercise

Three Potential Features of Fixed Costs:

- 1. Symmetry: Sourcing and export fixed costs are symmetric $F_{ifn}^X = F_{ifn}^I$
- 2. **Idiosyncratic:** Export and import fixed costs are firm-specific with both idiosyncratic and common components

$$F_{ifn}^X = F_{in}^X \varepsilon_{ifn}^X(\Omega_{if}^{NI})$$

3. Round-trip adjustment: If paying either source or destination fixed cost, the idiosyncratic component of the fixed cost in opposite direction is reduced by ξ_f

$$\varepsilon_{ifn}^{X}(\Omega_{if}^{NI}) \equiv \bar{\varepsilon}_{ifn}^{X} \times \left(1 - \xi_{f} \mathbb{1}(n \in \Omega_{if}^{NI})\right)$$

Gravity Regressions on Simulated Data

	Dependent	Variable: Log	Simulated Bi	ilateral GVC
Variable	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Round-trip (<i>m</i> = <i>n</i>)	0.19***	0.06***	0.05**	0.03
	(0.011)	(0.021)	(0.022)	(0.021)
Log Distance $(m \rightarrow US \rightarrow n)$	-0.51*	-0.91*	-0.76	-1.35***
	(0.262)	(0.512)	(0.524)	(0.503)
RTA (<i>m</i> , <i>n</i> , US)	0.05**	0.10**	0.10**	0.08*
	(0.022)	(0.043)	(0.044)	(0.042)
Exporter F.E., Importer F.E.	yes	yes	yes	yes
Observations	196	196	196	196
R-squared	0.99	0.99	0.99	0.99
Symmetric Sourcing and Export Fixed Costs	yes	yes	yes	no
Idiosyncratic Fixed Costs	yes	yes	no	no
Round-trip Adjustment	yes	no	no	no

Summary and Future Work

Summary

- ▶ Novel supply chain measurement for the U.S. manufacturing sector
- New evidence on complementarities in input and output markets
- Strong role for roundtrip GVC linkages and for RTAs to promote GVC relationships
- Unpack effects from various proportionality assumptions
- Identify model features broadly consistent with empirical results

Summary and Future Work

Summary

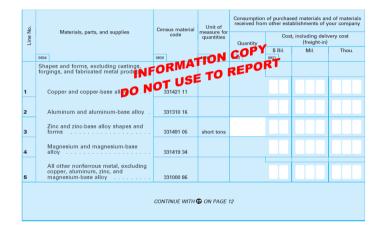
- ▶ Novel supply chain measurement for the U.S. manufacturing sector
- New evidence on complementarities in input and output markets
- Strong role for roundtrip GVC linkages and for RTAs to promote GVC relationships
- Unpack effects from various proportionality assumptions
- Identify model features broadly consistent with empirical results

Ongoing and Future Work

- Refine measurement include indirect imports and exports through extended GVC framework
- Pair model with detailed Census data that matches these empirical features

Appendix Slides

Multi-Industry Firms Complicate GVC Measurement


Trading firms typically span many industries

Average Number of Industries per Exporter-Importer

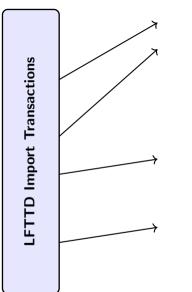
Year	4-digit Industry	6-digit Industry
2002	5.7	9.5
2007	4.9	8.2
2012	4.7	7.6
2017	4.8	7.4

CMF-MAT 2012: Detailed Cost of Materials, Parts, and Supplies

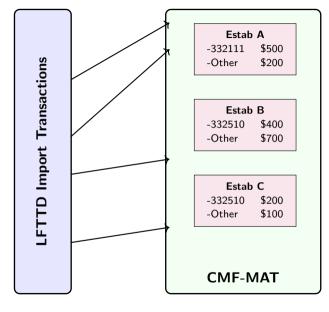
NAICS 331221: Rolled Steel Shape Manufacturing

Imported Input

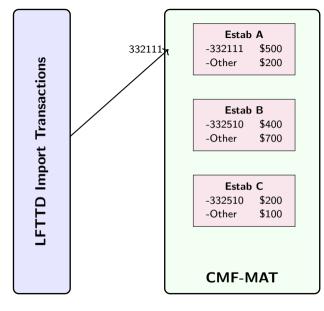
CMF-PROD 2012: Detail of Sales, Shipments, Receipts, or Revenue

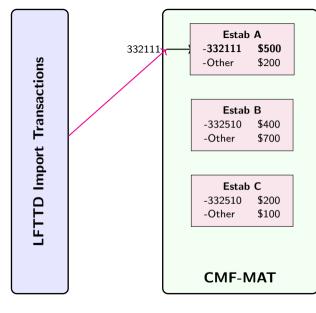

NAICS 331221: Rolled Steel Shape Manufacturing

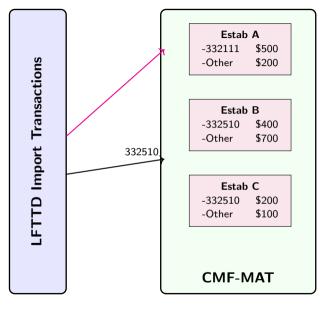
	ċ				Ur	it of		Prod	lucts	shipp	ed and	l other re	ceipts		
	Line No.	Products and services	Cen	sus product code		ure for	0	uantity			Valu	e, f.o.b. p			
	ine					ntities		autitity		Bil.		Mil.		Thou.	
	-	0734	0730		0736		0732		0731						
		Nonferrous metal die-casting foundries													
1		Aluminum and aluminum-base alloy .	33	1521 0100											
H		,													-
		Nonferrous metals and alloys,													
2	2	excluding aluminum	33	1522 0900											4
		Nonferrous metal foundries, excluding													
		die-castings													
		Aluminum and aluminum-base alloy castings													
		Const. and in a set of second													
3	3	Sand, excluding cast aluminum cooking utensils	33	1524 0101											
		Permanent and semi-permanent													
4	1	mold, excluding cast aluminum cooking utensils	33	1524 0206											
													-		
1.		Investment, excluding cast		1504 0044											
E	,	aluminum cooking utensils	33	1524 0311					_					<u> </u>	4

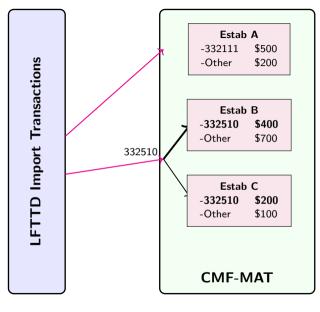

Produced Export

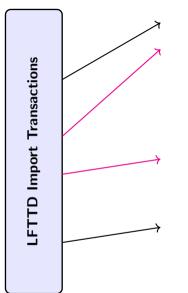
Imported Input Classification Details

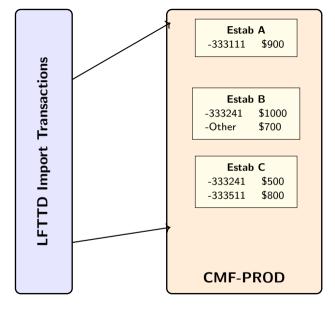

- 1. Harmonize product classifications
 - Use Pierce/Schott Concordances for common NAICS product basis
- 2. Match imports and material product codes (NAICS-basis)
 - $_{\circ}\,$ Direct: Imported products in LFTTD match CMF-MT product
 - Indirect: Imported products that *do not* match to any CMF-PT product
 - Concern: Significant "Not elsewhere specified or indicated" (NESOI) in CMF-MT Indirect
- 3. Allocate imported inputs to individual establishments
 - $_{\circ}~$ Matches to 1 establishment \rightarrow straightforward
 - $_{\circ}~$ Matches to >1 establishment \rightarrow split value by material usage share

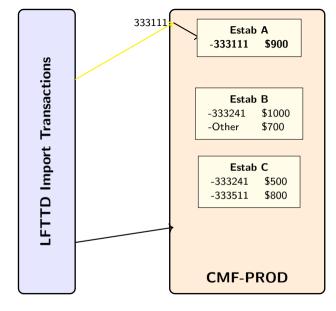

 Begin with set of imports of a particular firm...

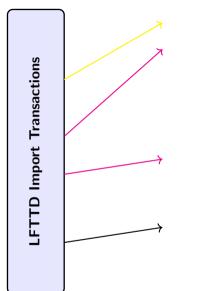

 First step: use material trailer files for all establishments...


- First step: use material trailer files for all establishments...
- ...to identify imports that match to material input usage...

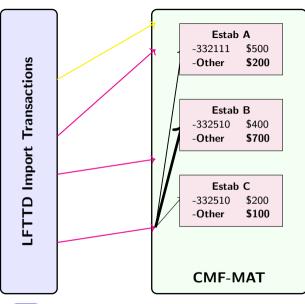

- First step: use material trailer files for all establishments...
- ...to identify imports that match to material inputs of establishments...
- ... and allocate import value as input to that establishment.


 If import product matches to multiple establishments...


- If import product matches to multiple establishments...
- Split value of imported input according to ratio of material input usage


- Remaining imports could be:
 - $_{\circ}~$ final goods, or
 - input, but not identified explicitly by CMF-MAT (NESOI)

 For remaining imported products, check to see whether products align with produced output according to CMF-PROD file



- For remaining imported products, check to see whether products align with produced output according to CMF-PROD file
- If so, then define as final good and remove those imports.

Allocation of Imports

 For all remaining imported products, we assume they represent the "Other" material usage categories in the CM-MAT.

Allocation of Imports

- For all remaining imported products, we assume they represent the "Other" material usage categories in the CM-MAT.
- We split the value of imported inputs according to share of total "Other" material usage for the firm as a whole...

Trailer Files: Match Details

Not Elsewhere Specified (NESOI) Products

Share of Costs/Shipments

<u>Material Trailer File</u>	
2002	30.9%
2007	28.1%
2012	21.6%
2017	33.3%
<u>Product Trailer File</u>	
2002	0.4%
2007	0.3%
2012	0.3%

Source: Authors' calculations using Economic Census, U.S. Census Bureau.

0.5%

2017

Fraction of Indirect (NESOI) Imported Inputs

Indirect Imported Inputs

Share of Total

2002	43.5%
2007	42.3%
2012	42.4%
2017	56.8%

Source: Authors' calculations using Economic Census, U.S. Census Bureau.

Input-Output Overlap: How Big is the Diagonal?

	Share of Input Codes Matching Product Codes (by value)				
	2002	2007	2012	2017	
6-digit	14.5%	16.0%	14.5%	19.4%	
4-digit	25.8%	28.7%	29.6%	29.0%	
3-digit	44.5%	46.8%	45.0%	44.2%	

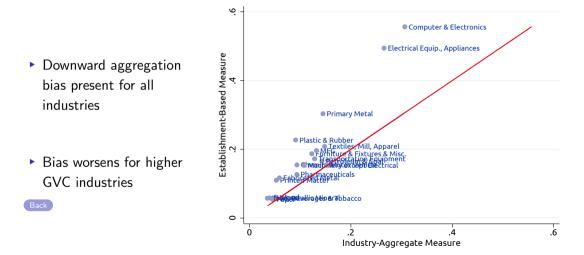
Back

Trader Type	Year	Firms	Establishments
Non-Trader	2002	118,000	126,000
Non-Trader	2007	98,000	103,000
Non-Trader	2012	86,000	91,000
Non-Trader	2017	88,500	93,000
Exporter-Only	2002	11,000	14,000
Exporter-Only	2007	24,000	29,000
Exporter-Only	2012	21,000	25,000
Exporter-Only	2017	20,500	25,500
Importer-Only	2002	13,000	18,000
Importer-Only	2007	10,000	11,000
Importer-Only	2012	10,000	12,000
Importer-Only	2017	9,500	12,500
Exporter-Importer	2002	11,000	43,000
Exporter-Importer	2007	20,000	55,000
Exporter-Importer	2012	20,000	51,000
Exporter-Importer	2017	17,500	48,500

Sample: Firm and Establishment Counts by Trader Type

What Share of Overall Trade is Represented in Our Sample?

	Share of Overall Trade Linked in Sample (by value)					
	2002	2017				
Imports Exports	47.4% 62.7%	49.0% 60.4%	46.3% 55.6%	55.1% 71.0%		



Downward Aggregation Bias: Establishment to Industry

	Imports	Gross Output	Exports	GVC	GVC/Exports
Estab 1	50	100	50	25	
Estab 2	10	100	10	1	
Industry true			60	26	0.43
Industry <mark>biased</mark>	60	200	60	18	0.3

Note: Adapted from Bems & Kikkawa (2021). Back

Industry Aggregation Bias by Sector (2012)

Why is There Aggregation Bias and Why is it Worsening?

- Flaaen, Kamal, Lee, Yi (2024)
- Arises from aggregating out firm and/or establishment level heterogeneity in export and import intensities
 - U.S. firm's export and import intensities positively correlated (Bernard *et al*, 2012)
- Conduct decomposition along the lines of Bems and Kikkawa (2021)
- Main takeaway: increased correlation of export and import intensities by U.S. manufacturers

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$800	\$200	\$0
Pharma	\$120	\$0	\$480

 Two industries (chemicals, pharmaceuticals) source the same commodity from different locations

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$800	\$200	\$0
Pharma	\$120	\$0	\$480

- Two industries (chemicals, pharmaceuticals) source the same commodity from different locations
- But, I-O tables do not have source detail!

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland	Data	
Chemicals	\$800	\$200	\$0	\$1000	
Pharma	\$120	\$0	\$480	\$600	
Data	\$920	\$200	\$480	,	

Instead, I-O Tables have aggregate commodity usage, by industry...

Reality: Input Usage of Given Commodity

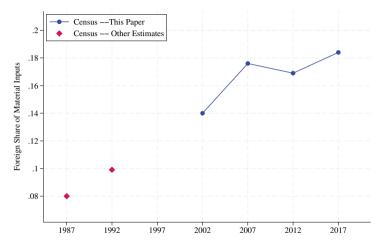
	Domestic	Germany	Ireland	Data
Chemicals	\$800	\$200	\$0	\$1000
Pharma	\$120	\$0	\$480	\$600
Data	\$920	\$200	× \$480	

• ... which are combined with aggregate commodity usage by source (but not industry!) from i.e. import data

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland	Data
Chemicals	\$800	\$200	\$0	\$1000
Pharma	\$120	\$0	\$480	\$600
Data	\$920	\$200	\$480	

 Hence, the *Proportionality Assumption* is applying the industry-level commodity proportions to all aggregate sources


Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$800	\$200	\$0
Pharma	\$120	\$0	\$480

Proportionality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$575	\$125	\$300
Pharma	\$345	\$75	\$180

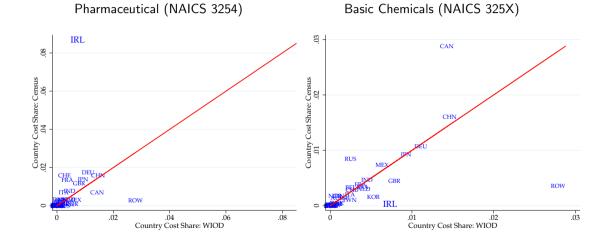
Rising Foreign Input Cost Share in U.S. Manufacturing

Source: CMF and LFTTD (blue dots); Berman, Bound, & Griliches (1993); Kurz (2006) (red diamonds).

Census-WIOD Input Cost Share Correlations, 2012

Back

NAICS	Input Costs
Food, Beverage, and Tobacco	0.83
Textiles, Apparel, Leather	0.67
Wood and Wood Products	0.87
Paper and Paper Products	0.81
Printing	0.73
Coke and Petroleum Products	0.68
Pharmaceutical	0.30
Chemicals and Chemical Products	0.62
Rubber and Plastics	0.67
Non-metallic Mineral Products	0.86
Basic Metals	0.94
Fabricated Metal Products	0.79
Machinery and Equipment	0.87
Computer, Electronic and Optical	0.62
Electrical Equipment	0.75
Motor Vehicles and Trailers	0.90
Other Transport Equipment	0.85
Furniture and Other Mfg	0.58


- Overall correlation of cost shares is positive, but well below one
- Proportionality works well in motor vehicles, basic metals, but less so in pharmaceuticals

Census-WIOD Bilateral GVC Country Correlations, 2012 (Back)

NAICS	Bilateral Pair GVC
Food, Beverage, and Tobacco	0.92
Textiles, Apparel, Leather	0.56
Wood and Wood Products	0.63
Paper and Paper Products	0.76
Printing	0.64
Coke and Petroleum Products	0.94
Pharmaceutical	0.26
Chemicals and Chemical Products	0.81
Rubber and Plastics	0.49
Non-metallic Mineral Products	0.66
Basic Metals	0.69
Fabricated Metal Products	0.77
Machinery and Equipment	0.85
Computer, Electronic and Optical	0.83
Electrical Equipment	0.69
Motor Vehicles and Trailers	0.86
Other Transport Equipment	0.81
Furniture and Other Mfg	0.48
Overall Manufacturing	0.42

- Correlation of bilateral country pairs is generally lower
- Proportionality works well in coke and petroleum products and food, beverage, and tobacco

Where Import Proportionality Performs Less Well

Proportionality Makes GVC Linkages Too Diffuse

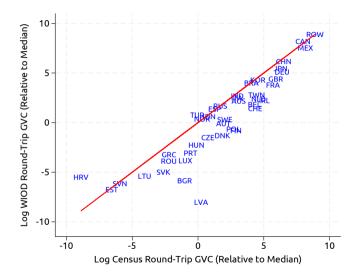
- Proportionality implies positive values for ALL bilateral input-output linkages
- ▶ Even within set of WIOD countries, zero input-output flows are common

Fraction of Zero Bilateral Pair Linkages, by Sector, 2012

NAICS	Percent	NAICS	Percent
Nondurable		Durable	
Printing	28%	Wood and Wood Products	37%
Coke and Petroleum Products	20%	Non-metallic Mineral Products	13%
Paper and Paper Products	14%	Basic Metals	6%
Food, Beverage, and Tobacco	14%	Motor Vehicles and Trailers	1.6%
Textile, Apparel, Leather	11%	Fabricated Metal Products	1%
Pharmaceutical	4%	Other Transport Equipment	0.2%
Rubber and Plastics	3%	Furniture and Other Mfg	0.1%
Chemicals and Chemical Products	2%	Electrical Equipment	0%
		Machinery and Equipment	0%
		Computer, Electronic, Optical	0%

Top GVC Country Pairs, Overall Manufacturing 2012

Source	Destination	GVC (\$bill)	GVC/Exports
Mexico	Canada	5.2	1.98%
China	Canada	4.6	1.72%
Mexico	Mexico	4.3	2.23%
Canada	Canada	3.6	1.36%
Canada	Mexico	2.7	1.37%
Japan	Canada	1.9	0.73%
China	Mexico	1.5	0.79%
Singapore	Canada	1.2	0.44%
Germany	Canada	1.1	0.43%


Source Country	Destination Country	GVC/Exports
Мо	tor Vehicles and Traile	r
Mexico	Canada	2.73%
Mexico	Mexico	5.95%
Canada	Canada	1.73%
Japan	Canada	1.54%
Germany	Mexico	1.78%
Canada	Mexico	1.74%
Japan	Mexico	1.13%
Germany	Canada	0.50%
Germany	Germany	3.09%
South Korea	Canada	0.37%

Source Country	Destination Country	GVC/Exports
Oth	er Transport Equipmer	nt
France	France	3.29%
Japan	Japan	2.88%
Japan	United Arab Emirates	2.90%
Japan	China	2.68%
Japan	France	2.28%
Canada	France	2.04%
United Kingdom	France	2.00%
France	Brazil	2.27%
United Kingdom	United Arab Emirates	1.70%
France	Japan	1.46%

Source Country	Destination Country	GVC/Exports
Ma	chinery and Equipmen	t
Mexico	Canada	0.91%
Canada	Canada	0.82%
Germany	Canada	0.75%
Japan	Canada	0.68%
China	Canada	0.54%
Mexico	Mexico	1.00%
United Kingdom	Canada	0.48%
Mexico	Australia	0.72%
Mexico	Germany	3.17%
Canada	Australia	1.56%

Source Country	Destination Country	GVC Share	
Pharmaceuticals			
Ireland	Italy	11.04%	
Ireland	Japan	4.61%	
Ireland	Belgium	4.96%	
Ireland	South Korea	16.07%	
Ireland	France	5.05%	
Ireland	Ireland	9.74%	
Ireland	Canada	2.69%	
Ireland	Brazil	5.69%	
Ireland	Mexico	3.89%	

WIOD underestimates Round-trip GVC

- Round-trip GVC scaled relative to the median value across all GVC pairs
- WIOD bilateral GVC below the 45-degree line

Additional Results on RTAs and GVCs: 2002–2017

Variable	Depender (1)	nt Variable: (2)	Log Bilateral GVC (3)
	. ,	. ,	. ,
RTA (<i>m & n</i>)	-0.08**		
	(0.037)		
RTA (<i>m</i> & US, <i>n</i> & US)	· /	0.135*	
		(0.075)	
RTA (<i>m</i> , <i>n</i> , US)			0.196**
			(0.099)
Exporter-Importer F.E.	Yes	Yes	Yes
Observations	112,000	112,000	112,000
R^2	0.92	0.92	0.92

 Results support findings in Johnson and Noguera (2019)

Back

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Fixed Cost Specification in Numerical Exercise

$$F_{ifn}^{X} = F_{in}^{X} \varepsilon_{ifn}^{X}(\Omega_{if}^{NI})$$

$$F_{ifm}^{I} = F_{mi}^{I} \varepsilon_{ifm}^{I}(\Omega_{if}^{NX})$$

$$\begin{aligned} \varepsilon_{ifn}^{X}(\Omega_{if}^{NI}) &\equiv \bar{\varepsilon}_{ifn}^{X} \times \left(1 - \xi_{f} \mathbb{1}(n \in \Omega_{if}^{NI})\right) \\ \varepsilon_{ifm}^{I}(\Omega_{if}^{NX}) &\equiv \bar{\varepsilon}_{ifm}^{I} \times \left(1 - \xi_{f} \mathbb{1}(m \in \Omega_{if}^{NX})\right) \end{aligned}$$

Back

Preferences, Expenditure Shares, and Final Goods Production Back

- Preferences of consumer in country n are CES (with elasticity σ) over varieties produced by firms-countries that sell to n
- Expenditure share by consumer in *n* on good sold by country *i* firm *f* is:

$$S_{ifn}^{F} = \frac{(P_{ifn}^{F})^{1-\sigma}}{\sum_{i' \in \Omega_{n}^{N}} \sum_{f' \in \Omega_{i'n}^{F}} (P_{i'f'n}^{F})^{1-\sigma}}$$

where P_{ifn}^F is the price paid by consumer in *n* for good produced by country *i* firm *f*

Firm *f* from country *i* produces final good from labor and intermediate composite:

$$Q_{if}^{F} = \varphi_{if} \left(\frac{L_{if}^{F}}{\alpha}\right)^{\alpha} \left(\frac{Y_{if}^{F}}{1-\alpha}\right)^{1-\alpha}$$

where Y_{if}^F is CES over intermediate goods with elasticity η .

Intermediate Input Sourcing (Back)

- Intermediate goods are produced by labor with constant returns to scale and productivity drawn from Fréchet distribution with productivity and shape parameters *T* and *θ*
- Probability that firm f in i sources intermediate inputs from country $m \in \Omega_{if}^{NI}$:

$$\mu_{ifm}(\Omega_{if}^{NI}) = \frac{T_m(w_m d_{mi}^I)^{-\theta}}{\sum_{m' \in \Omega_{if}^{NI}} T_{m'}(w_{m'} d_{m'i}^I)^{-\theta}}$$

where w and d_{mi}^{I} are the wage and the variable trade cost for inputs sourced from mIf f in i exports to n, consumer in n pays:

$$P_{ifn}^{F} = \left(\frac{\sigma}{\sigma - 1}\right) d_{in}^{X} \delta_{if}(\varphi_{if}, \Omega_{if}^{NI})$$

where d_{in}^X and δ_{if} are variable trade cost for final goods from *i* to *n* and variable unit cost for *f* in *i*