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Abstract

Structural models in economics often suffer from a poor fit with the data and
demonstrate suboptimal forecasting performances. Machine learning models, in contrast,
offer rich flexibility but are prone to overfitting and struggle to generalize beyond the
confines of training data. We propose a transfer learning framework that incorporates
economic restrictions from a structural model into a machine learning model. Specifically,
we first construct a neural network representation of the structural model by training
on the synthetic data generated by the structural model and then fine-tune the network
using empirical data. When applied to option pricing, the transfer learning model
significantly outperforms the structural model, a conventional deep neural network,
and several alternative approaches for bringing in economic restrictions. The out-
performance is more significant i) when the sample size of empirical data is small, ii)
when market conditions change relative to the training data, or iii) when the degree of
model misspecification is likely to be low.
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1 Introduction

“All models are wrong, but some are useful.” While acknowledging the imperfections of

scientific modeling, George Box’s famous quote stresses their values in guiding us to learn

from data and make informed decisions. However, the combination of big data and advances

in machine learning techniques presents data-driven approaches as a potential new way of

understanding the world without relying on traditional models and theories. One may even

wonder, “Is theory dead?”1

Debates about the role of theory have long existed in economics. On the one hand, struc-

tural models in economics can convey appealing insights but tend to be scarcely parameterized

and offer unsatisfactory fitting for empirical data. On the other hand, reduced-form models

offer significantly more flexibility and superior forecasting performances, which increasingly

make them the preferred approach in prediction and decision-making tasks. However, a key

limitation of the reduced-form approach is that it often suffers from overfitting and lack of

generalizability, especially when the sample size of training data is limited or when there is

instability in the data-generating process (DGP).

In this paper, we propose a novel and general framework to combine the economic insights

from structural models with the flexibility of reduced-form machine learning models. A

misspecified structural model can still help guide and regularize the training of a reduced-

form model and alleviate the overfitting problem. Moreover, the structural model restrictions

can often be readily extended outside the training data boundaries, which could help enhance

the generalizability of the reduced-form model.

Our framework is based on transfer learning. Generally speaking, transfer learning aims at

transferring knowledge from different but related contexts (referred to as the “source domain”)

to improve the performance in a new setting (the “target domain”). In our framework, the

source domain is generated by the structural model while the empirical data reside in the

target domain, and transfer learning allows us to combine the information from the structural

model and real data, without treating the potentially misspecified structural restrictions as
1See, for example, “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete,” Wired

Science, 2008, where the author offers an updated version of Box’s quote, “All models are wrong, and
increasingly you can succeed without them.”
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hard constraints. The implementation is straightforward: we first construct a neural network

representation of the structural model by training on the synthetic data generated by the

structural model, and then fine-tune the network using empirical data.

The source domain learning step benefits from two features: 1) the training set of synthetic

data can be arbitrarily large (limited only by computing budget); 2) the signal-to-noise ratio

of synthetic data is typically high. Coupled with the expressivity of neural networks (formally

established through the universal approximation theorem; see e.g., Hornik, Stinchcombe, and

White, 1989; Hanin, 2019), it means that it is relatively easy to obtain a neural network

that accurately inherits the economic restrictions implied by the structural model (Chen,

Didisheim, and Scheidegger, 2023). The fine-tuning step in the target domain then allows

the neural network to “move away” from theory and incorporate information from empirical

data. Specifically, it aims to minimize the empirical loss based on empirical data, beginning

the network parameter search with values obtained from the source domain and proceeding

with a small learning rate (i.e., updating parameters in small steps).

The sequential nature of transfer learning has two implications. First, the resulting

model no longer satisfies the structural restrictions exactly, especially when these restrictions

appear inconsistent with empirical data. It is worth noting that our objective in the target

domain is to learn the true DGP. This approach differs from those that train a machine

learning model by imposing theoretically derived constraints, the most notable example being

physics-informed neural networks (Raissi, Perdikaris, and Karniadakis, 2019), which impose

governing equations implied by physical laws when training the networks. Since economic

models are arguably more susceptible to misspecification than their physical counterparts,

imposing these misspecified restrictions as constraints (or equivalently, adding penalties in

the loss function) can introduce more biases into the results.

Second, the transfer learning model does not simply average the information embedded in

synthetic data and empirical data. Heuristically, one can view training the neural network on

the synthetic data as providing an informative prior for the learning on empirical data in

the second stage. This resembles Bayesian vector autoregressions (BVAR), which imposes

informative priors to help estimate the VAR parameters; in particular, DeJong, Ingram, and

Whiteman (1993); Ingram and Whiteman (1994); Del Negro and Schorfheide (2004) propose
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to derive the prior from a DSGE model. Besides its significantly enhanced ability to capture

nonlinearity, the transfer learning model also differs from the Bayesian framework in how

it determines the strength of the “prior.” While increasing the amount of synthetic data in

the source domain can help the neural network capture the structural model restrictions

more accurately, this step only provides a starting point for training in the target domain.

How much the network parameters move away from this starting point in the target domain

depends on the gap between the structural model and the true DGP, the sample size of

empirical data, as well as the hyperparameters for target domain training, including the

learning rate and epochs. In particular, we show that fine-tuning (with a learning rate that

is orders of magnitude smaller than in a standard deep learning model) is key to retaining

the information from the structural model. This contrasts with the DSGE-VAR model in

Del Negro and Schorfheide (2004), where the ratio of the sample sizes of synthetic to actual

observations determines the strength of the prior. This ratio is a hyperparameter that needs

to be tuned in the data.

Besides enhancing forecasting power, the transfer learning model can inform us about the

limitations of a structural model. The potential features one might want to use for forecasting

can go far beyond the relevant state variables in a structural model, which are often kept to

a small number to preserve tractability and transparency.2 To deal with this discrepancy, we

draw the complete set of features from a multivariate uniform distribution when generating

the synthetic data, but compute the structural model predictions using only the subset of

features required by the model. Feature importance analysis can then help identify any

features that are ignored in the source domain but useful in the target domain, which would

point to directions to improve the structural model.

Finally, the transfer learning framework can be used to compare models in a new way.

Traditionally, we often assess a model’s performance in isolation, for example, based on the

degree of fit with the data or the predictive accuracy. The transfer learning model allows us

to compare structural models based on how complementary they are with the empirical data,
2For example, in the Black-Scholes option pricing model, the relevant features include the stock price,

strike price, time-to-maturity, risk-free rate, dividend yield, and volatility. However, other features that could
be empirically relevant include past returns on the option and the underlying asset, put-call ratio, trading
volume, bid-ask spreads, etc.
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which is a new and relevant perspective in the age of big data. A structural model that is

less accurate when making forecasts on its own could be more effective in guiding us to learn

from the empirical data.

As an example application, we apply the transfer learning framework to option pricing.

We use the Black-Scholes model (Black and Scholes, 1973) to generate synthetic data in the

source domain. Despite ample evidence of the empirical limitations of this model, we choose

it for its simplicity as well as to illustrate the point that clearly misspecified structural models

can still be helpful in the transfer learning framework.

We train a feedforward network with 16 hidden layers, 22 neurons for each layer (with a

total of over 7,800 trainable parameters). We use multi-target learning in the source domain

to capture the structural restrictions, with the loss function taking into account dollar pricing

errors, option delta, and vega. In the target domain, the loss function is based entirely

on dollar pricing errors. We train and evaluate the model in the target domain using a

rolling window approach (source domain training only needs to be done once). Each iteration

employs a training set comprising three months of empirical data, followed by a test set

consisting of data from the subsequent three months. We then compare the performance of

the transfer learning model (referred to as TL) against that of a deep neural network with

identical architecture but does not have information from the structural model (referred to

as DL), as well as the Heston model (Heston, 1993), which extends the Black-Scholes model

by adding stochastic volatility.

Out of sample, the TL model significantly outperforms both the DL and the Heston model

in pricing accuracy from 2001Q1 to 2023Q1. The average of the quarterly median absolute

errors in Black-Scholes implied volatility (BSIV-MAE) for the TL model in the entire sample

is about 32.4% of that for DL and 9.3% of that for the Heston model. In the cross section,

the performance advantage of TL relative to DL is more significant for median and long

time-to-maturity, out-of-the-money, more liquid options (lower bid-ask spreads or higher

trading volume). In the time series, the performance advantage of TL is larger when market

volatility is elevated (measured by average VIX over the past 60 days), when market volatility

jumps up, as well as when the the new observation appears more uncommon relative to the

training data (measured by the Mahalanobis distance between the input features of the new
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observation and the training sample). These results are consistent with the interpretation that

structural model restrictions become more helpful when standard machine learning methods

struggle to generalize beyond the confines of training data or deal with the instability in the

underlying DGP.

In addition to higher average accuracy, the TL model also demonstrates greater stability

compared to the DL model. This stability is manifested in two aspects. First, the outliers

of pricing errors for the TL model are less extreme. For example, the 90th percentile of

out-of-sample absolute BSIV errors for the TL model is 34% of that for DL over the full

sample. Second, neural networks have embedded randomness stemming from the training

method (stochastic gradient descent), initialization of network parameters, as well as the

training sample. In this aspect, the results of the TL model demonstrate much smaller

variation than the DL model, mainly due to the fact that the TL model uses theory-implied

initialization plus a small learning rate in the target domain. As a result, the advantage of

the TL model becomes more pronounced when the sample size of empirical data is smaller.

For example, when we reduce the training sample to 10% of its original size in each 3-month

period, the performance of the DL model deteriorates substantially, while that of the TL

model remains relatively stable.

Since the TL model is trained with both synthetic and empirical data, one may wonder

whether the DL model can match TL if trained on more data. We raise the size of training

data for the DL model in two ways: i) by pooling the synthetic and empirical data; ii) by

switching the training set from (3-month) rolling window to expanding window (starting from

2000Q4). We show that data pooling does not meaningfully improve the DL performance.

When the two types of data originate from markedly different distributions, adding a large

amount synthetic data into the training set is more detrimental to DL’s performance due to the

biases introduced, which outweigh the benefits of variance reduction. The expanding-window

approach does help the DL model, but the gap with the TL model remains significant.3 This

exercise highlights a key challenge with forecasting in the time series. When the DGP can

change over time, observations from the distant past become less relevant. Thanks to its
3The out-of-sample BSIV-MAE for the DL model under expanding window falls to 62% of that for the

original DL under rolling-window training.
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ability to achieve stable performance on small datasets, the TL model can be more adaptive

to potential structural breaks.

We also examine two alternative approaches for bringing in information from the structural

model. In the first approach, we mimic the physics-informed neural networks and impose

the structural model restrictions as constraints when training the DL model. This is done

by making the average pricing errors relative to the Black-Scholes model a penalty in the

loss function, with the weights tuned in the data. In the second approach, we fit a linear

model to the pricing errors of the Black-Scholes model and use it boost the structural model’s

performance. Neither approach can match the TL model’s performance. Different from

the first approach, the TL model uses the likely misspecified structural model to derive an

informative initialization rather than treating them as constraints. The boosting method

also starts with the structural model. However, the training on the model errors can suffer

from the same over-fitting problem.

Finally, it is worth noting that our transfer learning framework is quite general. It can

be applied to any forecasting problem where a suitable structural model is available for

generating synthetic data. It is also not tied to neural networks (for example, the two-step

procedure can also be applied to VARs), although the benefit of incorporating structural

model restrictions is likely more pronounced when the machine learning model has high

degrees of freedom relative to the size and representativeness of the training sample.

Related literature There is a fast-growing literature that applies machine learning methods

to economics and finance. Among the early contributions are Hutchinson, Lo, and Poggio

(1994), Chen and White (1999), and Chen and Ludvigson (2009). Recent works have shown

the rich benefits of machine learning techniques in both linear (see e.g., Kelly and Pruitt, 2013;

Rapach and Zhou, 2013; Chinco, Clark-Joseph, and Ye, 2019; Kozak, Nagel, and Santosh,

2023) and nonlinear settings (see Gu, Kelly, and Xiu, 2020; Freyberger, Neuhierl, and Weber,

2020; Bianchi, Büchner, and Tamoni, 2021; Cong et al., 2022; Bali et al., 2023; Chen, Pelger,

and Zhu, 2024; Campello, Cong, and Zhou, 2024, among others).

It is quite intuitive that one should try to take advantage of domain knowledge when

applying these powerful methods. Indeed, it is standard practice to use economically-

6



motivated features and feature engineering when building models for forecasting. Several

studies have further exploited theoretically motivated restrictions. For example, Garcia and

Gençay (2000) show that the performance of neural networks can be improved by exploiting

the homogeneity implied by the option pricing formula. The no-arbitrage condition has

been used by Feng et al. (2023), Chen, Pelger, and Zhu (2024), Bryzgalova, Pelger, and Zhu

(2023), and Bryzgalova et al. (2024) to help with estimating factor betas, detecting weak

factors, or estimating the conditional SDF. Our contribution is to propose a general transfer

learning framework that uses potentially misspecified structural model restrictions to guide

the learning on empirical data.4

There are several alternative approaches for incorporating theoretical restrictions into

econometric models. First, a strand of Bayesian Vector Autoregression models integrate

prior information based on economic theories, with the goal of reducing overfitting in high-

dimensional models through coefficient shrinkage. These prior can be statistically motivated

(as in the case of the Minnesota prior, see Doan, Litterman, and Sims, 1984; Litterman,

1986) or derived from a structural model (see DeJong, Ingram, and Whiteman, 1993; Ingram

and Whiteman, 1994; Del Negro and Schorfheide, 2004). Second, in physics-informed neural

networks (Raissi, Perdikaris, and Karniadakis, 2019), structural model restrictions are treated

as hard constraints and incorporated into the loss function. We face bias-variance tradeoffs

when these structural restrictions are likely misspecified, which could make transfer learning

the more suitable approach in such situations. Third, Almeida et al. (2023) propose to boost

parametric option pricing models by fitting a neural network on the model-implied pricing

errors. We investigate a simplified version of this boosting approach, replacing the neural

network with a linear model.

2 Methodology

At its core, transfer learning is based on the idea that knowledge gained from solving one

problem in the source domain can be transferred and applied to solve a different but related
4Transfer learning is widely used technique in machine learning. Important applications include computer

vision and large language models. For a comprehensive survey on this topic, see Zhuang et al. (2020).
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problem in the target domain. The knowledge obtained from the source domain not only

makes it easier to train a model in the target domain, where data could be limited but also

improves the model’s performance. In our setting, we treat the extraction of information

from an economic model as the source task. The information from the model is then used to

aid the target task, in which we learn directly from actual data.

2.1 The Transfer Learning Framework

Denote by X and Y the input and target space, respectively, with unknown probability

distribution PpX ,Yq on some σ-algebra of X ˆ Y . We want to predict y P Y using a function

of potential features fpxq for x P X . The standard data-driven approach is to search for

function pf from a given function family H (e.g., the set of neural networks) that minimizes

the empirical risk for some loss function Lpfpxq, yq over a given training set S “ ppxi, yiqqmi“1.

The resulting pf involves randomness stemming from the training sample as well as the

optimization procedure (e.g., random initialization of search and stochastic gradient descent).

Next, consider a theoretical model that imposes restrictions between x and y. In some

cases, these restrictions could result in a fully-specified joint distribution for x and y as QpX ,Yq.

Alternatively, they could just be about the conditional expectation of y,

EQ
ry|xs “ gpxq, (1)

where the expectation is taken under the model-implied probability measure Q. Notice that

the model may only involve a subset of x as its state variables; at the same time, it may

involve hidden states h and parameters θ, which are not directly observable. However, as

we will explain shortly, Eq. (1) is without loss of generality in that we could accommodate

for h and θ through filtering or conditioning down. Finally, the theoretical model could be

misspecified in the sense that Q is inconsistent with P.

We propose a transfer learning framework that uses the theoretical model to guide the

training of the machine learning model. Although the framework we propose is more general,

to fix ideas, we will focus on neural networks in the remainder of this paper. A neural network

with L layers is denoted as F pL;σ1, σ2, ¨ ¨ ¨ , σL;W1,W2, ¨ ¨ ¨ ,WLq, where σi and Wk are the
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activation function (a non-linear function that is applied element-wise) and weights for the i-th

layer, respectively. The training of the neural network results in weights xW ˚ “ rxW ˚
1 , ¨ ¨ ¨ ,

xW ˚
Ls.

The transfer learning framework involves two steps. First, in the source domain, we

generate a set of synthetic data rS “ ppx̃i, ỹiqq
M
i“1. Here, we either draw px̃i, ỹiq from the

model-implied distribution QpX ,Yq, if it is fully specified, or we first draw x̃i and then set

ỹi “ EQry|x̃is. We then train the neural network rf on rS by minimizing a certain loss function.

Let the resulting network weights from the source domain be ĂW ˚. Notice that the empirical

data set S is not used in the source domain. In the second step, we move to the target

domain and train the network pf , which has identical architecture as rf , on the empirical data

S. Crucially, we use ĂW ˚, the weights inherited from the source domain, to initialize the

training for pf , and the learning rate used in the target domain is significantly smaller. For

this reason, we refer to the training in the target domain as fine-tuning. Next, we discuss the

two steps in more detail.

Source Domain In the source domain, we are trying to obtain a neural network represen-

tation of the structural model restrictions, as summarized by Eq. (1). As Chen, Didisheim,

and Scheidegger (2023) show, neural networks are well-suited for this task thanks to their

expressivity. Specifically, the universal approximation theorem states that a neural network

that is sufficiently wide or deep can approximate a smooth function arbitrarily accurately

(see Hornik, Stinchcombe, and White, 1989; Hanin, 2019). Moreover, this task also benefits

from the fact that the size of the synthetic dataset can be arbitrarily large (limited only by

computing budget), and the signal-to-noise ratio of synthetic data is typically high. These

two properties help reduce the risks of over-fitting in the source domain.

To generate the synthetic dataset rS, we start by specifying the ranges for the relevant

state variables (including both observable and hidden states) and parameters for the model,

then draw their values from the multivariate uniform distribution, and finally use Eq. (1) to

evaluate the model-implied conditional expectation of y.

Before proceeding any further, we need to ensure that the input vectors in the source

domain and target domain, x̃ and x, match each other in dimension. The issue arises from

model-irrelevant features and those model states and parameters not directly observable in
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the actual data. Economic models are typically designed to be parsimonious, with a relatively

small number of states. In contrast, a main attraction of machine learning models is that

they help us look for information in a large number of potential features empirically, which

can go far beyond those considered in an economic model. This can result in a subset of

the features in x not being used by the model. For these features deemed by the model as

irrelevant, we randomly draw their values and include them as part of the inputs x̃ for the

synthetic data.

For those hidden states and the parameters that are required by the economic model to

determine the conditional expectation of the target variable y but not directly observable in

the empirical data, one possibility is to filter them in the empirical data using the structural

model restrictions. We can then augment the input vector x with these filtered values.

An alternative solution is conditioning down the expectation of the target variable y by

integrating over some hierarchical prior distribution of the parameters and the model-implied

distribution of the hidden states. It is worth noting that the neural network trained in the

source domain, if trained accurately, can help accelerate the filtering process significantly

(see Chen, Didisheim, and Scheidegger, 2023).

In order to train the neural network on the synthetic training set, we need to specify

a loss function. Naturally, we would like to minimize the prediction errors of the network

relative to target variable, ỹ, which can be summarized by the MSE or MAE over the training

set. Different from a standard supervised learning setting, where the DGP is unknown, the

structural model may provide additional restrictions that we can exploit to further improve

the accuracy of the neural network. Consider the example of training a physics-informed

neural network for a heat equation. As Raissi, Perdikaris, and Karniadakis (2019) show that,

in addition to matching the initial and boundary data, the residuals of the heat equation can

be part of the loss function, which is referred to as physics-informed loss. Similarly, we can

add economics-informed loss to the source domain training.

Specifically, in the source domain, we train the neural networks by

ĂW ˚
“ argmin

ĂW

˜

λ0L0 `

K
ÿ

j“1

λjLj

¸

(2)
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where

L0 “

M
ÿ

i“1

w0i

ˇ

ˇ

ˇ
F pL;σ1, ¨ ¨ ¨ , σL;ĂW1, ¨ ¨ ¨ ,ĂWLqpx̃iq ´ gpx̃iq

ˇ

ˇ

ˇ
(3)

The first term of the loss function is L0, the weighted mean absolute error for the network’s

prediction of ỹi, where the weights are wi0. The additional economics-informed losses are

given by Li. For example, we can derive from Eq. (1) the gradient of gpxq and use it as part

of the loss,

Lj “

M
ÿ

i“1

wji

ˇ

ˇ

ˇ

ˇ

BF

Bxj
px̃iq ´

Bg

Bxj
px̃iq

ˇ

ˇ

ˇ

ˇ

. (4)

The training of the neural network starts with randomly initialized values of matrix ĂW .

Target Domain In the target domain, we fine-tune the network obtained from the source

domain using empirical data. This means that we initialize the network with weights ĂW ˚

and use a substantially lower learning rate in the target domain than in the source domain.

Specifically,

xW ˚
“ argmin

xW

m
ÿ

i“1

wi

ˇ

ˇ

ˇ
F pL;σ1, ¨ ¨ ¨ , σL;xW1, ¨ ¨ ¨ ,xWLqpxiq ´ yi

ˇ

ˇ

ˇ
, (5)

with initial weights ĂW ˚.

In the transfer learning literature, there are various ad-hoc approaches to design the

network architecture with the hope of preserving some of the information from the source

domain. For example, the partial fine-tuning method freezes the first K ă L layers of

the source domain model and only updates the weights of the neurons after the Kth layer.

Relative to full fine-tuning method in (5), this method improves computational efficiency

because it updates fewer parameters and has a higher training speed. In our empirical

exercise, we use the full fine-tuning method. However, it could be interesting to explore

the frozen-layer K as a hyperparameter. Intuitively, the larger the gap between the source

domain task and the target domain task, the more layers should be allowed to be adjusted.
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2.2 An Application to Option Pricing

A large number of parametric option pricing models, starting with the Black-Scholes model,

have demonstrated various degrees of empirical success. We use the option pricing example to

demonstrate how the transfer learning framework can allow us to incorporate the information

from these structural models into a highly flexible deep neural network.

We choose the Black-Scholes model as the structural model for the source domain. This

choice is motivated by two main reasons. First, the Black-Scholes model is a seminal

option pricing model that is arguably the least exposed to any “look-ahead” biases; the later

generations of option pricing models extended the Black-Scholes model by observing its

limitations in the actual data. Second, we aim to demonstrate that a simple and misspecified

structural model can still be useful in the transfer learning framework.

The inputs of the pricing model are: xi “ pSi, Ki, Ti, voli, di, ri,Ziq, where the first six,

stock price Si, strike price Ki, time to maturity Ti, volatility voli (as proxied by the VIX

index lagged by 1 day), dividend yield di, and risk-free rate ri, are features required by the

Black-Scholes model; the additional features, as represented by Zi, include historical volatility

of the S&P 500 returns, short and medium-term momentum of both the S&P 500 index

return and the specific option return, abnormal trading volume for the option, put-call ratio,

and the S&P 500 earnings-price ratio.5 We use LeakyRelu as the activation function in this

exercise. Other activation functions will be examined as part of the robustness checks.

The diagram in Figure A.1 illustrates the process of applying transfer learning to option

pricing, including the training in both the source and target domains. The source domain

training only needs to be performed once. In the target domain, with different training

samples (as we retrain the model over time), we simply fine-tune the same source domain

model with the new data.

In the source domain, we train the neural networks as:

ĂW ˚
“ argmin

ĂW

pλ1L1 ` λ2L2 ` λ3L3q, (6)

5The complete list of features are in Appendix B.
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where

L1 “

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

1

|δi| ` εc

´

F pL;σ1, ¨ ¨ ¨ , σL;ĂW1, ¨ ¨ ¨ ,ĂWLqpx̃iq ´ gpx̃iq
¯

ˇ

ˇ

ˇ

ˇ

(7)

L2 “

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

BF px̃iq

BS
´
Bgpx̃iq

BS

ˇ

ˇ

ˇ

ˇ

(8)

L3 “

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

BF px̃iq

Bvol
´
Bgpx̃iq

Bvol

ˇ

ˇ

ˇ

ˇ

(9)

with randomly initialized initial values of matrix ĂW . Besides the weighted mean-absolute

dollar pricing error, L1, we also add two economics-informed losses, one on option delta, L2,

and the other on option vega, L3.

We weigh the pricing error by 1{|δ| to ensure the TL and DL pay sufficient attention

to OTM options, whose dollar prices have significantly smaller magnitudes than those of

ATM and ITM options. εc is a small constant to avoid exploding weights for DOTM options.

Without this term, the contract’s pricing error in NN back-propagation with a delta closest to

0 could dominate the entire loss function. Since the network weights are initialized randomly,

the pricing errors could be large during the earlier epochs. Thus, numerical stability is

important.

In the source domain, we know the true model without any noise, so we can run a large

number of epochs over the training data and choose relatively large learning rates with less

concern about overfitting. Furthermore, the model is designed to ignore the information of

input that is not the SDE model input.

The target domain aims to transfer information learned from the source domain to the

domain concerning empirical data. We set the loss function to be the weighted mean absolute

dollar pricing errors, where the weights are again inversely related to option delta:

xW ˚
“ argmin

xW

m
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

1

|δi| ` εc

´

F pL;σ1, ¨ ¨ ¨ , σL;xW1, ¨ ¨ ¨ ,xWLqpxiq ´ Pi

¯

ˇ

ˇ

ˇ

ˇ

(10)

with initial network weights ĂW ˚ inherited from the source domain model.

It is worth noting the contrast between the data environment in the source and target
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domain. Data in the latter case will have much lower information-noise ratio, and the training

sample size can be quite limited. We train the model with a low learning rate and use

the standard early-stopping criteria to limit the number of epochs. These measures not

only guard against over-fitting risks, but also help retain more of the information from the

structural model.

2.3 Residual Learning and Skip Connect

We use the residual learning method to avoid the Vanishing Gradient Problem (VGP). The

method allows us to make the network deep enough to implement transfer learning algorithms.

In the application of deep learning to asset pricing, a natural question is, do deeper networks

generalize better? In the research of computer science, the answer to the above question is

no. The most immediate problem is the phenomenon of vanishing gradients and exploding

gradients: the training of neural networks relies on backpropagation. If the depth of the

neural network is too large, the neurons in the earlier layers of the neural network may obtain

gradients close to 0 or abnormally large in backpropagation. As revealed by experiments

in He and Sun (2015) and shown in Srivastava, Greff, and Schmidhuber (2015) , when the

network depth is too deep, the model performance will decrease with the depth of the neural

network, which is called the degradation problem. The degradation problem is not caused by

overfitting but by the structure of the neural network itself and the characteristics of the

training method.

It should be noted that some AI tasks of asset pricing need to fit highly nonlinear

equations, such as the fitting of option pricing equations that should be performed in this

paper. This means that we need a deeper network with higher expressive power, so the

degradation problem of the neural networks is an important problem to be solved. He, Zhang,

Ren, and Sun (2016a) proposed a method called the residual learning method to solve the

degradation problem. Their network structure allows neural networks to enjoy the benefits of

out-of-sample fitting capabilities produced by deeper networks without facing the problems of

deep networks. The core idea of this method is to add a never-closed Shortcut Connections

to the neural network, which is equivalent to learning residuals.

Mathematically, let a represent the input to a residual block, and Gpaq denotes the output
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from a series of operations applied to a, potentially including processes like convolution,

activation, and normalization. A basic residual block can then be reformulated as:

b “ Gpa, tVjuq ` a (11)

Here, b is the output of the residual block, Gpa, tVjuq signifies the transformation applied

to the input a, with tVju representing the set of parameters used in the transformation.

The a term serves as a "shortcut" or "skip" connection, which is directly added to the

transformation’s output. The advantage of this structure is that even in very deep networks,

residual connections help direct the gradient flow to earlier layers, thus improving the training

performance of deep networks. We have drawn inspiration from the concepts of ResNet

(He, Zhang, Ren, and Sun, 2016a,b), but unlike prior applications in computer vision, we

have adapted these ideas to suit the unique characteristics of our task by incorporating

skip connections into our deep network. The specific structure can be found in Figure A.1.

Detailed network parameters are provided in Appendix A.

3 Empirical Results

Implementation of the above framework on a large and comprehensive panel of index options

in this section clearly exhibits remarkable performance, in both pricing tasks. The model

is trained by using 3 months data and tested by using 3 months data right after; it is

re-calibrated every 3 months.

To compare our model with the traditional measures, we develop two types of models

as benchmarks. In particular, the first model is the stochastic volatility model based on

the Heston model. The model’s parameters are estimated by minimizing the mean absolute

pricing error the day before, which is a standard practice in empirical research.

The second model is a classical deep learning model but without transfer learning technique

embedded. Note that the classical deep learning model is trained under the same hyper-

parameters with transfer learning, including stopping strategy, train set size, rolling window

length, activation function per neural unit, and the structure of the neural network, with
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our transfer learning model, except for the learning rate, which differs between the two. For

fairness, both the transfer learning (TL) and deep learning (DL) methods use their respective

optimal learning rates, which are determined through grid search based on prior knowledge.

3.1 Data

We sourced daily transaction data on S&P 500 index put options from OptionMetrics, covering

the period from January 2, 2001, to March 31, 2023. Table 1 presents the descriptive statistics

for this dataset, encompassing a total of 27,791,709 observations. The distribution of contract-

level implied volatility was methodically calculated over time, resulting in various grouped

classifications. To effectively categorize the dataset based on expiration dates, we employed

10-day and 60-day benchmarks, segmenting it into three distinct groups. Subsequently, the

strike prices were divided into six categories, culminating in 18 specific subcategories of option

samples. Notably, nearly half of these options are set to expire within a span of 10 to 60

trading days. The descriptive statistics related to implied volatility align remarkably with

the well-recognized volatility smile phenomenon: contracts that are either in-the-money or

out-of-the-money exhibit higher levels of implied volatility in comparison to at-the-money

contracts.

3.2 Pricing Performance

The Black-Scholes implied volatility (BSIV) pricing error for option i at instance t is

articulated as:

ε̃it “ |σpPit;Ki, Tit, rTit,t, St, dtq ´ σpP̂it;Ki, Tit, rTit,t, St, dtq|, (12)

where the function σp¨;Ki, Tit, rTit,t, St, dtq maps prices to the implied volatility for day t and

contract i. The interest rate rTit,t is obtained through linear interpolation of the risk-free rate

curve corresponding to the respective period.

The aggregate pricing deviation of the model is encapsulated by the median absolute error

(MAE) across all samples. The main reason for using the median rather than the mean as the

error measure in this study is that the predicted option prices from the model may fall outside
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Figure 1: Out-of-sample pricing errors. This figure reports the out-of-sample median-
absolute pricing errors (in terms of BSIV) for TL, DL, and the Heston model at quarterly
frequency from 2001Q1 to 2023Q1. At the end of each quarter, the models are trained using
data from the past 3 months, and the pricing errors are computed using data in the following
3 months.

the reasonable range of the Black-Scholes model, making it impossible to convert them into

implied volatility. Alternatively, the predicted implied volatilities may be abnormally high,

such as those exceeding 100000. These extreme values can disproportionately influence the

model’s mean error, whereas the median is not affected by such outliers.We derive σit utilizing

the stochastic gradient descent technique. All models are all trained on a uniform dataset

spanning from 2001 to 2023.

Instinctively, employing MAE as the performance metric could disproportionately weight

in-the-money contracts more heavily than out-of-the-money ones, given that the contractual

value of the former might substantially exceed that of the latter. To ensure a balanced

representation of options across different moneyness levels, we adopt the discrepancy between

implied volatility figures, as projected by models and actual market prices, as a surrogate for

pricing errors.

Figure 1 illustrates that the transfer learning approach consistently exhibits lower MAEs

across all periods compared to both the deep learning pricing network and the Heston model.
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Undoubtedly, when contrasted with traditional models, the transfer learning paradigm

distinctly benefits from amalgamating the economic insights of foundational structural models

with the empirical knowledge derived from actual market data. The BSIV-MAE of transfer

learning was reduced by 0.082 and 0.387 compared to deep learning and the Heston model,

respectively, resulting in improvements of 67.6% and 90.8%. From a temporal perspective,

the performance of the Heston model significantly deteriorated after 2008. Over the long

term, deep learning models consistently outperform the Heston model; however, during the

2008 financial crisis, the errors exhibit significant peaks.

Fundamentally, the deep learning model operates by internalizing information from

historical samples, operating under the presumption that future market behavior mirrors

past trends. Consequently, deep learning might falter in periods of market tumult, like

during the financial crisis, but excel in more stable conditions, explaining the observed error

volatility. Conversely, the transfer learning network, given its source domain information

driven by the model, remains relatively insulated from such market perturbations. This

nuanced understanding will be further dissected in our subsequent attribution analysis.

3.3 Performance Stability

In addition to achieving higher average accuracy, the transfer learning (TL) model demon-

strates significantly greater stability compared to the deep learning (DL) model, making it

particularly suitable for complex and data-constrained financial applications.Transfer learn-

ing enhances the stability of deep learning in the following three ways: 1) it reduces the

discrepancy between predictions for extreme outlier samples and the median level; 2) it is less

affected by insufficient sample sizes; and 3) its performance is less influenced by the inherent

randomness of the neural network.

The performance advantages of transfer learning (TL) in deep learning for option pricing

are evident not only in terms of median accuracy but also in managing outliers effectively.

To better understand this distinction, we analyzed the 90th percentile of pricing errors

for both models in Figure 2. The results indicate that the TL model significantly reduces

extreme errors compared to the deep learning (DL) model. Specifically, the 90th percentile of

out-of-sample absolute BSIV errors for the TL model is only 34% of that observed for the
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Figure 2: Outliers for TL vs. DL. In this figure, we compare the 90th percentiles of
out-of-sample pricing errors (absolute errors in BSIV) for the TL and DL model.

DL model across the entire dataset. This highlights the robustness of transfer learning in

mitigating the impact of extreme deviations, offering more reliable and consistent predictions

even in challenging cases.

A key advantage of the TL model lies in its ability to effectively handle scenarios where

data is scarce, a capability that is rooted in its pre-training process. Pre-training equips the

model with foundational knowledge from a larger, potentially synthetic dataset, enabling it

to perform well even when fine-tuning is conducted on smaller datasets. This is particularly

relevant in financial domains such as option pricing, where empirical data may be limited

due to market-specific conditions or temporal constraints. For example, when the training

sample size is reduced to just 10% of its original volume as shown in Figure 3 for each

three-month period, the DL model suffers a significant performance decline, with average

IVMAE increasing from 0.122 to 0.234, exhibiting high sensitivity to data availability. In

contrast, the TL model shows remarkable resilience, with average IVMAE increasing from

0.0394 to only 0.0629, maintaining relatively stable performance under these restrictive

conditions. This small-sample learning capability is vital for real-world financial modeling,

as it allows the TL model to deliver consistent results even when faced with fragmented or

incomplete data.

19



Jan05 Jan10 Jan15 Jan20
0

0.2

0.4

0.6

0.8

Time

M
A

E
A. TL

TL
TL (10% data)

Jan05 Jan10 Jan15 Jan20
0

0.2

0.4

0.6

0.8

Time

M
A

E

B. DL

DL
DL (10% data)

Figure 3: TL vs. DL with small training sample. In this figure, we compare the
out-of-sample BSIV-MAE for TL against those of DL when the training sample is reduced to
10% of the original size.

Transfer learning is less affected by the inherent randomness of neural networks compared

to deep learning. Neural networks are machine learning models that employ stochastic

optimization algorithms. The solver for the backpropagation algorithm in neural networks is

a variant of the stochastic gradient descent algorithm. From the box plots in Figure 4, it is

evident that the confidence interval for the performance of transfer learning is 25% narrower

than that of deep learning. This is because transfer learning only requires fine-tuning the

parameters rather than restarting the training process. The uncertainty associated with

fine-tuning is significantly lower than that of retraining from scratch.

Another crucial factor contributing to the stability of the TL model is its use of theory-

implied parameter initialization, combined with a carefully controlled learning rate in the

target domain. Neural networks are inherently influenced by randomness arising from the

stochastic gradient descent algorithm, the random initialization of parameters, and variability

in training data samples, which often leads to fluctuations in model performance. To assess

this, we retrained both models using different random seeds. The results in Figure 4 showed

that the TL model’s errors remained remarkably consistent, demonstrating robust resistance

to the effects of training randomness. In contrast, the DL model exhibited considerable

20



TL DL
0

0.2

0.4

0.6

2002Q1

TL DL
0

0.2

0.4

0.6

2008Q4

TL DL
0

0.2

0.4

0.6

2014Q2

TL DL
0

0.2

0.4

0.6

2020Q1

Figure 4: Stability of TL vs. DL. In this figure, we examine the distribution of out-of-
sample BSIV-MAE for TL and DL at four points in time as the random seeds for network
training change.

sensitivity to random seed changes, as evidenced by a substantially wider confidence interval

in its performance metrics. This highlights the TL model’s superior stability, making it a

more reliable choice in applications where consistency is critical.

3.4 Feature Importance

In a neural network, the significance of an input, or its feature importance, is delineated as the

incremental rise in the loss function on the training dataset when a specific feature is omitted

within the context of transfer learning.To calculate feature importance by setting each feature

to its mean and observing the change in loss, first compute the baseline loss, Lbaseline, with

the full feature set. For each feature Xi, replace it with its mean value across the dataset,

keeping other features unchanged, and recompute the loss, LmeanpXiq. The importance of

Xi is the difference LmeanpXiq ´ Lbaseline. This measures how much the model’s performance

changes when Xi is replaced, capturing its contribution to predictive accuracy. Through

feature importance analysis, our work contributes to the refinement of option pricing theory

and offers insights for its theoretical development.We calculate feature importance within

each training set, which corresponds to a 3-month data window, and then aggregate the
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Figure 5: Feature Importance. The figure below shows a boxplot of feature importance
for a transfer learning model. We have counted the feature importance of the same feature
in each training set. This figure aims to visualize the comprehensive features of feature
importance on different training sets. The outlier cut-off points of the boxplots were set to
Q1-1.5IQR and Q3+1.5IQR. Data falling outside the cutoff point for outliers are marked
separately.

results.

Even from the perspective of artificial intelligence and big data, the inputs of the Black-

Scholes (B-S) model exhibit significant importance, demonstrating the robustness of classical

financial theories and the economic significance of these inputs,according to Figure 5. Feature

importance analysis shows that the underlying asset price (0.23), strike price (0.35), and
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risk-free rate (0.22) are the key variables within the B-S framework, far exceeding other

variables in importance. This aligns with the B-S model, as these variables directly determine

the present value of an option. The underlying asset price and strike price dictate the intrinsic

value of the option, while the risk-free rate affects its time value through discounting.

Variables such as time to maturity (0.015) and implied volatility (IV, 0.017) also exhibit

noticeable importance in the transfer learning model. This suggests that these variables retain

explanatory power for option pricing even in complex, nonlinear environments. Specifically,

time to maturity directly influences the decay of an option’s time value. Comparatively,

the dividend yield has the lowest importance (0.0012) among B-S variables, yet remains

non-negligible when compared to other features. This could be because dividends reduce the

upward potential of the underlying asset price, thus influencing the option’s valuation.

Beyond verifying the importance of B-S model inputs, transfer learning reveals several

non-traditional variables with significant effects on option pricing, offering new directions for

extending option pricing theory. In the transfer learning model, the put-call ratio exhibits an

importance of 0.009, indicating that market sentiment regarding bullish or bearish positions

may play a role in option pricing. Classical option pricing theories primarily focus on

equilibrium-based arbitrage-free pricing, while the put-call ratio reflects dynamic changes

in market sentiment and trading behavior. A higher put-call ratio often signals increased

concern about downside risks in the market, which may lead to a rise in implied volatility—a

phenomenon frequently observed in empirical studies. This result suggests that option pricing

is influenced not only by fundamental variables but also by market microstructure and investor

behavior.

The higher importance of mom4 (medium-to-long-term momentum in options) and

spmom4 (medium-to-long-term momentum in the S&P 500) challenges traditional theories.

Classical theories suggest that option prices are determined primarily by current market

information rather than historical price trends. However, the presence of momentum effects

indicates that signals of trend continuation may exist, reflecting adjustments in market

expectations of risk and opportunities.

Even with implied volatility included, historical volatility (hv1 and hv9) still demonstrates

significant explanatory power for option prices, with importance scores of 0.0029 and 0.0027,
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respectively. This finding calls for a reevaluation of the relationship between implied volatility

and historical volatility. While implied volatility reflects the market’s expectations of future

volatility, historical volatility captures the realized risk of the underlying asset over different

time horizons, which may significantly influence pricing. For instance, in markets with

substantial volatility changes, historical volatility might provide supplementary information

to the model.

Transfer learning provides a crucial opportunity to refine and enhance existing structural

models. By incorporating transfer learning, models can not only integrate traditional factors

(such as the inputs in the Black-Scholes model) but also adapt to the inclusion of non-

traditional variables, such as market microstructure and investor behavior, based on market

fluctuations. This approach allows theoretical frameworks to dynamically adjust, better

reflecting the complexities and uncertainties of real-world markets. Therefore, transfer

learning not only contributes to the refinement of classical theoretical models but also offers

new perspectives for future theoretical innovation, particularly in addressing the effects of

market conditions, sentiment shifts, and investor behavior on pricing.

In summary, the feature importance analysis highlights the significant role of classical

inputs, such as those in the Black-Scholes model, while also identifying the potential impact of

non-traditional factors on option pricing. These findings reinforce the relevance of traditional

theories but also point to the growing need to consider market microstructure and behavioral

influences. Future research could focus on examining how these non-traditional features vary

with market dynamics and develop new frameworks to account for these effects. Integrating

behavioral finance into option pricing models, for instance, could enhance our understanding

of the influence of market sentiment, momentum, and risk perception. Further investigation

into the interplay between implied and historical volatility also remains a promising area for

empirical study.
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4 Analyzing Transfer Learning’s Performance

4.1 When Does TL Perform Better?

To achieve dimensionless pricing errors, we convert both actual and predicted prices into

implied volatility values. We regress the errors from both models on several explanatory

variables, consistent with those presented in Table 2:

ε̃it
DL
´ ε̃it

TL
“ xit´1β ` uit (13)

Table 3 presents results computed across all test-set samples. Specifically, the models

undergo training every three months, leveraging data from the preceding nine months to

forecast the subsequent three months. We aggregate the data from each test set and proceed

with the aforementioned attribution regression.

Andersen, Fusari, and Todorov (2017) argue that short-term options deviate from tradi-

tional option pricing models, raising the question of how the relative performance of deep

learning (DL) and transfer learning (TL) models changes when applied to short-term options.

The results presented in Table 3 indicate that the coefficients for 0-7 days and over 90 days

are significantly positive at a 1% level. Specifically, the coefficients for the 0-7 days variable

range from -0.0169 to -0.0201 and from -0.0118 to -0.0138 for 7-14. All these coefficients

exhibit absolute t-statistics greater than 70. In contrast, for options with maturities longer

than 14 days, the performance gap between TL and DL widens in favor of TL.This pattern

can be attributed to the unique characteristics of short-term options, which exhibit greater

deviations from the assumptions and structural information embedded in the source domain

model. Short-term options are highly sensitive to short-lived market dynamics, rapid shifts

in volatility, and idiosyncratic factors that are less effectively captured by models pre-trained

on broader, long-term data patterns. As a result, the performance gap between TL and DL

models narrows on this subset of data.

In transfer learning, the source domain draws from simulated data produced by the

benchmark model. Consequently, transfer learning is likely to outperform deep learning
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in terms of highly nonlinear data. In the regression, we also control the variables about

moneyness6. The coefficients for assets corresponding to all moneyness levels, except at-

the-money (ATM), are positive. This indicates that the performance gap between transfer

learning (TL) and deep learning (DL) widens for assets outside the ATM category compared

to those at ATM. Notably, this widening is asymmetric: the gap is more pronounced for

out-of-the-money (OTM) contracts, which exhibit higher nonlinearity, whereas the gap is

smaller for in-the-money (ITM) contracts. This asymmetry highlights TL’s superior capability

in modeling complex nonlinear functions, making it particularly effective for pricing OTM

options, where traditional models and purely data-driven approaches often struggle to capture

the intricate dynamics.

Moreover, we find that the coefficient for bid-ask spread is significantly negative, while

the coefficient for volume is significantly positive. This indicates that the performance gap

between transfer learning (TL) and deep learning (DL) widens for assets with better liquidity.

The potential reason for the reduced performance of transfer learning on low-liquidity assets

may be that these assets, due to their lower trading activity, are more likely to deviate from

the assumptions of the Black-Scholes model. The results suggest that the practical value of

TL extends beyond the improvement indicated by its average error reduction compared to

DL. Active, highly traded assets are more critical to market participants than illiquid ones,

making TL’s superior performance on these assets particularly valuable. This enhancement

underscores the broader applicability of TL in scenarios where pricing accuracy for liquid and

frequently traded assets is crucial, as these assets often drive market dynamics and investment

decisions.

The superior performance of transfer learning over traditional deep learning can also

be attributed to some other factors. Firstly, the coefficient for market volatility is notably

positive with 1% statistical significance, ranging from 0.0719 to 0.117, suggesting that as
6We derive our moneyness calculation from Andersen, Fusari, and Todorov (2017). These authors contend

that utilizing the simple ratio of the strike price to the underlying price as a proxy for moneyness is inherently
biased. Instead, they put forth the following definition for moneyness:

m “ lnp
K

HT
q{p
?
T ˚ IVatm,T q (14)

Given that HT represents the forward strike price with an expiration time of T , and IVatm,T denotes the
implied volatility of the option whose strike price is closest to HT
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market volatility escalates, the disparity between the pricing predictions of the transfer

learning and deep learning networks widens. In volatile conditions, the capital market might

experience increased shocks, potentially influencing short-term derivatives pricing conventions.

Being a purely data-driven model, the deep learning pricing network struggles to assimilate

the nuances of these pricing adjustments based on limited data. In contrast, transfer learning

inherently addresses this challenge by integrating established economic models.

Additionally, the variablemIV change further illustrates that the performance gap between

transfer learning (TL) and deep learning (DL) widens during periods of heightened market

volatility. mIV change is defined as the difference between the current day’s market-implied

volatility and the average implied volatility in the training dataset. Its coefficient is consistently

positive and statistically significant across all relevant regressions, with values exceeding 0.1,

highlighting its importance in capturing the dynamics of volatile market conditions.As a

purely data-driven model, the deep learning pricing network struggles to adapt to rapidly

changing market environments. Such environments often introduce non-linear patterns and

structural shifts that exceed the capacity of DL models to generalize effectively from limited

data. In contrast, the transfer learning approach inherently addresses this limitation by

leveraging pre-trained knowledge rooted in established economic models, enabling it to

maintain robust performance even in the face of significant market fluctuations. This suggests

that the integration of domain-specific knowledge in TL not only enhances its stability but

also improves its capacity to navigate and respond to complex market dynamics.

Envision a hypothetical situation. Suppose that for a specific pricing equation input, such

as the risk-free interest rate indicator, its value predominantly ranged between 1%-2% in the

years leading up to the testing set. In a standard window partitioning method, this would

mean that only data within the 1%-2% range gets included in the training set. Deep learning

models, when employed in rolling training, would have adeptly tailored their pricing equations

to the prevailing low risk-free interest rates of previous years. However, during the period

represented by the test set, an unexpected surge in inflation prompts the Federal Reserve

to institute a rate hike, causing the risk-free interest rate to momentarily spike to above

5%. This abrupt shift presents a significant challenge for deep learning models. Under such

circumstances, a purely data-driven deep learning model would likely struggle with projecting
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out-of-sample data. These algorithms rely on backpropagation to persistently modify neural

weights based on historical data to model the relationship between inputs and outputs, such

as option prices. This implies that the performance of deep learning is significantly influenced

by the similarity between the training set and the test set. However, given our example,

the deep learning model is conditioned throughout its training to assume that the risk-free

interest rate predominantly oscillates between 1% and 2%. It remains largely uninformed

about pricing dynamics outside this bracket. This limitation extends to other pivotal inputs,

such as volatility, dividend yield, and the price-earnings ratio, which might also be adversely

affected by economic structural shifts.

In a broader context, rare or extreme events indeed trigger economic structural shifts,

which refer to significant and enduring changes within the macroeconomic system, including

changes in market dynamics, policy alterations, or unforeseen events that reshape the economic

landscape. It’s essential to recognize that these structural shifts can introduce data in the

test set that significantly deviates from the training set’s input range, thus undermining the

predictive prowess of data-driven deep learning. The criticality of this issue in both artificial

intelligence and empirical finance domains has hitherto been under-emphasized.

Is the critique of deep learning’s challenges, as discussed in the preceding text, merely

based on unfounded apprehensions? Is the deviation of the test set from the training set

really a reason for transfer learning outperforming deep learning in terms of performance?

To quantify this, we introduce the Mahalanobis distance as a proxy variable of the diviation

of data generating process (DGP) between the test set and its corresponding train set. The

Mahalanobis distance from an n-dimensional vector ~x to an nˆm dimensional matrix Q is

defined by the following equation:

dMp~x,Qq “
a

p~x´ ~µqTS´1p~x´ ~µq, (15)

where S is the covariance matrix of Q, and µ is the sample mean of Q. Thus, we can calculate

the distance from each set of input variables in the test set to the train set. From Table 3, we

can see that the coefficient of distance is 1.93 and significantly positive. The corresponding

t-statistic values are all greater than 199. This indicates that an increase in distance leads to a
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larger gap between deep learning and transfer learning, meaning that the relative performance

of transfer learning is improved, which proves our hypothesis.

Deep learning is insufficiently equipped to tackle such unprecedented market scenarios.

While this article does not seek to explore the reasons behind these feature distribution shifts,

it underscores that structural economic disturbances invariably bring about alterations in

the distribution of input features. Anticipating data-driven models to seamlessly adapt to

these changes is optimistic, and deep learning’s capabilities remain limited in addressing such

intricacies.

The transfer learning framework implemented in this paper’s AI-based economic model

addresses the inherent limitations of deep learning. The training within the source domain

utilizes simulated data derived from an economic model, with the data generation process

during this simulation being entirely under the researchers’ control. This permits researchers

to establish a broad data generation spectrum encompassing even the most extreme economic

scenarios. For instance, in this context, the preset annual implied volatility in the source

domain spans from 0 to 1, while the risk-free interest rates range from 0.0 to 0.1. Such

expansiveness ensures that artificial intelligence can accurately interpret pricing rules, even

under rare or unprecedented economic conditions. Even profound economic upheavals and

black swan events would likely not drive these variables beyond the specified range. A pertinent

question that arises is: Does multi-target training in the source domain, characterized by

a wide spectrum of preset data generation, necessitate a substantial increment in training

data volume? Given that training in the source domain is a one-time process and the rolling

training approach solely influences the target domain’s design, concerns regarding the time

invested in source domain training become moot.

4.2 Is the Outperformance of TL Due to More Training Data?

A natural question is: does the inferior performance of deep learning compared to transfer

learning solely result from the latter having access to extra synthetic training data? To

examine whether the discrepancy in performance between deep learning and transfer learning

is exclusively attributed to the disparity in dataset sizes, we conducted an investigation into

the viability of expanding deep neural networks. In each iterative training phase, our training
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Figure 6: TL vs. DL under expanding windows and warm-starting. This figure
compares the out-of-sample median-absolute pricing errors for TL and DL under the rolling-
window setting against those of two differently-trained DLs. The expanding-window approach
retrains the DL in each quarter using all the data available up to that quarter, with network
parameters initialized randomly each time. The warm-starting approach follows the rolling-
window procedure but trains the DL in each quarter by initializing its parameters using the
values from the model trained in the previous quarter.

dataset encompassed all the previously employed training data, including all data preceding

the introduction of the test set. Consequently, the training data available to our deep learning

model, hereafter referred to as “expanding DL,” significantly exceeded the volume of training

data accessible to transfer learning models, encompassing both the source and target domains.
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Additionally, we incorporated the warm-start method into our analysis. Warm-start refers

to the technique where parameters from a previous training cycle are reused and further

trained on a new dataset. This approach not only leverages continuity in training but also

allows the deep learning models to benefit from a substantial accumulation of training data

over time. This iterative enrichment of training data, coupled with the retention of learned

parameters, potentially enhances model performance by providing a richer, more continuous

learning trajectory as opposed to starting anew with each training session. Thus, by using

both expanding datasets and warm-start techniques, our investigation aims to provide a more

nuanced understanding of the factors that influence the performance disparities between deep

learning and transfer learning approaches.

Our empirical results, as visualized in Figure 6, shed light on the impact of expanding DL

and its relative performance in comparison to conventional deep learning. Surprisingly, the

results indicated that expanding the training dataset did not yield substantial improvements

when contrasted with traditional deep learning. In fact, the mean difference in prediction

error between the two approaches averaged only 4.55 ˆ 10´2. It is worth noting that the

augmentation introduced by expanding DL primarily comprised historical data predating the

test set. The data generating process underlying this historical data may exhibit significant

dissimilarities when compared to the data generating process of the test set. Consequently,

the utility of this expanded historical data in enhancing predictions on the test set appears

limited. This further underscores that the superior predictive performance observed in transfer

learning scenarios is not solely a product of increased dataset size but rather an outcome of

the model’s inherent structural advantages.

In terms of the warm-start approach, results showed a modest improvement over conven-

tional deep learning, with an average improvement of 0.080. In comparison to the expanding

DL approach, which simply enlarges the dataset with historical data, the warm-start approach

provides a strategic advantage. While the expanding DL incorporates older data, which

might be less relevant due to differences in data generation processes, the warm-start method

focuses on continuously improving the model’s ability to adapt and refine its parameters

based on new and relevant information. This ongoing adjustment and adaptation likely

contribute to its superior performance over the expanding DL approach.
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Figure 7: TL and DL with model-implied inputs. TL (BS inputs) refers to that within
the transfer learning framework, we retained solely the inputs utilized in the Black-Scholes
model. Similarly, DL(BS inputs) means that within the deep learning framework, we retained
solely the inputs utilized in the Black-Scholes model.

However, this still lags behind the performance seen with transfer learning, where the

average error was 0.002 lower than that of the warm-start deep learning models. Transfer

learning involves pre-training a model on a large, well-curated dataset where the model learns

a wide array of features that are generalizable, followed by fine-tuning on a smaller, specific

target domain to adjust these features to new nuances. This method produces robust and

adaptable models. In contrast, the warm-start approach enhances performance through

continuous training and iterative refinement within the same framework, retaining knowledge

across iterations. However, it lacks the broad exposure to diverse datasets and tasks during

pre-training, which enriches transfer learning models, thereby limiting the diversity and

richness of the feature set it can develop.

4.3 Is the Structural Model Simply Identifying Relevant Features?

In the primary results, we utilize 16 input features. Further exploration involved reducing

the number of features, retaining only those inputs from the Black-Scholes model for the

Transfer Learning (TL) and Deep Neural Network (DL) models, as presented in Figure 7. It
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is observed that using a larger number of features does not significantly enhance predictive

accuracy compared to using only BS-inputs. As indicated in the figure, additional features

only effectively reduced the implied volatility error at the peak of TL; they substantially

mitigated the impact of extreme volatility fluctuations, yet at other test points, additional

features did not result in a notable decrease in the Median Absolute Error, only improved

9.48ˆ 10´4 on average. In the DL model, the incorporation of more features even resulted in

poorer prediction outcomes, with an average increase of 0.051 in BSIV-MAE. This contrast

further underscores the superiority of Transfer Learning, which is able to significantly improve

prediction accuracy through an advanced model structure rather than solely relying on feature

complexity.This result reveals the contrast between theoretical modeling and the effectiveness

of feature engineering. Using only variables related to the theoretical model as inputs for the

neural network is a common feature engineering technique. After incorporating information

from the theoretical model, the marginal improvements brought by feature engineering become

relatively minor, highlighting the role of economic theories in the era of artificial intelligence.

These analyses highlight a significant advantage of transfer learning over deep learning: it

can harness the predictive power of weak predictors without being adversely affected by their

noise. This reduces concerns about the “garbage in, garbage out” problem, meaning we are

less worried about the inclusion of noisy inputs. In contrast, deep learning is more prone to a

modeling dilemma: while adding more features can provide additional information, it also

increases the risk of being compromised by low signal-to-noise ratio inputs. When using deep

learning tools, effective feature engineering becomes more critical, and achieving optimal

performance may require sacrificing weaker covariates. Transfer learning, however, avoids

such challenges entirely.

4.4 TL Performance under Different Structural Models

This section aims to demonstrate that transfer learning methods can also be employed to

incorporate weak information, an approach of general significance in economics. In economics,

there are certain key mappings whose mathematical properties we understand with reasonable

certainty, yet the exact mathematical forms are elusive. For example, while we generally agree

on the characteristics of the utility function regarding consumption as being monotonically
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Figure 8: TL with strong vs. weak structural restrictions. In this figure, we compare the
out-of-sample median-absolute pricing errors for TL that uses the Black-Scholes model in the
source domain against another TL that imposes only the model-free no-arbitrage restrictions
in the source domain. Specifically, the synthetic put option prices are randomly drawn from
between the lower and upper bounds under the no-arbitrage conditions (maxpKe´rT ´ S, 0q
and Ke´rT ).

increasing and concave, it is challenging to articulate a universally accepted exact form.

In general, the current literature in the field of economics has seen neural networks aimed

at flexibly fitting nonlinear functions, but the means of incorporating characteristics of these

functions still require a general discussion. Transfer learning methods offer a novel and

general way to address this issue. Specifically in the domain of option pricing, discussions

on how to incorporate no-arbitrage information within the context of artificial intelligence

technology, such as in the work by Cao, Liu, and Zhai (2021), have informed our design of

an entirely new neural network architecture designed for option pricing and incorporating

no-arbitrage information, which has significant potential for generalization. In the source

domain, we first sample features such as strike prices, underlying asset prices, and risk-free

interest rates according to a uniform distribution. Subsequently, we determine the upper and

lower bounds of the no-arbitrage conditions for each observation, and finally, we generate

random numbers as prices within the range of the no-arbitrage conditions to construct the
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Figure 9: Optimal Learning Rate in Target Domain. The figure demonstrates the
relationship between the learning rate and the out-of-sample pricing errors. We retrain the TL
and DL model under different learning rates. The out-of-sample pricing errors (BSIV-MAE)
are then averaged over the full sample.

training set for the source domain. The neural network then learns from this random dataset

under no-arbitrage conditions as the source domain, followed by learning from real data.

Our results (Figure 8) are consistent with Cao, Liu, and Zhai (2021), indicating that the

no-arbitrage conditions offer significant improvement to deep learning, improving 0.022 when

measured by BSIV-MAE error. This approach adeptly facilitates the infusion of intricate

insights that are not from model dimensions of economic theories into the fabric of neural

networks.

4.5 Optimal Learning Rate

The learning rate is a crucial hyperparameter in training machine learning models, impacting

the convergence and performance of the model. To investigate the effect of learning rate

on our target domain, we conducted a series of experiments and visualized the results in

Figure 9. The figure clearly demonstrates a pronounced U-shaped curve, indicating that both

excessively small and excessively large learning rates are detrimental to model performance.
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Transfer learning, compared to traditional deep learning, is more suitable for training with

a smaller learning rate. This is because transfer learning typically starts from a pre-trained

model with weights already optimized on a related task, requiring only fine-tuning on the

target task. Using a smaller learning rate helps preserve the knowledge embedded in the

pre-trained model while allowing gradual adaptation to the new data, thereby avoiding

significant deviations from the learned representations.

The performance curve of transfer learning around the optimal learning rate is noticeably

flatter compared to deep learning. This indicates that transfer learning is more robust, as its

performance does not degrade sharply when the learning rate deviates from the optimal value.

Such robustness can be attributed to the pre-trained model’s ability to stabilize training

dynamics, making it less sensitive to hyperparameter variations and improving generalization

on the target task

5 Alternative Ways to Bring in Structural Information

5.1 PINN and Boosting

In this section, we compare TL with other approaches for integrating information from

theoretical models into the neural networks. For instance, the most direct approach seems to

be the estimation with a combination of data conforming to pricing models and actual data,

a concept similarly employed in the estimation of DSGE-VAR models in macroeconomics

(Litterman (1986)). Specifically, we devise two schemes to examine this issue.

In the Pooled Data scheme, the training set for the neural network consists of a mixed

dataset of real and simulated data. The simulated data is identical to the training set used

in the Source Domain for the neural network. From Figure 6, on average, the Pooled Data

improves the BSIV-MAE error by only 9.28ˆ 10´3, which is significantly less than the level

achieved by transfer learning. While this scheme seems similar to the transfer learning

approach, the order of data input leads to a marked discrepancy in results. This is due to the

Pooled Data scheme’s issue of biased targets. The True Model is embedded within the actual

data, not the theoretical model. As such, the Pooled Data scheme’s concurrent consideration
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of errors from both theoretical and actual data in effect makes the neural network’s objective

diverge from our real target. Transfer learning, on the other hand, better manages the

asymmetrical relationship between theoretical models and actual data by fine-tuning with

real data, rather than assigning equal status to both.

Similarly, we empirically tested Physics-Informed Neural Networks (PINNs), which refer

to a class of models that incorporate physical model constraints into the learning process,

enabling multi-objective learning by combining different loss terms. In this work, we applied

a PINN approach to integrate the Black-Scholes model with actual data. Specifically, we

tested the Mixed Target scheme, which does not expand the training set but instead uses a

weighted average of the BS model Error and the actual data error as the loss function during

the neural network’s training, which is

Losstotal “ λBSLossBS ` λrealLossreal. (16)

To ensure comparability, within each training set, the weights were set according to the ratio

of the volume of data from the source domain in the TL scheme to the sample size of the

actual data training set used in the original deep learning approach. The empirical results of

this scheme (Figure 10), similar to the Pooled Data, suffer from the biased target issue, and

its performance is significantly inferior to transfer learning, worsened the BSIV-MAE error

by 0.077 on average compared with deep learning.

Another penalty for deep learning can be related to no-arbitrage theory. Unlike the

Black-Scholes model, which inherently carries a bias, no-arbitrage conditions are considered

to be unbiased. In this way, the total loss function is composed of two components: the first

measures the primary error between predictions and real values, while the second penalizes

cases where samples fall outside the defined range. Specifically, the total loss Losstotal is

calculated as:

Losstotal “ λrealLossreal

` λNA
1

N

N
ÿ

i“1

ItXi R rangeiu ˆmint|Xi ´Ke
´rt
|, |Xi ´maxpKe

´rT
´ S, 0q|u. (17)
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Figure 10: Comparison with alternative ways to incorporate structural model
information. In this figure, we compare the out-of-sample BSIV-MAE for TL against those
of a DL that treats the Black-Scholes model restrictions as constraints (Panel A) and a
Black-Scholes boosting model (Panel B).

Here, N is the number of the sample. The indicator function ItXi R rangeiu identifies whether

a sample Xi lies outside the no-arbitrage range rangei: it equals 1 if Xi is outside rangei

(the complement of the range), and 0 otherwise. The upper bound of rangei is defined as

Ke´rt, while the lower bound is maxpKe´rT ´ S, 0q, where r represented the risk-free rate,

S denoted the current price of the underlying asset, K was the option’s strike price, r stood

for the risk-free rate, and T represented the remaining time to expiration. The second term,
řN

i“1 ItXi R rangeiuˆmint|Xi´Ke
´rt|, |Xi´maxpKe

´rT ´S, 0q|u, the degree to which the

predicted values deviate from the no-arbitrage condition, weighted by λno_arb. This ensures

that the model not only minimizes prediction error but also adheres to predefined economic

constraints.

In unreported results, we find that even for the no-arbitrage pricing constraint that does

not introduce any bias, the effect of transfer learning is superior to that of multi-objective

learning with an added penalty term. Multi-objective learning moderately improves the

performance of DL, with the improvement brought by the introduction of no-arbitrage

conditions through transfer learning being more pronounced.

38



5.2 Comparison between Transfer Learning and Bayesian Methods

This section aims to highlight the structural advantages of transfer learning. The use of

simulated data to enhance predictive capabilities has been demonstrated in the application

of Bayesian methods. Del Negro and Schorfheide (2004) use the Bayesian approach to apply

constructed simulated data to macroeconomic forecasting. Since Bayesian methods combine

data from prior distributions with real data to form a posterior distribution, the inclusion of

early simulation data incrementally improves prediction accuracy. However, once the data

from the prior distribution reaches a certain volume, the excess of non-real data can lead to

a diminished significance of real data in the model, decreasing the grasp on reality and thus

prediction accuracy. Therefore, in Bayesian methods, the relationship between prediction

error and the ratio of simulated data volume to real data volume typically forms a U-shaped

curve. Transfer Learning effectively avoids this problem by distinctly separating simulated

data from real data, training within the source domain and target domain separately; it

first captures the general direction of prediction in the source domain training, followed by

adjustment of parameters in the target domain using real data as the training set. In such

a structure, no matter how much the pre-training data volume increases, it only functions

within the source domain. In the target domain, regardless of the volume of simulated data,

further training with real data is essential, implying that Transfer Learning does not suffer

from reduced importance of real data due to excessive volumes of simulated data, thereby

maintaining accurate prediction targets and achieving better predictive performance.

To validate this, we selected four representative forecast points for testing: the first

quarter of 2002, the fourth quarter of 2008, the second quarter of 2014, and the first quarter

of 2020. Our test results are presented in Figure 11, displaying the ratio of the MAE of

implied volatility predictions from Deep Learning to that from Transfer Learning. It can

be observed that the predictive performance does not show a trend of initial improvement

followed by decline as the ratio of pre-training training set samples to real data training set

samples increases. The training sample sizes of the target domains corresponding to these

four points vary significantly, yet the model demonstrates high stability at each point when

the volume of data is sufficient to reduce the impact of randomness.
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Figure 11: Changing the Relative Quantity between the source domain and the
target domain. The figure demonstrates the effect of the ratio of training data between
the source domain and the target domain on prediction error. In the graph, the y variable
is the error of deep learning divided by the error of transfer learning. We have chosen four
representative quarters. Prediction performance is measured by calculating the Median
Absolute Error of deep learning in estimating implied volatility at that point, divided by the
MAE of transfer learning in estimating implied volatility at that point. We vary the ratio by
changing the number of training samples in the source domain.

The monotonicity of the lambda pair in transfer learning provides a distinct advantage

over Bayesian optimization. This pattern means that transfer learning does not require the

deliberate search for the optimal lambda to enhance performance; instead, it only needs

a sufficiently large pre-training sample to allow the model to automatically determine the

best lambda. In this sense, transfer learning can be seen as capable of discovering the
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Figure 12: Optimal Performance of Bayesian Method. This figure presents the
error curves achieved under the posterior optimal approximation using a Bayesian method,
compared with those obtained from transfer learning and deep learning. At each point, we
train multiple weights with synthetic and real data, then select the weight that performs best
on the test set.

optimal lambda through data. On the other hand, Bayesian optimization requires a numerical

optimization search to find the best lambda, which introduces additional complexities, such as

addressing the potential inconsistency between pre-optimization (prior) and post-optimization

(posterior) results. Thus, transfer learning simplifies the process by automatically adjusting

lambda, avoiding the technical challenges inherent in Bayesian optimization, and improving

efficiency.

Now, in the Bayesian method, we incorporate synthetic data into the training set with

varying weights. Specifically, the ratio of synthetic data to real data is set as 0.1 through

0.9 at the increment of 0.1, and then 1 through 9 at the increment of 1. In the case of

pre-optimization, we select the optimal weight from the previous test set as the weight for

the next test set. In the case of post-optimization, we evaluate the performance of all weight

combinations on the test set and select the weight configuration that minimizes the error. The

significance of this work lies in providing an explanation of transfer learning (TL) through

a mixed data approach. The mixed data method is quite similar to the approach used in

Bayesian Vector Autoregression (BVAR).
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Figure 13: Weights of Synthetic Data. The figure illustrates the weights of synthetic data
in transfer learning and the optimal weights derived using a deep learning-based Bayesian
method. At each time point, we extract the weights corresponding to the minimum value
from multiple sets of weights to determine the optimal weights.

Figure 12 reveals that Bayesian optimization with dynamic optimization (pre-optimization)

cannot match the performance of Transfer Learning. This limitation could stem from the

lack of sufficient prior information or the model’s inability to capture the complexities

inherent in the data. Bayesian methods rely on prior distributions for inference, but if

the prior information is insufficient or poorly chosen, the model’s predictive power may be

constrained, resulting in suboptimal performance compared to TL. When future information

is incorporated, the mixed data method can effectively mimic the performance of transfer

learning. However, in practice, using future data in the optimization process is not possible,

as this contradicts the core principle of predictive modeling, where future data cannot be

known at the time of prediction.

The weight assigned to future information helps us better understand the underlying

mechanisms of transfer learning, as this shows transfer learning framework can consider the

optimal weights in its training process without using future information. This can be further

reflected in the changes in the optimal weights.

Figure 13 presents two curves that offer intriguing insights. One curve represents the
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proportion of synthetic data within the total dataset, i.e., the ratio of the real data training

set to synthetic data. This curve is nearly monotonically decreasing, dropping from close

to 1 to approximately 50 percent. The reason for this is straightforward: as the market

develops, an increasing amount of option data becomes available. The second curve, which

oscillates, represents the relative weight of model information determined by future data.

1) This oscillation clearly highlights a significant difference between transfer learning and

Bayesian methods. The proportion of synthetic data in the sample does not dictate how

much synthetic data is utilized. Instead, artificial intelligence dynamically searches for the

optimal usage level of synthetic data. 2) The optimal proportion of synthetic data fluctuates

dramatically over time, making it difficult to search for a stable value. This reveals a weakness

in the Bayesian approach. When a researcher attempts to use a sliding window to search

for the optimal lambda in the Bayesian method, they will likely struggle to find the lambda

that would be considered optimal in retrospect. This issue illustrates a key limitation of the

Bayesian method, particularly in dynamic settings, and emphasizes the advantages of more

flexible, adaptive approaches like transfer learning.

6 Conclusion

This article presents a transfer learning-based methodology that integrates economic model

information into the neural network framework, demonstrating its broad applicability across

various areas of economics and finance, beyond just asset pricing. While the model is applied

to option pricing in this study, its flexible structure can be extended to other domains where

traditional economic models can be enriched by machine learning techniques. The transfer

learning framework outperforms stochastic volatility models and deep learning approaches

in terms of pricing accuracy, and provides substantial improvements in implied volatility

prediction. This methodology offers a more general, versatile approach that could be applied

to a wide range of economic and financial challenges, highlighting its potential to enhance

both theoretical and empirical research across multiple fields.

Our attribution analysis results indicate that the new transfer learning framework can

overcome the inherent drawbacks of data-driven methods compared to deep learning. It is
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more suitable for high-volatility market environments, characterized by small-sample learning,

and is more robust to various shocks like regime shifts. Additionally, the transfer learning

framework performs better for traditionally challenging models like short-term options.

Theoretically, this paper addresses two important asset pricing questions. The first is the

relationship between structured financial models and data-driven artificial intelligence. For a

long time, the academic community has accumulated a wealth of traditional financial models.

Can these models improve AI models for researchers using machine learning in asset pricing?

This paper provides a comprehensive and flexible framework that can integrate information

from structured models in a more general sense.

The second point provides a solution for handling time-varying rules and can robustly

deal with rare risk shocks. In our attribution analysis, we reveal that when the test set’s

distribution significantly differs from the training set’s, the performance of transfer learning

is much more robust than deep learning. This is because deep learning purely driven by data

struggles to identify rules that are rare or never occurred in history, while transfer learning,

with the help of the source domain, remains robust during periods of drastic distribution

changes.

The third issue is the training of AI models for asset pricing in the case of key variables

in the data with low discrepancy. The construction of asset pricing models using direct

deep learning techniques requires big data support and is thus difficult to implement in this

scenario. Since economic and financial data are not always abundant, whether AI can serve

asset pricing under such circumstances is a sufficiently important question. The transfer

learning framework in this article provides a clear approach to small-sample learning. This

issue can be extended to general economic and financial problems.

The fourth point is how to avoid neural networks mistaking noise as rules in noisy financial

datasets. This article provides a solution to this problem. Transfer learning using economic

model information as a regularization method is an important solution.

Finally, transfer learning reveals the crucial role of theoretical models in the age of

artificial intelligence. We find that even with considerable effort in feature engineering, its

effect improvement is hard to match the help of theoretical models in the source domain

for neural networks. This responds to the initial question of whether theory is dead in the
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age of AI. Even as data volume increases, AI will still face challenges of time-varying rules,

signal-to-noise ratio, and other issues. The economic models created by human economists

are of crucial importance for AI to overcome its inherent flaws.
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7 Tables and Figures

Table 1: Descriptive statistics

We considered all SP500/SPX European put option samples on CRSP from 2001 to 2023.
Due to the existence of bid-ask parity, we only care about call options. The table divides
the options in the whole market into 18 categories according to the expiry time and the
logarithmic moneyness of the simplified algorithm and calculates the mean and standard
deviation of the implied volatility of the option within each category.

Num (million) IV-mean IV-Std

T <10 [10,60] >60 T <10 [10,60] >60 T <10 [10,60] >60

log(K/S) Nums log(K/S) Mean log(K/S) Std
< -0.5 0.256 0.920 1.710 < -0.5 0.700 0.794 0.734 < -0.5 0.374 0.319 0.378
[-0.5, -0.25] 0.469 1.710 1.560 [-0.5, -0.25] 0.725 0.727 0.628 [-0.5, -0.25] 0.377 0.381 0.416
[-0.25, 0] 2.510 6.490 3.240 [-0.25, 0] 0.538 0.504 0.401 [-0.25, 0] 0.433 0.396 0.301
[0, 0.25] 1.510 3.930 2.540 [0, 0.25] 0.144 0.121 0.175 [0, 0.25] 0.213 0.156 0.236
[0.25, 0.5] 0.073 0.234 0.500 [0.25, 0.5] 0.515 0.309 0.268 [0.25, 0.5] 0.452 0.324 0.389
> 0.5 0.005 0.029 0.108 > 0.5 0.547 0.356 0.333 > 0.5 0.510 0.403 0.432
Total 4.820 13.300 9.650 Mean 0.528 0.469 0.423 Mean 0.393 0.330 0.359
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Table 2: Explanatory variable description table for attribution analysis

The table shows the frequency and brief description of the explanatory variables in the
regression.

Variable Frequency Des.

T Contract-daily Time to maturity
marketIV60 Daily 60-day average of VIX
BASpread Contract-daily Bid-ask spread
Distance Contract-daily The Mahalanobis distance between each contract observation and

the distribution of the training set.
volume5daily Daily 5-day average of the variable “volume5”, a 5-day moving average

of the normalized volume deviations, lagged by one day.
mIVchange Daily Change of market implied volatility between train set and test set
ITM Contract-daily In-The-Money
OTM Contract-daily Out-of-The-Money
DOTM Contract-daily Deep-Out-of-The-Money
DITM Contract-daily Deep-Out-of-The-Money
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Table 3: Performance Attribution Analysis

The table shows the results of the attribution analysis.The dependent variable is the difference
between the absolute pricing error (in terms of BSIV) for deep learning and transfer learning
for contract i on day t.The superscripts ***, **, and * indicate statistical significance at the
1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5) (6)

0-7 -0.0201*** -0.0216*** -0.0211*** -0.0205*** -0.0221*** -0.0169***
(-99.18) (-108.29) (-104.00) (-100.85) (-107.76) (-83.07)

7-14 -0.0118*** -0.0129*** -0.0124*** -0.0121*** -0.0138*** -0.0124***
(-76.75) (-85.70) (-80.37) (-78.43) (-89.53) (-80.92)

90+ 0.0170*** -0.0136*** 0.0143*** 0.0108*** 0.0251*** 0.0176***
(15.20) (-12.16) (12.79) (9.69) (21.44) (15.15)

marketIV60 0.0719*** 0.1170*** 0.0907*** 0.1060***
(95.23) (143.62) (108.49) (126.67)

mIVchange 0.1810*** 0.1790*** 0.1100*** 0.1180***
(219.74) (216.67) (119.97) (130.34)

volume5daily 0.0136*** 0.0200*** 0.0180***
(129.83) (75.60) (72.86)

distance 1.9300*** 1.9300***
(200.96) (199.15)

BAspread -0.6880*** -0.6280***
(-18.78) (-18.62)

OTM 0.0318*** 0.0330*** 0.0355*** 0.0342*** 0.0324*** 0.11***
(266.00) (277.04) (293.61) (279.75) (220.21) (333.76)

DOTM 0.0720*** 0.0637*** 0.0743*** 0.0728*** 0.0713*** 0.194***
(193.08) (174.19) (199.07) (194.31) (187.59) (239.74)

ITM 0.04470*** 0.0333*** 0.0425*** 0.0427*** 0.0437*** 0.0466***
(104.94) (78.20) (99.64) (100.22) (102.41) (78.76)

DITM 0.0140*** 0.0122*** 0.0130*** 0.0131*** 0.0131*** 0.00625***
(22.17) (18.05) (20.52) (20.64) (20.65) (9.38)

IVˆ ITM -0.026***
(-11.25)

IVˆDITM 0.1***
(16.68)

IVˆDOTM -0.262***
(-144.41)

IVˆOTM -0.185***
(-231.62)

Const 0.0541*** 0.1790 0.0399*** 0.0335*** 0.0354*** 0.0341***
(916.22) (0.98) (254.81) (206.75) (176.84) (174.93)

Time FE ˆ X ˆ ˆ ˆ ˆ

R2 0.006931 0.058859 0.010283 0.011084 0.014409 0.023819
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Appendix

A Details of Neural Network Architecture and Training

The employed neural architecture in this article encompasses 16 hidden layers with 16 input

variables each. Each hidden layer consists of 22 neurons and employs Leaky ReLU as

the activation function. These hidden layers are linear transformations, constituting fully

connected layers. To address the gradient vanishing problem, we introduced the ResNet

structure. Detailed below are the specific parameters and structures utilized for all our

results.

Transfer Learning: For the source domain, we generated a series of random factor values

and computed the prices produced by the Black-Scholes model for each data point. Employing

these factor values as input variables and the prices derived from the Black-Scholes model as

output variables, we conducted training using a total of 700,000 data instances. Training

encompassed 200 epochs, with a learning rate of 0.0002 and a batch number of 600. We

computed three distinct loss functions: Mean Absolute Error (MAE) of Vega, MAE of

Delta, and a weighted MAE that utilizes Delta as weights between predicted and actual

prices. These three loss functions were combined with a weight ratio of 0.2:0.2:1, yielding

a novel loss function for backpropagation. For the target domain, we fine-tuned the model

using real data’s factor values as input variables and actual prices as output variables. The

training and validation sets together covered 3 months of data, with a 7:3 ratio between

them, while the testing set consisted of an additional 3 months of data. The fine-tuning

stage employed an early stopping strategy, terminating training early if the validation loss

increased consecutively over two epochs. The learning rate, determined through a sparse

grid search on data preceding the first train-test pair, was set at 0.0001, and the batch size

was calculated by dividing the training set’s sample size by 600. Backpropagation utilized

the weighted MAE of predicted prices and actual prices with Delta as weights as the loss

function.
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Figure A.1: The Transfer Learning Framework. This figure illustrates the application of
our adopted transfer learning framework in the context of option pricing.

Deep Learning: We exclusively employed real data and conducted training following

the methodology established in the Transfer Learning paradigm for the target domain.It is

important to note that the learning rate for the deep learning model was also determined in

advance through a sparse grid search, resulting in a value of 0.001.

Deep Learning - Warm Start: Exclusively utilizing real data, we followed the training

approach of the target domain as outlined in the Transfer Learning methodology. In contrast to

regular Deep Learning, the network was initialized only before the initial training; subsequently,

parameters from the previous training were retained throughout the rolling training without
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Figure A.2: Robustness Check: Weight of Source Domain Multi-target Training.
We change the Weight of Source Domain Multi-target Training. The main results in the main
text report the pricing, delta hedging, and vega hedging weights set to 10:2:2. We set the
weights to 5:2:1 and 10:2:0 to observe whether there is a large change in the pricing error.
The frequency of error evaluation is the same as the frequency of model retraining, that is,
model retraining and model evaluation every three months. The loss function of the model
is chosen as IV-MAE. Specifically, we first convert the model-predicted price and the real
price into implied volatility and then calculate the average absolute error between the two
implied volatility. This scheme is designed to ensure that the model pays sufficient attention
to out-of-the-money options.

further initialization.

Deep Learning - Expanding Window: The Expanding Window method refers to a

strategy for incrementally increasing the size of the dataset used for training a model.As

time progresses, new data is continuously incorporated into the training set, expanding the

window of historical data the model learns from.

Pooled Data Method: We merged the randomly sampled training set from the source

domain in Transfer Learning with the real data set. Subsequently, training was executed

following the target domain’s methodology without pretraining. We set the number of epochs
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Figure A.3: Robustness Check: NN structure and activation function. We change
the activation function. The frequency of error evaluation is the same as the frequency of
model retraining, that is, model retraining and model evaluation every three months. The loss
function of the model is chosen as IV-MAE. Specifically, we first convert the model-predicted
price and the real price into implied volatility and then calculate the average absolute error
between the two implied volatility. This scheme is designed to ensure that the model pays
sufficient attention to out-of-the-money options.

to 20 to ensure network convergence.

Deep Learning with Mixed-Target Loss Function: In Deep Learning, we modified

the loss function during training. Firstly, we separately computed the weighted MAE

between predicted prices and actual prices, as well as the MAE between predicted prices and

prices derived from the Black-Scholes model. Subsequently, weights were allocated based on

in-sample grid search.

Only Impose No-Arb Constraint: We adopted the training pattern of Transfer Learning,

with the distinction that the output variable was no longer the price derived from the Black-

Scholes model. Instead, it ranged between randomly generated upper and lower bounds under

the no-arbitrage conditions. The upper bound was defined as Ke´rt, while the lower bound
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was maxpKe´rT ´ S, 0q, where r represented the risk-free rate, S denoted the current price of

the underlying asset, K was the option’s strike price, r stood for the risk-free rate, and T

represented the remaining time to expiration.

Deep Learning with Only Input Variables from the Black-Scholes Model: Within

the Transfer Learning framework, we retained solely the inputs utilized in the Black-Scholes

model.This means that during the training in both the source domain and the target domain,

only the inputs of the Black-Scholes model were considered as inputs for the neural network.

Deep Learning with Only Input Variables from the Black-Scholes Model: In the

context of Deep Learning, only the parameters used in the Black-Scholes model were retained.

Table A.1: Alternative Loss of Pricing Models

The following formula reports the full sample results of various loss functions. The following
Loss reports the summary of pricing error results on all test sets. MAE is the mean absolute
error of simple statistics, and MSE is the mean square error. The weighted error is the
result of Delta weighting. In the three ways of weighting 1, weighting 2, and weighting 3,
the constant δc to ensure the stability of the value is set to 0.1, 0.08, and 0.12 respectively.
MAPE is the mean absolute percentage error.

TL DL Heston

mse unweighted 0.0174 0.2910 3.28
weighted-mse1 0.0054 0.0463 7.42
weighted-mse2 0.0052 0.0408 8.04
weighted-mse3 0.0057 0.0515 6.96

mae unweighted 0.594 2.55 10.4
weighted-mae1 0.333 1.15 11.6
weighted-mae2 0.314 1.07 11.7
weighted-mae3 81.400 393.00 36500.0

mape unweighted 102 1136 38170
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B Description of Features for DL and TL

1. S: Represents the price of the S&P 500 index divided by 1000.

2. K: The strike price of an option divided by 1000, which is the price at which the holder of

the option can buy (call) or sell (put) the underlying stock or index.

3. T: Time to expiration, expressed in years. This is the remaining time until the option

expires.

4. r: The risk-free interest rate.

5. d: The dividend yield, which is the rate of dividends paid out by the underlying stock or

index relative to its price.

6. IV1: Lagged 1-day of the VIX index. The VIX is referred to as the market’s "fear gauge"

and measures the market’s expectation of volatility over the upcoming 30 days.

7. mom1: Short-term momentum of the option price calculated as the logarithm of the ratio

of the real price one day ago to the real price six days ago.

mom1 “ log

ˆ

real_pricet´1
real_pricet´6

˙

8. mom4: Medium-term momentum of the option price calculated as the logarithm of the

ratio of the real price one day ago to the real price 21 days ago.

mom4 “ log

ˆ

real_pricet´1
real_pricet´21

˙

9. hv1: This variable represents the annualized standard deviation of the daily log returns of

the S&P 500 index, calculated over a 20-day rolling window. The calculation involves taking

the square root of the sum of squared log returns over the past 20 days, multiplying by the

annualization factor (252 trading days in a year), and then dividing by the window size (20

days). This value is lagged by one day:

hv1 “

d

ˆ

Sum of squared log returns over 20 daysˆ 252

20

˙

10. hv9: Similarly, this variable calculates the annualized standard deviation of daily log
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returns over a 180-day rolling window. The procedure is the same as for hv1, but using 180

days for the window size. This value is also lagged by one day:

hv9 “

d

ˆ

Sum of squared log returns over 180 daysˆ 252

180

˙

11. volume1: A transformed volume metric, measuring the normalized deviation of the

current volume from the rolling mean of the past 20 days, lagged by one day.

12. volume5: A 5-day moving average of the normalized volume deviations, lagged by one

day.

13. Put-Call Ratio (PCratio): Calculated as the ratio of total open interest of puts

to calls, providing a measure of market sentiment. A higher ratio indicates more bearish

sentiment.

PCratio “
Open Interest of Puts

Open Interest of Calls` 1

14. Earnings-Price Ratio: This ratio is calculated as the earnings (E) divided by the price

(P) of S&P 500.

15. spmom1: The logarithm of the short-term momentum of the S&P 500 index, measured

as the ratio of the index value one day ago to six days ago.

spmom1 “ log

ˆ

pricet´1
pricet´6

˙

16. spmom4: The logarithm of the medium-term momentum of the S&P 500 index, measured

as the ratio of the index value one day ago to 21 days ago.

spmom4 “ log

ˆ

pricet´1
pricet´21

˙

C Generation of Synthesized Source Domain Data

The following table details the features used for generating synthetic data, their distribution

ranges, and the formulae for derived metrics:

For each data point, the price is calculated according to the Black-Scholes (BS) model
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Feature Distribution Range

S Uniform 0 to 5
K Uniform 0 to 5
T Uniform 0 to 4
r Uniform 0 to 0.1
d Uniform 0 to 0.1
IV1 Uniform 0 to 1
mom1, mom4 Uniform -10 to 10
hv1, hv9 Uniform 0 to 0.8
volume1, volume5 Uniform -4 to 4
PCratio (Put-Call Ratio) Uniform 0 to 2.5
epratio (Earnings-Price Ratio) Uniform 0 to 0.1
spmom1, spmom4 Uniform -0.3 to 0.2

to serve as the training target, and both Delta and Vega are computed. Inputs not within

the structural model will be random variables independent of the source domain prediction

target.

D Robustness Checks

D.1 Network Hyperparameters

Within the source domain, we define the hyperparameters for multi-objective training. The

weights assigned to pricing, delta hedging, and Vega hedging are set at 10, 2, and 2, respectively.

The guiding principle behind these settings is to prioritize minimizing pricing errors. When

evaluating the trade-off between Delta hedging and Vega hedging, we recognize that the price

of the underlying asset is more readily observable compared to volatility. Consequently, Delta

hedging is assigned a higher weight than Vega hedging.

An immediate inquiry that arises is the sensitivity of the results, as derived from the

transfer learning algorithm presented in this study, to the weight settings of the multi-objective

optimization. To address this, we conducted a robustness test. Initially, we diminished the

weight for pricing, adjusting the weights to a 10:4:2 ratio, and then assessed any notable

shifts in the implied volatility-median absolute error curve. Moreover, we augmented the

weight for Vega hedging, calibrating the weights to a 10:2:0 ratio, and subsequently examined
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the implied volatility-median absolute error curve.

From the observations in Figure A.2, variations in the weight assignments of the source

domain exert minimal impact on the error curve, confirming the robustness of our findings.

The error curves for different weight configurations display remarkable overlap at several time

nodes. The mean disparity between the error curve, when the source domain multi-objective

learning weights are set at 10:4:2, and the primary outcome’s error curve stands at a mere

2.51ˆ 10´4. With the weights adjusted to 10:2:0, the average deviation between the error

curve and the principal result is 7.37ˆ 10´3. Neither of these values carry significant weight

either economically or statistically. Thus, the outcomes of the transfer learning derivative

pricing model display resilience against alterations in the source domain multi-objective

learning weight settings. Although hedging and pricing might ostensibly appear as divergent

tasks, each inherently informs the other. The gradient of the pricing objective function

essentially forms the hedging objective function. Consequently, the weight parameter for

multi-objective learning merely necessitates that the neural network duly emphasizes both

aspects. Intriguingly, augmenting the emphasis on pricing errors in the source domain doesn’t

necessarily correspond to a reduction in out-of-sample pricing errors in the target domain. At

first glance, this might seem paradoxical. How can the pricing error increase by 7.37ˆ 10´3

upon lessening the weight assigned to the vega hedging error? Conventionally, one might posit

that if a neural network’s primary aim is pricing, its loss function should exclusively account

for pricing errors. Yet, our empirical observations underscore that the model’s efficacy in

the target domain is enhanced by engaging in multi-task learning within the source domain.

Overlooking hedging factors in the source domain might inadvertently diminish the precision

in pricing. This intertwined relationship can be attributed to the inherent nexus between

pricing and hedging. The insights a neural network garners from the structured hedging

model invariably aid its pricing endeavors.

We delve deeper into the selection of the model’s evaluation metrics. Table A.1 systemati-

cally evaluates the influence of error assessment indicators and error weighting methodologies

on the robustness of our findings.Both deep learning and transfer learning were trained

using the original WMAE (Weighted Mean Absolute Error) as the loss function, but with a

modification in the evaluation approach. This modification is intended to test the predictive
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performance of the models from multiple perspectives. As gleaned from the table, regardless

of whether the metric is mean absolute error, percentage error, or mean square error, and

irrespective of the presence or absence of error weighting, the efficacy of the transfer learning

pricing network in enhancing pricing remains consistent. In terms of unweighted mean

absolute error, transfer learning exhibits an error that is 1.95 less than that of deep learning.

Considering the three outcomes for weighted mean absolute error, transfer learning experience

error reductions ranging from 0.245 to 0.280, while the prediction error in deep learning

decreases from 1.328 to 1.478. The relative improvements in pricing error for transfer learning

to deep learning are recorded as 0.816, 0.754, and 0.869. Proportionally speaking, when

compared to deep learning, the transfer learning’s pricing error, as measured by average

absolute error, witnesses a reduction by 76.7%, 71.0%, 70.6%, and 71.3% respectively.

During model training, the loss function employed in the neural network backpropagation

is the weighted mean absolute error. Nevertheless, it’s fundamentally feasible to use the mean

square error (MSE) as an evaluation metric to gauge the model’s robustness. Conceptually,

utilizing a loss function that displays a more pronounced discrepancy relative to the back-

propagation loss function can magnify potential overfitting issues in the model. In terms of

MSE, the relative improvements in pricing error for transfer learning in comparison to deep

learning are 94.0%, 88.2%, 87.3%, and 88.9% respectively.

Within the context of MSE, the transfer learning pricing network exhibits a pronounced su-

periority over its deep learning counterpart. This is attributable to the heightened overfitting

issues inherent in deep learning, making alternative evaluation metrics beyond backpropaga-

tion more challenging for transfer learning. In terms of MAPE (Mean Absolute Percentage

Error), the merits of transfer learning relative to deep learning are also readily discernible

when considering mean absolute error. The MAPE for transfer learning is 91.0% lower

compared to deep learning. The rationale behind this observation mirrors that of the MAPE

context. MAPE, essentially an MAE normalized with the actual price, deviates from the

primary backpropagation error which employs Delta normalization. Hence, transfer learning’s

performance remains more consistent when switching error assessment metrics.

Furthermore, in the main results, we advocate for the utilization of weighted mean absolute

error for training, supplemented by a stability constant, to ensure backpropagation error’s
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numerical stability and to accentuate the significance of OTM options. The stability constants

in this context are deliberately designated. The findings presented in this table underscore

that the configuration of these stability constants exerts a minimal influence on the outcomes.

Moreover, our analyses indicate that, on a broader scale, both deep learning and transfer

learning offer tangible advancements over stochastic volatility models. While deep learning

might underperform in certain market scenarios, such as pronounced market volatilities or

the repercussions of significant events like the new crown epidemic, its aggregate pricing error

remains lower than that of the stochastic volatility model in the long-term perspective.

D.2 Alternative Neural Networks

The structure presented in this paper offers significant flexibility in the choice of neural network

architecture, and its academic relevance remains undiminished irrespective of advancements

in deep learning technology.

In exploring the types of neural networks, we’ve delved into two main aspects: adjusting

the neural network’s activation function and altering its structure. Initially, this study

substitutes the LeakyReLU activation function with the ELU function in the primary results.

Both ELU and LeakyReLU are variations of the ReLU function. While LeakyReLU enhances

the gradient when the neuron input’s linear sum is negative, ELU primarily aims to produce

a more robust learning process by combining the properties of linear units for positive inputs

and exponential units for negative inputs. The ReLU function is non-differentiable at x=0. In

contrast, ELU closely resembles ReLU but helps to mitigate the vanishing gradient problem

by ensuring that the function is differentiable at all points and smoothly transitions between

the linear and exponential segments. Our objective is to discern how this smoother activation

function impacts outcomes. In the subsequent figure, we examine the model’s error outcomes

and the core regression results from the attribution analysis after replacing all instances of

LeakyReLU with the ELU function. In the error analysis presented in Figure A.3, ELU-

Transfer learning exhibits similarities to the primary result’s error curve. The mean deviation

between ELU and LeakyReLU’s error curves is 7.34ˆ 10´3, economically negligible.

These findings suggest that the error curve remains robust amidst activation function

alterations. Modifying the neural network’s computational unit type doesn’t influence
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the algorithm’s economic rationale or empirical outcomes, aligning with our foundational

hypothesis. This paper’s core algorithmic design accentuates neural network performance

by leveraging the inherent information of the economic model, which serves as an anchoring

mechanism. Thus, the methodology here should be broadly applicable across diverse neural

networks. However, this paper’s discourse on neural network activation function selection is

not exhaustive. Hypothetically, each neural network layer could feature distinct activation

functions. Given the myriad activation function choices, a comprehensive discussion would

entail evaluating KN scenarios, where K represents the activation function candidate set

and N signifies the neural network layers count. If we consider varying the layer count, the

scenarios become theoretically infinite. Our dialogue here is not to enumerate all activation

function permutations but to underline this paper’s methodological universality.

The activation function within the neural network can be perceived as its micro-level

attributes, while the overarching design of the network represents its macro-level characteristics.

The realm of computer science presents a plethora of structural designs for this aspect. In

our primary study, we employed a residual learning structure. Distinct from traditional deep

learning algorithms, this structure incorporates direct channels between layers to mitigate the

vanishing gradient dilemma. The network we discussed ensures a direct connection between

any two consecutive layers. We also explored scenarios where some direct connections were

omitted. In the absence of some direct channels, the network reverts to the simpler multi-layer

perceptron design.

The outcomes of this configuration are detailed in Figure A.3. Empirical findings suggest

model robustness irrespective of the neural network’s architecture. Notably, a non-residual

learning structure appears to underperform in time series analyses when juxtaposed against

its residual learning counterpart, but by only 2.11ˆ 10´3 on average.

This uptick can be attributed both to the trimmed network layers and the intrinsic issues

non-residual learning might introduce, such as vanishing or exploding gradients. However, even

in scenarios where all layers don’t incorporate residual learning, our algorithm consistently

outperforms conventional techniques. This superior efficacy stems from a synergistic blend

of knowledge- and data-driven methodologies, resulting in impressive pricing capabilities.

Concurrently, it’s pivotal to recognize the invaluable contributions from the computer science
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domain. Superior network architectures also tend to exhibit enhanced performance under

the umbrella of transfer learning. This insight further accentuates that our transfer learning-

based derivatives pricing algorithm benefits from the integration of advanced artificial neural

network techniques.

Parallel strategies can be seamlessly applied across a variety of network architectures,

including LSTM, traditional multi-layer perceptrons (MLP), GRU, convolutional neural

networks (CNN), self-attention mechanisms, Transformers, and other architectures. These

strategies enable effective implementation across diverse neural network structures to address

the needs of option pricing and hedging. Even as the computer science community introduces

more sophisticated neural network structures, future scholars can leverage the methodology

articulated in this paper to devise transfer learning models for pricing and hedging based on

these novel architectures, potentially achieving superior results.
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