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Abstract
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weather and traffic as exogenous, hourly route-specific shocks, interacting them with
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1 Introduction

Uber Technologies Inc. pioneered the first widely available ride-hailing app, revolutioniz-

ing taxi-like services. The arrival of its main competitor, Lyft, cemented this new mode

of transportation in the market. Founded in March 2009 and June 2012, respectively,

these companies have since become dominant players, reshaping consumer transportation

habits.1 Their services disrupted the traditional taxi industry, which is struggling to com-

pete with their affordability and convenience (Berger et al., 2018; Cramer and Krueger,

2016; Wallsten, 2015). Many public transit authorities are concerned about potential neg-

ative impacts on ridership. Anecdotal evidence and studies suggest that Uber and Lyft

have lured passengers away from public transit (Clewlow, 2019).2 However, others argue

that ride-hailing complements public transit by delivering passengers to transit-serviced

areas, offering on-demand rides that coordinate with public transit schedules (Feigon and

Murphy, 2016; Rayle et al., 2016). To assess ride-hailing’s effects on transit ridership, we

develop methods for measuring its metro-specific, hourly, and daily impacts.

The emerging body of empirical studies disagrees on whether and to what extent Uber

and Lyft compete with or complement public transportation. Hall et al. (2018) provide an

important starting point by using variation in UberX entry across U.S. cities to estimate a

difference-in-differences model of monthly public-transit ridership. Analyzing two years of

data post-UberX market entry, they find a complementary relationship, with public transit

ridership increasing by 5 percent on average. However, their results differ by city type: cities

with above-median ridership show a decline, while cities with above-median populations

see an increase. Thus, for a place like San Francisco, which is above both medians, the

implications are ambiguous. Similarly, Babar and Burtch (2017) find complementarity

between ride-hailing companies and rail transit, adding covariates to explain further aspects

of the relationship. In contrast, Nelson and Sadowsky (2018) use a regression discontinuity

design to show that UberX initially complements transit, but after Lyft enters the market,

ride-hailing becomes a substitute. They argue that competition between the two companies

drives down ride-hailing prices, making it a more attractive option than public transit.

1These companies, often referred to as Transportation Network Companies (TNCs), provide an internet-
based mobile app that connects passengers with nearby drivers. In most urban areas, drivers can arrive
within minutes, offering convenient transport to a chosen destination.

2See Ride-hailing is pulling people off public transit and clogging up road and MTA Blames Uber for Decline
in New York City Subway, Bus Ridership, accessed October 2024.
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Diao et al. (2021) extend this work, corroborating the finding of substitution, reinforcing

competitive dynamics between ride-hailing and transit. On the other hand, Coogan et al.

(2018) estimate cross-price elasticities between rail and ride-hailing, finding no significant

relationship, suggesting ride-hailing and public transit are neither strong complements nor

substitutes. In Pittsburgh, Grahn et al. (2020) find that Uber ’s surge pricing correlates with

bus boardings, but they cannot detect complementarity due to a shared “pie” of consumers.

Similarly, Erhardt et al. (2021) study San Francisco’s Muni ridership but find limitations

in detecting complementarity due to aggregated data that masks nuanced patterns.

Our work addresses gaps in these studies by analyzing detailed route-by-hour data over

ten years rather than using monthly aggregates over a few years. This allows us to capture

both long-run trends and short-run variations. We also split the data into subsets such as

commuters and airport travelers, estimating who is affected, when, and for how long. More

importantly, we identify the causal mechanisms driving trade-offs between public transit

and ride-hailing, directly addressing how ride-hailing affects public transit usage.

Figure 1 demonstrates the short-run fluctuations, month-to-month, and also the long-

run trends, supporting approaches for with-in hour and extended time period estimations.

Before the arrival of UberX and Lyft, BART ridership grew by 0.2 percent per month. In the

period from mid-2012 to mid-2014, BART ridership maintained an upward trend, though

less steep. After ride-hailing became more established in 2014, BART ridership reversed

trend, declining by 0.2 percent monthly. By the end of the period, BART ridership had

dropped by 60 to 85 thousand daily passenger trips compared to the pre-ride-hailing trend.

In the next section, we introduce a conceptual framework that allows for both substitution

and complementarity between public transit and ride-hailing. Each mode has distinct

characteristics that vary by time of day and location. Public transit is affordable, and rail

systems avoid traffic congestion, but transit is rigid in timing and location, prone to delays,

and can be uncomfortable. Ride-hailing, while more expensive, offers point-to-point service

on-demand, although it too can be subject to traffic. Consumers weigh these trade-offs to

make optimal choices. Factors like inclement weather or fluctuating traffic speeds affect the

costs and benefits, making weather and travel time key variables. Additionally, ride-hailing

may reduce the interdependence between morning and evening commutes, as consumers

are no longer dependent on public transit for both trips. This framework forms the basis

for our hypotheses on consumer preferences.

3



Figure 1. BART ridership through time versus ride-hailing growth, by month-year
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We estimate ride-hailing’s impact on San Francisco’s Bay Area Rapid Transit (BART) sys-

tem. Using a difference-in-differences approach, we first measure heterogeneous treatment

effects by hour-route, with outdoor temperature and traffic speed as exogenous shocks.

This variation allows us to capture how fluctuations in weather and congestion affect tran-

sit ridership once ride-hailing is available. We also examine whether ride-hailing affects

the relationship between morning and evening commutes, with Uber potentially decou-

pling these modes. A second analysis compares daily ridership trends before and after

ride-hailing, controlling for covariates, and examines heterogeneity across time of day, day

of week, and location, as proxies for travel purpose.

We find that inclement weather and faster driving speeds reduce BART usage more when

ride-hailing services are available than without. Additionally, 1 in 100 daily commuters
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that use public transit in the morning now seem to switch to ride-hailing after work. In the

long run, ride-hailing reduces BART ridership by 9.8 to 10.7 percent year over year. We

also find impacts during the first two years, that ride-hailing substitutes for public transit

in San Francisco, which provides an update to prior studies. Commuter hours see only

modest declines, likely due to inelastic demand, while the nighttime and airport transit

sectors experience large drops in ridership.

Each public transit authority must understand ride-hailing’s effects to manage short-term

demand changes and plan for long-term operational and capital funding. Accurate esti-

mates of ridership variation are essential for informed public policy. This research also

has implications for social costs, as ride-hailing contributes to road degradation, conges-

tion, collisions, and pollution, and can inform regulatory decisions. Our methodology can

help municipalities evaluate ride-hailing’s effects on revenue, congestion, and environmental

impacts, assisting in policy development and coordination with ride-hailing companies.

2 A conceptual framework for transit demand

A rich literature in urban economics provides transit-demand models that guide our hy-

potheses. Many studies estimate discrete choices where a rider weighs the characteristics

of their transit options and selects the optimal one. We build on this literature to iden-

tify hourly and daily causal mechanisms, which we apply in our panel-estimation methods,

along with other variables available to municipalities. For instance, McFadden et al. (1977)

forecast the demand for BART before its construction, using a discrete-choice framework.

A consumer trip from point A to B may involve one or more modes, such as driving,

ride-hailing, carpooling, public transit, walking, biking, and parking. Each option has

several negative impacts. Disutility and budget arise from both direct and indirect costs,

including: fuel or fare; travel time; waiting time; discomfort due to weather, climate,

and crowding; risk of delay and associated stress; risk of harm from collision or assault;

time spent finding parking; and parking fees. By minimizing these costs, consumers make

specific transit choices. In this analysis, we focus on consumers choosing between public

transit (via rail) and ride-hailing, assuming these are the two best options. As in previous

literature on transit choice, e.g., McFadden et al. (1977), we assume that a consumer’s
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choice is independent of irrelevant alternatives, thereby ruling out other transit modes.

Ride-hailing complements public transit when passengers combine the two modes. For

example, public transit users often face challenges in getting from their location to a transit

station or from the station to their final destination. This is referred to as the “first/last

mile” problem. Ride-hailing can bridge this gap, providing geographic flexibility to the

fixed routes of public transit (Wang and Odoni, 2014). In some cases, a person might use

public transit one way and ride-hailing the other, amplifying the utility of both modes.

Substitution occurs when one transit option outweighs the other in overall utility. Public

transit generally offers lower direct costs compared to ride-hailing.3 However, ride-hailing

outperforms public transit in several key dimensions. Its innovations include greater conve-

nience, as rides are on-demand, hailed via smartphone apps, and offer point-to-point service

with real-time updates on arrival and travel time. Compared to public transit, ride-hailing

also may reduce the overall time spent both in the outdoor elements while waiting and in

transit, conditional on traffic congestion. Ride-hailing provides more comfort, with better

seating, privacy, and climate control. As a result, passengers substitute public transit for

ride-hailing when they perceive that these added amenities outweigh the higher price.

If ride-hailing significantly alters consumer disutility compared to public transit, we will

observe changes in ridership.4 We hypothesize that these effects vary by time of year, day

of the week, and time of day, as well as by origin and destination.

3 Empirical context and data descriptions

Our empirical setting is the San Francisco Bay Area. We gather data spanning a decade,

from 2009 to 2018, with source descriptions provided in Table 1. The primary outcome

3Polzin (2016) estimates public transit costs at $0.26 per mile, while ride-hailing ranges from $0.65 to
$2.00 per mile, depending on location and time of day. For example, in 2017, a weekday 4 p.m. trip
from Embarcadero Station to San Francisco Airport costs $8.95 via BART and approximately $29.73 via
UberX. Similarly, a trans-bay trip from Downtown Berkeley Station to San Francisco Airport costs $9.55
via BART and approximately $47.92 via UberX; www.sfoconnect.com/sites/default/files/document/
TNCWhitePaper.pdf, accessed October 2024.

4Some consumers are infra-marginal, meaning they always choose public transit. For these riders, ride-
hailing and public transit neither compete nor complement. This can dampen our estimates, as we are
measuring average treatment effects.
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of interest is Bay Area Rapid Transit (BART) ridership, measured as hourly counts of

passengers traveling from each origin station to any destination station. The key treat-

ments are the introduction and prevalence of ride-hailing services. Additionally, we compile

covariates that influence BART ridership and demand for ride-hailing.

Figure 2. BART route map, effective September 2018

BART is an electric railway system serving San Francisco and the greater East Bay; see

Figure 2. The system has 48 stations, connecting eight endpoints. Each pair of stations,

defined as an origin and a destination, represents a distinct route. For our analysis, we

focus on the 44 stations in operation by 2014, resulting in 1,892 distinct routes in our

dataset. BART regularly collects and publishes data on ridership, performance, safety,

and other factors, which are available at data.bart.gov.

Our primary dataset consists of 137.4 million hourly observations (Table 1). For some

empirical models, we aggregate these data to daily counts of trips-by-route, yielding over

6.6 million observations. On average, BART serves nearly 310,000 passenger-trips per

day. As shown in the introductory Figure 1, ridership increased from 2009 through 2013,

peaking at approximately 380,000 daily passenger-trips in early 2014, before declining in
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recent years. BART ridership also exhibits seasonal fluctuations: November, December,

and January see fewer daily passenger-trips, while ridership tends to be higher during June

and from August through October. The number of daily passenger-trips per route vary

widely, from zero to over 6,000, with an average of 170 trips per route-day.

Table 1. Summary statistics

Continuous variables Obs. Mean S.D. Min. Max.

BART ridership
Daily total count 3,638 308,205 109,730 2,670 548,731

Route-by-day count 6,622,374 169.31 305.69 0 6,374
Route-by-hour count 137,418,912 8.16 25.91 0 1,826

Route-by-hour count, by group:

SFO airport, to 3,231,169 6.13 12.20 0 429
SFO airport, from 3,195,787 6.86 14.72 0 530

Commuters, AM 2,358,119 87.66 98.69 0 1,317
Commuters, PM 2,360,327 84.54 81.26 0 1,463

Recreational, day 49,165,317 6.70 14.19 0 1,826
Recreational, night 18,548,655 4.81 13.53 0 1,366

All other route-hours 62,029,327 4.55 12.88 0 1,539

Avg temperature F◦, route-hour 137,418,912 59.209 8.958 25 109.9
Rain ′′, hour 87,648 0.002 0.012 0 0.380
Highway speed, mph, route-hour 136,004,391 62.0 6.4 12.9 78.3
Population, 1000s, month 120 4,417.1 154.5 4,188.1 4,673.2
Employment, 1000s, month 120 979.8 101.9 845.0 1,156.6
VMT, 1000s, day 6,622,374 59,125 5,663 32,620 71,088
Gas price, real $, week 520 3.738 0.587 2.34 5.155

Indicator variables, as proportions

BART characteristics Other characteristics
Workday 0.743 Ride-hailing in SF 0.663
Weekend 0.257 Ride-hailing widely available 0.466

BART holiday 0.019 Federal holiday 0.027
Busy SFO travel date 0.069 Recreational holiday 0.011

Rainy hour 0.067

Note: Data from January 1, 2009 to December 31, 2018. The time-unit of observation for each continuous
variable is listed after the variable name. VMT is vehicle miles traveled, as measured on surface streets in
the SF-OAK metro areas. Proportions calculated from hourly data.

The hourly ridership average, pooled over all data, is 8 passengers per route. However, this

varies widely, from none to 1,826 on a single route. We split ridership into groups based on

hourly patterns in our data and using consumer surveys. We establish the following seven
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groups: 1) airport transit to SFO, 2) airport transit from SFO, 3) morning commuters,

4) evening commuters, 5) daytime recreation, 6) nighttime recreation, and 7) all other

route-hours; details provided in the appendix, with summaries in Table A-2 and Figure A-

2.5 SFO Airport and Recreational route-hours and All other ridership each have 5 to 7

passengers per route-hour; Table 1. Commuter route-hours have 12 to 19 times higher

BART ridership, with 88 and 85 passengers per route-hour, AM and PM respectively;

observations are the three-hour windows, morning and evening, and 314 routes heading

into or out of the downtown core.

Several indicator variables account for BART schedules and rider demand, given as propor-

tions in Table 1. Workdays indicate Monday through Friday, which have more ridership

than Weekends. Three types of holidays, BART holiday, Federal, and Recreational, allow

differential responses to each. In addition, we create an indicator for Busy SFO travel

dates, based on transit to/from the airport, which tend to be days around holidays.

Uber Technologies Inc formed in 2009 and began operating in San Francisco in 2011, offering

luxury, black-car services. Uber’s popularity rose in mid-2012 with the introduction of

UberX, a cheaper service; Lyft entered simultaneously in San Francisco. Sixty-six percent

of our observations occur after the two services launched in San Francisco on July 1, 2012

and are indicated by Ride-hailing in SF. Yet, adoption of ride-hailing technology by drivers

and consumers is gradual. Thus, we divide our decade of data into three phases: before

ride-hailing, adoption of ride-hailing, and mature. The before ride-hailing phase occurs

before UberX and Lyft launch in SF. The ride-hailing adoption phase is when the number

of drivers begin to take off and consumers start using the service more regularly. The data

on ride-hailing activity indicate that two years pass before Uber and Lyft are prominent

and rooted in SF. Therefore, the period after July 1, 2014 is the mature phase, when

ride-hailing has a large supply and demand.

We use two exogenous variables — weather and highway traffic speeds — to identify mech-

anisms by which ride-hailing changes transit ridership. We collect these data by hour and

at numerous locations, to create cross sectional variation. These aspects directly affect

transit and interact with the choice to use ride-hailing, once the services become available.

Our route-by-hour weather measurement is the temperature at the weather station nearest

5BART opened a station at Oakland Airport after ride-hailing entered the market, data which we include
in ‘all other route-hours’ and which contributes to estimation of rider trends.
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the BART entry, lagged by one hour, averaged with the temperature nearest the BART

exit. Average temperatures hover near 60◦ Fahrenheit, with a standard deviation of 9◦.

Around seven percent of all date-hours have rainfall. Finally, we create a measure for

driving speed, for each date-hour by route, in miles per hour (mph). Speed proxies for its

inverse, driving travel time, which affects choice of transit. We collect traffic speed data

measured by highway sensors near a route’s origin and destination, then average the speeds

that match direction of travel for the route. Additional details on these variables are in

A.1.

Additional covariates capture important trends that affect transit, including monthly data

on population, employment, and vehicle miles traveled, and local gas price by week, con-

verted to 2018$; see Summary Statistics, Table 1. These are necessary for our long-run

analysis, which compares time trends before and after ride-hailing. For robustness, we

also test numerous other variables, which we find do not impact our estimated impacts on

ridership; these include train on-time performance metrics, BART fares, BART fatalities,

crime, air traffic, the #deleteUber twitter movement, and amount of daylight. For our

short-run analysis, we drop the monthly time-series variables and exploit several forms of

time fixed effects, which capture constants-by-time, including unobserved trends.

4 Empirical analysis

In this section, we analyze the short-run impacts of ride-hailing on BART ridership and

then assess long-run trends. For each, we lay out our specification and determine the

effects for the full sample of data. We follow with results by ridership group — commuters,

recreational, and airport transit — to assess heterogeneous effects on trips by time of day,

purpose, and location.

4.1 Short-run: heterogeneous-treatment, difference-in-differences by

cause

We determine how ride-hailing affects BART ridership, as identified by variation in two

exogenous mechanisms — weather and traffic speeds. Both weather and traffic speed have
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panel-level variation by route-hour. We implement heterogeneous-treatment, difference-in-

differences to test for the effects on public transit ridership, before and with the availability

of ride-hailing. Variations in these factors each cause fluctuations in ridership by changing

the trade-offs between modes of transit. We estimate how a factor affects transit before

ride-hailing.

We use a panel regression model:

bartih = [Fih]′ ∗α+ [Fih]′ ∗ RHh ∗ Γ +X ′h ∗ ζ + γi + Th + εih.

The outcome variable, bart, is hourly BART ridership, indexed by route i and hour of date

h. The specification is difference-in-differences, before versus during ride-hailing availabil-

ity. The heterogeneous treatments are the non-parametric indicators for binned values of

our two main factors of interest: weather and speed. The [F ] is a placeholder for each fac-

tor; these variables are continuous from which we construct bins as binary variables. We

estimate a separate specification for each causal factor. The dummy variable RH indicates

ride-hailing is available, thus RH takes the value 1 if the observation occurs July 1, 2012

or later. X′
h is a collection of covariates. The γi is a vector of route fixed effects. Time

fixed effects, Tt, account for month-year, day of week, and hour of day. The coefficients

in vector α are the effects of the [F ]-bins on bart ridership before ride-hailing entered the

transit market. Our primary estimates are the Γ coefficients on the RH-[F ]-bin interaction

terms, as they measure how BART ridership changes when ride-hailing is available. Posi-

tive value implies that ride-hailing complements public transit, whereas, a negative value

signals substitution. We use ordinary least squares estimation and cluster the standard

errors by route.

Our first factor is weather. People using public transit are more exposed to the weather

than if driving or riding in a car — facing bigger repercussions from precipitation and

variation in temperature, in particular, when getting to and from transit stations. We

expect that extreme temperatures or rain reduce BART-ridership demand. Ride-hailing

offers shelter from the storms and temperature swings, thus we hypothesize that when

these undesirable weather factors are present, ride-hailing is a substitute for public transit.

Furthermore, weather is exogenous, providing a plausible causal mechanism of how ride-

hailing and public transit interact. We use interactions of weather variables with ride-

hailing availability to identify this mechanism. Specifically, we create indicator bins for

11



every two-degrees, by each hour:
∑78

d=38 bind,ih. We exclude the bin centered on 73◦F for

before ride-hailing. We include an indicator variable for a rainy hour, in the [F ] matrix;

therefore we measure the interaction of rain with ride-hailing availability as well. Covariates

include the proportion of hour day-lit, hourly route-specific travel speed, and indicators

for holidays and busy travel days. Time fixed effects for each month-year, day of week,

and hour of day control for underlying trends, seasonal and weekday transit patterns, and

intra-day demand that are common across all routes.

Figure 3. BART ridership responses to temperature,
before and with ride-hailing availability
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We estimate results using three time windows: (1) omitting the first two years of ride-

hailing, (2) for the entire decade, and (3) breaking the period of ride-hailing into phases,

setting two years for adoption. We provide the results from (1) because they are the most

conservative; others available on request. We summarize the findings with figures, one

for the full data set and three additional for our groups, Commuter, Recreational, and

Airport transit. The overall pattern is clear: before ride-hailing is established, extreme

temperatures and rain reduce demand. When ride-hailing is available, demand is further
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Figure 4. BART Commuters’ responses to temperature,
before and with ride-hailing availability
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reduced for most temperatures and for rainy hours, compared to before the availability of

ride-hailing. Figure 3 provides the temperature results for all ridership. For the period

before ride-hailing, ridership is highest in the range of 68 to 76 F◦, which coincides with

comfortable ambient temperatures. Whereas, passengers per hour decrease linearly as

temperatures drop. The line for “Ride-hailing available” represents the impact. When

ride-hailing is present as an alternative mode to BART, ridership falls for all temperatures

except for bins 48 to 52 F◦. The Uber-effect is around one passenger per route-hour in

the ranges of 40 to 46 F◦ and 52 to 56 F◦. Above 56 F◦ the impact increases to two

passengers lost per route-hour. These translate to ride-hailing inducing losses of 0 to 25

percent, depending on the temperature. A rainy hour decreases ridership by 1.6 passengers

per route-hour, or 19.7 percent. Once ride-hailing is available, rain does not significantly

change the magnitude of lost ridership.

The results by public-transit ridership group demonstrate heterogeneity and confirm our
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Figure 5. Recreational responses to temperature,
before and with ride-hailing availability
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intuition and hypotheses. Even with availability of ride-hailing, commuters are fairly in-

sensitive to changes for moderate ambient temperatures, between 48 and 64 F◦; Figure 4.

However for cooler temperatures, the commuter ridership before ride-hailing drops an addi-

tional rider per route-hour for every two-degree bin, with 15 fewer passengers per route-hour

in the 40-42 F◦ bin. In percent terms, these changes values are smaller than the overall

effect above because commuter route-hours have 10 times more passengers than the pooled

average. The impact once ride-hailing is available during extreme temperatures is a loss of

about 8.2 people in the coolest weather and about 4.7 passengers during warmer weather.

In addition, a rainy hour causes 5 fewer commuters per route-hour, before ride-hailing,

and 0.2 fewer commuters when ride-hailing is an available substitute, which is a 0.023 per-

cent loss; however, the result is not statistically significant. Figure 5 provides results for

recreational trips: the substitution effect when ride-hailing is present for the temperature

is about 1 to 1.5 passengers per route-hour, or 16.4 to 24.6 percent. With ride-hailing

availability, rain reduces hourly recreational passengers by 2.1 percent. Figure 6 provides
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Figure 6. SFO responses to temperature,
before and with ride-hailing availability
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Notes: Two-degree temperature bins, centered on odd values. Adoption period July 2012 to June 2014
omitted. Dashed lines represent 95% confidence intervals.

results for transit to and from the San Francisco International Airport; again, ride-hailing

causes losses to ridership. The gap ranges from 1 to 2 passengers per route-hour, or 20.8

to 41.6 percent. During a rainy hour that has ride-hailing availability, airport transit is 2.9

percent lower. According to the weather results, ride-hailing crowds out public transit.

Our second causal factor is highway traffic speeds. Time saving is one of the main reasons

for choosing to take ride-hailing over public transit (Feigon and Murphy, 2018; Rayle et al.,

2016). In the Bay Area, driving is usually faster than public transit. Before the availability

of ride-hailing, we posit that during hours with slower-than-normal vehicles speeds, those

who drive may shift to BART, causing BART ridership to increase. Now that ride-hailing

is available, we hypothesize that ride-hailing will reduce BART ridership for speeds in the

range of free-flowing traffic. However, there are slow speeds at which point ride-hailing no

longer prevails in the dimension of travel-time cost. We call this speed the “cross-over”

point and expect that at speeds lower than this, the availability of ride-hailing increases
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public transit as more people opt to avoid traffic congestion.

We approximate speed, in mph, for every hour of each BART route by averaging origin

and destination speed-by-direction of travel.6 We create indicator bins, defined by 5-mph

speeds for each route-hour, ih:
∑75

d=40 bind,ih. We exclude a before-ride-hailing bin, from

65 up to 70 mph, centered on 67.5 mph. Covariates include hourly weather variables, the

proportion of hour day-lit, and indicators for holidays and busy travel days. Time fixed

effects for each month-year, day of week, and hour of day control respectively for underlying

long run trends, seasonal and weekday transit patterns, and intra-day demand outcomes

that are common across all routes.

Figure 7. BART ridership responses to highway speeds
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Notes: Each bin is 5 mph: 40-45 mph, 45-50 mph, ..., and so on. We exclude the before-ride-hailing bin
65-70 mph, centered on 67.5 mph.

As shown in Figure 7, before ride-hailing exists, more consumers choose BART as speeds

decrease away from free-flowing traffic of 65 to 70 mph. As highway speeds slow to around

6For robustness, we also test two other time measures: an approximation of travel time and occurrence
of bottlenecks, defined as unexpected traffic jams. These data are poorer in quality and require more
assumptions than our speed measures, but the results are similar.
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Figure 8. BART ridership responses to highway speeds, by group
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40 mph, about 13 more people choose public transit per route, per hour. With ride-hailing

available, fewer passengers choose BART at high speeds because of reduced time costs, but

this wedge narrows as traffic speeds decrease and at speeds below 50 mph, more passengers

choose BART. This cross-over point may indicate consumers’ change in willingness to pay

for time savings — a relatively high speed may indicate that consumers are more elastic

to travel-time costs and vice-versa. Or the point might reflect the availability of outside

options for distinct travel segments. Cross-over at a lower speed implies less elastic demand

with respect to travel time.

Decomposing these results by group provides additional features of relationship between

highway speed, public transit and ride-hailing; Figure 8. There is large variation in magni-

tudes between and within groups: Very little change of ridership occurs for airport transit;

the spread over speeds is less than twenty percent of the standard deviation. Whereas

there are enormous changes for commuters, particularly in the morning, which ranges from
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25 more riders at slow driving speeds to almost 50 fewer at fast speeds — representing

75 percent of the standard deviation. Furthermore, if the cross-over point occurs at a

lower speed, the group seems more inelastic to changes in travel time. In other words, air-

port and evening commuters appear more tolerant of longer travel times, whereas morning

commuters and nighttime recreation passengers are more responsive and shift to transit at

lower road speeds.

We also analyze the impacts on commuter round-trips, i.e., how ride-hailing affects public

transit to work versus home, using difference-in-differences analysis. Once ride-hailing is

available, transit riders have a new outside option for either direction of a round trip: they

can split the two directions into different modes of travel. Commuters can more easily

decouple how they get to work from how they return home. Thus, we hypothesize that

public transit in the morning complements evening ride-hailing and vice-versa. We test

for this relationship using commuter route-hour subset of data. We collapse these data to

average ridership per route for all hours of morning commuting and merge those to the

same day’s evening commutes. We regress morning ridership and its interaction with the

availability of ride-hailing on evening ridership by date and route, per the specification

at the beginning of this section, 4.1. We find that once commuters can ‘take an Uber’

in the evening, about 1 in 100 do so each day. This result is robust to several variations

of covariates, including using non-rush-hour ridership to control for a secular trend in

ridership. An alternative explanation is that more people use ride-hailing in the morning,

with the expectation of using public transit home. However our former interpretation is

more consistent with greater inelasticity of morning commuters and anecdotes about having

and desiring more flexibility in the evening.

4.2 Long run: comparing trends before ride-hailing and during its avail-

ability

In our long-run estimate, we compare daily trends in BART ridership, before ride-hailing

companies and then with ride-hailing availability. We estimate the change in daily ridership

by route, for each additional day that ride-hailing is available. The long-run results are an

average over all years, and the findings provide the cumulative effects of ride-hailing, year

18



over year. Our regressions are fixed-effects panel specifications:

bartit =

{
β0dt + β1RHt + β2dt ∗ RHt +X ′t ∗ Γ + γi + Tt + εit

β0dt + β1RHt + β2dt ∗ RHt + β3RH mt + β4dt ∗ RH mt +X ′t ∗ Γ + γi + Tt + εit

As above, the outcome variable, bart, the count of BART passenger-trips for route i , but

now aggregated to date t. The top equation represents a simple comparison of before ride-

hailing and when ride-hailing is available. dt is the sequential date, providing the time trend

for before ride-hailing is available. The dummy variable RH is defined as before. X′
t is

the collection of covariates: daily temperature low and high, a rainy day indicator; holiday

indicators for BART scheduling, Federal, and recreational days; and the 25 busiest travel

days by year to/from SFO. X′
t also includes monthly time-series for SF-area population,

employment, and traffic congestion, and weekly gas prices. The γi is a vector of route fixed

effects. We account for the month-of-year and day-of-week with time fixed effects, Tt. β0

is the linear time trend in bart ridership, conditional on other controls, before ride-hailing

companies entered the transportation market. The β1 estimate is a constant intercept

without meaningful interpretation. The coefficient, β2, on the interaction, dt ∗ RHit, is

our fundamental estimate as it measures how the ridership changes for each additional day

of ride-hailing availability. Again, a positive value implies that ride-hailing complements

public transit, whereas, a negative value signals substitution.

The bottom equation splits the availability of ride-hailing into two periods, modeling the

trend-lines in Figure 1. The dummy variable, RH-m indicates that ride-hailing is widely

available and in use in the SF area, i.e., “mature.” We use a period of two years for these

main results and test robustness of results to varying lengths, in the appendix. Thus, the

other result of primary interest is β4, which provides the change in trend, for each additional

day, after ride-hailing reaches maturity compared with the early phase of ride-hailing. The

interpretation of the β4 estimate depends on the sign of β2. Thus, we perform a linear

t-test of β2 + β4 to determine the joint effect of ride-hailing availability: If the joint result

is greater than 0, the net effect of ride-hailing, in the long run, is complementary to public

transit, less than 0 implies that the two modes are substitutes.

Again, we find the entrance of ride-hailing companies reduces ridership. We use ordinary

least squares estimation, and we follow the now-standard protocol of clustering standard

errors by route to account for potential serial correlation. Table 2 reports the results.

Column (1) omits the first two “adoption years” of ride-hailing availability. The effect of
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Table 2. Long run: Comparison of daily ridership trends,
pre- and during ride-hailing availability

Variables (1) (2) (3)

Date -0.0011 -0.0228** 0.0053**
(0.00204) (0.00181) (0.00160)

Date*Ride-hailing -0.0466** -0.0156**
(0.00205) (0.00125)

Date*Ride-hailing*Mature -0.0447** -0.0271**
(0.00195) (0.00148)

Overall effect of ride-hailing -0.0447 -0.0466 -0.0427
availability, (t-test) (0.00195) (0.00205) (0.00189)

Post-estimation calculations

Daily ∆ in trips, at year’s end -30,849 -32,193 -29,509
%-∆ in trips, at year’s end -10.25 -10.69 -9.803
Annual ∆ in passenger-trips -5,529,943 -5,875,223 -5,385,393

Population -0.1793** 0.2908** -0.2988**
(0.03948) (0.02383) (0.02957)

Employment 0.4117** 0.4386** 0.4009**
(0.01997) (0.02053) (0.01930)

ln(Gas price, real $) 12.4344** 6.2072** 12.6172**
(1.26143) (1.32123) (1.22979)

Daily VMT (1000s), 3-day moving avg 0.0023** 0.0020** 0.0020**
(0.00010) (0.00009) (0.00009)

Temperature F◦, low 0.4643** 0.6941** 0.5477**
(0.03673) (0.04145) (0.03850)

Temperature F◦, high 0.0872** 0.1338** 0.1173**
(0.01743) (0.01666) (0.01674)

Rainy day -3.1426** -3.3602** -3.0873**
(0.18208) (0.18751) (0.17982)

Observations 5,317,808 6,622,374 6,622,374
R-squared 0.161 0.161 0.161
Route FEs 1,892 1,892 1,892

Note: Outcome is daily BART ridership per route; the treatment is an additional day of ride-hailing
availability. Column (1) omits the first two years of ride-hailing availability, whereas column (2) keeps
this period. Our social cost estimates are based off of column (1). Column (3) estimates the impact of
ride-hailing availability separately for the first two years relative to when ride-hailing is widely available.
Robust standard errors clustered by route; ** p<0.01, * p<0.05.
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ride-hailing is 5.5 million trips lost system-wide annually or 5.4 percent of average annual

ridership. We use this value for our calculations of long-run social costs in the next section.

Column (2) estimates the simple before/after-trend model and does not distinguish between

the adoption and mature period. The overall effect of ride-hailing availability is similar.

The Date trend in ridership, prior to ride-hailing availability, is negative and significant,

-0.02 trips lost per route-day — a decrease of 43 BART trips per additional day over

all routes. Our results concur with Manville et al. (2018a), which shows that population

growth in Southern California outpaces the proportion who use transit. In column (3),

we estimate the impact of ride-hailing during the first two-years versus the mature period.

The impact of ride-hailing is 30 fewer trips per additional day. Once ride-hailing is widely

available, the loss of BART ridership further decreases by 51 trips per additional day.

We use a t-test to determine the Overall effect of ride-hailing availability, -0.0427 trips

per route per additional day. The results for the substitution effect are similar across all

specifications: overall, ride-hailing is associated with a year-over-year loss of 9.8 to 10.7

percent.7

Table 2 also reports the estimates for the covariates; the signs conform to our hypothe-

sized effects. Ridership is correlated with population increase, except for the in (3) where

the Date-trend switches sign too. As employment rises in the region, transit demand in-

creases. When gas price rises, the cost of driving increases and consumers substitute away

from automobiles, increasing BART ridership. BART ridership and vehicle miles traveled

(VMT), which is a measure of automobile activity, increase together in response to regional

demand. We find more BART trips in warmer weather and fewer on rainy days.

In Table 3, we decompose the results of column (3), by ridership group, to obtain the

respective effects for airport travel, commuters, and recreational transit. The results for

before and during ride-hailing availability follow the pattern from the complete data set.

However, the magnitudes vary by group, and mostly follow our hypotheses. We first assess

routes to and from SFO Airport, with public transit to and from SFO falling by 10.5

percent, year-over-year, about the same as the overall average. Next, we estimate effect

7To determine percent change, the numerator is the estimated marginal effect per additional day on a route’s
ridership times 365 days in a year. The denominator is the average ridership per route, before ride-hailing,
multiplied by the number of routes. Dividing these gives the average annual percent change. We test for
sensitivity by making several modifications to the specification: we include lag and lead variables (Table
A-4), vary the length of the adoption period (Table A-3, and add several other month-varying independent
variables).
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on commuters. We hypothesize that ride-hailing has less influence on commuters because

demand is inelastic with respect to getting to work each day. Indeed, both morning and

evening rush-hour routes have smaller losses than average, 9.4 percent and 6.7 percent

annually. We expect recreational transit to have the most flexibility and exhibit larger

effects. However, the daytime reduction is 8.7 percent, indicating this group may include a

less-elastic segment of passengers. The nightlife results bear out our intuition — ridership

has been dropping precipitously, by an average of 17.4 percent per additional year. The

‘Other’ category is too broad for a practical explanation. Adding up all groups’ annual

change in trips gives a total loss of 6,410,530 trips, which squares with the overall estimates

above.

A concern with these long-run results is the inherent challenge of before-and-after compar-

isons: there is always the risk that an unobservable or unaccounted trend could be influenc-

ing the outcome simultaneously with the treatment of interest. For example, if an omitted

factor is driving down BART ridership during the same period that ride-hailing availability

is increasing, we may have incorrectly attributed the decline in ridership to ride-hailing.

Fortunately, several aspects alleviate this concern. First, we examine demographic trends.

Over our study period, population and employment opportunities have increased in the Bay

Area. Air traffic to and from SFO and OAK has also trended upward throughout the decade

(data.sfgov.org). In addition, Bay Area residents own fewer cars in the latter half of

the decade, which should increase demand for both public transit and ride-hailing services.

These prevailing factors would likely drive up demand for BART, suggesting that we may be

underestimating the long-run effects of ride-hailing. Second, BART provides ridership fore-

casts and sets monthly ridership goals (data.bart.gov/dataset/customer-ridership).

Actual ridership has consistently fallen below these projections in recent years, indicating

the presence of an external and unaccounted-for shock, such as the rise of ride-hailing.

We also review BART’s schedule changes over the decade and find little evidence of re-

duced service. Third, the results by group are distinct and intuitive. For an unobserved

trend to explain our findings, it would have to affect BART market segments in a very

specific and unlikely manner. Finally, as discussed in the previous section, we provide

additional evidence that ride-hailing substitutes for public transit, pointing to plausible

causal mechanisms for the long-run decline in ridership.
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5 Costs of transit riders switching to ride-hailing

Evidence shows that UberX and Lyft reduce BART ridership in the San Francisco Bay

Area. As consumers are choosing ride-hailing over high-occupancy public transit, we now

consider two categories of impacts: a decrease in BART’s fare revenue and several negative

externalities from the additional vehicle miles. The externalities include social costs from

pollution, increased travel times, and auto-related collisions. We first determine average

values for several parameters: BART fares, the mileage of BART trips, the occupancy of

riders in ride-hailing vehicles, and the social costs per mile. We then convert change in

BART ridership to dollar values. We calculate separate totals for the long-run daily trend

and the short-run hourly effects. We then discuss the connection between these.

We use 2018 data as our base year and covert dollar values from other years. The average

2018 BART fare was $4.8 To calculate the social costs, we need an estimate of additional

vehicle miles traveled (VMT), which requires assumptions about their distance of travel and

how many passengers are in each ride-hailing vehicle. The average BART trip distance, 14.8

miles, is a good proxy for distance per trip.9 To provide a range of costs, we assume either

10 or 20 miles per trip. These distance measures are conservative: by ignoring the travel

between the origin and destination and entry and exit BART stations, we underestimate

the total trip length. The occupancy rate for San Francisco, from Castiglione et al. (2016),

is 1.66 passengers per vehicle.

We use two approaches to determine the values of social costs per VMT: (1) Parry et al.

(2007) provides values for four impacts, carbon dioxide (CO2) pollution, local pollution,

congestion, and traffic collisions. (2) We collect information that is aligned with our study

period, and specific to the three countires on the Bay Area, to determine alternative values

for each impact. Our methods are as follows. For pollution cost per VMT, we use emission

cost per metric ton and pollutant grams per mile.10 To calculate the average Bay Area

congestion cost per VMT, for each year from 2013 to 2018, we divide reported annual

congestion cost in 2018$ by total annual VMT in the three counties BART operates. We

then average the congestion cost per VMT across the six years ride-hailing available in the

8See 2019 BART Fact Sheet, accessed October 2024.
9Ibid.
10See Benefit-Cost Analysis Guidance and Motor Vehicle Emission Simulator, accessed October 2024.
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Bay Area. We calculate the collision cost as the rate of injury per VMT weighted by the

probability and cost of injury type.11 The average costs for congestion and collisions further

the underestimation of the impact of the marginal vehicle because both these impacts rise

in marginal cost per vehicle mile added. In sum, the average social cost per additional

vehicle miles traveled is $0.150 to $0.574; all values in Table 4. Ours are higher than in

Parry et al. (2007) because they reflect contemporary costs and pertain to the populous

and congested region in which BART operates.

From Column 1 of Table 2, our results show that ride-hailing induces an annual loss of

5,529,943 trips. Thus, the estimated lost BART revenue resulting from ride-hailing is

about $22.1 million year-over-year. By 2018, we estimate a loss of $132.7 million. For

comparison, we project a counterfactual 2018 revenue of $536.1 to $581.8 million and

BART’s operating budget for the same year was $920.6 million.12 The lost revenue is

a private transfer, from BART to the ride-hailing companies and drivers. Moreover, we

acknowledge that private welfare increases because these consumers reveal their preference

for ride-hailing over BART. In fact, Cohen et al. (2016) estimate consumer surplus using

UberX surge-price data for individual trips; for the four cities with largest markets in 2015;

they find a valuation of $2.9 billion.

Table 4. Social costs of additional ride-hailing trips: Average year-over-year trend

$/VMT Total Costs
Parry Authors’

Impact et al. (2007) Calculations Low Moderate High

CO2 Pollution $0.004 $0.017 $291,175 $574,657 $1,149,314
Local Pollution $0.029 $0.005 $1,941,167 $165,980 $331,960
Congestion $0.05 $0.433 $4,852,919 $14,418,335 $28,836,670
Collisions $0.044 $0.109 $2,911,751 $3,632,317 $7,264,634

Sum $0.150 $0.574 $9,997,012 $18,791,289 $37,582,578

Note: Values in 2018$. Derivations of parameters, methods, and ranges described in main text.

We monetize the year-over-year social costs using estimates of the costs per VMT, a stan-

dard benefits-transfer approach. The change in BART ridership combined with ride-hailing

occupancy and distance per trip provides a range of 33,312,910 to 66,625,819 additional

11See 2015 Motor Vehicle Crashes: Overview and Tiger Benefit-Cost Analysis (BCA) Resource Guide,
accessed October 2024.

12See BART Fact Sheet, accessed October 2024.
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VMT induced by the availability of ride-hailing. Table 4 provides the year-over-year social

costs. ‘Low’ uses the low VMT estimate and costs from Parry et al. (2007); ‘Moderate’

uses the low VMT estimate and our calculated costs; and ‘High’ column uses the high

VMT estimate and our own costs. We find that total negative externality costs increase

year over year by $10 to $37.6 million annually.

We now calculate costs based on our hourly difference-in-differences estimates. We focus

on the two factors with the largest impacts on ridership: temperature and congestion.13

We first find the weighted-average change in ridership over all the binned estimates, based

on Figures 3 and 7. Then we multiply by the average number of system-wide operational

hours per day, inferring an average daily loss of 30,864 riders due to congestion and 66,586

riders due to temperature.

Using these values, BART is potentially losing up to $248,000 per day in fare revenue due

to a preference for ride-hailing over BART when temperatures are uncomfortable or ride-

hailing is faster. We translate ridership into additional VMT using these ridership changes,

the occupancy rate of 1.66, and the same range of 10 to 20 additional VMT per ride-hailing

trip. Table 5 shows the social costs from our short-run analysis. As above, ‘Moderate’ uses

the low VMT and ‘High’ uses the high VMT estimate; both apply our calculations of

cost/VMT. The daily sum of impacts is — $103,000 to $207,000 from congestion shocks

and $230,000 to $461,000 from temperature shocks.

Table 5. Social costs of additional ride-hailing trips: Average daily values due to hourly
congestion and temperature fluctuations

Authors’ Percent Congestion Costs Temperature Costs
Impact $/VMT /Impact Moderate High Moderate High

CO2 Pollution $0.017 2.96% $3,202 $6,405 $6,909 $13,818
Local Pollution $0.005 0.87% $925 $1,850 $1,996 $3,991
Congestion $0.443 77.18% $82,446 $164,892 $177,866 $355,732
Collisions $0.109 18.99% $20,242 $40,485 $43,670 $87,341

Sum $0.574 100% $106,816 $213,632 $230,441 $460,882

Note: Values in 2018$. Derivations of parameters, methods, and ranges described in main text.

Combining the effects of temperature and congestion on ridership is challenging because the

13We disregard the short-run results from rain and AM-PM commuters as these are small in both magnitude
and duration.
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two factors interact. We choose to use temperature as the primary variable to estimate total

average daily costs, as it more effectively captures the combined impact of both temperature

and congestion. Congestion costs, on the other hand, are less sensitive to temperature

fluctuations because congestion tends to be highest during commute hours when demand

is relatively inelastic. Bad weather, such as rain, often exacerbates congestion, as more

people opt to drive instead of taking public transit, and driving conditions worsen. As

a conservative estimate of short-run impacts, we use the lower bound of average daily

temperature costs and multiply it by 365 days to calculate an annualized perpetual cost of

$84 million.

The daily fluctuations in ridership — and respective costs — are four times larger than

the year-over-year losses. The changes in hourly and daily ridership occur within the

downward, long-run annual trend. Therefore we cannot simply add the long- and short-run

costs together. We can surmise that congestion and temperature displace numerous transit

riders temporarily, yet according to our estimates, about 80 percent of these passengers

return to BART. We add the year-over-year ‘moderate’ value of $19 million to account

for the long-run trend. Given our calculations rely on many assumptions, we refrain from

an exact figure of total social costs. We also note that these measures are for a single

metropolitan area and one form of alternative transit. Our measure is on the order of $103

million dollars in 2013 growing to $197 million in 2018, for a total impact over this period

of nearly one billion dollars.

6 Discussion

We are unaware of any other studies that discern whether ride-hailing is a complement

or substitute for public transit at the metropolitan level, and across both hourly and

daily timescales. We are the first to differentiate outcomes for distinct types of riders —

commuters, airport travelers, and recreational passengers. Previous studies have reached

conflicting conclusions regarding complementarity or substitution, which can be attributed

to varying levels of data aggregation, differing identification strategies, and diverse time

spans. The fundamental issue is that different municipalities respond to ride-hailing in

distinct ways. Additionally, we examine multiple factors that may lead riders to switch

between public transit and ride-hailing. Public transit authorities and municipalities re-
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quire these finer details to inform decision-making, which is why we provide a template for

replicating our approach in other regions.

We present methods and findings for two timescales. In the short run, we capture hourly

fluctuations, which allow us to identify the mechanisms driving ridership declines due

to ride-hailing. We focus on two key factors that may push transit riders toward ride-

hailing: increased protection from weather and reduced travel time. In contrast, our

long-run analysis compares time-series trends before and after the introduction of ride-

hailing, shedding light on how hourly ride-hailing impacts accumulate into annual ridership

changes. This provides a broader view of the factors influencing ridership, including how

the availability of ride-hailing affects daily transit patterns.

We apply our methods using data from the San Francisco Bay Area. Our findings reveal

hourly substitution: BART users temporarily deviate from public transit in response to

worsening weather, decreased daylight, or faster travel speeds, with significant declines

in ridership when ride-hailing is available. While many riders return to public transit

once these short-term conditions improve, some appear to habituate to ride-hailing, likely

contributing to the long-term decline in ridership. This leads to a permanent loss of 5.5

million BART trips, on average, for each additional year of ride-hailing availability. The

decline persists despite population growth and an increase in employment opportunities

in the city center. Naturally, unobservable trends across time and space could affect our

results. For instance, surge pricing practices by ride-hailing companies, which are not fully

captured by route and time fixed effects, might introduce bias. However, the patterns

we observe across different rider groups bolster our confidence, with small elasticities for

commuters and high elasticities for recreational and airport travelers.

Our results are also supported by related facts and literature. BART ridership has been

significantly lower than forecasts by the transit authority, indicating that existing models

may not account for certain factors. The 2018 SF Mobility Report suggests that while

San Francisco residents are driving their own cars less, overall driving and congestion have

increased, with vehicle speeds declining by 23 percent over the past decade.Several recent

studies find that ride-hailing contributes to an increase in vehicle miles traveled (VMT),

even after accounting for other growth factors (Erhardt et al., 2019; Henao and Marshall,

2019; Tirachini and Gomez-Lobo, 2020), with Tirachini (2019) offering a comprehensive

review. This increase implies that ride-hailing induces additional trips by current drivers
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or causes transit riders to shift to ride-hailing. In particular, Rayle et al. (2016) surveyed

ride-hailing passengers in central San Francisco and found that over 30 percent chose ride-

hailing over their next-best option of public transit. Similarly, Schaller (2021) analyzed

ride-hailing consumers in four major U.S. cities, including San Francisco, concluding that

VMT increases due to empty ride-hailing vehicles searching for passengers and because

many consumers shift from public transit to ride-hailing.

7 Conclusions

Uber and Lyft have been incredibly successful in developing app-based technologies that

match passengers with drivers for a taxi-like service (Castiglione et al., 2016; Cramer

and Krueger, 2016). In addition to improving informational efficiencies, ride-hailing offers

other private benefits. For drivers, ride-sharing gigs provide flexible compensation without

the commitments of traditional employment or taxi leasing (Angrist et al., 2021; Chen

et al., 2020, 2019). For passengers, ride-hailing increases access to areas not served by

public transit, arrives on-demand, and often provides greater comfort and safety than

public transit. Research shows that ride-hailing improves personal mobility and increases

consumer surplus (Christensen and Osman, 2021; Cohen et al., 2016). As these technologies

continue to evolve, transport as a service is expected to occupy a larger share of the market,

influencing demand for public transport and altering its provision and operations (Hörcher

and Tirachini, 2021; Webb, 2019).

Concurrently, public transit ridership across the U.S. has seen significant declines. Using

data from San Francisco, we estimate that ridership in 2019 would have been 11.2 to 21

percent higher in the absence of ride-hailing.14 Various factors contribute to this decline

(Graehler et al., 2019; Grisby et al., 2018; Manville et al., 2018b).15 Is ride-hailing displac-

ing public transit? Initial studies yielded mixed results, but growing evidence supports our

findings that ride-hailing contributes to the decline in public transit use (Diao et al., 2021;

Erhardt et al., 2021; Hall et al., 2018; Nelson and Sadowsky, 2018; Tirachini, 2019). This

decline has several consequences. First, a reduction in fare revenue hinders the ability of

14Values are from an unconditional linear projection of the data in Figure 1, from 2011 to 2014.
15A 2018 article in The Economist attributes the decline to “remote working, Uber, cheap car loans, and

the internet.” Public transport is in decline in many wealthy cities, accessed October 2024.
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transit agencies to maintain infrastructure and make necessary capital investments. We

estimate that BART fare revenue is 10.3 to 17.4 percent lower than the counterfactual.

Second, more traffic results from increased ride-hailing, as fewer people use mass transit.

Although pooled ride-hailing options exist, Tirachini and Gomez-Lobo (2020) find that

the average occupancy rate for ride-hailing vehicles does not offset the rise in vehicle miles

traveled (VMT), contributing to increased congestion.

More traffic and congestion lead to further societal costs, such as lost personal time for all

drivers, as well as amplifying other externalities. Using San Francisco-specific parameters,

we estimate travel-time costs at $0.443 per VMT, accounting for 77 percent of social

impacts. Modeling by Erhardt et al. (2019) suggests that ride-hailing has tripled congestion

delays in the metro area compared to a counterfactual without these services. Anderson

(2014) demonstrated that shutting down Los Angeles’s metro system resulted in a sharp

increase in congestion costs, and conversely, Gu et al. (2021) found that new subway lines

reduced congestion in China. We adjust their valuation to U.S. conditions, estimating a

traffic speed decline of 0.25 to 0.5 percent, which translates into annual external costs of $9.5

to 35.3 million — remarkably similar to our estimates. Furthermore, increased traffic raises

collision rates, leading to property damage, injuries, and fatalities. Barrios et al. (2020)

find that increased ride-hailing activity correlates with a rise in quarterly fatalities in U.S.

cities. They argue that ride-hailing contributes to more vehicles roving for passengers and

more driving on unfamiliar roads, increasing the risk of collisions. Valuing the cost of these

fatalities at $15 to $40 per capita, we estimate the annual collision cost for the San Francisco

metro area to be $49 to $133 million. Thus, the Bay Area’s 2018 collision costs likely total

around $40 million — a reasonable figure when combining property damage, injuries, and

fatalities. Although smaller, environmental costs also arise from increased ride-hailing. At

less than 4 percent of the total social impacts, the pollution cost, including local emissions

and CO2, is $0.22 per VMT.

These findings, combined with other research, reinforce a critical takeaway: a robust public

mass transit system is essential for mitigating the social costs of driving. Municipalities

and transit agencies need specific, detailed data to create policies that address the crowd-

ing out of transit by ride-hailing. While our results may lack external validity for other

regions, as public transit systems differ in their structure and demographics, we provide

a methodological tool that can be adapted to local conditions. Public agencies should
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improve data collection to capture detailed measurements of ride-hailing’s impacts and

respond with appropriate policies.

How should public transit adapt as ride-hailing continues to transform the transportation

industry? Unlike private services, public transit agencies focus on maximizing societal

welfare and ensuring distributional equity under budget constraints. As ride-hailing places

increasing pressure on public transit budgets, it may be more strategic for agencies to

concentrate on the segments where they perform best. However, focusing resources on

high-performing routes might require cutting services in areas with low-income or transit-

dependent populations, raising equity concerns.

Government policies can play a vital role in supporting public transit authorities and

regulating ride-hailing companies to mitigate social costs. Governments already subsidize

public transit, and such subsidies have proven net beneficial (Parry and Small, 2009).

Subsidies can also target routes that divert drivers from congested roads. Public-private

partnerships have been explored as a way to foster complementarity, where governments

subsidize ride-hailing trips to and from transit hubs.16 In terms of regulation, an ideal

solution would be a vehicle miles tax or congestion pricing, which would charge ride-

hailing companies according to their marginal social impact. Based on our estimates, the

appropriate Pigouvian tax would be $0.57 per mile. However, Dudley et al. (2017) highlight

the challenges of enforcing congestion pricing, as ride-hailing companies have successfully

avoided such policies in cities like London. Recent work by Almagro et al. (2024) uses

Chicago to model optimal policies, assessing the welfare consequences of road pricing and

public transit schedules and fares. An alternative, as shown by Hanna et al. (2017), is

the use of high-occupancy vehicle (HOV) lanes to mitigate traffic. As a positive incentive,

pooled ride-hailing vehicles often can use these lanes or be exempted from congestion taxes.

Meanwhile, California has mandated that 90 percent of ride-hailing fleets must be electric

vehicles (EVs) by 2030.17 While this addresses environmental concerns, it overlooks the

largest social costs of ride-hailing — congestion and collisions, which account for 96.2

percent of the total social costs. As ride-hailing causes more people to shift from high-

occupancy modes, reducing vehicle miles traveled is critical to mitigating these rising costs.

16See Transit and TNC Partnerships, accessed October 2024.
17See California regulator adopts EV mandate for Uber, Lyft ride-hail fleets, accessed October 2024.

31

https://www.apta.com/research-technical-resources/mobility-innovation-hub/transit-and-tnc-partnerships/
https://www.reuters.com/technology/california-regulator-adopts-ev-mandate-uber-lyft-ride-hail-fleets-2021-05-20/


References

Almagro, M., Barbieri, F., Castillo, J. C., Hickok, N. G., and Salz, T. (2024). Optimal urban transportation

policy: Evidence from Chicago. National Bureau of Economic Research. No. w32185; found at https:

//www.nber.org/papers/w32185.

Anderson, M. L. (2014). Subways, strikes, and slowdowns: The impacts of public transit on traffic conges-

tion. American Economic Review, 104(9):2763–96.

Angrist, J. D., Caldwell, S., and Hall, J. V. (2021). Uber vs. taxi: A driver’s eye view. American Economic

Journal: Applied Economics, 13(3):272–308.

Babar, Y. and Burtch, G. (2017). Examining the impact of ridehailing services on public transit use.

Available at SSRN 3042805. Forthcoming in Information Systems Research.

Barrios, J. M., Hochberg, Y., and Yi, H. (2020). The cost of convenience: Ridehailing and traffic fatalities.

National Bureau of Economic Research. No. w26783; found at https://www.nber.org/papers/w26783.

Berger, T., Chen, C., and Frey, C. B. (2018). Drivers of disruption? Estimating the Uber effect. European

Economic Review, 110:197–210.

Castiglione, J., Chang, T., Cooper, D., Hobson, J., Logan, W., Young, E., Charlton, B., Wilson, C., Mislove,

A., Chen, L., et al. (2016). TNCs today: a profile of San Francisco transportation network company

activity. San Francisco County Transportation Authority. Details at https://www.sfcta.org/projects

/tncs-today, accessed 06/20/2021.

Chen, K.-M., Ding, C., List, J. A., and Mogstad, M. (2020). Reservation wages and workers’ valuation of

job flexibility: Evidence from a natural field experiment. National Bureau of Economic Research. No.

w27807; found at https://www.nber.org/papers/w27807.

Chen, M. K., Rossi, P. E., Chevalier, J. A., and Oehlsen, E. (2019). The value of flexible work: Evidence

from Uber drivers. Journal of Political Economy, 127(6):2735–2794.

Christensen, P. and Osman, A. (2021). The demand for mobility: Evidence from an experiment with Uber

riders. IZA Discussion Paper.

Clewlow, R. R. (2019). Disruptive transportation: The adoption, utilization, and impacts of ride hailing in

the United States. Transfers Magazine, pages 7–14.

Cohen, P., Hahn, R., Hall, J., Levitt, S., and Metcalfe, R. (2016). Using big data to estimate consumer

surplus: The case of Uber. National Bureau of Economic Research. No. w22627; found at https:

//www.nber.org/papers/w22627.

Coogan, M., Spitz, G., Adler, T., McGuckin, N., Kuzmyak, R., and Karash, K. (2018). Understanding

changes in demographics, preferences, and markets for public transportation. Technical Report 201,

Transportation Research Board.

32

https://www.nber.org/papers/w32185
https://www.nber.org/papers/w32185
https://www.nber.org/papers/w26783
https://www.sfcta.org/projects/tncs-today
https://www.sfcta.org/projects/tncs-today
https://www.nber.org/papers/w27807
https://www.nber.org/papers/w22627
https://www.nber.org/papers/w22627


Cramer, J. and Krueger, A. B. (2016). Disruptive change in the taxi business: The case of Uber. American

Economic Review, 106(5):177–82.

Diao, M., Kong, H., and Zhao, J. (2021). Impacts of transportation network companies on urban mobility.

Nature Sustainability, 4(6):494–500.

Dudley, G., Banister, D., and Schwanen, T. (2017). The rise of Uber and regulating the disruptive innovator.

The Political Quarterly, 88(3):492–499.

Erhardt, G. D., Mucci, R. A., Cooper, D., Sana, B., Chen, M., and Castiglione, J. (2021). Do transporta-

tion network companies increase or decrease transit ridership? Empirical evidence from San Francisco.

Transportation, pages 1–30.

Erhardt, G. D., Roy, S., Cooper, D., Sana, B., Chen, M., and Castiglione, J. (2019). Do transportation

network companies decrease or increase congestion? Science Advances, 5(5):eaau2670.

Feigon, S. and Murphy, C. (2016). Shared mobility and the transformation of public transit. Available at

https://www.apta.com/wp-content/uploads/Resources/resources/reportsandpublications/Docum

ents/APTA-Shared-Mobility.pdf, accessed 04/26/2020. Project J-11, Task 21.

Feigon, S. and Murphy, C. (2018). Broadening understanding of the interplay among public transit, shared

mobility, and personal automobiles. Technical Report 195, Transportation Research Board.

Graehler, M., Mucci, R. A., and Erhardt, G. D. (2019). Understanding the recent transit ridership decline

in major US cities: Service cuts or emerging modes. In Transportation Research Board 98th Annual

Meeting, Washington, DC, January.

Grahn, R., Qian, S., Matthews, H. S., and Hendrickson, C. (2020). Are travelers substituting between

transportation network companies (TNC) and public buses? a case study in Pittsburgh. Transportation,

pages 1–29.

Grisby, D., Dickens, M., and Hughes-Cromwick, M. (2018). Understanding recent ridership changes: Trends

and adaptations. American Public Transportation Association.

Gu, Y., Jiang, C., Zhang, J., and Zou, B. (2021). Subways and road congestion. American Economic

Journal: Applied Economics, 13(2):83–115.

Hall, J. D., Palsson, C., and Price, J. (2018). Is Uber a substitute or complement for public transit? Journal

of Urban Economics, 108:36–50.

Hanna, R., Kreindler, G., and Olken, B. A. (2017). Citywide effects of high-occupancy vehicle restrictions:

Evidence from “three-in-one” in Jakarta. Science, 357(6346):89–93.

Henao, A. and Marshall, W. E. (2019). The impact of ride-hailing on vehicle miles traveled. Transportation,

46(6):2173–2194.

33

https://www.apta.com/wp-content/uploads/Resources/resources/reportsandpublications/Documents/APTA-Shared-Mobility.pdf
https://www.apta.com/wp-content/uploads/Resources/resources/reportsandpublications/Documents/APTA-Shared-Mobility.pdf
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