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Abstract

Amidst the sea of content in the digital era, identifying information that is genuinely
relevant is a challenging task. This study uses large language models to uncover new,
or surprising, information in textual data. Specifically, we train LLMs using data
from the financial domain to model investors’ prior beliefs over narrative content and,
thus, identify new information that a company communicates. Our models, which are
tailored to each firm and time, allow us to determine when a sentence or a paragraph
in a corporate filing contains a surprise. The models are trained with fixed knowledge
cutoffs to eliminate lookahead bias. We also generate a summary measure of the amount
of information released in each document, and we show that this measure explains a
large portion of market response to disclosed information and predicts firms’ future
returns. In sum, our study highlights the importance of identifying new and salient
information in today’s complex, data-driven landscape.
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1. Introduction

Information that is important to various stakeholders, including new or prospective in-

vestors, labor market participants, and product markets, is often buried in the sea of narrative

text released by a firm, and finding this relevant information is often like trying to find a

“needle in a haystack.” The volume and various forms of unstructured narrative disclosures

has grown substantially over time, giving rise to the need for more efficient ways to process

such information. In this paper, we combine the principles of information theory with re-

cent advancements in generative AI technology to help stakeholders quickly and easily sort

through unstructured disclosures in order to identify what is important.

Measuring information in narrative disclosures presents a tall challenge. Take, for ex-

ample, the average 10-K containing over 60,000 words. Unveiling its information requires a

comprehensive analysis of the words, sentences, and their broader context both within the

document and within the history of disclosures that came before it. Prior studies tackle

this challenge in a few ways. For example, several studies measure properties of the text

like “tone” (e.g., Li (2008)) or the proportion of words belonging to a reference dictionary

(Loughran and McDonald, 2011). While straightforward, these approaches rely on the re-

searcher’s subjective classification of words and their meaning, and they offer little scope

for assessing whether a disclosure is surprising, thereby updating investors’ prior beliefs.

Other work analyzes changes in text over time by, for example, comparing a firm’s newly

released 10K to the prior 10K released by the firm in the prior year (Cohen et al. (2020)).

While insightful, the sheer volume of information released by the firm over the course of the

year makes an apples-to-apples comparison from one disclosure type to another difficult to

implement.

Our paper addresses these challenges by building a measure of information that is context-

specific, and it accounts for every type of disclosure released by the firm and filed in EDGAR.

To detect and measure newsworthy information within financial disclosures, we start from the
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premise that surprising, or “new” disclosures are more informative than stale information that

has previously been released by the firm. This logic follows the literature on asset pricing in

capital markets, where a disclosure is informative to the extent that it updates beliefs about

firms’ cash flows or risks associated with these cash flows (Fama, 1970). When considering

numerical disclosures, developing such a measure is relatively straightforward. For instance,

much of the prior literature quantifies the news in earnings based on the surprise, defined as

the difference between realized and expected earnings (Ball and Brown, 1968). Similarly, the

approach we follow in this paper develops a measure of the surprise of a piece of narrative

text, relative to all narrative text that came from any previous disclosure released by the

firm. The flexibility of our measure allows us to assess the surprise of a piece of information,

relative to all disclosure that came before it.

We rely on a foundational idea from the information theory literature pioneered by Shan-

non (1948), which shows that when quantifying new information, unlikely content is more

informative than observing content that the receiver believes will occur with high probability.

Shannon’s analysis implies that one can calculate a measure of new information in a text as

the sum of the log probabilities of each token (word), conditional on the preceding context

(prior tokens).

Calculating the probability that a word will appear in a text requires an estimate of

the conditional probability over the words that could occur, conditional on prior words.

Notably, large language models (LLMs) have been developed specifically for this task and

demonstrated the ability to do so very accurately (Radford et al., 2019). As such, we begin

by pretraining an LLM from scratch on a cross-section of firms’ narrative disclosures prior

to 2007.1 We then continue pretraining the cross-sectional model on each firm’s individual

time series of disclosures prior to 2007 to yield a firm-specific LLM for each firm in the

sample. Finally, we iteratively apply each firm-specific LLM to the firm’s new disclosures to

1We eliminate numerical tables from the training data in order to focus the analysis on narrative content.
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measure the information content in them and then update the firm-specific LLM by continued

pretraining on the new disclosure. By pretraining from scratch with a fixed knowledge cutoff

of 2007 and iteratively updating each firm-specific LLM, we eliminate concerns regarding

look-ahead bias (Sarkar and Vafa, 2024). Notably, this measure is remarkably flexible in that

it allows for capturing information at the word, sentence, paragraph, section, and document

levels. It thus enables us to pinpoint the location in a potentially very lengthy text where

significant amounts of new information reside (see Figure 2 for an example of our method

applied to the disclosure which first mentions the Apple iPhone).

Our sample includes all disclosures filed on EDGAR by companies during the period

1996-2023 (Wang and Levy, 2024). Figure 1 depicts how these disclosures are used in our

model training and inference process. Our pretraining data includes all disclosures filed prior

to 2007 consisting of roughly 35.5 billion tokens, whereas our inference (out-of-sample) data

includes disclosures from 2007 and thereafter. The inference data cover a sample of 500 firms

stratified by firm size in 2006, and consists of nearly 278,000 filings containing roughly 1.7

billion tokens.

We use our method to compute a measure of new, or surprising, textual information

(henceforth we refer to this generically as Information, for simplicity). We compute both a

disclosure-wide measure of information, which is an average for a particular firm’s unique

filing (e.g., their 2024 10K), as well as more granular measures of new information within

a particular filing. With our flexible measures of new information in hand, we first turn

to descriptive evidence of where novel news is most prevalent. Figure 3) shows that much

of the new information released by a firm is located in exhibits - which often contain new

procurement, debt, and other types of contracts. The figure also shows that current reports

(Form 8-K) contain much more information than annual and quarterly reports. Further,

while prior work typically focuses on the news in earnings announcements (Item 2.02 of

the 8-K) other types of events such as changes in accountants, bankruptcy, and warnings

that stakeholders should not rely on previously issued financial statements are much more
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newsworthy, according to our measure. These results point to where investors should focus

their attention when seeking new information within lengthy text documents.

In addition to measuring where information is released, we also consider when it is released

(see Figure 4). Using our measure, we see that the periodic nature of earnings announcements

(EAs), quarterly reports, and annual reports leads to a “lumpy” and infrequent release of

information, amounting to 10.2%, 14.3%, and 20.3% of all content in the highest quartile of

information, respectively. In contrast, the other 55.2% of high information content arrives

almost continuously via non-EA current reports (Form 8-K) and other filings. Turning to the

bottom panel of Figure 4, we explore the proportion of market returns realized throughout the

reporting year. The distribution of market returns largely mirrors the timing of information

content in the top panel. Thirteen percent of absolute returns over the reporting year

can be attributed to EAs and 10-K/Qs, 22.1% to non-EA 8-Ks and other filings, and the

remainder to other sources of volatility. The results of this figure highlight a key insight of our

paper: information that is potentially decision-relevant is released by the firm continuously

throughout the year, and prior work focusing only on a select set of filings potentially misses

a large chunk of this news. This highlights the importance and novelty of our measure of

information which allows for flexibly capturing up-to-date “new information,” regardless of

form type, structure and timing.

Having used each firm and time-specific LLM to compute a measure of information in

each disclosure, we next assess the extent to which our measure captures information within

the framework of Fama (1970). If prices impound all publicly available information, and

our measure captures this information, then we expect the measure to explain short window

price reactions. Consistent with our measure capturing decision-relevant information, we

find that our measure explains the majority of the market reaction. For example, the event-

day increase in absolute return associated with a current report (Form 8-K) is 67.1% relative
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to the sample mean.2 After controlling for our measure, we find that current reports in the

lowest decile of information are associated with an 17.9% increase in absolute return, while

those in the highest decile of information are associated with a 98.6% increase. Additionally,

we find that the adjusted R2 increases roughly four-fold after including our measure in the

regression. We find similar patterns for trading volume and other form types, consistent

with the notion that narrative content is responsible for the majority of the information in

the financial disclosures we consider.

In our second set of tests, we consider the interaction between information and sentiment.

Specifically, a large literature finds that the market reacts to sentiment (see, e.g., Loughran

and McDonald (2016) for a review). Our insight is that sentiment should only explain market

reactions if it updates investors’ prior beliefs. For example, consider a firm that previously

announced it is entering receivership. Then consider a subsequent disclosure, where the

firm restates that announcement for context and discloses new information alongside it. An

efficient market which has already priced the original disclosure should not be a function of

the portion of the restated disclosure–unless the fact that the firm is restating it contains

information incremental to the original disclosure. Along these lines, we expect an interaction

between the sentiment and information of content, which one can think of as an information-

weighted measure of sentiment.

Consistent with prior literature (e.g., Loughran and McDonald (2011)), we find that the

abnormal return to Form 10-K/Q filings in the lowest decile of sentiment is roughly 22 bps.

However, this reaction is not statistically distinct from the reaction to forms in less negative

deciles of sentiment. For Form 8-K filings, the difference from the lowest (most negative) to

highest (most positive) decile of sentiment is 0.66% for Forms 10-K/Q (Forms 8-K). However,

when we weight the sentiment of each word by its information, we find that the difference is

2In Table 5 Panel B, the coefficient on Event [0] represents the average incremental absolute return relative
to the non-event window. The percent change of 67.1%, and others throughout the paper, are thus computed
using this incremental change relative to the sample mean: 67.1% = 1.39 / 2.07
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4.84% (3.87%) for Forms 10-K/Q (Forms 8-K). These results are consistent with the notion

that the market reacts to informative sentiment rather than sentiment more generally. They

also highlight the importance of (precisely) measuring both information and sentiment when

processing a new disclosure.

In our third set of tests, we explore the implications of limited attention on what is

considered “news.” Our earlier analyses suggest that EAs and 10-K/Qs are an important

source of information which tends to arrive at regular intervals (see Figure 4). In contrast,

8-Ks and other forms are also an important source of information which tend to arrive

sporadically thereby requiring investors to continuously monitor firm disclosure channels.

To explore the implications of being constrained to process particular subsets of disclosures,

e.g., only annual reports, we take the firm-specific models pretrained on data prior to 2007,

and iteratively apply and update them as was done previously, except that the models are

only updated when a given disclosure is from a particular subset: annual reports, annual

and quarterly reports, or current reports.

Across our tests of market reaction and sentiment, we find that relying solely on annual

reports or annual and quarterly reports is associated with perceived under-reaction to what

is “news” to these investors. For example, in the case of investors who only consume annual

and quarterly reports, the absolute return associated with 10-K/Q content in the highest

decile of information–to these investors–is roughly 20.3% lower than that associated with

the lowest decile of information. In contrast, investors relying solely on current reports

generally see market reactions which directionally match their beliefs but are somewhat

muted relative to measuring “news” using all disclosures. This evidence is consistent with

our earlier findings that current reports are an important disclosure channel which requires

near constant monitoring.

In our final set of tests we return to the question of which content is not only informative

but also decision relevant, i.e., useful for predicting future firm performance. Following prior
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literature, we predict the binary market sentiment subsequent to the release of disclosures.

Across a variety of methods we find that weighting content by our information measure

leads to more accurate predictions. Further, when we allow models to learn which pieces

of content are most useful for predictions, we find that a roughly 80% overlap between this

content and what our measure labels as high information. This is consistent with (i) our

measure capturing information, and (ii) the content on EDGAR being largely relevant to

future performance.

The primary contribution of our study is the development of a method for identifying

information within unstructured data, e.g., narrative disclosures. As such, our study and

findings are of interest to a broad audience beyond accounting and finance. We show that

LLMs can be used to form priors over narrative content, which can then be used to identify

information in new content. Our study is the first to do this in the context of financial

reporting, and it significantly adds to prior work on textual analysis in this setting. Specif-

ically, our study recognizes that text is multidimensional, often unstructured, and difficult

to directly compare across documents. Our parsimonious measure of information accounts

for all of these complexities.

Beyond the methodological nature of our paper, we are also able to provide several novel

insights. First, we document that while there is a large literature focused on EAs, annual, and

quarterly reports, there exist other forms that contribute significantly to firms’ information

environments and stock volatility. In this sense, we are able to account for an additional

source of volatility and highlight challenges posed by these disclosure channels to attention

constrained investors.

Our work is also related to recent papers which use the output of LLMs to predict returns.

These studies include asking an LLM whether a stock will rise or fall (Lopez-Lira and Tang,

2023), generating summaries of lengthy content (Kim et al., 2023), and extracting dense

representations of content (Chen et al., 2022). A common theme across these studies is that
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an LLM is used to transform a source document into another representation. As a result, it is

not immediately clear why these representations predict returns–although Chen et al. (2022)

provide evidence that LLMs are better at unraveling the sentiment of text. In contrast to

these studies, our work preserves the source document and uses an LLM to overlay a measure

of information (see, e.g., Figure 2) thereby “uncovering the information” and eliminating the

possibility that part of the output is a hallucination–one of the primary barriers to using

LLMs in fields such as finance and law where the veracity of information is crucial (Ji et al.,

2023). In contemporaneous work, Sarkar and Vafa (2024) highlights that commercial LLMs

appear to contain lookahead bias which could be a source of return predictability. In our

paper, we train LLMs from scratch with fixed knowledge cutoffs such that all of our tests

are out of sample relative to the training data.

Our paper is also related to the large literature on costly information processing. The

closest paper in this area is Cohen et al. (2020), who study annual and quarterly reports.

Specifically, they measure the similarity of text across these documents as a measure of

informativeness. We extend this idea by forming priors over all disclosures. We find evidence

consistent with Cohen et al. (2020) in the sense that (i) annual and quarterly reports do

appear to be informative disclosures, and (ii) investors who only condition over subsets of

firms’ disclosures will observe market reactions which are not inline with their expectations.

The remainder of our paper proceeds as follows. Section 2 lays out the theoretical foun-

dations of our measure. Section 3 discusses our sample, data, and model training. Section 4

presents empirical tests of our measure. Section 5 concludes.

2. Theoretical Motivation

Information content of corporate disclosures and the associated market reactions are

among the most fundamental questions within the accounting and finance literature. This

literature goes back to seminal studies by Ball and Brown (1968), Beaver (1968), and Fama
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et al. (1969). The primary result from these studies is that security prices are quick to

incorporate corporate news upon arrival and hence reflect publicly available information in a

timely manner. For the most part, however, the studies examining information content over

the past five decades focus on quantitative information, e.g., earnings or stock returns, and

use the notion of surprise, i.e., the difference between the realization of a random variable

and its expectation, to quantify the amount of new information. More formally, the surprise

is defined as:

st+1 = xt+1 − E[x̃t+1|Ωt]. (1)

For example, in Ball and Brown (1968) x̃t is a firm’s net income. More recent work has also

used this approach in attempt to quantify narrative content, e.g., in Tetlock et al. (2008) x̃t is

the fraction of negative words in firm-specific news stories, and in Loughran and McDonald

(2011) it is the fraction of words in a firm’s 10-K belonging to a given dictionary, e.g., litigious

words.

In contrast to numeric data, measuring the amount of new information in textual com-

munications presents a formidable challenge. First, narrative information is highly multidi-

mensional and becomes the notion of a surprise, which is challenging to implement directly.

Second, calculating expected values for textual data is not a well-defined problem.

One way the literature tacked these challenges is by assessing the similarity between

documents (annual reports) from period to period, e.g., based on bag of words representation.

This approach has been adopted by several recent studies (e.g., Brown and Tucker, 2011;

Cohen et al., 2020). Similarly, Loughran and McDonald (2011) use the prior period’s 10-K

as a proxy for the expected sentiment (a unidimensional construct) in the current period’s

10-K.

One problem with this approach is that it does not identify the new information per

se but instead suggests that it appears present in the filing (relative to the prior period).

Thus, it is not particularly helpful if one is interested in identifying and processing the new
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information in its own right. Furthermore, the lack of similarity does not imply the presence

of new information. Specifically, dropping irrelevant text from an older 10-K affects similarity

in the same way as adding new information to the current 10-K. More importantly, the

approach requires two consecutive 10-Ks and cannot be easily adapted to compare annual

and quarterly reports due to their different nature and level of detail. It is plausible that

disclosures, such as 8-Ks (press releases) and 10-Qs that precede the current 10-K, among

others, had already communicated the information, which is repeated in the annual report.

In this case, information is already reflected in prices and investors’ expectations and hence

does not meet the definition of new information.

This discussion suggests that measuring the degree of new information in corporate filings

requires a fundamentally different approach. In this paper, we aim to address this challenge

by combining the primitives from the information theory and recent developments in natural

language modeling.

2.1. Measuring Information

In a foundational paper within the field of information theory, a branch of applied math-

ematics, Shannon (1948) examines a model of communication in which a sender transmits a

message to a receiver. In this setting, the information content of the message is the compo-

nent that was previously unknown to the receiver. For example, if the entire message was

known to the receiver a priori, i.e., the message was expected to be received with probability

one, then the information content is zero. Thus, the information content depends not only

on the message but also on the receiver’s expectations about the message–just as in Eq. 1

above. Shannon’s key insight was that witnessing a realization of an unlikely event is more

informative than witnessing an event that is likely, which leads to the well-known definition

of information:

I(x) = − log p(x) (2)

where p(·) is the probability density function of x.



11

Shannon information, sometimes referred to as self-information, is closely linked to the

notion of a surprise used in the prior literature. To illustrate this, consider a continuous

random variable x̃ that follows a Gaussian distribution. Substituting the density of x̃ into

Eq. 2 yields the following relation for the information contained in a given realization x:

I(x) ∝ (x− E(x̃))2. (3)

Hence, the main difference between Eqs. 1 and 2 is that the former signs the “surprise” in

observing a realization x, whereas the latter does not. In other words, Eq. 2 does not make

a statement about the sentiment of the surprise, only its magnitude, but otherwise retains

its intuitive and desirable properties.3

Our measure of information in a given textual disclosure follows directly from Shannon’s

definition of information. Any textual disclosure D̃ can be represented as a sequence of

random variables (tokens), D̃ = {τ̃1, ..., τ̃n}, which follow a joint probability distribution

pΩt(·). These could be words in a sentence or could also be sentences in a document. Then,

the information in a realized disclosure D is given by:

It(D) = − log pΩt(τ1, ..., τn)

= − log
n∏

i=1

pΩt(τi|τi−1, ..., τ1),

= −
n∑

i=1

log pΩt(τi|τi−1, ..., τ1),

(4)

where Ωt is a set of publicly available information and where we used the chain rule of

conditional probabilities. This formulation is particularly useful as it implies that measuring

the amount of new information in a text boils down to summing the log probabilities of

3While this example assumes that x̃ ∼ N (µ, σ2), other tractable and intuitive forms of the information
content can be derived for members of the exponential family of distributions—a broad class of distributions
which includes the Gaussian.



12

each word (token) conditional on the preceding words. These conditional probabilities are

precisely what large language models, such as GPT, are designed to model.4

Along these lines, we leverage the GPT architecture to empirically estimate pΩt(·) from

a collection of disclosures available at time t. For historical context, it is important to

note that the fields of information theory and computational linguistics have a long history

of constructing such estimates, going back to Shannon (1948), who presents a series of

approximations to the English language. While the literature examined various methods

for modeling pΩt(·), it was not until the recent revolutionary advances in language modeling

that researchers were able to generate believable and readable text (Radford et al., 2019).

These developments are responsible for the recent success of “Generative AI” in a wide range

of domains. For these reasons, we focus our attention on modeling pΩt(·) using the LLM

architecture detailed in Section 3.4.

3. Data, Model Training, and Inference

3.1. Sample Construction

One challenge we face in our study is the computational cost of training large language

models. Specifically, our study requires (i) pretraining an LLM from scratch on a cross-

section of firms’ narrative disclosures, (ii) further pretraining the LLM from step (i) on

each individual firm’s time-series of disclosures to yield a firm-specific model for each firm

in the sample, and (iii) iteratively applying and further pretraining the firm-specific model

from step (ii) out-of-sample to measure the information in new narrative disclosures. The

4The formulation above is causal in the sense that the probability of a given token depends only the
context on the left side of the token. Alternatively, one can write the joint distribution based on the tokens
to the right of a given token, i.e., p(D) = p(τn)p(τn−1|τn) × ... × p(τ1|τ2, ..., τn). Large language models
(LLMs), such as BERT (Devlin et al., 2019), take advantage of this idea by using the context on both sides
of a given token, which is particularly helpful if the goal is to encode information (e.g., encode a sentence
in a foreign language before translating it). We do not follow this approach because we are interested in
identifying new information conditional on prior information.
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computation associated with executing this sequence of tasks is largely a function of two

choices: the LLM size and the number of firms in the sample.

In selecting an appropriate LLM size, i.e., the number of parameters, one must consider

the volume of training data, compute budget, and the capacity of the LLM to model the

distributional properties of firms’ disclosures (Hoffmann et al., 2023). We focus on the latter

since the volume of training data and compute budget are largely fixed. Existing evidence

suggests that model size has decreasing returns to scale, i.e., the benefits from using larger

and larger models become relatively small. Radford et al. (2019) show that doubling the

model size from 345 million parameters to 762 million reduces perplexity–a measure of how

well a probability model fits a sample–by 30.3%, while further doubling the model size from

762 million parameters to 1.54 billion reduces perplexity by just 14.4%. Although larger

models are capable of generating text that humans would attribute to a human author (e.g.,

Brown et al., 2020)), we are primarily concerned with modeling the distributional properties

of firms’ disclosures, of which perplexity is a direct measure. Ultimately, it is an empirical

question how large of a model is necessary, thus, we train models following the Pythia scaling

suite using the 410M parameter size model as our baseline architecture (Biderman et al.,

2023).

The other factor influencing our computation costs is the number of firms in our sample.

The larger the number of firms, the greater the number of firm-specific LLMs that need to be

trained and the volume of out-of-sample disclosures that need to be processed. We moderate

our computation costs by drawing a random sample of firms stratified by decile of market

capitalization. Specifically, we consider all firms that filed either a 10-K or 10-Q on EDGAR

during the year 2006 and had a valid link between Compustat and CRSP. Additionally, we

apply common filters for financial statement variables (positive total assets, sales, shares

outstanding, price, and non-missing net income), stock characteristics (CRSP share code

of 10 or 11, listed on AMEX, NASDAQ, or NYSE), and exclude financial firms. Next, we

collect firms’ market value of equity as of the end of 2006 from Compustat and assign each
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firm to a market value decile. Finally, we randomly sample 50 firms from each decile of

market value for a total sample size of 500 firms. Table 2, presents the effects of these filters

on the firms eligible to be included in our sample. Given this sample of firms, we then collect

firm fundamentals from Compustat, equity market data from CRSP, and intraday data from

NYSE TAQ. We also collect firms’ disclosures from EDGAR, as detailed below. Throughout

our analyses, we winsorize all continuous variables by year at the 1% level.

3.2. Extracting Narrative Disclosure

Developing our measure requires a set of narrative disclosures in plain text format, i.e.,

a “corpus.” To meet this need, we leverage the BeanCounter corpus (Wang and Levy, 2024),

which includes plain text versions of all filings accepted by the SEC EDGAR system from

1996 through 2023. Table 1 presents descriptive statistics on the portion of BeanCounter

used in our work. While prior work has largely focused on annual and quarterly reports,

other forms are also major contributors of narrative disclosure such as current reports (Forms

8-K), proxy statements (Forms DEF 14A), and registrations of material M&A information

(Forms S-4).

Each filing, e.g., a current report filed on Form 8-K, consists of the main filing and may

include attachments. The main filing generally follows a standardized format based upon

templates provided by the SEC.5 Attachments can follow a variety of layouts and file types,

e.g., HTML, plain text, images, PowerPoint files, etc. BeanCounter provides the main filing

and each attachment as a separate document thereby enabling us to pinpoint the location

of informative content.

5For example, the Form 10-K instructions and template are available here: https://www.sec.gov/
files/form10-k.pdf

https://www.sec.gov/files/form10-k.pdf
https://www.sec.gov/files/form10-k.pdf
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3.3. Tokenization

As discussed in Section 2, large language models require converting text into tokens,

which are subsequently encoded as vectors. One could define tokens based upon entire

words, e.g., “the” and “context” would each be a unique token. This would be akin to mem-

orizing a dictionary and simply looking up the meaning of a given token in the dictionary.

One challenge with this approach is that it leads to a very large vocabulary, perhaps un-

necessarily large since many words are constructed by combining sub-pieces together where

each sub-piece may share meaning across the vocabulary, e.g., the prefix “un” in words such

as unpresumptuous and unselfish.6

Following prior literature, we use Byte-Pair Encoding (BPE) (Sennrich et al., 2016),

which leverages commonality across words to build a vocabulary of a more manageable size.

This approach involves finding a smaller number of unique sub-words in the corpus, along

with the individual characters (or more generally “symbols,”) that can be used to form the

words in the target vocabulary. The algorithm begins by merging the pairs of adjacent

symbols which are most commonly found next to one another and repeats this process until

the vocabulary reaches a target size.

We train a tokenizer from scratch using only the “in-sample” disclosures within our corpus,

i.e., those filings from 1996 through 2006. The inputs to the training process are largely the

same as those in Radford et al. (2019) with the exception that we explicitly include tokens for

the Arabic numerals 0, 1, ..., 9. This results in a tokenizer with a vocabulary size of 50,270:

50,257 tokens learned via the training process, 10 tokens Arabic numerals, and three special

tokens for beginning of sentence, end of sentence, and unknown (word that is not in the

6At the opposite end of the spectrum, one can define tokens based on the 26 characters in the English
alphabet, plus the 10 Arabic numerals, some punctuation characters, say . and !, and the white-space
character “ ”. This would lead to a set of 39 unique tokens. This set of tokens would be referred to as the
“vocabulary” of our model. With just these 39 unique tokens much of English text could be modeled, doing
so however would require learning context specific representations for every single token, i.e., the meaning
of “t” when used in the sequence “ the ” versus “ context.”
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vocabulary).

3.4. Model Training

In this section, we detail our approach to empirically estimating investors’ prior beliefs

about a disclosure conditional on the information available to investors at time t, i.e., pΩt(D).

Recall that the definition of our measure of information (Eq. 4) is:

It(D) = − log
n∏

i=1

pΩt(τi|τi−1, ..., τ1),

Let a collection of disclosures available at time t be indexed by J = 1, 2, ...,m. Then, the

information set at time t can be approximated as Ω̂t = {Dj|j ∈ J}, where each disclosure

Dj is a collection of tokens τj,1, ..., τj,nj
. Let p̂Ωt(·; θ) be a neural network parameterized by

θ. We obtain our empirical estimate of investors’ prior beliefs by choosing θ such that

θ := argmin
θ

m∑
j=1

nj∑
i=1

− log p̂Ωt(τj,i|τj,i−1, ..., τj,i−k; θ) (5)

where p̂Ωt(·; θ) is a GPT-style model and k is the size of the context window which we set to

2,048. This objective function is the standard causal language modeling objective, i.e., the

context window consists only of tokens which precede τi, and is equivalent to maximizing

the log-likelihood.

While we use the same architecture as Radford et al. (2019), we train a new model

from scratch such that the model has only been conditioned on the historical information

contained in Ωt. This differs sharply from other studies which fine-tune pretrained models,

e.g., FinBERT (Araci, 2019), and addresses concerns of look ahead bias in LLMs (see, e.g.,

Sarkar and Vafa, 2024). Such distinction is critical when detecting new information as one

must ensure that the model does not condition its predictions on the information revealed

in the future.
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3.4.1. Cross-sectional Model

We begin by pre-training a single “cross-sectional” LLM on the narrative content extracted

from the disclosures of all firms in our sample filed on EDGAR from 1996 through the end of

2006. The training data from this time period totals 35.5B tokens, roughly 5 times what was

used to train GPT-2 (Radford et al., 2019) (see Table 1 Panel A for more descriptives). Given

our baseline model size of 410M parameters, a single epoch through this data corresponds

to roughly 80 tokens per parameter which is towards the “inference optimal” end of the

spectrum and sufficient for training a model of this scale Touvron et al. (2023). Our cross-

sectional model results from minimizing Eq. 5 over these 35.5B tokens using SGD with a

batch size of 2M tokens and a learning rate of 1e-3 ramped up over the first 100 batches and

decayed following a cosine schedule to 1e-5. All other hyperparameters follow those detailed

in Biderman et al. (2023).

The primary benefit of using a decoder architecture is the ability to generate text by

sampling from the prior modeled by the LLM. In Appendix B, we exploit this feature of

our LLM to explore the extent to which the training procedure has resulted in an LLM that

reasonably models the distributional properties of narrative content. Specifically, we prompt

the model with text that is commonly found at the start of the business description in Form

10-K. Table B1 presents this prompt.7 Table B2 presents four examples of text generated

by our cross-sectional LLM. We note that the model is capable of generating reasonably

coherent text spanning various industries and interleaving numbers and dates as a reader

might expect. We view this as additional evidence of a successful training process.

7Formatting such as white space and indentation are preserved in our training data. Thus, when prompt-
ing the model we intentionally use similar formatting.
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3.4.2. Firm and Time-Specific Models

Our ultimate goal is to construct a firm and time-specific estimate of investors’ prior

beliefs which we can use to compute our measure of information. We obtain such an estimate

by continued pretraining of the cross-sectional model on a given firm’s time series of narrative

disclosures. In words, we initialize a new model using the weights from the cross-sectional

model detailed in 3.4.1 and continue the pretraining process using a single firm’s disclosures

prior to 2007. Beginning in 2007, we iteratively process new disclosures in time order by

first measuring the information in the new disclosure and then continue pretraining the firm-

specific model on the new disclosure. This process is carried out iteratively through 2023. At

the end of this process, we have a time series of our information measure from 2007 through

2023 where the prior belief used to measure information was conditional on all of the firm’s

disclosures immediately prior to each disclosure in the time series.

Table 1 Panels B and C presents descriptive statistics on the sample of disclosures used

for this part of our model training. These data include roughly 2.5B tokens from disclosures

produced by firms in our random sample. In contrast to Panel A, where content from 10-

K/Qs and 8-Ks contributed roughly 30% of the data, these filings are now responsible for

more than 50% of the content and the major form types are typical of operating companies,

e.g., Form 485BPOS is typically filed by investment management companies and no longer

contributes a substantial amount of content to the data. This difference in the composition

of the training data is one justification for our approach of developing firm-specific models.

Gupta et al. (2023) develop guidelines for continued pretraining from empirical experi-

ments and show that under certain conditions further pretraining will cause the model to

“forget” older training data and overfit newer data. We balance updating of the models to

reflect new content against retaining older content by measuring perplexity during continued

pretraining on a holdout set of data. Since perplexity is a measure of how well a probability

model fits a set of data, this enables us to monitor overfitting on the new data. We cease
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pretraining when either of two stopping criteria are met: (i) the average perplexity on the

holdout data over the last 10 batches drops below the final perplexity of the cross-sectional

model, or (ii) 10 epochs through the firm-specific data. We find that for the majority of new

disclosures, criteria (i) halts the continued pretraining. Following Gupta et al. (2023), we

continue pretraining at a learning rate of 50% of the maximum from the pretraining phase

(1e-3) without any warmup and decay the learning rate to 10% of the maximum.

As we did with our cross-sectional LLM, we prompt these firm-specific LLMs and generate

text by sampling from them. Table B3 presents examples for Apple, Cummins, Pfizer, and

Weyco Group (a microcap). The diversity of the generated text is striking, with the firm-

specific LLMs referencing relevant products, previous disclosures, terms of agreements with

suppliers, and financial performance. We manually inspect these samples relative to the

firms’ actual disclosures. The text generated for Cummins refers to a particular footnote of

a previous disclosure. Examining Cummins’s time-series of disclosure we find that this is an

accurate reference. For Pfizer, we note that the text references two drugs called Alond and

Exubera. The former does not appear to exist howver the latter was indeed a Pfizer drug

which was withdrawn from the market due to low sales. Collectively, we view the richness

of these prompts as further evidence that our training and fine-tuning processes result in

LLMs that are reasonable models of the distributional properties of narrative disclosure.

4. Empirical Tests

From Table 1 Panel C, we can see that Forms 8-K, 10-Q, and 10-K contribute the most

narrative content to our sample (71%). The next two largest contributors are responsible

for 9% and 2% suggesting a long tail of forms comprising the remaining 29% of content. For

this reason, our empirical tests largely focus on Forms 8-K and 10-K/Q.
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4.1. Measuring Information

Given a disclosure D produced by a firm f at time t, we apply the firm and time-specific

prior to quantify the information of the i-th token:

I(τi) = − log p̂Ωf,t
(τi|τi−1, ..., τi−k; θf,t). (6)

This approach allows us to identify the location of comparatively more informative tokens

with a high degree of precision. For example, consider the announcement on January 17,

2007, disclosed in Apple’s 8-K filing, where the company first mentions the introduction of

its iPhone. As illustrated in Figure 2, the sentences shaded in green highlight the degree of

"news" relative to the estimated Apple-specific prior. While the disclosure contains numerous

pieces of information, such as record revenue, the most informative sentence–according to

the estimated prior–is the sentence in which Apple mentions launching the iPhone and Apple

TV.

Table 3 presents the distribution of our information measure separately for the set of

main filings and exhibits in our sample. For a given main filing, we compute the filing’s

information as the mean of the token-by-token measurements from Eq. 6. For a set of

exhibits attached to a given filing, we compute mean of the token-by-token measurements

across all exhibits, i.e., the weight given to each token in an exhibit is equal regardless of

the length of the exhibit in which it is located. We then compute distributional statistics

across these main filing and exhibits-level measurements. We find that, on average, the most

informative narrative content is in the exhibits attached to current reports.

4.2. Location of Information

As a next step, we provide descriptive evidence on the location of information in filings.

Specifically, we label a token τi as “high information” if I(τi) is in the top quartile of I(·)

across all filings, i.e., for each token we create an indicator variable HighInfo equal to one
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if the information of that token is in the top quartile of information and zero otherwise. We

then take the mean of HighInfo over a various splits of the data. If content deemed high

information was uniformly distributed throughout disclosures, then we should see that these

means are generally statistically indistinguishable from 25%.

Both within and across filing types we find significant heterogeneity. For example, Figure

3 Panel A presents results for 10-K/Q filings and provides two key insights. First, exhibits

tend to contain roughly 150% more content labeled as high information than the main filing.

Given that prior literature, e.g., Dyer et al. (2017), has focused on the main filing portion of

10-K/Qs this is perhaps one reason why these reports appear to have become less informative

over time. Second, within the main filing, the business description is the most likely to

contain content labeled as high information (22%) followed by legal proceedings (14%) and

the management’s discussion and analysis (13%). These results are intuitive since the SEC

requires firms to update the business description section with any developments since the

beginning of their fiscal year, and are consistent with prior literature highlighting that many

pieces of information required to create better estimates of fundamental performance are

dispersed throughout filings (see, e.g., Rouen et al., 2021).

Panel B presents results for 8-K filings and highlights that 8-Ks, on average, contain

more content labeled as high information–consistent with 8-Ks providing timely information

regarding recent material events. Additionally, while much research has been devoted to

studying earnings announcements, i.e., Form 8-K Item 2.02, filings containing this item

tend to contain the smallest volume of informative narrative content relative to other 8-K

items (roughly 27%). We find that other items such as changes in accountants, bankruptcy,

and warnings that stakeholders should not rely on previously issued financial statements,

tend to contain the highest volumes of content labeled as high information (60% or more).

Notably, the labeling of content as high information was based on the distribution of our

measure across all filings. Thus, these results show that the majority of content labeled as

high information arrives via Form 8-K. While we are unaware of prior work documenting this
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empirical pattern, the result is intuitive given that Form 8-K is meant to provide stakeholders

with timely information regarding firms’ operational status as material events occur whereas

Forms 10-K/Q are meant to provide updates at regular, but likely delayed, intervals.

4.3. Timing of Information Release

A large literature has examined the movement of stock prices and the underlying drivers

of stock volatility (perhaps most famously, Shiller, 1981). Along these lines, our previous

results document that the majority of the content we label as high information arrives via

Form 8-K. This begs the question of the timing of this information and its contribution

to daily stock volatility. We explore this question by (i) measuring the daily arrival of

content labeled as high information vis a vis the approach mentioned in Section 4.2 and (ii)

attributing daily stock volatility to disclosures based on the timing of their arrival. For (ii),

we measure volatility using absolute abnormal returns which is then allocated to disclosures

based on non-overlapping [-1,1] event time windows around their release. For both (i) and

(ii), we measure the total volume of high information content released and volatility realized

over the reporting year. We then scale the cumulative amount of information and volatility

by these totals, respectively. As a result, if all information or volatility was accounted for,

then at the end of the reporting year the cumulative quantities would equal 100%.8

Figure 4 presents the cumulative information flow over the reporting year measured

using the two approaches outlined above. For quarterly and annual reports, the arrival

of information and volatility mechanically jumps at the end of each reporting quarter since

observations are aligned by reporting quarter. Earnings announcements, which often precede

the release of more complete financial information presented in Forms 10-K/Q, begin to

arrive just before the end of the reporting quarter but a largely confined to the last 20% of

8One drawback of this approach is that noise in the abnormal returns will not “cancel out.” For this
reason, we choose to measure the volatility attributable to a particular disclosure using the tight [-1,1]
window around its release.
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the quarter. In contrast, the information contained in Forms 8-K and other filings arrives

nearly continuously over the reporting quarter and is responsible for a significant portion

of both the content we label as high information as well as stock volatility. These results

speak to the importance of these comparatively less studied forms and the challenges faced by

attention constrained investors who must continuously monitor these channels of unscheduled

disclosures.

4.4. Market Reaction

In this set of tests, we use a short-window daily event study to examine whether the

quantity of narrative information that we measure can explain the market reaction to dis-

closures. Specifically, if our measure indeed captures new information, then we expect to see

a more pronounced market reaction around the disclosure date when our measure suggests

a higher information content.

Figure 5 plots the average daily values of AbsoluteReturn and Volume in the [-10, 10] day

window around the filing date separately for filings that are in the top and bottom quartiles

of Info. Results are presented separately for annual and quarterly reports, the management’s

discussion and analysis (MD&A), and current reports (8-Ks). Across all panels, there is a

distinct increase in the absolute return and volume on the filing date. More importantly, the

increase appears markedly greater for the top quartile of Info sub-sample.

We also expect that the market reaction on the disclosure day will increase with our

measure. To investigate this, Figure 6 plots the average value of AbsoluteReturn and Volume

for t = 0 as a function of Info. We find that both measures of market reaction tend to be

increasing functions of Info. We note that this non-monotonicity largely disappears for

Volume.
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4.4.1. Baseline Daily Event Study of Market Reaction

To test whether there is a statistically significant relation between Info and the market

reaction, we estimate the following regression pooling across all firm-dates in the [-10, 10]

day window around the filing date:

yf,t = β1Event[0] + β2Event[0]× Infof,j + γXf,t + δt + λf,t + ϵf,t (7)

where yf,t is either AbsoluteReturn or Volume, for firm f on date t. Event[0] is an indicator

variable equal to one on the first date the market could react to the filing and zero otherwise.9

Infof,t is our measure of the information contained in the j-th disclosure filed by firm f . We

also present a benchmark model where we proxy for information content with document

Length (Bonsall et al., 2017), which is the count of characters in the narrative content in the

filing deciled and scaled to range from zero to one. Xf,t is a vector of control variables for

firm f on date t (Defined in Table 4 and enumerated in Table 5). δt is a date fixed effect. λf,t

is a firm fixed effect for our 10-K/Q sample and a firm-year-quarter fixed effect for our 8-K

sample. β1 and β2 are our coefficients of interest. β1 represents the average market reaction

to filings in the lowest decile of Info while β2 represents the incremental market reaction

associated with moving from the lowest to highest decile of Info. Throughout our analyses,

we estimate regressions using OLS and report two-way standard errors clustered by firm and

date, thus allowing for arbitrary correlation across time within a given firm and across firms

within a given date (Cameron et al., 2006).

Table 4 presents descriptive statistics for the variables used in our daily event study

partitioned by inclusion in our random sample. Panel A presents statistics for the year of

our sampling and Panel B for the years following our sampling. Across partitions and panels

9This is the filing date for filings accepted either prior to markets opening or intraday and the date of
the following trading session for filings accepted after markets close.
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we find that few firm characteristics are statistically distinct between our sample and all firms.

This suggests that our sample is not systematically different along these characteristics at

the time of sampling nor in the years that followed sampling.

Table 5 presents results from estimating Eq. 7. Panel A (Panel B) presents results for

our sample annual and quarterly (current) reports. Across all measures and form types, we

find evidence of statistically and economically significant market reactions on the disclosure

event day. For example, within our sample of annual and quarterly reports, estimates of

β1 for AbsoluteReturn and Volume suggest that moving from the lowest to highest decile of

Info is associated with 41.5% and 98.7% increases in the market reaction, respectively. These

increases are highly significant and in the case of Volume, completely subsume the event-day

indicator. We also observe that the amount of variation in the market reaction explained by

the regression models increases after the inclusion of our measure–absolute increases in R2

range from 0.1% to 1.2%.

One can interpret the magnitude of β2 relative to β1 as the proportion of the market

reaction explained by the information in narrative content. For example, if our measure

was perfect and the information in narrative content was responsible for 90% of the market

reaction to the announcement, then we would expect β2 to be roughly nine times larger than

β1. For an imperfect measure of textual information content, however, β1 is expected to

absorb a portion of the market reaction attributable to narrative content. In this sense, the

magnitude of β2 relative to β1 puts a lower bound on the portion of the market reaction

attributable to information in narrative content. Across all but one specification, we find

that β2 is at leats 4.86 times larger than β1. These results are consistent with the notion that

the market reaction is primarily explained by the information provided in narrative content.

4.5. Informative vs. Uninformative Sentiment

In our second set of tests, we examine whether the market reaction to the sentiment of the

filing depends on the disclosed textual information content. A large literature in finance and
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accounting studies how markets respond to disclosures sentiment (see, e.g., Loughran and

McDonald, 2016, for review). This literature generally finds that greater negative sentiment

explains stock price movements. However, the sentiment of disclosure will only explain

returns to the extent it is associated with the revelation of information. For example, the

negative sentiment of MD&A is unlikely to trigger market reactions if the same content

was previously communicated in prior press releases–notably, a market reaction to such

content would be a market inefficiency unless the reprinting of the content is in and of itself

informative. We thus examine the extent to which there is an interaction between sentiment

and information when explaining contemporaneous stock returns.

We measure sentiment using the negative and positive dictionaries of Loughran and

McDonald (2011). For each word in a disclosure, we sign the sentiment as negative one, one,

or zero based on whether the word occurs in the negative, positive, or neither dictionary,

respectively. Following the terminology of Loughran and McDonald (2011), we refer to this

signed sentiment as FinNeg. We then interact FinNeg on a word-by-word basis with the

information measured in Eq. 6. Given this word-by-word interaction between sentiment and

information, we follow the same general approach used to calculate Info, i.e., we take the

mean over each disclosure, sort the measure into deciles, and scale it to range from minus

one to one. We refer to the resulting information-weighted sentiment measure as IWS.

To the extent our measure is effective at capturing the information content of narra-

tive disclosures, we expect to observe two empirical phenomena. First, the AbnormalReturn

associated with the filing should be a monotonically increasing function of the information-

weighted sentiment, IWS. Second, we expect that the slope of the relation between Ab-

normalReturn and IWS is greater for filings that contain more information according to our

measure. Figure 7 plots the average value of AbnormalReturn for t = 0 as a function of IWS.

Across all form types, we find that AbnormalReturn is generally an increasing function of

IWS and that the slope of this relation is steeper for more informative filings.
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To test for a statistically significant relation between AbnormalReturn and IWS, we

estimate the following regression pooling across all firm-dates in the [-10, 10] day window

around the filing date:

AbrnomalReturnf,t = β1Event[0] + β2Event[0]× IWSf,t + γXf,t + δt + λf,t + ϵf,t (8)

where AbnormalReturn as the daily residual from the expected returns model of Fama and

French (2015) and Carhart (1997) estimated over the [-70,-11] day window relative to the

event, expressed as a percent. In addition to IWS, we also estimate Eq. 8 using equal-

weighted sentiment deciled and scaled to range from negative one to one, Sentiment. As

before, β1 and β2 are our coefficients of interest. However, β1 now represents the average

abnormal return to filings in the lowest decile of IWS while β2 represents the incremental

abnormal return associated with moving from the lowest to highest decile of IWS.

Table 6 Panel A (Panel B) presents results for annual and quarterly (current) reports.

Our baseline results in columns (1) and (2) across panels are generally consistent with prior

literature–Forms 10-K/Q in the most negative decile of sentiment are associated with neg-

ative abnormal returns of around 22 bps. After information weighting, in column (3) we

find that the difference in abnormal market reaction from the most negative to most pos-

itive deciles of sentiment grows to 4.84% and 3.87% for filings on Form 10-K/Q and 8-K,

respectively. Finally, in column (4), we include both Sentiment and IWS in the regression.

We find that our inferences in terms of statistical and economic significance are generally

unchanged.

Collectively, the evidence in Table 6 highlights the interaction between information and

sentiment. Examining solely 10-K filings, Loughran and McDonald (2011) find a roughly

25 bps spread between the extreme quintiles of negative sentiment (p. 51), similar to our

findings. However, when we account for the interaction between information and sentiment,

i.e., consider only sentiment over the informative portion of the document, the effect is more
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than an order of magnitude greater, i.e., roughly 484 basis points. This is consistent with

the notion that (i) our measure is capturing the information in narrative content rather than

some other latent time-varying firm characteristic, and (ii) the sentiment of non-informative

content should not influence prices

4.6. Limited Attention and Alternative Information Sets

Our analysis thus far has been designed to represent an investor who updates their

beliefs following each and every disclosure produced by a firm. However, a large literature

highlights that the ability of investors to process information is constrained. Thus, our

analyses are unlikely to be reflective of any single individual. In our next set of tests we

explore three other representative investors who only update their beliefs over specific subsets

of disclosures: annual reports, annual and quarterly reports, and current reports. Each of

these representative investors is meant to capture the perceptions of an investor who can

only process a subset of the information produced by firms, e.g., just annual reports.

We generate content subset-based priors following the procedure outline in Section 3.4.2

with the exception that we only update the model when a given disclosure is part of the

relevant subset, e.g., an annual report. We continue to measure information as described in

Section 4.1 for each disclosure released by a firm. For example, consider an investor who

only “reads” annual reports. When an 8-K is released, we measure the information in the 8-K

relative to a model conditioned over all prior annual reports. If another 8-K is subsequently

released, we again measure information relative to all prior annual reports without having

updated the model based on the prior 8-K. As a result, these investors may view pieces of

content previously disclosed in filings outside of their subset as “news” even though such

content is not news relative to an investor who conditioned over all disclosures.

On the one hand, if it is the case that conditioning beliefs over a particular subset of

disclosures is sufficient for identifying “news” then we expect to find results similar to those

in Tables 5 and 6 even when beliefs are formed over solely that subset. On the other hand, if
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investors must process all disclosures to get an accurate picture of the “news” in disclosures,

then measures of information computed using subsets of disclosure will not be associated

with the market reaction.

Table 7 presents results from re-estimating Eqs. 7 and 8 using Info as measured by models

trained on various subsets of the content produced by firms. For the measures relying only on

annual and/or quarterly reports, we generally find evidence that the content labeled as high

information is associated with an “under-reaction” from the perspective of the representative

investor–in the case of AbsoluteReturn there is a statistically and economically significant

decrease in the absolute return and in the case of Volume the relation is not significant. In

contrast, when information is measured using models conditioned over current reports alone,

we find results which are similar to those based on measures conditioned over all disclosures.

In the case of AbnormalReturn, the coefficients on IWS and R2 values are somewhat smaller

than our earlier tests. These results are consistent with the notion that Form 8-K is a

primary source of information and one of which attention constrained investors should be

mindful.

4.7. Decision-relevant Information

Thus far, our measure of information has not relied on returns in anyway. One benefit of

this approach is that the measure can be computed for any piece of content so long as a prior

over content is available. However, it is likely that some of the content produced by firms

may be irrelevant for particular decisions. Along these lines, our final set of tests explores

identifying content which is not only informative but informative about future returns. We

follow the prior literature by predicting binary market sentiment subsequent a disclosure

(see, e.g., Chen et al., 2022).

We use the sentiment dictionaries of Loughran and McDonald (2011) as a baseline, con-

verting our measure Sentiment into a binary prediction based on a threshold of zero. We then

compare four alternative approaches to this baseline. First, we take our information weighted
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sentiment measure IWS and convert it into a binary prediction based on a threshold of zero.

For the remaining three approaches, we generate representations, i.e., embeddings, of each

disclosure using Llama-3.1-8B. This approach is similar to that used in recent studies such

as Chen et al. (2022), however, in our setting the pieces of content are substantially longer.

Specifically, Chen et al. (2022) note that 60% of the articles they consider are shorter than

512 tokens–the maximum context length of one of the LLMs used in their study–whereas

in our setting less than 16% of disclosures are this short and the average length is 14,409

tokens. Thus, the three remaining approaches explore ways to create representations that

are maximally predictive of future returns.

When faced with documents longer than the context length of an LLM, it is common to

divide the document into smaller chunks which are passed through the model individually

and then aggregated into a single document-level representation. One of the most common

approaches for combining the chunk-level representations is known as “mean-pooling,” i.e.,

taking the average along each embedding dimension across chunks. Figure 8 presents this

approach graphically: we split lengthy documents according to punctuation into chunks of

no more than 1,024 tokens, pass them through an embedding model, and mean pool across

token-level representations to yield chunk-level representations.

Our first method for creating disclosure-level representations from the chunk-level repre-

sentations is mean-pooling, denoted as LlamaMP . While mean-pooling applies equal weight

to each document chunk, an alternative in the spirit of our measure of information is to

weight each chunk by the information contained in the chunk. Along these lines, we take

our token-by-token measure of information and aggregate it to the chunk level. We then

normalize by the total information in the disclosure and use the resulting weights to com-

pute an disclosure-level representation. This approach is denoted as LlamaIP . We note that

these representations are actually a combination of two models: the embedding from a static

Llama-3.1-8B model and the information measures from our firm and time-specific LLMs.
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Our final approach leverages an attention mechanism to learn how to aggregate the

chunk-level representations into a document representation which is maximally predictive of

future returns. This approach has at least two desirable characteristics. First, the atten-

tion mechanism is able to learn how much weight to put on each chunk-level representation

depending not only on the representation itself but also all other representations in the se-

quence. Since we train this model with a maximum sequence length of 1,024 representations,

it is capable of identifying predictive patterns in content separated by as many as 1 million

tokens. Second, we are able to train the model with an objective function that maximizes

the mutual information between the aggregated representation and future returns.

The specific architecture we use, presented in Figure 9, is similar to Touvron et al. (2021).

We replace the convolution stem and trunk with the Llama-3.1-8B model such that the input

to the attention-based pooling layer is a sequence of chunk-level representations generated as

shown in Figure 8. Additionally, we use the same basic architecture as the Llama-3.1 model

for the attention pooling layer modifying it to allow for three types of additional information:

(i) temporal position, (ii) document-level position, and (iii) document type. The first two

types of information are incorporated via rotary position embeddings (Su et al., 2024) while

the document type is incorporated via a learned embedding. During training we freeze the

weights of the Llama model and train the attention-pooling layer using a CLS token for

each return horizon. We train this model by minimizing the binary cross-entropy between

the model predictions and the true realized returns.10 Given a trained model, we then use

the model to create document level representations. We denote this approach LlamaLA for

“learned aggregation.”

To minimize the chances that our predictions are biased favorably by lookahead bias, we

employ an iterative training process. Specifically, we train a learned aggregation (LA) model

10See Boudiaf et al. (2021) for a proof that minimizing the cross-entropy is equivalent to maximizing the
mutual information.
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using disclosures up until time t and returns up until t + 12 months. We then apply the LA

model to new disclosures released after time t + 12 months and up until time t + 15 months,

i.e., we apply the model to those disclosures released during the quarter after the latest date

used for any of the model’s training data. This yields a sequence of representations for

the three representation based approaches: LlamaMP , LlamaIP , and LlamaLA. Following

a similarly staggered training procedure, we then train linear classifiers to predict binary

market sentiment using the representations as features. The training data for this step is a

rolling five year window. Using the average prediction over the training data as our decision

threshold we then make out-of-sample predictions for disclosures released over the subsequent

quarter. We repeat this process iterative to generate predictions for the disclosures in our

sample.

Table 8 presents results for the five methods of predicting binary sentiment. Columns

(1) and (2) present our baseline (Loughran and McDonald, 2011). For filings on Form 10-

K/Q, we find that this approach provides a meaningful lift of 1-2% over randomly guessing

the market sentiment. This lift exists for horizons from one day up to 12 months. Results

for Form 8-K are similar except that the return predictability largely disappears after six

months although it is still directionally correct. Columns (3 and (4) present results after

information weighting the sentiment. Directionally, this method is generally better than

equal-weighted sentiment although the differences are not always statistically distinct from

the baseline. The largest lift comes from predicting long-horizon returns to 10-K/Q filings

and short horizon 8-K filings.

Considering the representation-based approaches, columns (5) and (6) show that simply

mean pooling embeddings from lengthy documents is generally no better and sometimes

worse than using the baseline of equal-weighted sentiment. Information pooling in columns

(7) and (8) is generally similar or slightly better than information weighting sentiment.

Lastly, the learned aggregation approach is presented in columns (9) and (10). Perhaps

unsurprisingly, we find that this is the dominant approach, providing lift over the baseline
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of 2-3% depending on the horizon and form type. These results provide several key insights.

First, despite being straight-forward, the sentiment measure of Loughran and McDonald

(2011) appears to work well both within the sample of filings it was designed for–Forms

10-K–as well as outside. Second, using a measure of information to weight pieces of content–

whether those are tokens or chunk-level representations–appears to improve predictions.

Lastly, when a particular statistic of interest is readily available–returns in this setting–then

leveraging a model that can learn predictive patterns in lengthy disclosures also appears to

improve predictions.

As a final vignette into the which content is identified as value-relevant by the LA model,

we compare the overlap between content labeled as high information using our measure

and the content most heavily attended to in the LA models. Specifically, we collection the

attention weights placed on each chunk-level representation by each LA model when gener-

ating the disclosure-level representations. Since a given chunk of content can be attended

to across multiple predictions, we average these weights to get a single attention weight for

each chunk. We then compute how much of the content in the top quartile of Info is also

in the top quartile of attention, i.e., highly value-relevant. Figure 10 presents this overlap

by topic following Dyer et al. (2017). Across topics, we find that content labeled as high

information tends to also be highly value-relevant. Specifically, there is generally at least

an 80% or higher overlap between these two sets. This is further evidence that our measure

is capturing not only information but value-relevant information–at least when applied to

content on EDGAR.

5. Conclusion

Although narrative disclosure is a frequent form of communication by firms to outside

stakeholders, most studies examining the reaction to new information have focused on quanti-

tative information such as earnings. In this paper, we draw on the foundations of information
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theory and the emergence of large language models to measure investors’ prior beliefs about

disclosure. We then use these priors to uncover new information contained in textual data

and study the value of narrative content in capital markets.

We begin by training an LLM on all EDGAR disclosure prior to 2007, we then train firm

and time-specific LLMs. Using these models as surrogates for investors’ beliefs about future

disclosures, we compute our measure on a granular basis and examine where new narrative

information is comparatively more likely to occur. Across form types, we find that current

reports–rather than annual or quarterly reports–are most likely to contain content that is

high information. We also find that exhibits attached to Forms 10-K/Q and 8-K are more

likely to contain high information content than the main portion of these filings.

To better understand when information is released, we create views of our measure and

stock volatility within reporting years. We find that whether information is measured using

our method or returns, a significant portion of the information released by firms arrives via

Form 8-K and other filings. This evidence speaks to the value of studying other channels of

disclosure beyond annual and quarterly reports, the challenges faced by attention constrained

investors who must monitor for these sporadic information releases, and the sources of daily

stock volatility.

Having used each firm and time-specific LLM to compute a measure of information in

each disclosure, we assess the extent to which our measure explains the market reaction to

new disclosures. Consistent with our measure capturing decision-relevant information, we

find that our measure explains the majority of the market reaction. In our second set of

tests, we consider the interaction between information and sentiment. Noting that sentiment

should only explain market reactions if it updates investors’ prior beliefs, when we weight

the sentiment of each word by its information, we find that the amount of the abnormal

return explained by our measure is an order of magnitude larger than measuring sentiment

alone. Our results highlight the importance of measuring both information and sentiment
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when processing a new disclosure.

In our third set of tests, we explore the implications of limited attention on what is con-

sidered “news.” Specifically, we retrain our models restricting them to updating only over

particular types of forms. We find that relying solely on annual reports or annual and quar-

terly reports is associated with perceived under-reaction to what is “news” to these investors.

In contrast, investors relying solely on current reports generally see market reactions which

directionally match their beliefs but are somewhat muted relative to measuring “news” using

all disclosures. This evidence is consistent with our earlier findings that current reports are

an important disclosure channel which requires near constant monitoring.

In our final set of tests we aim to identify content useful for predicting future firm

performance. Across a variety of methods we find that weighting content by our information

measure leads to more accurate predictions. Further, when we allow models to learn which

pieces of content are most useful for predictions, we find that a roughly 80% overlap between

this content and what our measure labels as high information. This is consistent with (i)

our measure capturing information, and (ii) the content on EDGAR being largely relevant

to future performance.

Collectively, our evidence provides at least three key insights. First, LLMs appear to be

useful tools for modeling investors’ priors over narrative content. Second, other information

events aside from earnings announcements, annual reports, and quarterly reports–which have

been studied in great depth–are a significant, if not more significant, source of information

about firm news. Third, information contained in these other forms tends to arrive sporad-

ically, rather than at regular intervals, posing challenges for attention constrained investors

and contributing to daily stock volatility.
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Appendices

B. Examples of Disclosure Generated by the LLMs

In this section we present examples of narrative disclosures generated by conditioning

the LLMs we train on a particular prompt and then sampling from the model. First, we

condition the models with a prompt that is similar to what the SEC recommends for the

start of Item 1. Business Description, presented in Table B1. After conditioning we then

sample from the model using beam search. Table B2 presents examples generated using our

cross-sectional LLM described in Section 3.4.1. Table B3 presents examples generated using

a sample of the firm-specific LLMs described in Section 3.4.2.

Table B1. Examples of Disclosures Generated by the LLMs
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Table B2. Examples of Disclosures Generated by the LLMs
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Table B3. Examples of Disclosures Generated by the LLMs
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Figure 1. Model Training and Inference

This figure presents the data partitions used for model training and inference. The dotted line
encompasses the data used for pretraining the cross-sectional model described in Section 3.4.1. The
dashed line encompasses the data used for continued pretraining of the cross-sectional model on
a particular firm’s disclosures, as described in Section 3.4.2. Firm-specific models are iteratively
applied and updated using their respective disclosures from 2007 through 2023 to generate out-of-
sample estimates of the information contained in each disclosure–indicated by the small dashed line
and arrows pointing from one disclosure to the next.
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Figure 2. Example of Model Inference for First Mention of Apple iPhone

This figure presents inference results from a model fine-tuned on Apple’s disclosures from 1996
through 2006. Each sentence is highlighted in green based on the mean of the token-by-token
measurement of information, with darker green representing more information. The disclosure was
filed with the SEC via EDGAR on January 17, 2007.
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Figure 3. Location of Information within Filings

This figure plots the volume of content in the highest quartile of information by various form types
and common sections within each the form type. Panel A presents averages for Forms 10-K/Q
separately by the main filing and exhibits as well as for common items. Panel B presents averages
for Forms 8-K separately by the main filing and exhibits as well as for common items. Sample of
18,265 Form 10-K/Q filings and 49,452 Form 8-K filings.

Panel A. Annual and Quarterly Reports (Forms 10-K/Q)

Panel B. Current Reports (Forms 8-K)
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Figure 4. Information Flow Throughout the Reporting Year

This figure plots the flow of information throughout the reporting year. Information is measured
using our LLM-based approach and using daily stock volatility. For the latter measure, we measure
volatility using absolute abnormal returns and attribute volatility to filings based on a tight [-1,1]
event window around the release of the filing. The cumulative information released during the
reporting year is used to normalize the measures such that they sum to 100%. In the case of
daily stock volatility, the cumulative amounts sum to less than 100% because we it is volatility not
attributable to disclosure based on our approach. Sample of 4,656 Form 10-K, 13,609 Form 10-Q,
49,452 Form 8-K, and 49,857 other filings.
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Figure 5. Market Reaction Event Study

This figure plots the average value of daily absolute returns and trading volume in the [-10, 10]
window around the release of each filing, separately for filings in the top and bottom quartiles of
Info. Day 0 represents the first day markets were open following acceptance of the filing on EDGAR.
Specifically, Day 0 for filings accepted either prior to markets opening or intraday is the filing date,
whereas Day 0 for filings accepted after markets close is the date of the following trading session.
Sample of 188,457, 174,033, and 518,848 form-days in the [–10,+10] day window around 9,129 Form
10-K/Q filings, 8,430 MD&A sections extracted from 10-K/Q filings, and 24,726 Form 8-K filings.
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Figure 6. Market Reaction and Information

This figure plots the average market reaction to filings as a function of Info. The market reaction is
measured on the first day markets were open following acceptance of the filing on EDGAR. Specifi-
cally, the market reaction to filings accepted either prior to markets opening or intraday is measured
on the same day, whereas the reaction to filings accepted after markets close is measured the follow-
ing trading session. Sample of 18,265 Form 10-K/Q filings, 16,861 MD&A sections extracted from
10-K/Q filings, and 49,452 Form 8-K filings.
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Figure 7. Market Reaction and Signed Information

This figure plots the average market reaction to filings as a function of Sentiment. The market
reaction is measured on the first day markets were open following acceptance of the filing on EDGAR.
Specifically, the market reaction to filings accepted either prior to markets opening or intraday is
measured on the same day, whereas the reaction to filings accepted after markets close is measured
the following trading session. Panel A (Panel B) presents the average value of AbsoluteReturn
(Volume) by decile of Info. Sample of 9,129 Form 10-K/Q filings, 8,430 MD&A sections extracted
from 10-K/Q filings, and 24,726 Form 8-K filings.
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Figure 8. Document Embedding Overview

This figure presents our approach to generating a time-series of disclosure representations. We divide
lengthy documents into chunks of roughly equal length, feed each chunk through an embedding
model, and create a chunk-level representation by mean pooling over the output of the embedding
model. We carry out this procedure for all disclosures a firm files on EDGAR to generate a time-
series of chunk-level representations.
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Figure 9. Learned Aggregation Overview

This figure presents our approach to learning representations of firms’ time-series of disclosure which
are predictive of future returns. We take a time-series of disclosure representations, use RoPE to
add within document position encodings, use RoPE to add global temporal encodings relative to the
newest filing in the time-series, and add a learned document type embedding. We prepend to the
time-series a set of learnable class (CLS) tokens, one token for each return horizon. This sequence is
then passed through a single self-attention layer. A shared MLP head uses the output CLS tokens
to predict binary market sentiment at each horizon.
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Figure 10. Value-relevant Information

This figure plots the volume of content in the highest quartile of Info (blue filled bar) and the
portion of that content which is also in the highest quartile of value-relevance (blue hatched bar).
The volume of content is separated according to the topics identified by Dyer et al. (2017). Value-
relevance is measured using the weight placed on each piece of content when creating a representation
whose mutual information with returns is maximized–see Section 4.7 for details. Sample of 18,265
Form 10-K/Q filings and 49,452 Form 8-K filings.
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Table 1. Volume of Narrative Disclosure on SEC EDGAR

This table presents the volume and sources of narrative disclosure used to train the models in
this paper. Panels A, B, and C are based on samples of 2,478,642, 60,304, and 138,737 filings,
respectively.

Panel A. Data for pretraining cross-sectional model (all filings prior to 2007)

Form Characters (M) Tokens (M) Tokens/Filing Sentences (M) % of All Main % Exhibits %

All 191,251 35,461 14,306 894 100% 66% 34%

8-K 21,146 3,940 7,571 74 11% 1% 10%
485BPOS 21,233 3,919 65,357 115 11% 10% 1%
10-Q 19,308 3,581 13,724 92 10% 7% 4%
10-K 16,315 3,021 42,009 82 9% 5% 3%
S-4 7,016 1,287 144,677 27 4% 2% 1%

Panel B. Data for continued pretraining of firm-specific models (sample firms’ filings prior to 2007)

Form Characters (M) Tokens (M) Tokens/Filing Sentences (M) % of All Main % Exhibits %

All 4,086 755 12,512 19 100% 57% 43%

10-Q 826 152 17,637 4 20% 13% 7%
10-K 681 125 55,101 3 17% 10% 6%
8-K 634 118 6,164 2 16% 2% 14%
DEF 14A 230 43 17,089 1 6% 6% 0%
S-4 184 34 134,105 1 4% 3% 1%

Panel C. Data for rolling forward firm-specific models (sample firms’ filings from 2007 onwards)

Form Characters (M) Tokens (M) Tokens/Filing Sentences (M) % of All Main % Exhibits %

All 9,252 1,696 12,221 40 100% 61% 39%

8-K 2,361 437 6,948 8 26% 3% 23%
10-Q 2,220 404 27,585 10 24% 18% 6%
10-K 1,932 348 70,205 10 21% 16% 4%
DEF 14A 812 148 34,637 4 9% 9% 0%
S-4 170 32 145,044 1 2% 2% 0%
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Table 2. Sample Construction

This table presents the impact of various filters and random sampling methods on our sample
construction. Final sample consists of 500 firms stratified by firm-size decile.

Criteria N-firms

Valid link between Compustat and CRSP as of 2006-12-31 6,312
Financial statement criteria: atq > 0, saleq > 0, csohq > 0, prccq > 0, ibq.notnull() 5,643
Stock criteria: shrcd <= 11, primexch ∈ {A,N,Q} 4,548
Non-financial firms 3,558
Random sample 500

Decile 0: ($0, $39] 50
Decile 1: ($39, $85] 50
Decile 2: ($85, $152] 50
Decile 3: ($152, $263] 50
Decile 4: ($263, $426] 50
Decile 5: ($426, $713] 50
Decile 6: ($713, $1,194] 50
Decile 7: ($1,194, $2,212] 50
Decile 8: ($2,212, $5,928] 50
Decile 9: ($5,928, >$5,928) 50
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Table 3. Measure of Information

This table presents descriptive statistics for our measure of information. For each firm we train a
firm-specific large language model (LLM) using filings from 1996 through 2006. We then apply the
firm-specific models out-of-sample, i.e., on filings from 2007 onwards, to measure the information
in new filings. Specifically, for each new filing we iteratively measure the information token-by-
token according to Eq. 6 and then update the respective firm-specific LLM. We define the average
information in a filing as the mean of the set of token-by-token measurements. Sample of 4,656
Form 10-K, 13,609 Form 10-Q, 49,452 Form 8-K, and 49,857 other reports.

Annual Reports Quarterly Reports Current Reports Other Reports
(Forms 10-K) (Forms 10-Q) (Forms 8-K)

Main Exhibits Main Exhibits Main Exhibits Main Exhibits

Mean 1.244 1.430∗∗∗ 1.046 0.770∗∗∗ 1.533 2.854∗∗∗ 1.898 1.143∗∗∗

Percentile
5-th 0.632 0.086 0.424 0.000 0.067 0.241 0.001 0.001
25-th 0.906 0.361 0.703 0.022 0.354 1.451 0.348 0.004
50-th 1.153 0.905 0.967 0.121 1.126 2.553 1.162 0.180
75-th 1.472 1.957 1.300 0.821 2.433 3.980 2.983 1.190
95-th 2.147 4.779 1.933 4.127 4.258 6.416 5.976 5.954
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Table 4. Daily Event Study Descriptive Statistics

This table presents descriptive statistics for the variables used in our daily event study partitioned by
inclusion in our random sample. Panel A presents statistics for the year of our sampling and Panel B for the
years following our sampling. AbnormalReturn is the daily residual from the expected returns model of Fama
and French (2015) and Carhart (1997) estimated over the [-70,-11] window relative to the event, expressed
as a percent. AbsoluteReturn is the absolute value of the daily residual from the expected returns model
of Fama and French (2015) and Carhart (1997) estimated over the [-70,-11] window relative to the event,
expressed as a percent. Volume is the ratio of daily volume of shares traded to shares outstanding, expressed
as a percent. AdExp is the ratio of advertising expense to sales. CapEx is the ratio of capital expenditures
to total assets. CapIntens is the ratio of property, plant, and equipment to total assets. CorpAcq is an
indicator variable equal to one if an acquisition accounts for at least 20% of sales. Financing is of the sum of
equity and debt issuances over the fiscal quarter scaled by total assets. IdioVol is the standard deviation of
the residual from a Fama and French (2015) and Carhart (1997) six-factor expected returns model using the
daily returns over the prior fiscal quarter expressed as a percent. Leverage is the natural logarithm of the
sum of long-term debt and debt in current liabilities scaled by total assets. MTB is the ratio of market to
book value of equity. QtrlyReturn is the buy and hold return over the fiscal quarter expressed as a percent.
R&D is the ratio of research and development expense to sales. ShortTermReturn is the buy and hold return
during the window [t-5, t-1] for each date t expressed as a percent. ShortTermVolat is the daily stock return
volatility during the window [t-5, t-1] for each date t expressed as a percent. Size is the natural logarithm
of total assets. SpecItems is special items scaled market value of equity. ***, **, and * denote statistical
significance at the 0.01, 0.05, and 0.10 levels (two–tail) based on standard errors clustered by firm and date,
respectively. Panel A (Panel B) based on a sample of 4,558 (198,422) observations.

Panel A. Year Sampled (2006)

Sample All Firms

Variable Mean Median Mean Median

AbnormalReturn 0.006 0.000 0.006 0.000
AbsoluteReturn 1.826 1.247 1.799 1.223∗
Volume 0.815 0.505 0.818 0.508
AdExp 0.056 0.000 0.056 0.002
CapEx 0.050 0.028 0.047∗ 0.026
CapIntens 0.236 0.147 0.236 0.152
CorpAcq 0.134 0.000 0.130 0.000
Financing 0.166 0.033 0.151∗∗ 0.028
IdioVol 0.023 0.019 0.023 0.019
Leverage 0.486 0.461 0.484 0.462
MTB 2.329 1.786 2.242∗∗ 1.737
QtrlyReturn 0.085 0.077 0.094 0.078
R&D 0.812 0.000 0.733 0.000
ShortTermReturn 0.298 0.083 0.292 0.077
ShortTermVolat 0.084 0.036 0.083 0.035∗
Size 5.873 5.846 5.915 5.846
SpecItems -0.005 0.000 -0.005 0.000
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Table 4 Daily Event Study Descriptive Statistics (Cont’d)

Panel B. Years After Sampling (2007 onward)

Sample All Firms

Variable Mean Median Mean Median

AbnormalReturn 0.003 0.000 0.003 0.000
AbsoluteReturn 2.070 1.333 2.055 1.323∗
Volume 0.892 0.581 0.901 0.583
AdExp 0.054 0.000 0.053 0.002
CapEx 0.028 0.028 0.027∗∗ 0.026
CapIntens 0.270 0.147 0.261 0.152
CorpAcq 0.211 0.000 0.219 0.000
Financing 0.086 0.033 0.086 0.028
IdioVol 0.024 0.019 0.024 0.019
Leverage 0.535 0.461 0.532 0.462
MTB 1.925 1.786 1.964 1.737
QtrlyReturn 0.023 0.077 0.024 0.078
R&D 0.174 0.000 0.177 0.000
ShortTermReturn 0.155 0.066 0.165 0.081
ShortTermVolat 0.121 0.040 0.120 0.039
Size 6.785 5.846 6.780 5.846
SpecItems -0.007 0.000 -0.007 0.000
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Table 5. Market Reaction

This table presents the market reaction as a function of measures of information. Panel A presents results
for annual and quarterly reports on Forms 10-K/Q. Panel B presents results for current reports on Form
8-K. Events are defined as days where a filing is posted to EDGAR. Event [0] is first day that the market
can react to a filing posted to EDGAR. Length is the length of the filing deciled and scaled to range from
zero to one. Info is the information in the filing. Specifically, for each token we use a firm and time-specific
LLM to measure the token’s information according to Eq. 6. We take the mean over the set of each
token’s information then decile and scale the result to range from zero to one. Controls includes AdExp,
CapEx, CapIntens, CorpAcq, Financing, IdioVol, Leverage, MTB, QtrlyReturn, R&D, ShortTermReturn,
ShortTermVolat, Size, and SpecItems. Standard errors clustered by firm and date appear in parentheses.
***, **, and * denote statistical significance at the 0.01, 0.05, and 0.10 levels (two–tail), respectively. Panels
A, B, and C are based on samples of 376,921, 1,037,697, and 348,071 firm-days in the [–10,+10] day window
around 18,258, 49,452, and 16,861 Form 10-K/Q filings, Form 8-K filings, and MD&A items, respectively.

Panel A. Annual and Quarterly Reports (Forms 10-K/Q)

AbsoluteReturn Volume

(1) (2) (3) (4) (5) (6)

Event [0] 1.14∗∗∗ 0.30 0.71∗∗∗ 0.60∗∗∗ -0.40 0.15
(0.08) (0.33) (0.11) (0.06) (0.31) (0.12)

Event [0] ×Length 0.01∗∗ 0.01∗∗∗
(0.00) (0.00)

Event [0] ×Info 0.86∗∗∗ 0.88∗∗∗
(0.18) (0.28)

Controls Y Y Y Y Y Y
Date FEs Y Y Y Y Y Y
Firm FEs Y Y Y Y Y Y
N-obs 376,921 376,921 376,921 376,921 376,921 376,921
R2 6.5% 6.7% 6.9% 9.0% 9.0% 9.1%

Panel B. Current Reports (Form 8-K)

AbsoluteReturn Volume

(1) (2) (3) (4) (5) (6)

Event [0] 1.39∗∗∗ 1.00∗∗∗ 0.37∗∗∗ 0.99∗∗∗ 0.55∗∗∗ 0.29
(0.06) (0.06) (0.06) (0.13) (0.08) (0.20)

Event [0] ×Length 0.09∗∗∗ 0.10∗∗∗
(0.01) (0.03)

Event [0] ×Info 2.04∗∗∗ 1.41∗∗∗
(0.13) (0.33)

Controls Y Y Y Y Y Y
Date FEs Y Y Y Y Y Y
Firm-Yr-Qtr FEs Y Y Y Y Y Y
N-obs 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697
R2 0.30% 0.42% 1.2% 0.11% 0.13% 0.15%
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Table 5. Market Reaction (Cont’d)

Panel C. Management’s Discussion and Analysis (Extracted from Forms 10-K/Q)

AbsoluteReturn Volume

(1) (2) (3) (4) (5) (6)

Event [0] 0.81∗∗∗ 0.47∗∗∗ 0.13 0.44∗∗∗ 0.23∗∗∗ -0.06
(0.09) (0.13) (0.14) (0.07) (0.09) (0.10)

Event [0] ×Length 0.08∗∗∗ 0.05∗∗
(0.03) (0.02)

Event [0] ×Info 1.37∗∗∗ 1.00∗∗∗
(0.28) (0.25)

Controls Y Y Y Y Y Y
Date FEs Y Y Y Y Y Y
Firm FEs Y Y Y Y Y Y
N-obs 348,071 348,071 348,071 348,071 348,071 348,071
R2 8.1% 8.4% 9.3% 2.3% 2.4% 2.9%
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Table 6. Cross-sectional Variation in Market Reaction

This table presents tests for cross-sectional variation in the market reaction. Panel A presents results for
annual and quarterly reports on Forms 10-K/Q. Panel B presents results for current reports on Form 8-
K. Events are defined as days where a filing is posted to EDGAR. FinNeg is the count of the number of
negative words in the filing scaled by the length of the filing (Loughran and McDonald, 2011) multiplied
by negative one, then deciled and scaled to range from negative one to one. IWS is the token-by-token
interaction between information and sentiment. Specifically, for each token we use a firm and time-specific
LLM to measure the token’s information according to Eq. 6 and sign the information based on the Fin-Neg
dictionary (Loughran and McDonald, 2011). We take the mean over the set of signed information then decile
and scale the result to range from negative one to one. All other variables previously defined. Standard
errors clustered by firm and date appear in parentheses. ***, **, and * denote statistical significance at
the 0.01, 0.05, and 0.10 levels (two–tail), respectively. Panel A (Panel B) is based on a sample of 376,921
(1,037,697) firm-days in the [–10,+10] day window around 18,258 (49,452) Form 10-K/Q (Form 8-K) filings.

Panel A. Annual and Quarterly Reports (Forms 10-K/Q)

AbnormalReturn

(1) (2) (3) (4)

Event [0] -0.18∗∗∗ -0.22∗∗ -2.59∗∗∗ -2.62∗∗∗
(0.05) (0.09) (0.16) (0.18)

Event [0] ×Sentiment 0.09 0.05
(0.15) (0.16)

Event [0] ×IWS 4.84∗∗∗ 4.84∗∗∗
(0.30) (0.30)

Controls Y Y Y Y
Date FEs Y Y Y Y
Firm FEs Y Y Y Y
N-obs 376,921 376,921 376,921 376,921
R2 0.00% 0.01% 5.08% 5.08%

Panel B. Current Reports (Form 8-K)

AbnormalReturn

(1) (2) (3) (4)

Event [0] 0.05 -0.28∗∗∗ -1.88∗∗∗ -2.21∗∗∗
(0.03) (0.08) (0.10) (0.13)

Event [0] ×Sentiment 0.66∗∗∗ 0.67∗∗∗
(0.11) (0.11)

Event [0] ×IWS 3.87∗∗∗ 3.87∗∗∗
(0.20) (0.20)

Controls Y Y Y Y
Date FEs Y Y Y Y
Firm-Yr-Qtr FEs Y Y Y Y
N-obs 1,037,697 1,037,697 1,037,697 1,037,697
R2 0.11% 0.19% 2.56% 2.64%
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Table 7. Content Subsets

This table presents results from re-estimating the specifications in Table 5 (columns 1 through 6 here) and Table 6 (columns 7 through
8 here) using LLMs trained on particular subsets of content rather than all content. The subsets considered are: only annual reports
(10-K), annual and quarterly reports (10-K/Q), and only current reports (8-K). All other variables previously defined. Standard errors
clustered by firm and date appear in parentheses. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.10 levels (two–tail),
respectively. Panel A (Panel B) is based on a sample of 376,921 (1,037,697) firm-days in the [–10,+10] day window around 18,258 (49,452)
Form 10-K/Q (Form 8-K) filings.

Panel A. Annual and Quarterly Reports (Forms 10-K/Q)

AbsoluteReturn Volume AbnormalReturn

Content Subset 10-K 10-K/Q 8-K 10-K 10-K/Q 8-K 10-K 10-K/Q 8-K

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Event [0] 1.21∗∗∗ 1.32∗∗∗ 1.04∗∗∗ 0.61∗∗∗ 0.66∗∗∗ 0.51∗∗∗ -0.37∗∗ -0.30∗∗∗ -0.39∗∗∗
(0.09) (0.12) (0.07) (0.08) (0.14) (0.06) (0.18) (0.09) (0.10)

Event [0] ×Info -0.34∗∗ -0.42∗∗ 3.41∗∗∗ -0.07 -0.14 2.77∗∗∗
(0.16) (0.18) (0.59) (0.19) (0.24) (1.03)

Event [0] ×IWS 0.24 0.25∗ 0.46∗∗∗
(0.20) (0.15) (0.16)

Controls Y Y Y Y Y Y Y Y Y
Date FEs Y Y Y Y Y Y Y Y Y
Firm FEs Y Y Y Y Y Y Y Y Y
N-obs 376,921 376,921 376,921 376,921 376,921 376,921 376,921 376,921 376,921
R2 6.57% 6.56% 7.27% 8.98% 8.98% 9.13% 0.49% 0.49% 0.53%
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Table 7. Content Subsets (Cont’d)

Panel B. Current Reports (Forms 8-K)

AbsoluteReturn Volume AbnormalReturn

Content Subset 10-K 10-K/Q 8-K 10-K 10-K/Q 8-K 10-K 10-K/Q 8-K

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Event [0] 1.51∗∗∗ 1.67∗∗∗ 0.56∗∗∗ 1.16∗∗∗ 1.16∗∗∗ 0.54∗∗ -0.07 -0.07 -1.78∗∗∗
(0.10) (0.10) (0.06) (0.33) (0.29) (0.22) (0.07) (0.07) (0.10)

Event [0] ×Info -0.24∗ -0.56∗∗∗ 1.69∗∗∗ -0.34 -0.35 0.91∗∗∗
(0.14) (0.14) (0.13) (0.49) (0.41) (0.31)

Event [0] ×IWS 0.26∗∗ 0.26∗∗ 3.68∗∗∗
(0.10) (0.11) (0.18)

Controls Y Y Y Y Y Y Y Y Y
Date FEs Y Y Y Y Y Y Y Y Y
Firm-Yr-Qtr FEs Y Y Y Y Y Y Y Y Y
N-obs 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697 1,037,697
R2 0.28% 0.30% 0.98% 0.07% 0.07% 0.08% 0.14% 0.13% 2.70%
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Table 8. Out-of-Sample Prediction

This table presents results for the five methods of predicting binary market sentiment over a variety of horizons as detailed in Section 4.7.
Market sentiment is measured as the sign of the daily residuals cumulated over a given horizon based on the expected returns model of
Fama and French (2015) and Carhart (1997). Expected returns models are estimated over the [-70,-11] window relative to each disclosure.
Llama refers to the methods which rely on text representations generated using the Llama-3.1-8B model. The subscripts MP, IP, and
LA refer to three methods for pooling representations from lengthy texts: mean or equal-weighted, information weighted, and learned
aggregation. ***, **, and * denote statistical significance at the 0.01, 0.05, and 0.10 levels (two–tail), respectively, based on boot-strapped
standard errors clustered by firm and time. Sample of 17,111 Form 10-K/Q and 46,321 Form 8-K filings from 2008 through 2023.

Sentiment IWS LlamaMP LlamaIP LlamaLA

Form Type 10-K/Q 8-K 10-K/Q 8-K 10-K/Q 8-K 10-K/Q 8-K 10-K/Q 8-K

Horizon (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 day 52.20%∗∗∗ 51.79%∗∗∗ 52.42% 52.69%∗∗∗ 51.88% 51.78% 52.70% 52.32%∗∗ 54.73%∗∗∗ 54.45%∗∗∗

1 week 51.92%∗∗∗ 51.46%∗∗∗ 52.15% 51.62% 51.96% 51.66% 53.61%∗∗∗ 52.14%∗∗∗ 53.85%∗∗∗ 54.31%∗∗∗

1 month 52.06%∗∗∗ 51.49%∗∗∗ 52.85%∗∗ 51.93%∗∗ 51.37%∗ 51.30% 53.53%∗∗∗ 51.99%∗∗ 53.14%∗∗∗ 53.38%∗∗∗

3 months 51.17%∗∗∗ 50.74%∗∗∗ 52.01%∗∗ 51.06% 50.10%∗∗∗ 50.65% 51.52% 51.59%∗∗∗ 53.89%∗∗∗ 52.47%∗∗∗

6 months 51.18%∗∗∗ 50.39%∗ 52.33%∗∗∗ 50.90%∗∗ 50.03%∗∗∗ 50.30% 52.91%∗∗∗ 50.87%∗∗ 52.71%∗∗∗ 52.02%∗∗∗

12 months 51.01%∗∗∗ 50.05% 52.01%∗∗ 50.73%∗∗∗ 52.83%∗∗∗ 51.95%∗∗∗ 52.46%∗∗∗ 51.85%∗∗∗ 52.63%∗∗∗ 52.05%∗∗∗
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