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What caused the historic changes in 
employment in 1990s?



Start of a revolution in U.S. safety net

• Large literature credits the Earned Income Tax Credit for increases labor 
supply and reductions in welfare use in the 1990s

– The 1993 expansion is a key piece of evidence of the EITC’s labor 
supply effects

– And to evidence of EITC’s effects on many other outcomes

• Caused a revolution: “virtually all gains in spending…to families with 
earnings…” (Hoynes and Whitmore Schanzenbach 2015) 

• Premised by view that it was the “carrots” rather than the “sticks”. 

• Twenty-five years later we are reconsidering cash assistance:
– Paid family leave, large child tax credits, UBI, expanded UI



Concern: Estimates of 1993 EITC are 
“confounded” by welfare reform

• Ethnographic narrative credits bureaucratic barriers and 
social norms.

• EITC literature careful to control for welfare policies.

• Renewed debate whether cause was welfare reform or 
EITC (Kleven 2024). 

– But few econometric tools to resolve his dispute.



Is the estimated effect of EITC confounded? 

• Falsification tests: 

(1) Use placebo tests to identify omitted variables bias 

(2) Test for “non-parallel trends” arising from differences in composition

• Results suggest identifying assumptions fail to hold, and 
estimated effects of 1993 EITC in DiD estimators is spurious. 

• Estimates that control for confounding effect suggest little
effect of EITC. 

• Note: ML covariate selection would have gotten to same place.



Refresher: 1990s EITC expansion by # of kids 



Difference-in-difference estimates of the EITC

• Literature based on difference-in-difference estimators: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝛽𝛽3 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝑋𝑋𝑋𝑋 + 𝜀𝜀𝑖𝑖𝑖𝑖

• 𝛽𝛽3 is effect of EITC on mothers of 2+ kids, after EITC expansion, 
compared to mothers of 1 child and/or childless women.

• Identifying assumption: “parallel trends.”

• Assess robustness of this assumption by:  

– Test pre-trends; sequentially adding covariates; including e.g. state-by-
year effects; excluding AFDC-waiver states…

– There are no post-treatment tests of assumption.



DiD estimates: Large, significant effects of EITC

Strain and 
Schanzenbach

Hoynes and Patel

Meyer and Rosenbaum

Michelmore and Pilkauskas



Closely match published estimates



Alternative hypothesis: caseload reduction

• Ethnographic narrative credits bureaucratic barriers 
and social norms

– “above all else, lower caseloads.”

– “it simply took a work requirement, strictly enforced.”

• Quantitative predictions of this alternative hypothesis: 

– Welfare reform’s “treatment effect” is proportional to 
pre-reform exposure to welfare/non-employment.



Caseload reduction back-of-the-envelope



Caseload reduction back-of-the-envelope



Caseload reduction back-of-the-envelope

11 ppts



Falsification test 1: Placebo DiD

• True model is 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 + 𝛽𝛽2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝛽𝛽3 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡
+ 𝜸𝜸𝒔𝒔𝒁𝒁𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒕𝒕 + 𝜀𝜀𝑖𝑖𝑖𝑖

• Assume 𝑍𝑍𝑠𝑠 is an omitted variable and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  is a dummy 
variable. Then:

  �β = 𝛽𝛽3+ γ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑍𝑍
𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

      = 𝛽𝛽3+ 𝛾𝛾[𝐸𝐸 𝑍𝑍 𝑇𝑇 = 1 − 𝐸𝐸 𝑍𝑍 𝑇𝑇 = 0 ] 
• Placebo test procedure: 

(1) Estimate DiD in situations constructed such that 𝛽𝛽3 is zero. 

(2) Check if �β  correlated with differences in Z between groups. 



Falsification test 2: “non-parallel trends” 

Assume 𝑍𝑍𝑠𝑠 is a vector of dummy variables indexing subgroups (s) of treatment and 

control groups. 𝜔𝜔𝑠𝑠𝑇𝑇 is the weight of each subgroup in the treatment group: 

Treatment effect (in 2x2 DiD) is: 

 𝛽𝛽3= (𝑌𝑌1𝑇𝑇−𝑌𝑌0𝑇𝑇) −  (𝑌𝑌1𝐶𝐶 − 𝑌𝑌0𝐶𝐶) =  ∆𝑌𝑌𝑇𝑇 − ∆𝑌𝑌𝐶𝐶 =  �𝜔𝜔𝑠𝑠𝑇𝑇∆𝑌𝑌𝑠𝑠𝑇𝑇 −�𝜔𝜔𝑠𝑠𝐶𝐶∆𝑌𝑌𝑠𝑠𝐶𝐶

Adding and subtracting the change in the control’s subgroups outcomes weighted by the 

treatment subgroup weights (𝜔𝜔𝑠𝑠𝑇𝑇∆𝑌𝑌𝑠𝑠𝐶𝐶) and rearranging gives the following decomposition:

 𝛽𝛽3 = �𝜔𝜔𝑠𝑠𝑇𝑇(∆𝑌𝑌𝑠𝑠𝑇𝑇−∆𝑌𝑌𝑠𝑠𝐶𝐶) + �(𝜔𝜔𝑠𝑠𝑇𝑇−𝜔𝜔𝑠𝑠𝐶𝐶)∆𝑌𝑌𝑠𝑠𝐶𝐶



Bias? Do within-group-trends predict across-group 
divergence in trends? 

𝛽𝛽3 = �𝜔𝜔𝑠𝑠𝑇𝑇(∆𝑌𝑌𝑠𝑠𝑇𝑇−∆𝑌𝑌𝑠𝑠𝐶𝐶) + �(𝜔𝜔𝑠𝑠𝑇𝑇−𝜔𝜔𝑠𝑠𝐶𝐶)∆𝑌𝑌𝑠𝑠𝐶𝐶

• First component is weighted sum of the “treatment effect” for each 
subgroup s.

– Identified by across-group change in outcomes. 

• Second component is the trend (or time effect) in control group 
scaled by differences in composition of treatment and control groups. 

– Contains no information on post-reform outcome of treatment group.

– Identifying assumption is that this term is zero.



Placebo procedure

• Drop treatment group observations

• Divide control group observations into group and 
randomly assign placebo treatment status.

– Assignment by demographics and/or propensity to 
work/use welfare

• Estimate DiD (with state*year effects, individual controls)

• Capture 𝛽𝛽ℎ𝑎𝑎𝑎𝑎 and mean difference in characteristics of 
groups: E Z T = 1 − 𝐸𝐸 𝑍𝑍 𝑇𝑇 = 0 .



Placebo estimates are correlated with pre-reform 
welfare use (mothers of 1 child)



And within mothers of 2+ children



And even childless women 



Same relationship between placebo estimates 
welfare use within all groups



Placebo estimates exactly predict actual DiD 
coefficient estimates



Digression: Welfare time limits 

• Related literature (Grogger 2003, 2004): What was effect of 5-
year cumulative time limit on welfare use and employment? 

• Uses identical specification except treatment and control 
groups are totally different: based on age of youngest child. 

• Finds large anticipatory effect of time limits.

• If the EITC is confounded, time limits should also be 
confounded by same source of bias. 



Placebo estimates exactly predict actual EITC and 
time limit coefficient estimates



Control for time X welfare exposure: 
Effect of EITC on employment attenuated



Second test: Non-parallel trends?

• Define subgroups (s) by quintiles of predicted pre-reform 
propensity to receive welfare 

– Form quintiles from prediction from probability model using 
demographic and family characteristics 1991-1993

– Disaggregate treatment and control groups by subgroup

– Assess relative weights and within-group trends



Graphical representation of DiD 
2+ children (treatment) vs 1 child (control)
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(Change scale to illustrate decomposition)
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Start with control group
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Stratify and disaggregate by pre-reform 
propensity-to-use-welfare quintile



Are subgroup trends “parallel?” No. 



Are subgroup trends “parallel?” No. 
What is composition of treatment group? 

72% of control group

20%

8%



Are weights within treatment and control the 
same? No.

48% of treatment group

20%

32%



Focus on highest propensity subgroup



What is within-subgroup treatment effect? Zero.



True for all subgroups



Decomposition shows DiD “explained” by 
composition bias not treatment effect



Proactive approach: machine learning

• Off-the-shelf ML for covariate selection

– Lasso, random forest, etc 

• Identify covariates that predict outcome 

– For hypothesis generation 

– And for potential inclusion in main specification

• Train within group and predict across group

– Visual check: implicitly “assumes” parallel trends 



Ex: Train model on control group



Predict outcome of treatment group. Parallel?



Accurate prediction even in “absence” of 
treatment effect



Reverse: Accurate despite “including” treatment 
effect



Visual check on validity of parallel trends 
assumption



Conclusion

• Canonical DiD estimators of 1993 EITC are confounded 
by exposure to welfare reform

• Little evidence of EITC’s effect on employment in 1990s 
after controlling for those effects

– Unclear implications for effect of 1993 EITC on other outcomes

• Sticks, not carrots:
o  

– Income effects, not substitution effects
– Implications for economic welfare more negative than believed

• Unconditional transfers reduce labor supply, and 
sometimes that’s ok. 



adam.looney@eccles.utah.edu
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