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Abstract

We develop a model for analyzing firm innovation strategies, distinguishing between
the exploitation of established firm-level paradigms (which we call ”theories”) and
the exploration of new paradigms. Central to the model is the role of speed. The
empirical analysis of a sample of all US public firms with at least one patent between
1980 and 2021, reveals that the speed at which firms exploit innovations within their
existing paradigms is positively correlated with their exploration of new technolog-
ical areas, an increase in patent output relative to R&D, and an increase in firm
size over time. The model identifies four key drivers of innovation success: search
speed within existing theories, the probability of discovering new theories, the po-
tential to generate new paradigms, and the scale of firm resources. High search speed
boosts early-stage productivity and resource accumulation, increasing the likelihood
of discovering new theories and sustaining growth. Among other things, our model
provides an explanation for the hyper-growth of many high-tech companies today.
Policymakers should consider interventions that accelerate search-enhancing tech-
nologies, and foster theory generation across industries, promoting equitable growth
and reducing disparities in innovation capacity.
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1 Introduction

Innovation is a key driver of economic growth. At the micro-level, there is extensive

literature on innovation (Hall & Rosenberg , 2010; Hall & Helmers , 2024). At the macro-

level, the new growth literature, stemming from Romer (1990) and Aghion & Howitt

(1992), places innovation at the center of the growth processes for countries, industries,

and firms.

Surprisingly, however, neither the micro nor macro literature has thoroughly explored how

changes in the speed of innovation impacts firms, industries, and economies. The issue

is relevant. For instance, Rosenberg (1992) showed that technical advances in scientific

instrumentation increased the speed of innovation in industries, enhancing innovation

opportunities. Similarly, several technologies, such as computers, have accelerated the

pace of activities, including innovation search and the generation of innovations. Today’s

artificial intelligence (AI) holds the promise of enhancing these processes to a considerable

extent.

This paper introduces a framework for analyzing firm innovation strategies through the

lens of search processes. We combine speed with a fundamental feature of innovation

search: firms either search for innovations within established theories or seek to discover

new theories before searching within them. Building on Dosi’s (1982) paradigm shift

concept, which parallels Kuhn’s process of scientific revolutions, we view theories as firm-

level paradigms. In our dynamic model, firms search for innovations in a staged process,

allocating a given amount of resources between searching within current theories and ex-

ploring new ones. Discovering a new theory resets the process, while searching within a

theory gradually exhausts innovations, prompting firms to shift resources toward discov-

ering new theories. Higher search speeds exhaust theories more rapidly, leading to earlier
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and larger resource allocations toward new theory discovery.

The model predicts that firm size and innovation are influenced by search speed, the

propensity for basic research, and the resources that they can deploy into this process. It

highlights how firms of different sizes prioritize basic versus applied research, thereby shap-

ing their growth strategies. Firms with high search speed, more basic research propensity,

and size tend to favor radical innovations. Additionally, the model identifies nonlinear

effects of search speed. At low speeds, focusing on basic research can be inefficient, as

firms risk moving on from current theories too early. However, at high speeds, rapidly

finding new theories becomes essential, as existing opportunities are quickly depleted,

maximizing returns.

Our model examines a single firm’s knowledge production, setting aside competition,

spillovers, and other elements that could enrich understanding of innovation speed. We

also simplify by assuming that more knowledge yields higher economic returns, without

detailing the conversion process. While these factors are important, our analysis concen-

trates on the primary mechanisms of speed, reserving broader considerations for future

research.

Section 2 reviews the literature. Section 3 provides motivating evidence. Sections 4 and

5 present our model and its implications, while Sections 6 and 7 offer discussion and

conclusions. The Appendices include derivations, proofs, and the construction of our

measure of patent clusters.

2 Related Literature

The framework of our paper sheds light on several puzzles in innovation and economic

growth. We address Christensen’s (1997) paradox: Despite efficient resource allocation,
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established firms struggle with disruptive innovations due to difficulty in identifying new

opportunities (selection problem) and the threat to existing businesses (cannibalization

problem). The model underscores the significance of search speed. A slower search process

pushes firms to focus on exploiting current theories, limiting their capacity to explore new

avenues. On the other hand, a faster search pace rapidly exhausts available opportunities,

making it advantageous for firms to pursue new theoretical frameworks.

This finding aligns with Levinthal & March’s (1993) concept of ”myopia of learning,”

where firms specializing in a slow search environment within a bounded domain, experi-

ence diminishing returns but adopt this focus as an optimal strategy under the constraints

of slow search. Slow search restricts firms to exploiting existing knowledge, hindering the

exploration of new areas.

Bloom et al. (2020) showed that ”ideas are harder to find” despite significant innova-

tion resources, consistently with our model’s predictions under slow search technology.

Notably, our model suggests that it is not a lack of inherent capability that hinders

new ideas but rather the optimal resource allocation towards existing trajectories when

search is slow. This implies that slow search allows for continued investment within an

established framework, even as the innovation rate declines, delaying the need to explore

entirely new theories.

A growing body of literature explores AI’s impact on innovation and growth (Furman

& Seamans, 2019; Agrawal et al., 2019; McElheran et al., 2024). AI, characterized as a

general-purpose technology (Cockburn et al., 2019; Trajtenberg, 2019) has the potential

to significantly increase search speed (Agrawal et al., 2024). AI’s ability to dramatically

accelerate search speed creates conditions for a paradigm shift. Additionally, Ludwig &

Mullainathan (2024) argue that generative AI enhances the generation of novel repre-

sentations, extending AI’s influence beyond accelerating search speed to improving the
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ability to envision new theories.

We contribute to the growth literature (Romer, 1990; Aghion & Howitt, 1992) by ex-

ploring the micro-foundations of knowledge as an asset and its implications for growth.

Building on Weitzman’s (1979 & 1998) work on knowledge formation and recombination,

our model addresses the broader concept of theories and the interplay between search

within and across them, particularly how search speed influences this dynamic. This

approach aligns with Ludwig & Mullainathan’s (2024) view of theory generation as a col-

laborative process involving humans and AI. Our focus on search speed and its impact on

discovery mechanisms illuminates a critical and previously unexplored dimension of the

innovation process and its connection to economic growth. While Acemoglu & Restrepo

(2018 & 2020) focus on AI and task replacement, we emphasize the interplay between

established (“old”) and emerging (“new”) theories driving innovation and growth. This

interplay extends beyond AI’s role in task creation.

Arrow (1962) noted that spillovers hinder private investment in basic research. Our

framework supports this in the context of slow search speeds, where established theories

retain long-term value. However, at high speeds, theory exhaustion necessitates new

discoveries for competitive advantage, making basic research an endogenous driver for

envisioning new frameworks. This aligns with high-tech firms’ significant investments

in basic research today. Our work expands on classic justifications for basic research

investment (Nelson, 1959; Rosenberg, 1990). We show that at high search speeds, even

non-diversified firms benefit from basic research, extending beyond internalizing spillovers

(Nelson, 1959) or accessing external knowledge (Rosenberg, 1990). We identify broader

conditions under which firms invest in basic research, aligning with Arora et al.’s (2021a)

findings of declining basic research investment during periods of slow search speeds. Our

model suggests that the rise of AI, potentially leading to faster search speeds, could
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induce increased investments in basic research, especially by larger firms seeking sustained

competitive advantages.

3 Descriptive Evidence

3.1 Firm Size, Research Activities, and Innovation

The interplay between exploration strategies, research activities, and firm size is im-

portant for understanding innovation dynamics and competitive advantage. Extensive

literature reveals that both large and small firms innovate, though larger firms often face

diminishing R&D returns, while smaller firms, despite limited resources, often achieve

higher innovation productivity. The balance between incremental and radical innovation

has also been examined, with younger managers and competitive environments fostering

more disruptive changes.

This section fills gaps in the literature by exploring the role of search speed, showing

that faster speeds boost exploration and growth, particularly in top-performing firms.

Before showing our evidence, we cast it into what we currently know about firm size and

innovation.

The innovation literature has explored extensively the optimal firm size for innovation,

revealing that both large and small firms can be highly innovative and invest significantly

in basic research (Cohen et al., 1987; Cohen & Klepper, 1996a; Cohen & Klepper, 1996b;

Acs & Audretsch; 1988, 1990; Baumol, 2002). However, while R&D investment scales

with firm size, R&D productivity often decreases, leading to the ”size contingent” theory,

which suggests that R&D returns vary by firm size (Mansfield, 1981; Rosen, 1991; Cohen

& Klepper, 1996a).
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The relationship between firm size and basic research is more complex (Cohen, 2010).

Firms often underinvest in basic research due to its broadly shared societal benefits (Nel-

son, 1959 & 2006). Smaller firms, despite limited resources, often achieve higher patent

productivity relative to their size, indicating diminishing returns for larger firms (Scherer,

1965). Basic research, particularly in the context of General Purpose Technologies (Rosen-

berg, 1994; Bresnahan & Trajtenberg, 1995), plays a crucial role in boosting productivity

and driving economic growth across industries. Larger firms tend to focus on process in-

novations, leveraging economies of scale (Cohen & Klepper, 1996a) and internal research

to prevent competitors from exploiting their discoveries (Arora et al., 2021a).

The choice between incremental and radical innovation is another key factor, with incre-

mental innovations building on existing technologies and radical innovations creating new

technology clusters crucial for long-term growth. Firms with open corporate cultures and

young managers are more likely to pursue radical innovations, reflecting a culture open to

disruptive change (Acemoglu et al., 2022). In competitive environments, firms often focus

on internal research to avoid benefiting rivals, while regulations can push firms toward

more radical, high-risk strategies (Arora et al., 2021a). Additionally, while regulations

typically reduce overall innovation by limiting incremental efforts, they can also push

firms toward more radical, high-risk strategies (Aghion et al., 2023).

Small and medium-sized enterprises often excel in niche markets, achieving global leader-

ship in specific areas through continuous innovation (Acs & Audretsch, 1990; Noteboom,

1994)). The German Mittelstand and Southern European SMEs in low-tech industries ex-

emplify this success, thriving through incremental innovations despite resource constraints

(De Massis et al., 2018). Different entrepreneurship models lead to varying growth rates

and firm sizes (Lehmann et al., 2019), with innovative startups poised for growth differ-

ing structurally from ”optimally stable” small firms that maintain their size over time
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(Gimenez-Fernandez et al., 2020).

3.2 Impact of Search Speed

We explore the relationship between search speed, firm size, and the allocation of resources

between incremental and radical innovation. A plausible hypothesis is that rapid search

depletes the available innovations within a specific theoretical paradigm. Consequently,

firms with a higher capacity to discover new theories are more likely to pivot to different

paradigms and engage in greater exploration. This dynamic should enhance their overall

innovation capabilities, as they quickly exhaust existing theories and continually discover

new ones, revitalizing their ability to generate innovations.

Meanwhile, firms with more resources can afford to invest in both deepening their current

innovations and pursuing new theoretical discoveries. This dual approach positions them

to explore more and achieve accelerated growth, thanks to increased innovation produc-

tivity. However, the impact will vary, with the most innovation-driven firms maximizing

the opportunities presented by faster search processes.

We provide initial suggestive evidence about these conjectures, by employing the DIS-

CERN2 database (Arora et al., 2024a & 2024b; https://zenodo.org/records/13619821),

which includes comprehensive data on all U.S. public firms with at least one patent from

1980 to 2021. This database links firms by ownership structure, ensuring that patents

filed under different names are correctly attributed to their ultimate owners. Addition-

ally, DISCERN2 integrates patent data with Compustat financial data, providing a robust

dataset for our analysis. It also provides the information whether in any year the firm

acquired other firms (one or more). Likewise, data for acquired firms are available up to

the year in which they are acquired. To our knowledge, this is the most accurate and

comprehensive dataset that we could use for our purpose. Table 1 provides definitions
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and descriptions of all variables used in our study.

Table 1: Description of Variables

Variables Description
∆Speed Change in speed: Ratio between: a) firm’s patents in year t; b)

firm’s patents in year t ` 1 in CPC subclasses in which the firm
patented in year t or before (Our computations from DISCERN
data)

% Patent Clusters Firm’s share of patent clusters that include firm’s patents in year
t (Our computations from DISCERN data. See Appendix A5)

Patents/R&D Firm’s patents over million R&D expenditures (DISCERN2 &
Compustat)

Size Index Average firm’s percentile position in total assets, net income, in-
vested capital, and sales (Compustat)

MA Dummy for whether the firm has acquired one or more firms in
the year

Dividends/Assets Firm dividends over total assets (Compustat)

We measure the change in speed, which we label as ∆Speed, as the ratio between patents in

one year and the patents in the following year excluding patents in CPC patent subclasses

in which the firm never patented in the past. We use patents as a proxy for firm’s ideas.

We focus on the change in speed because speed will be affected by the scale of the firm or

other similar features. As we will also see in our model in the next section, our measure

∆Speed, which is a ratio between patents in consecutive years, provides a clean measure

of the change in speed. We posit that, within a given domain, faster firms generate more

patents in the previous year compared to the subsequent year. For instance, given two

firms producing 100 patents in three years, a faster firm produces 40, 50, and 10 patents

vis-à-vis 30, 45, and 25 patents of the slower firm.

Additionally, we calculated this variable using patents in the same CPC classes or sections,

with no much variation in the results. However, subclasses fit well our analysis as they

represent well-defined technologies and activities, while more aggregate classes are more
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heterogeneous. For example, class C07 refers to Organic Chemistry, while subclass C07K

refers to Peptides; similarly, class G06 is related to Computing, Calculating, and Counting,

while subclass G06F pertains specifically to Electric Digital Data Processing.

To measure exploration, we developed a metric based on patent clusters. These clusters

aggregate patents from all firms in our database that share similar combinations of CPC

classifications, with details of the clustering algorithm provided in Appendix A5. Our

firm-year variable, % Patent Clusters, reflects the proportion of clusters that a firm’s

patents fall into in a given year. We reapplied the clustering algorithm annually, as using

a single clustering approach across all years failed to converge due to the large volume of

patents. Even the annual clustering required five days to stabilize. Additionally, a single

clustering scheme for the entire 1980–2021 period would not capture evolving technological

trends, which our measure seeks to reflect. We also calculated a 5-year moving average

of clusters, yielding similar results.

The redefinition of clusters every year is not a problem because clusters rearrange ran-

domly using the same criterion (similar combinations of CPC subclasses). Thus, the share

of firm patents falling in the clusters is consistent over time. Moreover, we do want the

updates of clusters to take into account the evolution of technology – as a matter of fact,

the number of clusters increases over time. The share of clusters of the firm’s patents then

represents a measure of the extent of exploration relatively to the evolution of technology.

The Patents/R&D ratio covers all the patents of the firm in any given year, including the

patents in new CPC subclasses in which the firm patented for the first time in the year.

It is then a measure of the innovation productivity of the firm’s R&D including patents

in both old and new CPC subclasses.

We constructed the Size Index by calculating the percentile position of each firm-year’s
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total assets, net income, invested capital, and sales. The Size Index is the average of these

four percentile positions. In cases where total assets, net income, or invested capital are

negative for some firms in certain years, these negative values lower the firm’s percentile

ranking accordingly. Our Size Index accounts for these variations.

The variable MA is a binary indicator representing whether a firm has acquired one or

more companies in a given year. We use this dummy to account for changes in firm-

level variables that result from additions related to the acquired targets. Using a specific

dummy for the exact number of acquisitions reduces our sample size, as many of these

instances correspond to singleton observations that are excluded from the analysis. Al-

though the results remain consistent, we prefer to use a single dummy variable to control

for the average impact of acquiring one or more firms. Finally, as we will see, we employ

Dividends/Assets as a measure of the extent to which firms distribute surplus as opposed

to reinvesting available assets.. We assume that all firms with zero-dividends throughout

the period (1980-2024) do not distribute dividends and we set them as missing observa-

tions for this variable.

We focus on the 38,992 observations in DISCERN2 for which we have non-missing values

for all our variables, but Dividends/Assets. As we said, Dividends/Assets is only available

for firms that distribute dividends. For the analyses using this variable, we focus on the

sample in which this variable is available. Table 2 provides descriptive statistics.

Figure 1 shows the 1981-2021 trends of ∆Speed, % Patent Clusters, and Patents/R&D.

They are the annual averages across firms of the differences of the variable from the firm

average over the years. This absorbs the firm-specific effects (along with the MA dummy)

so that we can focus on the average within-firm trends. We can then interpret the yearly

values in these figures as the dynamics of an aggregate representative firm in our sample.
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Table 2: Descriptive Statistics

Variables mean sd median min max N
∆Speed 1.090 1.153 0.922 0 30 38992
% Patent Clusters 0.015 0.040 0.004 0 0.595 38992
Patents/R&D 1.350 13.6 0.337 -83.3 1666.7 38992
Assets (*) 4701.6 25008.3 315.0 0.001 797769 38992
Net Income (*) 238.3 1951.3 3.637 -98696 104821 38992
Invested Capital (*) 2768.2 14034.4 218.4 -54554 502274 38992
Sales 3456.1 15484.1 256.4 -21.8 469822 38992
Size Index 64.6 26.8 70 1 100 38992
MA 0.077 0.266 0 0 1 38992
Dividends/Assets 0.019 0.415 0.007 0 63.5 23781

(*) million USD. All observations available for all the variables employed in the analyses of this section,
but Dividends/Assets where we use the subset of observations for firms with at least one positive value of
the variable during 1980-2021 (as a proxy for excluding non-public firms that do not distribute dividends).
Three observations for R&D and eight observations for sales are negative. We chose not to modify the
original DISCERN2 data.

Interestingly, all three variables follow a U-shape. They decline till about the start of

the millennium, and increase again. Table 3 confirms this trends. It reports the OLS

regressions of the three variables using firm fixed effects, theMA dummy, and the variables

year and year2. In all three regressions the coefficients of year and year2 are, respectively,

negative and positive, suggesting a U-shape, and they are statistically significant. They

estimate turning points in years 1997, 2004, and 2009.

We interpret these trends in three ways. First, the change in speed declined up to the

start of the millennium, and has risen again thereafter. Second, exploration, as measured

by % Patent Clusters, follows the same pattern. Thus, as we conjectured, a decrease in

the change in speed is associated with a decrease in exploration, and vice versa. Third,

change in speed and exploration are associated with increases in innovation productivity,

as measured by Patents/R&D.

We also want to assess the conjecture that the relation between % Patent Clusters and

∆Speed is moderated by the scale of resources. Figure 2 relates the annual averages of
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Figure 1: ∆Speed, % Patent Clusters, Patents/R&D, 1981-2021

(a) ∆Speed (b) % Patent Clusters

(c) Patents/R&D (d) Fitted Curves

Annual averages of differences of variables from firm average over time (with 95% confidence intervals,

including absorption of MA). Fitted curves are predicted values in Table 3, rescaled for ease of

comparison.

the differences of these two variables from the firm average over time (absorbing MA as

well), distinguishing the firms in the top and bottom three quartiles of Size Index. Again,

we can think of the annual dots as the representative firm in the top and bottom three

quartiles.

Figure 2 first shows that, for given ∆Speed, %Patent Cluster is systematically higher for

the firms in the top quartile, which are the larger firms. While this may seem a natural

implication of the firm’s scale, it could also be the very consequence of our conjecture that

knowledge theories exhaust. A larger scale of available resources is not invested repeatedly

in the same theory, but eventually redirected towards new theories where firms can search
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Table 3: Fitted Curves

Variables Speed % Patent Clusters Patents/R&D

year -1.794*** -0.043*** -5.799**
(0.000) (0.007) (0.017)

year2 0.000*** 0.000*** 0.001**
(0.000) (0.007) (0.017)

Constant 1,792.377*** 43.192*** 5,826.514**
(0.000) (0.007) (0.016)

Observations 38,992 38,992 38,992
R-squared 0.124 0.794 0.371
Fixed effcts firm, MA firm, MA firm, MA
Clustered errors firm firm firm
log likelihood -58317 101454 -148180

Robust p-values in parenthesis. *** p ă 0.001; ** p ă 0.05; * p ă 0.10. Based on the estimated
parameters, turning years are, respectively, 1997, 2004, 2009.

in fresh new domains. Second, Figure 2 shows that ∆Speed increases % Patent Clusters

faster in the top quartile of size. This could suggests that resources help to increase

exploration as speed accelerates. However, this faster increase is statistically less robust

than the smaller increase in the bottom three quartiles. This implies that there is quite

some variability across firms in the top quartile of size in responding to stronger changes

in speed with greater exploration.

Figure 3 studies whether exploration matters. The figure shows whether the representative

firm in the top quartile of exploration (% Patent Clusters) grows faster (higher increase

in the Size Index ) when the change in speed is higher. As a matter of fact, we now find

that: a) for the top quartile of % Patent Clusters, the Size Index grows faster with ∆Speed

than for the bottom quartiles – moreover, the former is statistically more significant than

the latter; b) the top quartile of % Patent Clusters corresponds to a systematically higher

Size Index, which ranges from around the 70th percentile to above the 80th. Simply put,
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Figure 2: % Patent Clusters vs ∆Speed, by Quartile of Size Index

Annual averages of differences of variables from firm average over time, including absorption of MA.

as ∆Speed increases, larger firms are associated with larger shares of patent clusters and

larger increases in size.

All this raises the question why large firms grow by investing in new theories, as implied

by the stronger association between ∆Speed and Size Index for the top quartile of %

Patent Clusters, and some of these firms do not invest in new theories, as implied by the

high variance of the positive association between ∆Speed and % Patent Clusters for firms

in top quartile of the Size Index, as shown in Figure 2.

Figure 4 sheds some light on this question by showing that, for the top quartile of firms by

Size Index, % Patent Clusters grows with ∆ Speed only for firms with Dividends/Assets

below the median of the sample in each year. Interestingly, they are also the firms with

a systematically lower share of patent clusters. This suggests that firms that do not
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Figure 3: Size Index vs ∆Speed, by Quartile of % Patent Clusters

Annual averages of differences of variables from firm average over time, including absorption of MA.

explore much respond to higher ∆Speed by replacing the distribution of dividends with

investments in exploration. Firms that exhibit high % Patent Clusters distribute, instead,

dividends, and do not respond to ∆Speed by increasing exploration.

Finally, Figure 5 shows that the firms in the top quartile of Size Index grow faster with

∆Speed when they are below the median of Dividends/Assets for the year. This suggests

that alternative uses of dividends, such as for exploration, contribute to faster growth.
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Figure 4: % Patent Clusters vs ∆Speed by Quartile of Dividends/Assets

(Top Quartile of Size Index)

Annual averages of differences of variables from firm average over time, including absorption of MA.

4 Model

4.1 Set-Up

In this section, we present a model that can explain the patterns observed in the data. We

conceptualize the innovation process as a search within bounded spaces, where firms pro-

gressively deplete opportunities. This process exhibits diminishing returns as exploitable

opportunities within a given bounded space are gradually exhausted. Drawing on Camuffo

et al. (2024), we refer to these bounded spaces as ”theories”—collections of business prob-

lems, solutions, conjectures, and logical connections that shape what companies search

for and why. Discontinuous change, like discovering new problems or spaces, re- vamps
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Figure 5: Size Index vs ∆Speed by Quartile of Dividends/Assets

(Top Quartile of Size Index)

Annual averages of differences of variables from firm average over time, including absorption of MA.

the search within a new domain, leading to fresh new opportunities. Theories are deemed

new when the firm realizes it must pivot to new areas, encompassing different problems,

solutions, conjectures, and logical association.

We assume that firms search by following a staged approach. Let ti P p0, T q be the time

allocated in stage i “ 1, 2, ...8 to search for new ideas in the current theory, and T the

time endowment in each stage. This time endowment can differ because firms can use

more resources (e.g. more researchers) or more productive researchers (e.g. because of

more qualified researchers or better technologies). During each stage, they invest time

ti to uncover new ideas within the current theory and they dedicate the remaining time

(T ´ ti) to discover new theories.
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Let λit
α
i , with α P p0, 1q, be the expected arrival rate of ideas in current theory in stage

i. We posit that firms explore a space si which is the space of what they know in stage i.

A theory defines this space. Firms can invest time ti to learn about the theory – that is,

about its different ramifications, potentials, and applications – and they can expand the

theory according to si “ tαi . Thus, the space of what they know is not fixed, and firms can

expand it through exploration. However, this exploration within a theory cannot change

the structure, or the paradigm, of the theory, which is determined by the sequence of λi.

We use a specific functional form for λi, that is, λi “ λ1ie
´γpi´1q. This functional form

allows for the possibility that the productivity parameter increases in the initial stages

and then decreases. In this way, we capture the fact that at the initial stages firms may

not yet experience a reduction in the productivity of search, but eventually they do. Let

λ1 “ λp1 ´ e´γq2 so that
8
ř

i“1

λi “ λ . The parameter λ is the expected total number of

ideas of the theory.1

The theory’s richness or potential is then λ, the total number of ideas that it can generate.

The exploration within the theory helps to find these λ ideas by exploring the spaces, or

parts of the theory, si, which can be larger or smaller depending on the time ti invested

in the search within the theory. But, as we discussed earlier, the shift to a new theory

with a different λ occurs because they spend time T ´ ti to discover a new theory.

Therefore, the arrival rate of new ideas depends on a measure of the theory’s potential

to generate new ideas (λ), the efficiency of search parameter γ ą 0 that represents the

rate of decay of ideas across stages in the current theory, and the resources ti allocated

to the search in the current theory. We interpret γ as our measure of change in speed. A

faster search raises the productivity of search in the earlier stages of the current theory

1Rewrite
8
ř

i“1

λi “ λ1

„

8
ř

i“1

e´γpi´1q ´ B
Bγ

8
ř

i“2

e´γpi´1q

ȷ

“ λ
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and lowers it in later stages. This depends on the fact that the space is bounded: if firms

discover more ideas earlier, they discover fewer ideas later because they have already

discovered a larger fraction of ideas within the theory.

The parameter γ shifts the curve λi upward in early stages, and lowers it for larger i, as

shown in Figure 6. Moreover, λi starts decreasing at i “ 1
γ
, and when γ increases, the

higher-γ curve falls below the lower-γ curve at i “ 1`e´γ

1´e´γ . Since for γ ą 0, 1`e´γ

1´e´γ ą 1
γ
, the

higher-γ curve always falls below the lower-γ curve in the declining portion of the curve.2

Also, a higher γ shifts the tilt of the curve, which occurs at i “
1

γ
, to an earlier stage i.

Figure 6 illustrates these patterns.3

Figure 6: Effect of Higher Speed (γ) Within Theories

i

λi

0 1

λ1

λ1

higher γ

1
γ

1`e´γ

1´e´γ

2The sign of 1`e´γ

1´e´γ ´ 1
γ is the same as the sign of γ p1 ` e´γq ´ p1 ´ e´γq. The minimum of this

expression, which occurs at γ “ 1, is 2e´1 ą 0, which implies 1`e´γ

1´e´γ ą 1
γ @γ ą 0.

3If γ ą 1, the λi curve tilts at i ă 1, and thus it will be always declining when i ě 1. This does not
affect the implications of our model. This is a direct consequence of speed: High speed rapidly depletes
opportunities, causing the phase of diminishing productivity to begin immediately.
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The firm’s dynamic program for knowledge accumulation K is

K “

j´1
ÿ

i“1

e´δiλiT
α

`

8
ÿ

i“j

e´δie´πpi´jq
rλit

α
i ` π p1 ` giqKs (1)

where δ is a discount factor, α P p0, 1q is a parameter that measures the productivity of

effort, and if j “ 1 the first term of this expression disappears.

Firms wait j ´ 1 stages before exploring a new theory. Till then ti “ T . At stage j they

invest tj ď T in the current theory and start exploring a new theory. If they do not find

a new theory in stage j, which occurs with probability e´π, firms invest tj`1 ă T in the

current theory, and look for a new theory, which they find with probability π. If they find

the new theory, they start exploiting it in the next stage, and obtain K. In the generic

stage i ą j, they have not found a new theory in the previous i´j stages with probability

e´πpi´jq, exploit the current theory by investing ti, and find a new theory with probability

π.

The term e´πpi´jq is the probability of no occurrences in i ´ j independent Poisson pro-

cesses. We approximate the probability of at least one occurrence, which is 1 ´ e´π, with

π. De facto we are assuming that π is small enough that 1 ´ e´π « π – that is, in the

time span of one stage firms obtain at most one occurrence. This assumption is harmless,

and amounts to say that the time span of each stage is relatively short.

The term gi is the growth rate of knowledge in stage i, which we approximate by

1 ` gi “ T ´ ti (2)

Thus, firms spend their exploration time to identify richer theories (i.e., with higher

potential for ideas generation λ). A lower ti, which raises T ´ ti, increases p1 ` giqλ,
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which is the expected total number of ideas of the new theory. However, the new theory

is feasible only with probability π.

This set-up relies on some simplifying assumptions. We assume that firms cannot find new

theories exogenously. If they do not spend time to look for them, that is T´ti “ 0, they do

not find theories with a positive expected number of ideas. Following Cohen & Levinthal

(1989) and Rosenberg (1990), they must make at least some minimal investments in

absorptive capacity to understand external scientific knowledge. Also, the probability π

of finding new feasible theories does not depend on the search for new theories in previous

stages. Similarly, the expected number of ideas of the new theory, which depends on

1 ` gi, only depends on the effort in the current stage and not on the efforts in the

previous stages. These extensions complicate the analysis without providing major new

insights.

4.2 Solving the Dynamic Program

In Section A1 of the Appendix we solve the dynamic program (1) by choosing the sequence

of time allocations ti, i ě 1. The first order condition implies that in stage i firms allocate

ti till the additional unit of ti allocated to further exploration in the current theory is

equal to what firms expect to obtain if they allocate that unit of time to the search of a

new theory.

This yields the following optimal ti, for i ą j, as a function of the initial condition tj.

ti “ Γ
1

1´α

ij tj (3)

where Γij ”
i

j
e´γpi´jq

To determine the initial condition tj, we make the following assumption.
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Assumption (A). The optimal t1 ě T .

Under this assumption, Lemma 1 below establishes that the initial condition occurs in

the declining portion of the productivity (λi) curve, and the initial condition is such that

tj « T .

Lemma 1. A ùñ j ě
1

γ
& tj « T .

Proof. See Appendix. ■

As shown in Section A1 of the Appendix, we solve the first order condition for tj by

approximating the optimal tj “ T . This amounts to solving for the optimal j. In turn,

this implies that for i ď j, ti “ T , and for i ą j, ti is determined by (3).

We obtain the following first order condition

αje´γpj´1q

πT
´

e´δ

r1 ´ e´pδ`γqs
2 p1 ` Ωq “ 0 (4)

where

Ω ” je´pδ`γqpj´1q
“

1 ´ e´pδ`γq
‰2
Ψj (5)

and Ψj ”
8
ř

i“j

e´δpi´jqψi, with ψi ” e´πpi´jq

„

α ` p1 ´ αqΓ
1

1´α

ij

ȷ

´ Γij.

Lemma 2. A ùñ D an optimal j.

Proof. See Appendix. ■

Section A1 of the Appendix shows that the optimal K is

K “
αλ1je

´γpj´1q

πT 1´α
(6)
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After replacing
αje´γpj´1q

πT
from (4) obtain

K “ K0 p1 ` Ωq (7)

where K0 ”
8
ř

i“j

e´δiλiT
α “ e´δλTα

„

1 ´ e´γ

1 ´ e´pδ`γq

ȷ2

is K under no switch (π “ 0), and we

replaced λ1 “ λ p1 ´ e´γq
2.

Lemma 3. The optimal j declines with T and π

Proof. See Appendix. ■

As an illustration of the optimal solution simplied by foc (4) (Lemma 2) and the compar-

ative static implied by Lemma 3, Figure 7 reports the shape of the left-hand-side (LHS)

of (4) as a function of j. As the curves show higher T or π reduce the optimal j. Plots

for different values of γ, δ, or α yield in most of the cases similar patterns.

Figure 7: Optimal j and Comparative Static vs T and π
(δ “ 0.05, γ “ 0.15, α “ 0.5)

(a) Optimal j vs T (π “ 0.035) (b) Optimal j vs π (T “ 1)

Curves represent the left-hand-side (LHS) of (4) as a function of j. The optimal j is the one that

corresponds to the point in which the curves cross the 0-line.
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5 Implications

5.1 Search speed and discovery rate

Search speed γ and discovery rate π depend on general conditions of the economy and

idiosyncratic characteristics of firms. We posit that there is a distribution of values γ or π

across firms, and common factors that raise or lower the values of γ or π of all firms. For

instance all firms benefit from new opportunities that raise speed (like AI) or by scientific

or technological advances that open new domains. We assume for simplicity that the

idiosyncratic components of γ and π are ”endowments” of the firms. Firms can be faster

or slower or more or less able to or interested in exploring new domains.

In principle, firms could optimize their γ and π at the outset of their dynamic program

as investments that set the underlying (long-term) choice of the firms in terms of speed

and ability to discover new theories. To streamline our analysis we assume that they

are endowments of the firm after this optimization process. Optimization would still

depend on exogenous factors that raise or lower the optimal γ or π of the firm. We

focus on this reduced form and discuss the effects of changes in γ and π as the exogenous

parameters that affect the choice of how fast the firm wants to be or how much it wants

to explore. This also implies that, in our discussion below, firms can reduce π or γ if they

are sub-optimally high, but cannot increase them. Increases in γ and π are costly, and

the optimization has already reached the optimal level of γ and π given costs. However, if

γ and π are higher than optimal, reducing them (with implied lower costs) is feasible. De

facto, this means that the optimal γ or π is below the frontier that they can reach, and

firms can move below their frontier, but they cannot push γ and π beyond their frontier.

Firms choose, instead, ti explicitly. Thus, the allocation of resources between current and

new theories is the strategic choice that firms make given these parameters. A lower ti
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reflects a higher T ´ ti – that is, firms invest to a greater extent in the growth of new

theories.

Theorem 1. The discovery of new theories is limited by the speed of search: γ ă γ1 ùñ

π ą 0 is higher than optimal.

Proof. See Appendix. ■

This theorem states that given the endowment π of the firm, there is a threshold γ1 such

that for smaller γ, the endowment of the firm is suboptimal. In other words, the firm

has a higher ability to discover new theories than it is ideal. The intuition is that, for a

low search speed γ, there are enough discoveries to be made in the current theory in later

stages, which lowers the value of a higher ability to discover new theories. It is natural

to assume that firms endowed with too high a π either lower it, or, if not, they produce

suboptimal knowledge because they switch ”too early” to new theories leaving ideas from

the old theory ”on the table”. Conversely, a sufficiently high search speed makes any

given ability π fully valuable. Early switch are beneficial because the old theory exhausts

rapidly and a greater ability to discover a new theory pays off. Firms reallocate resources

ti away from the current theory to the new theory, and j declines.

Figure 8 helps to illustrate Theorem 1. It shows the left-hand-side of (4) as a function of

j and the optimal j for different levels of π and γ. The figures also report the optimal

Ω using the given π and γ and the optimal j. From (7), K increases with Ω, and the

figures show that the optimal π is 0.05 when speed is high (γ “ 0.20), 0.035 when speed

is medium (0.15), and 0.02 when speed is slow (0.10). As implied by Theorem 1, when

speed is slow, a high ability π to discover new theories is suboptimal. It is simply too high,

leading too early to the discovery of new theories, before firm have exhausted, optimally,

the exploitation of the current theory. Only when speed is high (γ “ 0.20), the high

π “ 0.05 is optimal. In this case, high speed enables firms to exhaust theories more
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quickly, raising the value of a higher ability to discover new theories. Similarly, medium

speed (γ “ 0.15) makes π “ 0.035 optimal, and when speed is low (γ “ 0.10), firms need

to be slow in discovering new theories, making π “ 0.02 optimal.

Figure 8: Optimal π at Different Speed γ
(δ “ 0.05, T “ 1, α “ 0.5)

(a) π “ 0.020 (b) π “ 0.035

(c) π “ 0.050

Curves represent the LHS of (4) as a function of j for different π and γ. Ω is evaluated at the given π

and γ, and the corresponding optimal j. From (7), K increases with Ω. The figures show that for

π “ 0.05, 0.035, and 0.020, the highest Ω corresponds, respectively, to high-, medium-, and low-speed

(γ “ 0.20, 0.15, 0.10). As implied by Theorem 1, π “ 0.05 can only be sustained by high speed and

π “ 0.035 by medium speed. With slow speed, π “ 0.02 is optimal.

Interestingly, the proof of this Theorem shows that a higher π always reduces Ψj in the

expression for Ω. This is because a higher π provides fewer resources to explore the current
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theory, and thus makes it less likely to develop ideas in the current theory. However, a

higher π reduces the optimal j, anticipating the opportunity to produce new ideas in

the new theory. When speed is low, the cost of giving up the current theory can be so

high that this anticipation will never offset the costs of giving up resources allocated to

the old theory. When speed becomes sufficiently large, the quicker exhaustion of theories

in the current theory starts making this anticipation potentially beneficial. Firms start

switching, and the earlier switch provides the opportunity to improve the benefits of

finding and searching within new theories vis-à-vis continuing the search in the old theory.

Indeed, Figure 8 shows that the highest π “ 0.05 always corresponds to the lowest optimal

j. However, this anticipation is suboptimal unless speed is very high. Lower speed

makes smaller π and a higher waiting time before exploration more valuable. In this

respect, Theorem 1 also provides an explanation for Christensen’s (1997) paradox whereby

incumbent firms overlook new opportunities. This behavior is driven by a low search

speed.

Corollary 1. A sufficiently high search speed is a necessary condition to ensure that

knowledge increases with the probability of discovering new theories:
BK

Bπ
ùñ γ ą γ1

Proof. See Appendix. ■

This corollary highlights an implication of Theorem 1. If γ is small (γ ă γ1), increases

in π reduce K. The intuition is again that firms are more likely to jump to new theories

before they have exhausted, optimally, the current theory. Thus, they want to be less

impatient about producing new theories, and lower π. Only if speed is sufficiently high,

firms can fully exploit a given ability π ą 0 to discover new theories, and firms with π

higher than the given endowment π enjoy a higher K.

Figure 8 provides, again, an illustration of these patterns. As noted, (7) implies that K
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increases with Ω, which is affected by π. However, π does not affect K0. Therefore, as

the figures show, a higher π corresponds to the optimal Ω, and therefore to the optimal

K only if γ is higher. Thus, a high γ makes it more likely that K increases with π.

Put differently, when speed increases beyond the threshold γ1, not only is a higher endowed

π more valuable, but firms with higher π also perform better. This speaks, for instance,

to the fact that, with low speed, firms may invest too much in basic research to find

new theories. Conversely, with higher speed, the value of basic research to discover new

theories increases: With low speed basic research is redundant, with high speed, it is

a scarce resources. Also, an economy in which speed increases (e.g. because of AI or

more generally because of new technologies that accelerate the production o ideas) will

experience increasing differences in knowledge accumulation across firms. The mechanism

of these growing differences is the higher productivity in more basic research to discover

new theories.

5.2 Resources T and Growth of Ideas

The choice of T reinforces the effects discussed in the previous section. Higher γ and π

raise T , and the combined effect of these three variables raises the growth of new ideas.

As discussed in the previous section, low speed implies that firms with low or high π do

not differ systematically because low speed dampens the potential of higher π. In this

section we show that high speed raises the value of π, and they both raise T and a higher

growth of ideas. This widens gaps across firms further.

To keep matters simple, let V pK,T q be the ultimate value that the firm looks at, where K

is our knowledge asset that depends on T , and the argument T represents an alternative

allocation of resources such that a higher T increases K and V indirectly; the direct effect

of T is negative because it represents an alternative allocations that generate value for
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the firm. We assume that V is concave in T , and thus there is an optimal allocation of T .

One interpretation of the direct effect of T is that not only does value depends on knowl-

edge but also on the implementation of knowledge to generate products, services or other

goods that agents use. To the extent that resources T are rivalrous, this generates a trade-

off between production of knowledge and implementation. Another interpretation is that

T can be allocated alternatively to activities other than the growth of knowledge of the

firm. A classical example is ”leisure” or more generally reallocation of the firms’ proceeds

to shareholders in the form of dividends rather than investment. In what follows, we keep

these interpretations open. They all have similar implications for our main points.

Theorem 2. A sufficiently high search speed is a necessary condition for K to be super-

modular in π, γ, and T :
B2K

BπBγ
,

B2K

BπBT
,

B2K

BγBT
ą 0 ùñ γ ą γ1.

Proof. See Appendix. ■

This theorem establishes that only if γ ą γ1, the endowment π of a firm is not ”too high”.

A low speed does not trigger the complementarity stated by Theorem 2. In this case,

firms lower π and increase the allocation of resources ti on the current theory. Conversely,

if γ ą γ1, they respond to the higher γ by fully exploiting their higher ability to discover

new theories, lowering allocations to ti and increasing T , so that T ´ ti increases, and the

endogenous T raises further the richness of the newly explored domains and growth of

new ideas.

Table 4 and Figure 9 provide an illustration of Theorem 2. The table reports different

values of K for the eight triplets of low/high γ, π, and T . We employ the same values

of the parameters used in Figures 7 and 8, including δ “ 0.05 and α “ 0.05, and j

is set optimally, using (4), given the parameters. The table also reports the difference-

in-difference that corresponds to the second partial derivatives of any two of the three
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parameters, for the low and high values of the third parameter. As the table shows, all

these differences are positive, but the case for the pair (T , π) when γ is low. As implied

by the theorem, γ ă γ1 ùñ Ωπ “ 0 because, as shown in the proof of the theorem,

Ωπ ă 0 and firms reduce π optimally from their endowment up to the point where Ωπ “ 0.

As the proof of the theorem shows, this implies
B2K

BπBT
“ 0. This is the case in which the

complementarity breaks down: With low speed, increases in T do not raise the marginal

value of the ability π to discover new theories.

Table 4: Values of K for Different Combinations of T , γ, and π
(λ “ 1, δ “ 0.05, α “ 0.5)

γ T π “ 0.020 π “ 0.050
0.10 0.9 0.4296 0.4213
0.20 0.9 0.6484 0.6792
0.10 1.1 0.4791 0.4657
0.20 1.1 0.7333 0.7809

∆2K

∆γ∆π

T “ 0.9 0.0391
T “ 1.1 0.0610

∆2K

∆γ∆T

π “ 0.02 0.0354
π “ 0.05 0.0572

∆2K

∆π∆T

γ “ 0.10 -0.0050
γ “ 0.20 0.0168

The first prospect reports the values of K for the corresponding combinations of T , γ, π given the

optimal j in Figures 7 and 8. The second prospect reports the two differences in the differences of any

two of T , γ, and π, for the two values of the third variable. The second prospect shows that the variables

are complementary. However, for γ low, π and T are not complementarity, as implied by Theorem 2.

Figure 9 provides a graphical illustration. It reports the two planes corresponding to γ

low and high in the pK,T, πq space. As the figure shows, the plane corresponding to the

low γ is flatter than the place corresponding to the high γ. Specifically, when T is small

(T “ 0.9), the higher π reduces K, as also shown by the slightly negative cross-partial in

Table 4. When T is high, a higher π increases K. These differences are more pronounced

when speed is high, as shown by the upper plane in the figure.

Theorem 2 generates several insights. First, it aligns with Bloom et al. (2020), who

note that new ideas are harder to find because they require an increasingly large scale
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Figure 9: Values of Different Combinations of T , γ, and π
(δ “ 0.05, α “ 0.5)

The figure reports graphically the two planes that correspond to the first prospect of Table 4 for
γ “ 0.10 or 0.20

of resources. In our model, a low search speed prevents resources (T ) from accumulating

fast enough to discover new theories, suggesting that the discovery of new theories is

an antecedent to the lack of resources. New technologies that increase search speed can

enable firms to discover new ideas at a higher rate.

Second, according to Theorem 2, a low speed (γ ă γ1) levels off firms. Differences in π, γ,

or T do not generate higher gaps. This is no longer the case when speed is high. Speed

can trigger increasing inequality in the growth of firms. Firms with higher endowments of
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π or γ, or a greater ability to exploit economy-wide opportunities that raise π or γ, will

enjoy increasing gaps also thanks to their greater incentives to raise T , which generates

a virtuous circle among these three variables. Simply put, speed is likely to trigger of

increasing returns via faster speed, a greater rate of discovery of new theories, and a

greater incentives to invest resources to increase T in order to spin the virtuous cycle

further.

Finally, it is interesting to understand how the mechanism of higher growth unfolds as

speed increases. As noted in Section 4.1, each new theory has a pool of ideas that increases

by p1 ` giqλ, where λ is the pool of ideas of the previous theory, while 1 ` gi “ T ´ ti.

Higher speed increases T and π, lowers j, and lowers ti. The complementarities triggered

by high speed create the conditions for exhausting the ideas of the current theory faster,

jumping on a new theory earlier, and discover new theories with a higher pool of ideas.

Figure 10 provides a representation of these processes. The figure reports two cases. The

first one represents low speed (γ “ 0.10), and then endogenously (by Theorem 1 and

Corollary 1) low π (0.02) and (by Theorem 2) low T (0.9). The second one represents the

case of high γ, π, and T (0.20, 0.05, and 1.1).

As the figure shows, low speed generates longer and less steep cycles than high speed.

As discussed in Appendix A4, we draw randomly the stage at which, after the optimal j,

firms discover a new theory from an exponential distribution with expected value equal

to the inverse of π. This is the waiting time distribution corresponding to the Poisson

process that explains the discovery of new theories. Thus, while Figure 10 represents one

draw under our two cases, Figure 11 reports the averages of the number of ideas developed

up to 50, 100, 150, 200, and 500 stages in the first or second case, along with the 95%

confidence intervals, obtained from 100 rounds of simulations of each case. As the figure

shows, not only does the high-speed case generate more ideas, but the gap across stages
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Figure 10: Effects of γ, T , and π on the Growth of Ideas
(λ “ 1, α “ 0.5)

(a) γ “ 0.10, T “ 0.9, π “ 0.02 (b) γ “ 0.20, T “ 1.1, π “ 0.05

The figure shows the growth of ideas (λit
α
i , with α “ 0.5) with low speed, low

resources, and the corresponding low π (prospect a), or high speed, high resources,

and corresponding high π (prospect b). Appendix A4 reports how we computed the

growth of ideas from simulating our model given the parameters. The figure shows

that with low speed, resources, and π, cycles are longer, less frequent, and they

tend to decline across stages. The opposite is true with high speed, resources, and

π. Low speed also produces fewer innovations. As discussed in the text, high speed

also produces more ideas, and a growing gap in the number of ideas across stages.

widens. Our model predicts that speed, and the associated endogenous generation of π

and T , can increase gaps across firms.

6 Discussion

Our model offers several insights into key issues discussed in the literature and the current

dynamics of firms, industries, and technologies.

First, we provide an explanation for Christensen’s (1997) paradox, which posits that

established firms often miss new opportunities. Our model shows that in a slow search

environment, it is optimal for firms to focus on current theories and postpone the search

for new ones. Conversely, in a fast search environment, Christensen’s conditions do not

apply, and limited investment in new theories is sub-optimal.
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Figure 11: Speed and Growing Gaps in Ideas

The figure reports graphically the estimated average # of ideas, and their 95% confidence intervals,

after 50, 100, 150, 200, 500 stages under low and high speed (respectively γ “ 0.10, π “ 0.02, T “ 0.9,

and γ “ 0.20, π “ 0.05, T “ 1.1). We obtained averages and confidence intervals from 100 rounds of

simulations of each one of the to cases.

Since at least Arrow (1962), it has been understood that firms are unlikely to invest

in basic research due to its lack of immediate application and the spillovers it generates.

Arrow concluded that basic research must be publicly funded and considered the presence

of individuals and institutions that enjoy conducting research and combining it with

teaching a ”lucky accident.” Nelson (1959) argued that large, diversified firms primarily

conduct basic research because they can internalize its broad spillovers. Rosenberg (1990)

added that firms invest in basic research with their own funds to develop the absorptive

capacity needed to understand public scientific research.

Our model makes the novel prediction that in a high search speed environment, firms will
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find it optimal to invest in basic research to discover new theories, a possibility not found

in the existing literature. Although the model does not account for spillovers, which could

reduce firms’ incentives to invest in basic research, the influence of high search speed is

likely to counteract this effect. Firms may focus on generating intellectual property from

their basic research, potentially hindering their engagement with academia, as noted by

Rosenberg.

This prediction aligns with Yue (2023), the first large-scale analysis showing a positive

effect of corporate involvement on scientific progress. Focusing on AI researchers affiliated

with both universities and firms, Yue (2023) reveals a significant increase in citations for

papers with corporate involvement, suggesting this leads to more groundbreaking research,

albeit aligned with corporate interests. In contrast to Arora et al. (2021a) , who noted a

decline in U.S. firms’ basic research investments from 1980-2015 due to low-speed sectors,

Yue (2023) highlights the growing importance of basic research in the high-speed AI

sector.

Third, our discussion aligns with Ludwig & Mullainathan (2024). They show in the

context of judicial decisions that hypothesis generation, traditionally reliant on human

intuition, can be systematically enhanced using AI. In our model innovations in AI such as

Large Language Models can accelerate the search process by enhancing the productivity

of generating new theories.

Fourth, the ability to discover new theories can be a significant source of comparative

advantage in a high-speed environment, as a firm’s value (V ) increases directly with the

probability (π) of discovering new theories.4 Firms investing more in basic research or

enhancing their ability to increase π will enjoy significant competitive advantages. In

4Conversely, in a low-speed environment, the value of the firm does not benefit from a high probability
π of discovering new theories, making differences in discovery theory irrelevant.
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equilibrium, firms with higher π create higher value (V ), which in turn increases the

resources (T ) they reinvest in research. This creates a virtuous cycle explaining the high

growth potential of firms investing in new theories and the hyper-growth of many high-

tech firms today, especially compared to other sectors.

External shocks that increase search speed can trigger these virtuous cycles, where faster

search speeds lead to higher discovery rates, which increase reinvestment resources, thereby

widening gaps among firms, industries, or even countries. As shown by Corollary 1 to

Theorem 1, a higher initial stock of ideas (λ) or a lower opportunity cost of capital (T ) can

widen these gaps. To reduce disparities or leverage new growth cycles, external interven-

tions may be needed to create the right conditions, triggering investments in high search

speed (γ), higher discovery rates (π), and greater resource accumulation (T ) for reinvest-

ment. Conversely, in a low-speed environment, the value of the firm does not benefit from

a high probability (π) of discovering new theories, making differences in discovery ability

irrelevant.

7 Conclusions

In this paper, we introduce a novel framework for understanding innovation by focus-

ing on search speed—how quickly firms explore and exhaust ideas within a technological

paradigm. This concept underscores the balance firms must strike between exploiting ex-

isting knowledge and exploring new paradigms, a crucial but often underexplored aspect

of innovation. Through a multi-stage search model, we shed light on how firms opti-

mally allocate resources between searching within an existing technological framework

and seeking out new theoretical paradigms. This approach provides insights into the

strategic trade-offs firms face in driving innovation forward.
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A key finding is the identification of a critical threshold effect. When the efficiency of

searching within the existing paradigm is low (low γ), firms may become trapped in a

cycle of focusing on the existing paradigm. This is because the weak diminishing returns

associated with the search within the existing paradigm make investment in exploring

new theoretical frameworks unattractive, even with a high probability of discovering new

paradigms (high π).

However, the model also shows that the optimal search strategy shifts dramatically when

the speed of search increases beyond a threshold. In such scenarios, firms can effectively

explore both avenues. A higher search speed within the existing paradigm (high γ) moti-

vates reallocating resources from later stages of the search within the existing technological

paradigm to earlier stages of exploration of new theories with greater innovation potential.

The greater availability of resources at later stages then opens up opportunities to explore

new theories. The probability of discovering new paradigms (π) becomes a critical success

factor.

A higher γ can then lead to a “bifurcated world” in which the complementarity between

new theories frontier π and continuous advance in search frontier γ create exponential

differential performance.

The model links future search resources to the value created by past innovations highlight-

ing a critical interplay between search efficiency and the potential value of new theoretical

paradigms. When search within the existing paradigm is slow, the ability to discover new

theories has minimal impact on firm performance. However, when search is fast, differ-

ences in the ability to discover new theories become a major source of performance vari-

ation between firms. This underscores the importance of not only efficient search within

the existing paradigm but also the ability to explore entirely new theoretical frameworks

for sustained innovation success. Furthermore, speed of adoption and access to frontier
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technology in search γ or new theories π can become important geopolitical strategic vari-

ables (cognitive supply chain dependency) and access to the frontier can in itself become

a key geopolitical decision (for example open sourcing γ but keeping proprietary π).

Furthermore, by emphasizing the critical roles of search speed and theory generation po-

tential, the model provides insights into how policymakers can foster innovation across

industries. Policies that enhance search speeds among diverse firms and industries can

promote equitable growth and reduce performance gaps. For example, reducing capital

costs allows firms to direct more resources toward exploring new knowledge domains.

Additionally, policies that incentivize basic research and support knowledge-sharing in-

stitutions can significantly enhance the generation of new theories, thereby enriching the

pool of ideas available to firms.

The model has several limitations. Our current measure of search speed, derived from

firm-level patent data, may not fully capture the complexity of the concept. Future re-

search should consider incorporating more flexible, time-varying parameters to better re-

flect the dynamic nature of innovation cycles across different industries. Additionally, the

model does not account for competition and spillover effects, which are crucial influences

on innovation strategies. Integrating these factors would yield a more accurate under-

standing of how firms respond to external pressures and benefit from shared knowledge

environments. Lastly, expanding the model to include inter-firm interactions could pro-

vide deeper insights into the broader innovation ecosystem, illustrating how competition

and collaboration affect the speed and direction of innovation.
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Appendix

A1. Solving the Dynamic Program

In order to solve the dynamic program (1), first solve it for K to obtain

K “
k

1 ´ Θ
(A1)

where

k ”

j´1
ÿ

i“1

e´δiλiT
α

`

8
ÿ

i“j

e´δie´πpi´jqλit
α
i (A2a)

Θ ”

8
ÿ

i“j

e´δie´πpi´jqπ pT ´ tiq (A2b)

Using (A1), (A2a), and (A2b), firms choose ti to max
ti

K, which yields the foc

αλit
α´1
i p1 ´ Θq ´ kπ “ 0 (A3)
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The ratios between each term of (A3) with the equivalent terms of the foc of tj yields foc

(3) in the text.

The foc for tj is (A3) with tj in lieu of ti, which yields

αλjt
α´1
j p1 ´ Θq ´ kπ “ 0 (A4)

Replace k and Θ with (A2a) and (A2b) after replacing ti with (3). The expressions for

k and Θ will only depend on tj. As discussed in the text, replace tj “ T . After some

tedious calculations shown in the next section of this Appendix, obtain (4) in the text.

To obtain the optimal knowledge K, use (A1) and derive
k

1 ´ Θ
from (A4) after replacing

tj “ T . This yields (6) in the text.

A2. Derive foc (4)

Rewrite (A4) as

λj p1 ´ Θq ´
1

α
t1´α
j kπ “ 0

Using (A2a) and (A2b), replacing ti with (3) and tj “ T , obtain

λ1je
´γpj´1q

«

1 ´ e´δjπ
8
ÿ

i“j

e´pδ`πqpi´jqT

ˆ

1 ´ Γ
1

1´α

ij

˙

ff

´
1

α
T 1´αλ1e

´δ

«

j´1
ÿ

i“1

ie´pδ`γqpi´1qTα
` je´pδ`γqpj´1q

8
ÿ

i“j

e´pδ`πqpi´jqΓ
1

1´α

ij Tα

ff

π “ 0 ;

je´γpj´1q
´ e´δje´pδ`γqpj´1qπT

8
ÿ

i“j

e´pδ`πqpi´jq

ˆ

1 ´ Γ
1

1´α

ij

˙
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´e´δ 1

α
πT

«

j´1
ÿ

i“1

ie´pδ`γqpi´1q
` je´pδ`γqpj´1q

8
ÿ

i“j

e´pδ`πqpi´jqΓ
1

1´α

ij

ff

“ 0 ;

je´γpj´1q
´ e´δje´pδ`γqpj´1qπT

α

#

8
ÿ

i“j

e´pδ`πqpi´jq

„

α

ˆ

1 ´ Γ
1

1´α

ij

˙

` Γ
1

1´α

ij

ȷ

`
epδ`γqpj´1q

j

j´1
ÿ

i“1

ie´pδ`γqpi´1q

+

“ 0

Rewrite the last term as

epδ`γqpj´1q

j

j´1
ÿ

i“1

ie´pδ`γqpi´1q
´

8
ÿ

i“j

i

j
e´pδ`γqpi´jq

Since

8
ÿ

i“1

ie´pδ`γqpi´1q
“

8
ÿ

i“1

e´pδ`γqpi´1q
´

B

Bγ

8
ÿ

i“2

e´pδ`γqpi´1q
“

“

1 ´ e´pδ`γq
‰´2

we can rewrite the foc as

je´γpj´1q
´ e´δje´pδ`γqpj´1qπT

α

#

8
ÿ

i“j

e´pδ`πqpi´jq

„

α ` p1 ´ αqΓ
1

1´α

ij

ȷ

´ e´δpi´jqΓij `
epδ`γqpj´1q

j r1 ´ e´pδ`γqs
2

+

“ 0

which, after rearranging terms, and using
i

j
e´pδ`γqpi´jq ” e´δpi´jqΓij, becomes (4) in the

text.

A3. Proofs
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Proof of Lemma 1. Since T is a resource constraint, the optimal t1 is bounded. There-

fore, A ùñ t1 “ T . If t1 was the initial condition, (3) ùñ ti “ Γ
1

1´α

i1 t1, where

Γi1 ” ie´γpi´1q is equal to 1 if i “ 1 and increases till i “
1

γ
, after which it starts declining

with i. Then, A ùñ

ˆ

ti ă T ùñ i ą
1

γ

˙

– that is, i ą
1

γ
is a necessary condition for

ti ă T – and j ď
1

γ
ùñ tj ě T . To streamline our analysis we rule out cases in which

j ă
1

γ
and j ` 1 ą

1

γ
. Therefore, Dtj, with j ě

1

γ
: tj ě T & tj`1 ă T , and we can

approximate tj « T . ■

Proof of Lemma 2. Since lim
jÑ8

je´γpj´1q “ 0, as j Ñ 8 the first term of the LHS of

(4) and Ω tend to 0. Therefore, the LHS of (4) tends to ´ e´δ

r1´e´pδ`γqs
2 ă 0. As a result,

A implies that either the optimal j “ 1, or there is at least one j P p1,8q such that the

LHS of (4) cuts the horizontal axis from above and the foc is satisfied. ■

Proof of Lemma 3. Using subscripts to denote derivatives, the sign of jT or jπ is the

same as the sign of the corresponding differential of the LHS of (4). The negative sign

of jT is straightforward. After taking the differential of the LHS of (4) with respect to

π, replace the first term of (4) using the foc. The sign of this differential is the same as

the sign of ´ p1 ` Ω ` πΩπq. In equilibrium, Ω ą 0; otherwise, from (7), firms choose

K0 ą K, π “ 0, and j Ñ 8. It is easy to see that
Bψi

Bπ
ă 0, which implies Ωπ ă 0. We

make the fair assumption that 1 ` Ω ą ´πΩπ, which implies jπ ă 0. ■

Proof of Theorem 1. The strategy to prove this theorem is to show, first, that given

π ą 0, if γ is sufficiently small, Ω ă 0 and, using subscripts to denote derivatives, Ωπ ă 0.

Thus, from (7), K ă K0, the given π is not feasible, and increases in π cannot raise Ω to

make K ą K0. Second, we show that increases in γ raise Ω and eventually turn Ωπ ą 0,

making Ω ą 0 and K ą K0 feasible.
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We start with the first part. Using (4), the sign of Ωπ is the same as the sign of

jπ r1 ´ j pδ ` γqsΨj ` j
BΨj

Bπ
(A5)

where, from Lemma 3, jπ ă 0, and, from Lemma 1, j ě
1

γ
ùñ 1 ´ j pδ ` γq ă 0. Thus,

the sign of the first term depends on the sign of Ψj.

Let π ą 0. When γ is small, approximate ψi « ψ˚
i ” e´πpi´jq

«

α ` p1 ´ αq

ˆ

i

j

˙
1

1´α

ff

´
i

j
,

which is ψi when γ “ 0. Obtain

Bψ˚
i

Bi
“ ´πe´πpi´jq

«

α ` p1 ´ αq

ˆ

i

j

˙
1

1´α

ff

´
1

j

«

1 ´

ˆ

i

j

˙
α

1´α

e´πpi´jq

ff

ă 0

To establish this negative sign, we only need to show that the term in the second square

bracket is positive. When i “ j, this term is equal to 0. As i increases, it increases if

i ą
α

p1 ´ αq π
. From Lemma 1, j ě

1

γ
, which is larger than

α

p1 ´ αqπ
if γ Ñ 0. As

a result, for i ą j the term in the second square bracket is positive, making
Bψ˚

i

Bi
ă 0.

Moreover, for i “ j, ψ˚
j “ 0, and ψj « 0. Therefore, @i ą j, γ Ñ 0 ùñ ψi ă 0 ùñ

Ψj ă 0 ùñ Ω ă 0.

To check the second term of (A5), the direct effect of π on ψi is clearly negative. Taking

into account the indirect effect through j, ignore the terms i´j because they are counters

that start at 0. However,
i

j
differs if j differs, and we take the differential of ψi with respect

to the j appearing in the denominator of Γij. To show that
BΨj

Bj
ą 0, the sign of this

differential is the same as the sign of 1 ´ e´πpi´jqΓ
α

1´α

ij . This expression is equal to 0 for

i “ j and positive for i ą j because it increases with i if i ą
1

γ `
p1´αqπ

α

, a threshold

smaller than the threshold
1

γ
of Lemma 1 such that i ě j ě

1

γ
. However, since j declines

because jπ ă 0, then, for i ě j, each term ψi in the summation sign that generates Ψj,
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declines. As a result, both the direct and indirect effect of π reduces ψi and therefore

BΨj

Bπ
ă 0. Note that this result obtains @γ ě 0.

Putting things together, when γ Ñ 0, the sign of (A5) is negative because Ψj ă 0 and

BΨj

Bπ
ă 0. The negative sign of Ψj implies Ω ă 0. Thus, for γ small, Ω ă 0 and it can

only increase by making π smaller. The given π ą 0 is unfeasible.

The next step is to show that a higher γ can turn Ω from negative to positive, making

this π feasible. The sign of Ω depends on the sign of Ψj. The direct effect of γ is

´

”

1 ´ e´πpi´jqΓ
α

1´α

ij

ı

BΓij

Bγ
ą 0. This effect is positive because it is not difficult to see that

BΓij

Bγ
ă 0, and, using Lemma 1, j ě

1

γ
ùñ e´πpi´jqΓij ă 1. The indirect effect of γ affects

Ψj through j. We established that
BΨj

Bj
ą 0. For the sign of jγ (the optimal change of j

with respect to γ), we take the differential of the LHS of (4) and replace foc (4) as we did

for the sign of jT and jπ in Lemma 3. After some algebra, the sign of jγ is the same as

the sign of ´

„

j ´
1 ` e´pδ`γq

1 ´ e´pδ`γq

ȷ

´ Ω
BΨj

Bγ
Ψ´1

j . We established above that the direct effect

BΨj

Bγ
ą 0. A small γ, which implies j ě

1

γ
is a necessary condition to make the term in

the square bracket positive. If this positive term is sufficiently large to dominate the sign

of the indirect effect, both the direct and indirect effects of a higher γ can turn Ψj, and

therefore Ω, from negative to positive. Otherwise, the effect is ambiguous and it will be

positive depending on the strength of the direct effect vis-à-vis the indirect effect.

Finally, we need to establish whether, even if Ψj ě 0, the given π ą 0 is sustainable. The

variation of Ω with respect to π depends on the variation of Ψj with respect to π and

the variation of the first term of Ω with respect to j, which is affected by π. We showed

that
BΨj

Bπ
ă 0, @γ ě 0. The first term, je´pδ`γqpj´1q declines with j ą

1

δ ` γ
, which is

smaller than the threshold j ě
1

γ
established by Lemma 1. Since jπ ă 0, the first term
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increases with π. Thus, for γ such that Ψj “ 0, the overall variation of Ω with respect to

π is still negative, and a higher γ is necessary to produce a sufficiently large Ψj ą 0 that

increases Ω as π increases. At this level of γ, which we label γ1, γ ą γ1 makes the given

π sustainable. ■

Proof of Corollary 1. The proof of this corollary is straightforward from the proof

of Theorem 1. A sufficiently high speed (γ ą γ1) is necessary for Ω to increase with π.

Moreover, Theorem 1 established that if Ω increases with π, then Ω ą 0. From (7), this

implies K ą K0, and that K increases with π. ■

Proof of Theorem 2. Using subscripts to denote derivatives, the foc of V pK,T q with

respect to T is VKKT ´ VT “ 0. Using (7), and the expression for K0, obtain KT “

K0T p1 ` Ωq ` K0ΩT . It is easy to see that K0T ą 0, and from Lemma 3, jT ă 0 ùñ

ΩT ą 0, We can fairly assume that the cross-partials of ΩT with respect to π and γ are

negligible. We can then write KTγ “ K0Tγ p1 ` Ωq `K0TΩγ `K0γΩT , and KTπ “ K0TΩπ

(since K0π “ 0). It is easy to see that K0Tγ, K0γ ą 0. Moreover, in the proof of Theorem

1 we set a necessary condition for Ωγ ą 0. If so, when Ωγ ă 0, firms can reduce γ to

make Ωγ “ 0, and optimize with respect to the excessively high γ. As a result, Ωγ ě 0

and KTγ ą 0. As far as KTπ is concerned, Corollary 1 established that if γ ą γ1, Ωπ ą 0

(and therefore Kπ ą 0); otherwise Ωπ ă 0. As noted above, firms can always reduce π

if suboptimal, and thus γ ď γ1 ùñ Ωπ “ 0. Therefore, γ ą γ1 ùñ KTπ ą 0, and

γ ă γ1 ùñ KTγ “ 0. Finally, Kπγ “ K0Ωπ ` K0γΩπγ ě 0 because we established that

Ωπ, Ωπγ ě 0, with Kπγ ą 0 if γ ą γ1. ■

A4. Construction of Figure 10

We constructed Figure 10 as follows. Let i P r1,8q and c P r1,8q be integers that denote,

respectively, stages and cycles. A cycle is the set of all stages in which firms search within
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a given theory. It comprises all stages in which firms focus only on searching within the

given theory, which produces an expected number of ideas λiT
α in each stage i in which

they do not search for new theories, and an expected number of ideas λit
α
i in each stage

in which they also search for a new theory but have not found it yet, with ti defined by

(3) and tj “ T , as discussed in the text and in Appendix A1.

We now show the derivation of the number of ideas by cycles, which we use to draw the

curves in Figure 10. We define xi ” λiT
α to be the expected number of ideas in each stage

of a given cycle produced when the firm is not searching for a new theory, and yi ” λit
α
i

the equivalent expected number when they also search for new theories. For simplicity,

we set α “ 0.5, as in Figure 10.

Also, let qc, c P r1,8q, be a random draw from an exponential distribution with expected

value equal to the inverse of π. Since we assumed that firms discover new theories accord-

ing to a Poisson process, this is a drawn from the corresponding waiting time distribution.

It represents the stochastic timing of the discovery of new theories after firms have started

to search for them.

Finally, in what follows, j is the optimal number of stages after which firms start searching

for a new theory since the start of the search in the current theory.

Cycle 1

Let µ1 ” λ p1 ´ e´γq
2. Then:

xi “ µ1ie
´γpi´1qT

1
2 1 ď i ă j1 ” j

yi “ xi`1
i

j1
e´γpi´j1q j1 ď i ď j1 ` q1 ” i1

Cycle 2
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We now have µ2 “ µ1T

«

1 ´

ˆ

1 `
q1
j1

˙2

e´2γq1

ff

. This expression stems from our dynamic

program (1). The pool of potential ideas of each theory grows according to T ´ ti, as

stated in (2), with ti being the optimal ti in the stage in which the firm discovers the new

theory. The theory in cycle 2 is discovered in stage i1, which, using (3) and tj “ T , yields

the expression for µ2. We then have:

xi “ µ2 pi ´ i1q e
´γpi´i1´1qT

1
2 i1 ` 1 ď i ă j1 ` i1 ” j2

yi “ xi`1
i

j2
e´γpi´j2q j2 ď i ď j2 ` q2 ” i2

Cycle 3

Following the same logic, µ3 “ µ2T

«

1 ´

ˆ

1 `
q2
j2

˙2

e´2γq2

ff

, and

xi “ µ3 pi ´ i2q e
´γpi´i2´1qT

1
2 i2 ` 1 ď i ă j2 ` i2 ” j3

yi “ xi`1
i

j3
e´γpi´j3q j3 ď i ď j3 ` q3 ” i3

A5. Construction of the Patent Clusters

Selection of Machine Learning Algorithm for Patent Clustering

The goal of the algorithm is to cluster patents issued in the US between 1980 and 2021

based on the CPC patent classification. Patents can generally be classified in one or

multiple CPC categories, which leads to specific combinations of CPC classifications.

Patents issued with the same or similar combinations are assumed to belong to the same

field of research. When a company issues a patent with an identical or similar combination

of CPC classifications, it can be assumed that the company is continuing the research
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in the same field. When a company issues a patent with a new combination of CPC

classifications, it can be assumed that the company is exploring a new domain.

We approached this classification problem by comparing and analyzing different clustering

machine learning algorithms on a dataset that only contains the patents’ application IDs

and the CPC classification up to the subclass level. The CPC classifications are codes

for defined fields of patents and represent categorical data. The data is pre-processed by

encoding the categorical CPC classifications for the use of machine learning algorithms.

A CPC classification will be assigned to the respective CPC section, CPC class, and CPC

subclass. Thus, patents having multiple classifications can have positive values in multiple

columns. For instance, a patent having two CPC classifications A08A and A08B, would

lead to a count of 2 in the A CPC section, 2 in the A08 CPC class, and 1 in each CPC

subclass. This assignment was chosen based on preliminary tests with subsets of the data

and assigning a CPC classification not only to one subclass but to different levels. The

results led to more stringent clustering with more patents in the miscellaneous cluster and

more clusters in comparison to the clustering with the CPC subclass only. The binary

encoding of CPC section, class, and subclass resulted in even more miscellaneous patents

and approximately the same number of clusters. Verifying the clusters manually, the

non-binary encoded data including CPC section, CPC class, and CPC subclass resulted

in the most consistent clusters.

Aiming to cluster patents based on the combination of CPC classifications, the number of

clusters should be determined by the patent combinations themselves and should not be

manually imposed. Moreover, the number of clusters should be treated as a result rather

than as input. There are different ways to determine the number of clusters, such as the

elbow method or the silhouette method. For subsamples of the patent data, the elbow

method resulted in a deficient number of clusters, which is too coarse for the analysis.
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The silhouette method resulted in suggested parameters that yield too many and too

small clusters. For the purpose of our analysis, the clusters should not be represented

by too few patents since it would not capture domains but the intricacies of the patent

combinations. Consequently, clustering algorithms requiring the number of clusters as

input, such as K-Means, are subsequently not further considered.

Additionally, the clustering algorithm has to be suitable for categorical data which is in

our case encoded in a binary way. Various algorithms were tested on a data subset but the

clusters were in most cases either combined in less than five clusters or more than 1000

clusters with the majority of clusters containing only one patent. For the purpose of our

analysis, we would like to have meaningful clusters containing multiple similar patents,

with no cluster containing a considerable fraction of the overall data set. We decided to

test the following three clustering algorithms in more detail: DBSCAN, HDBSCAN, and

Agglomerative Clustering.

First, DBSCAN evaluates the proximity of points and classifies points with a sufficient

number of other points within its perimeter as core points and points with an insufficient

number of points within its perimeter as noise. A cluster is created by iteratively grouping

core points that are density-connected and treats points out of the proximity of core

points as noise (Ester, Kriegel, Sander & Xu, 1996). The advantages of DBSCAN are

that clusters can have arbitrary shapes and sizes, the number of clusters is automatically

determined, and the algorithm is robust to outliers and noise. The relevant disadvantage

for this dataset is that the algorithm may experience issues with clusters of similar density,

and its scalability is limited for high dimensional datasets (Lytvynenko, Lurie, Krejci,

Voronenko, Savina & Taif, 2019), which is the case with the categorical patent data.

Secondly, HDBSCAN is an extension of DBSCAN that includes single-linkage hierarchical

clustering in addition to the DBSCAN mechanism. Thus, HDBSCAN has the same
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advantages as DBSCAN and is more scalable in large dimensional data. The disadvantage

is that the algorithm is more computationally intense than DBSCAN.

Thirdly, Agglomerative Clustering iteratively merges the two closest clusters until a stop-

ping criterion is met. The algorithm applies a linkage method to define cluster proximity

and a distance metric. The advantage of Agglomerative Clustering is the flexible clustering

of complex shapes, which determines the number of clusters itself and provides a hierarchy

of clusters that can be useful for visualization and interpretation. The disadvantages of

Agglomerative Clustering are the sensitivity to noise and outliers, the computational in-

tensity, and the scalability is challenging for high dimensional datasets (Zepeda-Mendoza

& Resendis-Antonio, 2013). For the purpose of our research, we prefer to have more

precise clustering with noise classified in a miscellaneous category rather than having

the noise included in the clusters, which can lead to deficient analysis. The clustering

algorithm of DBSCAN and HDBSCAN both yield good results in separating the noise.

Moreover, HDBSCAN tends to perform well for patent data in a high dimensional domain

in contrast to DBSCAN, and we accept computational intensity as a tradeoff for accuracy.

Thus, HDBSCAN is the suitable clustering algorithm to use for our analysis.

Regarding the inputs of HDBSCAN, we set the minimum cluster size to 10 to ensure

sufficient size for clusters and not too numerous clusters. Additionally, the default metric

Euclidean is applied since it delivered better results for our research considering the

number of clusters, the type of data, and the computation time. The other parameters

are left on default.

Selection of Algorithm for Cluster Matching

Due to the computational requirements, the clustering was executed on a yearly basis.

To match the clusters over time, the cosine-similarity algorithm was used to match the
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cluster ids from one year to the cluster ids of the next year while all patents in the

miscellaneous cluster were excluded and were not assigned a consistent cluster id. This

enables us to connect the clusters over multiple years and give a more precise measure for

analysis purposes. The cosine-similarity defines the similarity of two clusters through the

normalized dot product of the CPC classification features of clusters. The most similar

clusters are matched with one another. Attention should be paid to the varying number

of clusters per year, which leads to a small mismatch for some clusters and patents. Thus,

about 2500 out of 1.32 million patents are not assigned to a consistent cluster because of

this mismatch in the number of clusters per year. This problem only occurs in the first

years but is nonexistent in later years since the number of consistent clusters grows over

time and covers more patents.

Subsequently, the yearly clusters are connected through the matched cluster ids, based

on the first year 1980. The first set of consistent clusters is given by the clusters in

1980 and clusters in later years with the same or similar patterns of CPC classifications

are assigned to these consistent clusters. Since the CPC patterns evolve over time, new

clusters not seen in prior years create a new consistent cluster id and are assigned to this

id for subsequent years. For yearly clustering, this leads to a total of 1042 clusters.

Due to the yearly clusters changing and few observations per cluster, the consistent clus-

ters work well for consistent clusters existing only for few years, but some clusters lasting

for a long time, especially clusters lasting over 35 years, tend to have changes in the pat-

tern, leading to a different CPC pattern for the patents in the last year in comparison to

the patents in the first year assigned to the same constant cluster id. Thus, consistent

clusters lasting many years have “breaks” in CPC patterns that capture different CPC

patterns over time.

We also conducted a clustering process with a 5-year moving window, which allows for a
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matching of clusters based on the overlap of the years in the clustering window. Thus,

a patent generally was allocated to five clusters, except for patents at the beginning or

the end of the sample. Thus, connecting the cluster ids of the individual clustering leads

to sound consistent cluster ids. The consistent cluster ids lead to precise results and no

observed breaks but leads to some large clusters in which many firms operate and conduct

research. Examples for extensive clusters are G06F (Electrical Digital Data Processing)

and H04L (Transmission of Digital Information). Using these 5-year moving window

clusters does not change in meaingful ways the results of our analysis.
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57


	Introduction
	Related Literature
	Descriptive Evidence
	Firm Size, Research Activities, and Innovation
	Impact of Search Speed

	Model
	Set-Up
	Solving the Dynamic Program

	Implications
	Search speed and discovery rate
	Resources T and Growth of Ideas

	Discussion
	Conclusions

