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Abstract

Privacy restrictions imposed by browsers such as Safari and Chrome limit the quality of
individual-level data used in personalization algorithms. This paper investigates the consequences
of these privacy restrictions on consumer, seller and platform outcomes using data from Wayfair, a
large US-based online retailer. Large-scale randomized experiments indicate that personalization
increases seller and platform revenue and leads to better consumer-product matches with 10%
lower post-purchase product returns and 2.3% higher repeat purchase probability. Privacy
restrictions can distort these benefits because they limit platforms’ ability to personalize. To
evaluate privacy restrictions of interest, we (i) re-train the platform’s personalization algorithm
with lower-quality data and generate counterfactual recommendations, and (ii) next, we simulate
consumers’ search and purchase behavior under counterfactual recommendations using structural
modeling. We find that two main policies imposed by Safari and Chrome disproportionately hurt
price responsive consumers and small/niche product sellers. To address this, we propose and
evaluate a probabilistic recognition algorithm that associates devices with user accounts without
using exact user identity. Our findings demonstrate that this approach mitigates welfare and
revenue losses significantly, striking a balance between privacy and personalization.
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1. INTRODUCTION

Data collected about consumers by businesses underpin online personalization of product rankings
(e.g., Amazon, Wayfair), movies (e.g., Netflix), music (e.g., Spotify), and other offerings. However,
the growing availability and potential mishandling of individual-level data raises significant privacy
concerns. Regulators are concerned that consumers have limited knowledge of how their data are
used and of the inferences firms may draw about them based on this personal information.! To
address these concerns, regulators and internet browsers have enforced limitations on online consumer-
tracking. For instance, Safari may log consumers out of the website and clear their browsing history
after seven days of inactivity, and Chrome plans to prevent cross-website user-tracking starting in
2024.2 Under these restrictions, unless consumers log in, online platforms will no longer be able
to recognize them continuously, and therefore will have an incomplete (fragmented) view of their
browsing history. When platforms use this fragmented data in their personalization algorithms,
it may affect the quality of recommendations made to users. Yet despite the growing number of
privacy restrictions, there is little empirical evidence on their necessity and impact on the economic
outcomes of consumers, sellers, and platforms. Such evidence is critical both to help design future
data regulation and to help firms adapt their strategies to an increasingly privacy-conscious world.

The current paper has three goals. First, we use a large-scale field experiment conducted with
Wayfair, a large US-based online retailer, to establish that personalized recommendations lead to
better consumer-product matches and benefit both sellers and the platform. Second, we quantify the
extent to which privacy restrictions distort personalization benefits. While the field experiment fully
disabled personalization, under actual privacy restrictions platforms retain personalization but use
fragmented (distorted) data. To assess the impact of privacy restrictions, first, we re-train platform’s
personalization algorithm with distorted data and generate counterfactual recommendations. Next,
we simulate consumers’ search and purchase behavior under counterfactual recommendations using
a structural model. We estimate the model exploiting experimental variation in the data. We
show that browser-induced privacy restrictions reduce the algorithm’s prediction accuracy and
result in lower-quality recommendations. The counterfactual simulations indicate that lower-quality
recommendations decrease consumer welfare by 30% (from $25 to $18), and the adverse effects
are more pronounced for price-responsive consumers. Moreover, smaller-revenue sellers and niche-
product sellers® experience a disproportionate revenue loss of 8.6%, while larger sellers are relatively
unaffected. Third, to help platforms mitigate the negative consequences of privacy restrictions,
we evaluate probabilistic recognition algorithm proposed in Korganbekova and Zuber (2023). The

machine learning algorithm probabilistically associates devices with unique user identities by exploiting

LCompetition & Markets Authority UK Report
2See Google delays move away from cookies in Chrome to 2024.
3We use Deep Learning tools to identify products that are visually less similar to mass-market products.
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detailed behavioral data and IP address information, even when the exact user identity is unknown.
We show that the algorithm can recover up to 56% of welfare loss for the consumers and up to 73%
of revenue loss for smaller sellers, providing a promising solution to mitigate the impact of privacy
restrictions. Next we describe each of these findings in more detail.

To verify whether privacy policies should be a cause for concern, we first quantify the effects of
personalization on consumers and sellers. To this end, we ran a large-scale field experiment where we
randomly turned off personalization on product ranking pages on Wayfair. The experiment included
9 million consumers and ran for two years, from January 2020 to December 2021. Consumers in
the treatment group saw personalized product rankings tailored to their browsing histories, while

4 We find that consumers in

control group consumers saw non-personalized bestseller rankings.
the treatment (personalized) group were 10% less likely to return a product post-purchase and
were 2.3% more likely to repeat purchase a product in the same product category. These results
suggest that consumers in the personalized group got better product matches than consumers in
the non-personalized group. Moreover, unlike bestseller rankings, which highlight the most popular
products, personalized rankings provide smaller sellers greater opportunity for prominence on the
platform. Specifically, smaller-revenue and niche sellers’ products are 15% more likely to be shown on
top of product ranking pages, and sellers earn up to 87% more revenue from personalized impressions
compared to bestseller rankings. Overall, the experimental results suggest that personalization
benefits both consumers and small/niche product sellers.

Next, we quantify the extent to which browser-induced privacy restrictions distort personalization
benefits. To do that, we need to evaluate consumer choices and compare seller and platform outcomes
in two worlds: a privacy-unrestricted world in which platforms retain the ability to track consumers,
and a counterfactual privacy-restricted world in which the platform continues to personalize but uses
incomplete (fragmented) data.’

We leverage our access to the platform’s personalization algorithm to generate counterfactual
personalized rankings that would have been shown under privacy restrictions. First, we distort the
individual-level data to mimic the impact of the privacy policy of interest. We focus on two privacy
policies implemented by largest browsers: Chrome and Safari. For instance, to evaluate Safari’s
policy that clears browsing history after seven days of inactivity, we keep only the most recent seven
days’ worth of browsing data for each consumer. Next, we re-train the personalization algorithm with
the new, distorted data input. The re-trained algorithm generates counterfactual product rankings,
and we simulate consumers’ response to these ranking using our structural model, which we describe

next.

4Bestseller rankings are generated based on the aggregate historical popularity of the products.
5Note that the experiment turned off personalization completely; however, under privacy restrictions, the platform
will continue personalizing, using fragmented data.



To evaluate how consumer choices will change under newly generated personalized rankings, we
develop and estimate a demand-side model of multi-session consumer search. The model captures
the main features of the online purchase funnel: viewing, clicking, and purchasing. Viewing depends
on product rankings generated by the platform, and the platform can control which products are
more prominent in the search results. Consumers can click only on the products they view. We
model viewing and clicking separately because we have pixel-level data that allow us to distinguish
between the two.

We describe consumer behavior as follows. Consumers know their preferences over the product
characteristics observable from the ranking pages (e.g., prices, ratings, images),® but they have
uncertainty regarding the unobservable product characteristics that they learn only after clicking
on a product (e.g., reviews). While on the ranking page, consumers construct a utility index based
on the observable characteristics of the products they have viewed. They have rational beliefs over
the indices of the products they have not yet viewed. Further, they choose to click on a product
if the maximum product index within the viewed set exceeds the expected maximum index within
the non-viewed set of products. After clicking on a product, consumers learn the true utility of the
product and update their beliefs about all the remaining products’ quality. Next, consumers decide
among (i) continuing to click, (ii) viewing additional products, (iii) purchasing a clicked product,
or (iv) leaving. If they return to the website for subsequent sessions, the platform may personalize
product rankings, and consumers follow the same search process under new rankings.

We model consumer’s utility as a Gaussian Process over the observable product characteristics,
which enables us to incorporate the key components of the model: viewing, clicking, purchasing, and
learning. Moreover, the Gaussian Process specification also allows us to accommodate multi-session
search: the consumers’ posteriors from the previous session become their priors in the next session.
We use experimental variation in the product rankings and pixel-level data to estimate consumer
preferences, search costs, and learning parameters. We validate the model using data from a natural
experiment: a short-term Chrome privacy policy change in 2020.”

In the counterfactuals, we fix estimated model parameters and simulate consumer search and
purchase patterns under generated counterfactual personalized rankings that would have been shown
under privacy restrictions. We focus on the two most prominent policies implemented by Safari and
Chrome, as mentioned above.

We find that the policy that clears consumers’ browsing history after seven days of inactivity
(Safari) leads to a nearly 50% reduction in the prediction accuracy of the personalization algorithm.

This results in lower-quality recommendations, which in turn reduce consumer welfare by 30% (from

SwWe project each image into two-dimensional space using Siamese Neural Network and UMAP, and directly use
these vectors in the structural model.
"The policy was introduced at the beginning of the pandemic and affected users of a specific Chrome version.



$25 to $18) and decrease smaller sellers’ revenue by 8.6%. For the Chrome policy that blocks
cross-website tracking and affects consumers arriving from advertising channels (26% of the traffic),
we find qualitatively similar but larger effects.

The counterfactual analysis yields several important insights.  First, privacy policies
disproportionately affect consumers who are more price responsive and have high search costs.
These consumers either leave the website faster, as they do not see relevant product rankings, or tend
to buy lower utility products. Second, the personalization algorithm tends to switch to emphasizing
the popular products due to lack of data on smaller sellers. This leads to worse outcomes for the
smaller /niche sellers. Third, while the platform loses revenue because of privacy restrictions, the
impact on its instantaneous profit is relatively small. The reason is that larger sellers’ products are
easier and cheaper to ship than those of smaller sellers. Overall, these results highlight that privacy
restrictions may hurt more vulnerable consumer groups and smaller sellers, which necessitates careful
consideration of alternative policy design.

In the last part of the paper, we explore alternative strategies that platforms may take to mitigate
the negative consequences of privacy restrictions. In Korganbekova and Zuber (2023), we propose
using IP address information as well as consumers’ detailed behavioral data to probabilistically
recognize consumers even when the exact user identity is unknown. Structural model described above
allows us to evaluate the algorithm. First, we obfuscate consumer identity as if it is not known. For
each device, we predict which user the device belongs to. Next, we generate personalized rankings
based on the predicted user’s browsing history. Finally, we simulate consumer search and purchase
process using the newly generated rankings according to the structural model. We show that this
intervention can recover up to 56% of consumer welfare losses and up to 73% of small seller revenue.
Therefore, even under privacy regulation, platforms can adapt their strategies to continue showing
personalized content.

In this paper, to analyze the impact of privacy restrictions, we focus on one retailer: Wayfair.
That brings up the question of generalizability, and whether our results are specific to Wayfair’s
personalization algorithm. We believe our results are generalizable to other online platforms. While
different platforms use separate recommendation algorithms, these algorithms are ubiquitous and
relatively standard. For example, major platforms often feature their algorithms as part of academic
papers and workshops, which leads to adoption of similar algorithms by other platforms (see YouTube
Covington, Adams and Sargin (2016); Pinterest Eksombatchai, Jindal, Liu, Liu, Sharma, Sugnet,
Ulrich and Leskovec (2018); Wayfair Mei, Zuber and Khazaeni (2022); and Amazon Linden, Smith
and York, 2003. It is also unlikely that the platforms can drastically improve their personalization
algorithms under privacy restrictions, given that the main issue is not the algorithm but rather the

inability of the platforms to recognize consumers.



2. RELATED LITERATURE

This paper contributes to several strands of Economics and Marketing literature. First, the
paper contributes to the privacy literature. A large number of empirical papers study the impact
of European General Data Protection Regulation (GDPR) on firm outcomes (e.g., Aridor, Che,
Nelson and Salz (2020), Goldberg, Johnson and Shriver (2019), Johnson, Shriver and Goldberg
(2023), Zhao, Yildirim and Chintagunta, 2021). While GDPR’s consent-based policy asks users to
allow tracking, our paper focuses on policies that block online tracking by default. Our two-year,
long-term experiment and unique rich data allow us to credibly estimate the effects of personalization
on consumers, sellers, and the platform. In a related paper, Sun, Yuan, Li, Zhang and Xu (2021) ran
a similar experiment with Chinese retailer Alibaba, but their experiment ran only for seven hours,
preventing conclusions regarding long-term consequences of personalization. Moreover, we develop a
structural model that allows us to mimic and evaluate not only full disablement of personalization,
but to simulate a world in which platforms continue to personalize but use fragmented data.

Second, our findings extend the data fragmentation literature. Data fragmentation happens
because of privacy restrictions, when instead of observing consumers’ full browsing history, the
platform is unable to track consumers over time and so observes only disconnected (fragmented)
partial views of their browsing history. Prominent papers in this area include those by Coey and
Bailey (2016) and Lin and Misra (2022), who examine the analytic form of the estimation bias caused
by data fragmentation. Our paper empirically examines the changes in the predictive performance
of personalization algorithms (i.e., training accuracy) and extensively describes the effects of data
fragmentation on consumer, seller, and platform outcomes. Wernerfelt, Tuchman, Shapiro and
Moakler (2022) study a similar phenomenon in the Facebook advertising context.

Third, we contribute to the personalization and consumer search literature. There is a large
empirical search literature that estimates structural search models built on the tractable solution
offered by Weitzman (1978) (e.g., Kim, Albuquerque and Bronnenberg (2010), Ursu (2018), Honka
and Chintagunta (2017), Compiani, Lewis, Peng and Wang (2021), Morozov (2023), Seiler (2013),
Seiler and Pinna, 2017). Our model has several important distinctions compared to extant work. First,
motivated by the empirical patterns in the data, we disentangle viewing a product and clicking on it.
The pixel-level data allows us to move away from one of the main assumptions in the aforementioned
papers, i.e., that of consumers’ full awareness. Consumers in our model have limited awareness
of the products, and the platform’s rankings affect their awareness given that platforms can make
some products more prominent than others. Gibbard (2022) and Greminger (2022) were among the
first papers to allow for limited consumer awareness. However, to the best of our knowledge, our
paper and Choi and Mela (2019) are the first to use data enabling to separate treatment of viewing

and clicking actions. Second, we allow for consumer learning in our model. The decision to model



consumer learning was driven by the empirical patterns in the data similar to the ones observed in
Bronnenberg, Kim and Mela (2016) and Hodgson and Lewis (2022). Incorporating learning into the
model requires us to resort to a near-optimal consumer search policy, as opposed to the optimal
policy suggested by Weitzman (1978) under stricter assumptions. Given that we model search via
Gaussian Processes, we use a near-optimal heuristic for optimal search policy: Upper Confidence
Bound algorithm (Auer, 2002). We prove the finite regret bounds of the algorithm in our setting in
Appendix B.

The remainder of the paper is organized as follows. Section 3 describes the empirical setting
and data. In Section 4, we describe the experiment conducted with the platform and show the
experimental results. In Section 5, we introduce the model and explain the estimation details. Section

6 shows main counterfactual results. Section 7 concludes.

3. EMPIRICAL SETTING

To study the impact of privacy restrictions on platforms, we have collaborated with Wayfair, a
large US-based online retailer of furniture and home goods. Wayfair does not own sellers’ inventory,
instead acting as an intermediary between product sellers and consumers. The platform owns and
maintains the website interface and all personalization algorithms. In this section, we provide an
overview of the platform’s interface and discuss how privacy restrictions may influence consumer
recognition within the platform’s ecosystem.

Suppose consumers arrive at wayfair.com for the very first time and search for the keyword
"dining chairs’. Consumers are taken to a product category page, where the platform displays an
ordered list of dining chairs (hereafter, “ranking page” or “product rankings”). Figure la shows
an example of a ranking page. These pages typically feature 48-96 products allocated in a matrix
form. Consumers can observe product images, prices, ratings, and numbers of ratings on the ranking
pages. During the initial session, the platform does not recognize consumers and lacks information
about their preferences. Therefore, the platform presents consumers with non-personalized bestseller
product rankings. These rankings are based on the overall historical popularity of products and are
not customized to the consumers’ browsing history.

Clicking on a particular dining chair on the ranking page takes consumers to the product page
where they can find detailed product descriptions, e.g., chair dimensions, materials used, assembly
requirements, and other specifications (Figure 1b). Many product pages include product reviews and
ratings. Consumers can read these reviews for insights into the chair’s quality, comfort, durability,
and overall customer satisfaction. On the product pages, consumers are presented with additional
product recommendations known as Compare Similar Items (Figure 1b). These recommendations

are not personalized based on the consumers’ browsing history but rather represent a set of products



Fi1GURE 1: Ranking pages and product pages

(A) Product ranking page (B) Product page

that are comparable to the product currently being viewed. Consumers can opt to click on one of the
four recommended products within the widget, which will redirect them to the respective product’s
page.

Subsequently, consumers are presented with three options: (i) to continue searching by clicking or
scrolling further, (ii) to make a purchase of the best product they have come across thus far, or (iii)
to exit the website. Importantly, consumers retain the flexibility to revisit the website and continue
the search process at any given point in time.

In subsequent visits, consumer recognition becomes crucial. Suppose that during the initial
session, a consumer exclusively clicks on blue chairs or applies a filter to see only blue-colored chairs.
The website sets a cookie - a small text file - on the consumer’s browser that keeps track of the
specific types of products consumer clicks on or types of filters she applies.® These cookies, which
are set by the wayfair.com website and are only readable and writable by this website, are called
first-party cookies. They allow websites to store valuable information about consumers’ browsing
history on their domains.

Next time the consumer re-visits wayfair.com, the website checks for the presence of any cookies
associated with the wayfair.com domain on her browser. By examining the first-party cookie files,
the platform identifies that the consumer had exclusively clicked on blue dining chairs in the past.
The platform’s personalization algorithm incorporates the consumer’s preference for blue chairs

and presents personalized rankings that prioritize blue chairs at the top of the results.? ' This

8Platforms can set cookies for many different consumer actions, such as sorting, adding a product to the basket
page, and others.

9The layout of the ranking page looks exactly the same as the non-personalized pages, but products are ranked
such that more relevant products to a consumer gain more prominence on the ranking page results.

10T¢ is worth noting that, at the time of this research, the platform employed single-category personalization, i.e.
browsing data from other categories was not utilized in determining the rankings.



personalized approach may reduce search frictions and enhance the consumer’s browsing experience
on the website. However, certain restrictions disallow first-party cookie tracking.

Privacy restrictions associated with first-party cookies. In 2019, Safari introduced a
new version of its browser that includes Apple’s Intelligent Tracking Prevention (ITP),!! which
automatically removes first-party cookies after a week of user inactivity. This feature not only logs
consumers out but also requires Wayfair to reset first-party cookies.'?> As a result, if the consumer
returns more than 7 days after the previous session, Wayfair loses access to the browsing information
stored in the expired cookie, as it becomes inaccessible.

Initially, first-party cookie tracking restrictions impacted only those first-party cookies that were
used in third-party contexts, i.e., for cross-website user tracking. The restrictions had limited impact
on the first-party cookies used within the website itself (see Figure E4 and Table E11 ). However,
since 2022, Safari has been strengthening the regulation and blocks first-party cookie tracking more

often, which affects the platform’s ability to recognize consumers.'3

FIGURE 2: Traffic sources
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Notes. This figure shows the distribution of traffic by different arrival channels, e.g.
Direct Traffic, Google etc. The total doesn’t sum up to 100, because one consumer
can arrive through multiple channels. 26.1% of consumers arrive from Display
advertising, and a large share of consumers arrive either from Google or from Direct
Traffic. Unless consumers login, platform relies on third-party cookies for display
ad recognition and on first-party cookies for the consumers arriving directly to the
website.

Advertising is another critical aspect where platforms’ ability to recognize consumers is at risk.
The platforms show re-targeted ads on third-party websites (display ads) to encourage consumers to

re-visit the website. In our data, approximately 26% of traffic arrives from display advertising, which

is a large portion of traffic (Figure 2).

1gee Apple’s Intelligent Tracking Prevention (ITP).

12Technically, the cookies that are set to expire in 7 days are the ones that are set from JavaScript. However,
majority of cookies are set through JavaScript.

13See the Apple’s secret Safari cookie crackdown article for more information.


https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.imore.com/security/apples-secret-safari-cookie-crackdown-could-have-unintended-consequences-for-your-logins

Display advertising works via third-party cookies that facilitate cross-website user tracking. To
illustrate, let’s say a consumer leaves Wayfair and visits weather.com. On weather.com, third-party
companies like Wayfair or data aggregators can place their cookies. As a result, when weather.com
loads, it reads the Wayfair cookie and displays ads that align with the consumer’s browsing history
on wayfair.com (Figure 3).14 Third-party cookies are used both to show advertising and to recognize

consumers if they click on an ad and re-visit the website.

FIGURE 3: Wayfair ads on weather.com

Notes. This figure shows an example of the retargeted
advertising that was served through third-party cookies.
The screenshot was taken by the authors on weather.com.

Privacy restrictions associated with third-party cookies. Safari and Firefox already block
third-party cookie tracking,'® and the largest web browser Chrome!® plans to block them in 2024.
Blocking third-party cookies limits platforms’ ability to serve advertising and to recognize consumers.
Under these restrictions, all third-party requests reset users’ cookie files which means that platforms
will not be able to recognize users and pull their browsing history.

Notably, when consumers voluntarily log in during each visit, the platform can recognize them
without relying on cookies. However, our data reveal that approximately 37% of consumers choose
to log in, leaving the platform to rely on cookies for the recognition of 38% of consumers (Table 1),
17

which corresponds to millions of consumers.

To summarize, platforms use first- and third-party cookies to recognize consumers and to

1y reality, the online ad system works in a more complex way. Third-party vendors form coalitions to map a
user’s identifier from a demand-side platform to a data management platforms. This process is called cookie syncing
and it is used by AdTech platforms, demand-side platforms, data-management platforms (DMPs), ad exchanges,
supply-side platforms (SSPs) and various other data providers. This means that the user data is exchanged across
different platforms, which creates significant privacy concerns. See DMPs and Cookie Syncing for details.

5For instance, Safari’s Intelligent Tracking Prevention browser setting prevents cookies being read in a third-party
context. In the first version of ITP, Apple limited third-party cookie reads to a 24-hour window, but rolled complete
block later. Firefox followed Safari and by blocking third-party cookies in Version 50+ of the browser.

16 Chrome is the leading global browser with 62.85% share as of June 2023. See Browser market shares statistics.

17T further examine the breakdown between first-party and third-party cookie reliance, a rough estimation can
be made. Among the 26% of display advertising traffic, assuming an average of 38.46% recognition through cookies,
approximately 10% of the traffic depends on third-party cookie recognition. Similarly, if 37% of the traffic from Google
Product Ads and Direct traffic log in and 38.46% are recognized through cookies, it can be inferred that first-party
cookies account for 26.3% of traffic recognition (=48.3% (Google) + 20.2% (Direct)) x 38.46% (cookie-recognized).


weather.com
https://www.gartner.com/en/marketing/insights/articles/how-does-a-data-management-platform-work
https://tinyurl.com/2fp4at3s
https://tinyurl.com/zbu9t9kn

TABLE 1: Recognition rates by device types

Overall Desktop Mobile Site App

Logged in (%) 37.62 33.95 22.63 84.06
Cookie-recognized (%) 38.46 44.22 48.69 8.43
Not recognized (%) 23.92 21.83 28.68 7.51
Total 100.00 100.00 100.00 100.00

Notes. This table reports login and cookie-recognition rates by different devices.
From the data, for each consumer who searched in dining chairs category, we
determine whether she was logged in at least once, or was cookie recognized or
never recognized. We then calculate corresponding shares overall, on desktop,
mobile site and Wayfair app.

personalize user experience. Approximately 38% of traffic is recognized via first- and third-party
cookies in the platform we collaborate with. Privacy policies block platforms’ access to the cookies
and reset unique user identifiers. This threatens platforms’ ability to recognize consumers and to
personalize their experience.

This paper aims to assess the impact of privacy restrictions on consumers, sellers, and the
platform. Additionally, we explore alternative strategies that the platform can adopt to mitigate
the consequences of these privacy restrictions. But first, it is crucial the potential losses stemming
from the absence of personalization. Therefore, after describing the data in the next subsection, we

quantify the effects of personalization on consumers, sellers and the platform.

3.1. Data

In this subsection, we describe the data that was generously provided by Wayfair. Our main
sample consists of 30 million consumers who browsed the platform in 2018-2022. Our data have
several important and unique components.

Clickstream data. We have access to Wayfair’s full high-frequency pixel-level clickstream data that
tracks consumers’ actions on the website. The main data span the two-year experimental period from
January 2020 to December 2021. We also have access to the historical data from 2018 to 2020, which
we use to evaluate consumers’ and sellers’ historical outcomes. The data are at the device - customer
id - URL - action timestamp level. Thus, each row in the data represents a single action, such as click,
scroll, tap, hover, or zoom, taken by a consumer on a given device. Consumers’ behavior is captured
across all platforms (e.g. desktop, tablet, mobile) and devices. We view the existing clickstream data
as a relatively complete description of consumers’ browsing history. Note that every consumer can
be associated with multiple devices and multiple browsers (see Table E10 ). The platform stitches
together corresponding devices and browsers and links them to a unique consumer identifier for each
consumer to the best of their ability. If consumers login, then it is straightforward for the platform

to link browsing history. Otherwise, the platform relies on cookie files to recognize consumers and to

10



build a relatively complete view of consumers’ browsing history across sessions and devices.'®

Pixel-level data. A unique aspect of our data is that for each consumer, we observe which products
appeared on a consumer’s screen at each point in time. Thus, we can restore consumers’ scrolling
behavior and explore which part of each page consumer viewed. The data are crucial to assessing
consumers’ awareness of products, and it is similar in spirit to eye-tracking data.

Login and traffic source data. At each point in time, we observe whether the consumer was
logged in, the referrer URL (website the consumer was on before arriving on a focal webpage), and
the channel consumer used to arrive on the website, such as Google ads or Direct Traffic.!”
Rankings and recommendations data. For a given URL in the clickstream data, we can re-create
the layout of the webpages that were shown to the consumer. Most importantly for our setting, we
can recover the ordered product rankings and recommendation widgets that were shown to each
consumer. For the product rankings, we have determined which products were personalized and
which ones were non-personalized on the ranking pages. Moreover, for all product pages, we kept
historical scores outputted by a recommendation widget algorithm that allows us to determine the set
of products that were shown on each product page as part of additional product recommendations.
Transactions data. For each consumer, we observe the set of products they purchased (if any),
corresponding prices of the products, and the indicator for whether the consumer returned the
purchased item. We use these data to evaluate consumer choices and to proxy for the quality of
product matches. In particular, we use product returns and repeat purchases to evaluate consumers’
satisfaction with the purchased products.

Prices and wholesale costs. We observe a daily panel of each product’s prices, wholesale costs set
by the seller, any discounts/allowances provided by the seller and shipping costs.?’ We use these
data to calculate product markups and margins to assess the platform’s profitability.?!
Seller-level data. For each seller on the platform, we observe the number of products they carry,
the revenue earned for each product, and all the historical data on the wholesale costs and revenue.
We use these data for seller-heterogeneity analysis.

Product characteristics. We have data on product characteristics that are observable to the
consumer from the ranking pages, i.e., prices, product rating, and number of ratings. Moreover, we
also use data on products’ style, material, chair width, height, etc. in our descriptive analysis.
Image data. We have access to images of products in select categories, namely, dining chairs, sofas,

and ottomans.?> We use these images to train a Deep Learning algorithm, namely Siamese Neural

18 The platform backfills customer identifiers whenever possible. It means that they retroactively add the unique
customer identifiers in case consumer logs in, for instance.

These data was used to plot Figure 2.

2OVVaLyfauir uses a dynamic pricing algorithm and takes wholesale cost and any discounts set by the sellers as an input
in the pricing formula. See Wayfair pricing.

2l For data sensitivity reasons, we only show relative changes in the profits whenever applicable and never reveal
actual markups.

22We utilize multiple product categories to collect sufficiently large training data and enable the model to learn
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Network (Bell and Bala, 2015), which allows us to represent every image as a 512 x 1 vector (image
embedding). We then calculate cosine similarities between the image vectors to determine niche
products and run a heterogeneity analysis based on that. We tag products as niche if the cosine
similarity of the product’s image to all the remaining images in the same category is low, i.e., the
product differs from other products. We also use these image embeddings in our structural model.
Details of the Deep Learning model training are given in Appendix G.

To reduce data dimensionality, we focus on one product category: dining chairs.?3:24 We chose
the dining chairs as a category of interest for several reasons. First, it is a large category at Wayfair
that contains more than 30,000 products and is a big-ticket category where the median and mean
product prices are $349.99 and $431.99, respectively (Table 2). There is also significant horizontal
differentiation in the category because chairs differ in color, style, upholstery material etc., which
creates heterogeneity in pricing (Table 3). Therefore, consumers must engage in extensive search:
median consumer (among both purchasing and non-purchasing consumers), arrives for 2 sessions and

spends 15 minutes on the website. Moreover, it takes some time for the consumers to decide which

TABLE 2: Session summary statistics

Observations Min Mean Median Max St.Dev.

# of sessions 635,267 1.00 3.53 2.00 29.00 4.72

Session Duration (minutes) 635,267 0.04 35.82 15.21 273.00 50.81
Interarrival time (days) 274,745 0.00 14.09 8.00 59.00 15.39
# of products 635,267 0.00  6.32 2.00 63.00 10.40
Price ($) 35,873 4.46 43199  349.99  2999.99  291.27

Notes. This table reports summary statistics of consumer searches in dining chair category.

product to purchase, which is why the median interarrival days is 8 days. Thus, this is a category
where privacy restrictions may play an important role because at the next consumer visit, the cookie
files may already be deleted.?® Finally, this is the category where consumers tend to repeat purchase
items. For instance, consumers may buy 1-2 chairs and subsequently purchase additional chairs. The
repeat purchase behavior is important in assessing the customer satisfaction with the product.
Overall, our data are unique because we observe consumers’ search behavior at a very granular
level, including their pixel-level actions. Moreover, we know whether consumers logged in or were
cookie recognized, as well as the channel they used to arrive to the website, e.g., advertising. The
fact that we observe detailed consumer behavior and the sellers’ and platform’s price and cost data

allows us to credibly evaluate the impact of privacy restrictions on all main parties on the platform:

diverse image aspects, including shape differences and other characteristics, across various product categories.

2We explicitly state in the rest of the paper if we switch to analyzing all of the data in a particular analysis for
statistical power purposes.

24We deliberately selected a category that experienced minimal Covid-related impact, while consciously avoiding
categories heavily affected by the pandemic such as office furniture or kitchen appliances.

25Recall that the Safari policy will reset first-party cookies in 7 days.
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TABLE 3: Heterogeneity in dining chairs

Upholstery Material Mean Price ($) Median Price (8) St.Dev. Price (8) % of Products

Genuine Leather 739.10 579.00 565.93 10.18
Fabric 547.77 419.99 412.51 43.92
Faux Leather 472.98 369.99 354.47 26.63
Velvet 450.88 334.99 362.24 19.06
Metal 228.12 243.74 73.75 0.03
Wood 226.89 225.99 75.92 0.07
Plastic / Acrylic 161.88 180.49 69.58 0.08
Wicker / Rattan 147.60 141.80 53.33 0.04

Notes. This table reports the distribution of prices in dining chairs by upholstery material type. The table is sorted in
descending order by first column (mean price).

the platform itself, sellers, and consumers.

4. EXPERIMENTAL RESULTS

To quantify the effects of personalization on consumers, product sellers, and the platform, we
ran a large-scale field experiment, where we randomly turned off personalization on product ranking
pages on Wayfair. This corresponds to the full disablement of personalization on the platform for a
random sample of consumers. The experiment included 9 million consumers and ran for two years
from January 2020 to December 2021. Consumers in the treatment group saw personalized product
rankings tailored to their browsing histories, while control group consumers saw non-personalized
bestseller rankings. Bestseller rankings are generated based on the aggregate historical popularity of
the products, i.e., even if the platform had consumers’ browsing history, the data were not used.

One could argue that personalization should benefit platforms, otherwise they would not run
the algorithms. However, the effects of personalization on the consumers and product sellers are
unclear. On the one hand, platforms have the incentive to provide better consumer-product matches
to nurture long-term consumer loyalty. On the other hand, regulators are concerned that platforms
may prioritize their own commercial interests over better consumer product-matches. For instance,
the platform could show higher margin items to the consumers they view as less price elastic.?6 In
the next subsections, we empirically investigate which mechanism prevails.

To illustrate the experimental variation, suppose there is a consumer who clicked on blue dining
chairs during the first session (Figure 4). When the consumer re-visits the website, if she was
randomized into a treatment (personalized) group, she sees personalized rankings that are generated
based on her browsing history. The platform will prioritize blue chairs in the personalized ranking

case as illustrated in Figure 5.27 If the consumer was randomized into the control group, she will see

26Gee Algorithms: How they can reduce competition and harm consumers 2021 (CMA) for more details.
2Tt is important to note that consumers may see both previously unseen blue chairs and the chairs they have already
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non-personalized bestseller rankings that are unrelated to her browsing history (Figure 6).

FIGURE 4: First session clicks

FIGURE 5: Personalized rankings FIGURE 6: Best-seller rankings

Note that during their very first session on the platform, consumers in the treatment and control
group will see the same set of recommendations. The reason is that the platform does not yet have
data to use for personalization.?® Thus, the results in this section should be treated as Intent-To-Treat
(ITT) rather than standard Average Treatment Effects (ATE).

We did randomization checks based on both consumer groups’ demographic data, as well as their
historical search and purchase behavior. Table C5 shows that there are no significant differences
between consumers in treatment and control groups, which validates correct randomization in the

experiment.

4.1. EXPERIMENTAL CHANGES IN PRODUCT RANKINGS

First, we illustrate the impact of the experiment on product rankings. In the personalized
(treatment) condition, products that were predicted to be more relevant to the consumer were placed
higher on the ranking pages. To validate the experiment, we take the top 50 most popular products

in the dining chair category overall and show the distribution of their ranks in the experimental

clicked on.
28 There is also a rule on the platform that prohibits changing rankings within the 30 minute interval during a
session, not to confuse consumers. Therefore, the rankings do not change within a session.
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(personalized) condition. In the bestseller non-personalized condition, these products would have been
shown at the top of the product ranking results. However, Figure 7 shows that in the personalized
condition the median rank of the top 50 product is 74. Given that there are 48 products on each
ranking page, this means that in the personalized condition 50% of the time a top product is shown
on the second page. This makes sense because the platform typically fills the first 72 positions (1.5
pages of the ranking results) with the personalized results. Note that it is completely possible for the

top products to be personalized in case there are consumers who click on these or similar products.?’

FIGURE 7: Rankings of Top 50 bestselling products in personalized condition

only 18% on the first page (rank <= 48)
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Notes. This figure shows the ranks of the Top 50 products when shown on
personalized pages. Despite being most popular products, the median product
is shown on position 74, on the second page of the ranking results. The reason is
that other products that are more relevant to consumers’ individual tastes take
higher positions in the ranking results.

Meanwhile, smaller sellers jumped in the ranking results by a median of 4 pages or 241 positions,
as illustrated in Figure 8. Thus, the experiment changed the rankings of the products as expected,
which further validates the experiment.3’

To summarize, the experiment changed product rankings quite substantially, where bestseller
products were shown on the second page of the ranking results or even further. Meanwhile, less
popular products gained the opportunity to be more prominent on the website. Next, we explore

how these experimental changes affected consumers, sellers, and the platform.

29Appendix H describes the personalization algorithm in more detail.

30More0ver, Figure D3 shows that the treatment intensity, i.e. the share of the personalized products on the
ranking pages increases as the platform collects more and more data about a consumer. Note that while the platform
tries to populate the first 72 positions with personalized products, it may not always be feasible due to factors such as
product unavailability or the algorithm finding fewer than 72 relevant products.
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FIGURE 8: Changes in ranking results in the treatment condition

(A) A ranking pages (B) A product ranks

Notes. This figure shows the jump in the pages and overall ranks of less popular products as a result of personalization.
Figure (A) shows that median product jumped four pages higher, and Figure (B) shows that the overall rank decreased
by 241 positions.

4.2. EFFECT OF PERSONALIZATION ON CONSUMERS AND THE PLATFORM

In this subsection, we estimate the effects of the experimental changes in the rankings on consumer
and the platform outcomes in the dining chairs category. Since there is experimental variation in the
treatment assignment, we estimate the treatment effect by regressing the outcome variable for each

consumer (y;) on the randomized treatment assignment (treatment;) as follows

y; = a + Btreatment; + €; (1)

where y; is the outcome variable of interest, such as clicks or revenue, treatment; is the treatment

indicator equal to 1 in case consumer ¢ is randomized into the personalized ranking group, and 0

otherwise.
TABLE 4: Effect of personalization on consumer and platform outcomes
Logistic OLS
(1) 2) 3) (4) (5) (6) (7)
Clicks  Add-to-cart Basket page Converted Log(Revenue) Purchases Log(Profit)
Personalized 0.002 0.011** 0.014*** 0.014** 0.021*** 0.024*** 0.015**
(0.012)  (0.005) (0.005) (0.005) (0.008) (0.008) (0.006)
Intercept 2.988*** 0.246*** 0.148*** -0.870%** 1.947% 1.095%** -
(0.008)  (0.004) (0.004) (0.004) (0.005) (0.006) (0.004)
Observations 635,267 635,267 635,267 635,267 635,267 635,267 635,267

Notes. This table reports the output from the estimation of equation 1. Data is at the consumer-level. Columns
(1)-(4) report the logistic specification and Columns (5)-(7) report the OLS specification results. Robust standard
errors in parentheses. The intercept in profit Column (7) is hidden for data sensitivity reasons. Statistical significance:
*p < 0.05, **p < 0.01, ***p < 0.001.

Table 4 shows that personalization does not affect the probability of clicking, but does increase the

probability of adding to cart by 1.1%, the probability of basket page visit by 1.4% and the purchase
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(conversion) probability by 1.4% (Columns 1-4 in Table 4). Consumers in the personalized group
bring more revenue (+2.1%) and more profit (+1.5%), which is partially driven by a larger number
of purchase instances (+2.4%) (Columns 5-7). Table D6 in the Appendix shows the effects for the
full experimental data, i.e., all 9 million consumers; and Table D8 shows the experimental results
among consumers who had a browsing history before the experiment. The results are consistent
across different samples.

Personalization is clearly beneficial to the platform through higher revenue and profit. On
the consumer side, purchase metrics exhibit a positive trend, however it is not yet clear whether
consumers benefit from personalization. One concern that regulators have is that personalization
may drive consumers to purchase higher margin items. To test this hypothesis, we analyze consumers’
purchase outcomes. We estimate Equation 2 on the consumer-purchased product-level data. Table 5
shows that purchasing consumers in the personalized group buy 0.5% higher priced items, and they
buy more items (+0.9%) than the purchasing consumers in the non-personalized group. This leads
to the platform earning 1.5% higher revenue from the purchasing consumers. However, contrary to
the regulators’ concerns, we do not find significant differences in the platform profits from purchasing
consumers.?! These results suggest that while consumers in the personalized group purchase slightly
more expensive products and drive revenue, personalization algorithm per se does not lead consumers
to higher margin items.

Yij = a+ Btreatment; + €;; .

TABLE 5: Effect of personalization on consumer outcomes: purchase outcomes

Purchase Outcomes

(1) (2) 3) (4)

log(price) log(quantity) log(revenue) log(profit)

Personalized group  0.005"** 0.009*** 0.015%** 0.004
(0.001) (0.001) (0.003) (0.003)

Intercept 6.022%** 2.075%* 7.343%** -
(0.001) (0.001) (0.002) (0.002)

Observations 2,022,708 2,022,708 2,022,708 2,022,708

Notes. This table reports the output from the estimation of equation 2. Data is at
the consumer-purchased product level. The intercept in Column (4) is hidden for
data sensitivity reasons. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

Next, we explore the quality of the product matches between personalized and non-personalized
groups. To proxy for the match quality, we use detailed data on post-purchase product returns and
repeat visits. Note that consumers tend to repeat visit and to repeat purchase products in the dining
chairs category. We observe in the data that consumers purchase a set of 1-2 chairs and then repeat
purchase after some time. Our hypothesis is that they test the chairs before purchasing the full set.

We estimate the logit specification of Equation 1 to identify the probability of repeat purchases. The

31 The profit intercept is hidden to adhere to the legal agreement with the platform and prevent the disclosure of
their margins.
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outcome variables y; are the indicator variables for whether the consumer repeat purchased 7, 30, 90,
150, 365, or 500 days after the first purchase. Columns (1)-(6) of Table 6 show the estimation results.
We find that the repeat purchase probability is similar in the personalized and non-personalized
groups 7 days after the first purchase. However, 30 to 500 days after the first purchase the repeat
purchase probability increases by 2.2-3.9%. Table D7 shows the same regression results for the
full set of consumers across all product categories in the experiment and confirms that the results
are similar. The fact that consumers in the personalized group are more likely to repeat purchase a
product within the same product category suggests that they are satisfied with the initial product
match.

TABLE 6: Effect of personalization on repeat visits and product returns (dining chair consumers)

Repeat purchases Returns
(1) (2) 3) (4) (5) (6) (7)
7 days 30 days 90 days 150 days 365 days 500 days product returns

Personalized 0.007 0.022* 0.025%*  0.027** 0.023* 0.039*** 0.003
(0.015) (0.012) (0.008) (0.011) (0.012) (0.015) (0.006)

Personalized x Personalized product -0.103***
(0.022)

Intercept -1.663***  -0.726***  0.218%*  (0.214**  0.726***  0.971*** -2.727**
(0.010) (0.008) (0.006) (0.008) (0.008) (0.011) (0.004)

Observations 136,643 136,623 268,058 136,585 136,568 90,480 1,898,251

Notes. This table shows the effects of personalization on repeat purchases and product return rates. Columns (1) - (6) are estimated
using logit version of 1. Data are at the consumer level. Column (7) is the estimation of Equation 3. Data are at the consumer-purchased
product level. Consumers in the personalized group might buy the item that was part of the organic rankings and wasn’t personalized to
them and we control for that by interacting the treatment dummy with the indicator for whether the product was personalized. For
statistical power, we’ve included all consumers who were shopping in dining chairs category and their visits to the same marketing
category, i.e. dining chairs, chairs, Each column represents the set of people who purchased a dining chair and we check the probability
they will purchased in 7, 30, 90 etc. days. Robust standard errors in parentheses. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.

To further investigate the quality of product matches, we show that consumers in the personalized
group are 10% less likely to return the product post-purchase (Column 7 of Table 6). The specification

we use is the logit form of the following equation:

Yij = o+ Pitreatment; + Patreatment; x personalized productj + 4 (3)

where y;; is the dummy variable indicating whether consumer i returned purchased product j;
treatment; is the indicator for the treatment assignment of consumer i where treatment; = 1 if
the consumer is in the personalized group, and 0 otherwise; personalized product; is the indicator
for whether consumer bought a product that was personalized to her. Recall that typically the
first 1-2 pages of product rankings feature personalized products, and the rest of the products are
non-personalized to consumers’ browsing history. Therefore, it is possible that consumers in the
personalized group buy a product that was not personalized to them. We find that consumers who

were in the personalized group and bought a product that was personalized to them were 10% less
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likely to return the purchased product (Column 7 of Table 6). The results are robust both in the
dining chairs category and in the full sample of experimental consumers (see Table D7 ).

Overall, the results above suggest that consumers benefit from personalization through better
product matches, which we measure via higher repeat purchase probability and lower probability of
returning a product.

So far, we focused on consumers’ purchase outcomes, but the entire search process is important.
Therefore, next we explore whether consumers in the personalized group (independent of purchase
status) experience lower search costs than the consumers in the non-personalized group. We measure
search costs by exploring consumers’ filtering behavior and the time they spent searching. Estimating
Equation 1 with the search-related outcome variables, we find that consumers in the personalized
group are 1.9% less likely to filter a ranking page, and conditional on filtering they apply marginally
fewer filters. Moreover, we find that consumers in the personalized group spend 3.6% fewer days
searching for a product compared to the consumers in the non-personalized group. These results

suggest that consumers in the personalized condition incur less search costs on the platform.

TABLE 7: Effect of personalization on search costs

Logistic OLS

(1) (2) (3) (4)
Filtered (0-1) Log(# of filters applied) Position of the filter Log(days till purchase)

Personalized -0.019*** -0.007* -0.021** -0.036*
(0.007) (0.004) (0.010) (0.020)
Intercept -1.716%** 1.435%** 2.768*** 2.409***
(0.005) (0.002) (0.007) (0.014)
Observations 635,267 140,574 179,628 43,110

Notes. This table shows the output from the estimation of equation 1. Robust standard errors in parentheses.
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.

The takeaway from this subsection is that both consumers and the platform benefit from
personalization. Moreover, the increase in the platform’s profit is driven by the repeat purchase
behavior of consumers rather than diversion towards high margin products. These results suggest
that the platform and consumers’ incentives are aligned in the sense that better consumer-product

matches lead to better outcomes for both consumers and the platform.

4.3. EFFECTS OF PERSONALIZATION ON PRODUCT SELLERS

Next, we explore the effect of personalization on product sellers. Recall that Wayfair is an
intermediary that connects consumers and sellers but does not produce its own products. Typically,
the seller sets the wholesale price, and the platform uses it as a foundation to set the final retail

price.?? To understand how personalization affects different sellers’ products, we proceed in several

32Gee Wayfair pricing for more information.
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steps. First, we use pre-experiment data from January 2018 to January 2020 to calculate each
product’s historical popularity, i.e., revenue earned and quantity sold. We also ranked products by
their historical revenue within a category of products, where rank 1 means that the product is a best-
seller, rank 2 means the product is the second best etc. Next, we construct a consumer-product-seller
level dataset to investigate whether consumers in the personalized group buy more or less popular
products. Table 8 shows the results of estimation of Equation 2. We find that consumers in the
personalized group purchase products that have 6% less historical scaled revenue (-$251 with the
intercept of $4,011), have 5% less quantity sold (2.4 with the intercept of 49.4), and are 94 positions
ranked lower (less popular) compared to the consumers in the non-personalized condition. These

results suggest that personalization leads consumers to purchase less popular products.

TABLE 8: Effect of personalization on sellers

Historical product

(1) 2) 3)
Revenue Quantity  Relative rank
Personalized — -251.784™**  -2.406™** 94.239***
(34.734)  (0.506) (26.417)
Intercept 4011.621***  49.388*** 1.3e+04***
(25.001)  (0.364) (19.014)
Class FE Yes Yes Yes
Week FE Yes Yes Yes
Observations 429,417 429,417 429,417

Notes. This table shows the output from the estimation of
equation 2. Data is at the consumer-purchased product level.
Robust standard errors in parentheses. Significance levels: *p <
0.05, **p < 0.01, ***p < 0.001.
Next, we focus on the below-median historical revenue sellers and investigate the importance of
personalization for them. Table 9 shows that smaller sellers get 20% higher revenue (+$79 with the
intercept of $395) in the personalized condition, and they are 15% more likely to be shown on the

first 2 pages of the product ranking results.

TABLE 9: Importance of personalization for below median-revenue sellers

OLS Logit
(1) 2)
Below median-revenue seller Revenue First two pages
Personalized 79.201%** 0.147***
(8.232) (0.011)
Intercept 395.966*** 6.221%**
(5.469) (0.008)
Observations 2,415,416 16,612,314

Notes. This table shows the output from the estimation of equation 1. In Column
(1) data is at the seller level, in column (2) the data is at the seller-product level.
Robust standard errors in parentheses. Significance levels: *p < 0.05, **p <
0.01, ***p < 0.001.
Thus, personalization leads consumers to purchase smaller sellers’ products, and the latter get

significant part of their revenue from personalized impressions, especially since they are placed more
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prominently on the website under personalization.

Next, we analyze the effects of personalization on niche sellers. There is a difference between
lower revenue sellers and niche product sellers. We view niche products as those that are dissimilar
from the mass market dining chairs. These products may or may not have low historical revenue.

We train the image recognition Deep Learning model to efficiently identify niche products versus
mass products. The model takes as an input more than one million product images and outputs a
512 x 1 vector representation of an image (embedding), so that similar images are close in this vector
space and dissimilar images are farther away. Figure 9 illustrates the idea. A well-trained model
should output vectors such that the cosine similarity between similar white chairs is high, e.g., 0.94,
and the cosine similarity between dissimilar white and blue chairs is low (e.g., 0.45). Appendix G

provides more details on the algorithm training.

FiGURE 9: Illustration of the image embedding process
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Notes. This figure illustrates how the image embedding algorithm works. Image
embedding is a compact representation that captures the essential information
about the image. Each image is converted into a numerical vector of 512 x 1. This
procedure allows us to calculate pairwise cosine similarities between vectors.

We use the embedding vectors to calculate pairwise similarities between products. Figure 10
Panel (A) shows the distribution of average cosine similarities of each product with all the remaining
products in the dining chairs category, and Figure 10 Panel (B) shows the distribution of maximum
cosine similarities of each product in the dining chair category.

Panel (B) of Figure 10 shows that more than 50% of the products have at least one other product
with which they have high cosine similarity (0.92 and higher). However, there is also a long tail of
products that are one-of-a-kind and have low maximum cosine similarity to other products. Therefore,
we define niche sellers as those that have low maximum similarity to the rest of the products. The
relationship we observe in the data is that sellers that carry a small number of products in their

portfolio are the ones that have low cosine similarity to other products. Figure 11 illustrates this.
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Fi1cURE 10: Distribution of product similarity in dining chairs

(A) Mean cosine similarities between products (B) Maximum cosine similarities of each product

Notes. This figure shows the distribution of mean cosine similarities and maximum cosine similarities for each product
in dining chairs category. We take fifty thousand products that historically existed in the category and calculate
pairwise cosine similarities between them. We then calculate mean and maximum similarity by each product and
plot the resulting distributions. Median similarity is 0.36 (not high), however, more than 50% of the products have a
matching product is highly similar to the anchor product (cosine similarity = 0.92).

We split sellers into quintiles based on the number of products they carry and plot the number
of products that they have high cosine similarity with. A product of the first quintile seller (that
carries a smaller number of products) is, on average, similar to only 34 other products. At the same
time, fifth quintile seller-product has 151 other products it is highly similar to. Thus, the number of
products a seller carries is positively related to its mass-market status.

FIGURE 11: Mass-market status of products by brand size
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Notes. This figure illustrates the relationship between brand size and the quantity
of closely related products. Brand size is defined as the total number of products
offered by a brand. The x—axis represents the quintiles of brands categorized by
their product count. The y-axis represents the number of other products that
exhibit a high degree of similarity to the brand, measured by a cosine similarity
score of 0.9 or higher. The numbers inside orange circles indicate the mean number
of highly similar other products.

Using the above observation, we compare the total revenues earned in personalized group versus
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non-personalized group among each seller size quintile. Figure 12 shows the distribution of revenue
lifts across quintiles. Smaller (niche) sellers on average experience 29.8-87.3% lift in total revenue3?

due to personalization, while larger sellers’ revenue increases only by 2.7 - 6.2%, on average.

FIGURE 12: % Revenue Lift from personalized impressions by brand size
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Notes. This figure illustrates the relationship between brand size and the change in
the revenue in personalized condition. Brand size is defined as the total number
of products offered by a brand. The xr—axis represents the quintiles of brands
categorized by their product count. The y-axis represents the differences in revenue
earned from personalized impressions versus non-personalized impressions. The
numbers inside orange circles indicate the median revenue change for each quintile.

Thus, we find that personalization benefits smaller historical revenue sellers and niche product
sellers, because they are more likely to gain prominence on the website and are more relevant to the
consumers who view them.

To summarize this section, experimental results suggest that platform, consumers and smaller
sellers benefit from personalization. These results serve as reduced-form measures of welfare gains.

In the next section, we develop a structural model to evaluate how privacy restrictions affect the

benefits of personalization.

5. MODEL

Model Overview. This summary overviews the search model motivated by the empirical patterns
we observe in the data, which we describe below. Figure 13 illustrates the model overview. The key
components of the model are: viewing, clicking, learning, purchasing, and the multi-session aspect of
search. We consider a consumer with unit demand who is searching for dining chairs. Consumer
arrives to the platform and views part of the ranking page (limited awareness) due to screen size

constraints. For instance, consumer may only observe the top part of the ranking pages. Next, given

33Not only purchasing consumers, but overall revenue.
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FIGURE 13: Overview of the Model
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the products in view on the consumer’s screen, she chooses between (i) clicking a product she has
viewed, (ii) scrolling down to view additional products, and (iii) leaving. After clicking a product,
consumer can choose to purchase a clicked product or follows the previous process: chooses between
clicking, scrolling, and leaving. Note that consumer can only purchase a product she clicked on, so
that after viewing a product she does not have the option of purchasing unless she clicks. After
leaving the website, consumer can choose to re-visit the website in which case she lands on a ranking
page again (multi-session search). However, the rankings change on subsequent visits either as a
result of personalization, or because of the bestseller algorithm updates.?* Given the new rankings,
consumer searches following the same process.

Counterfactuals investigate the impact of privacy restrictions on the marketplace. Recall that
privacy restrictions affect the quality of the data input into the personalization algorithms, and,
therefore, the rankings that are shown to the consumers. In the counterfactuals, we re-train the
personalization algorithm using the fragmented data input and generate counterfactual product
rankings. Thus, the counterfactuals change the quality of the data, and, therefore, product rankings
(blue circles in Figure 13). Given the newly generated rankings, we use the model to simulate how
consumers search and purchase. We can then calculate the changes in consumer welfare, and the
changes in seller and platform revenue and profits.

One might wonder why we focus on consumer behavior and do not model sellers’ and platforms’
decisions. We do not have to model platforms’ actions because we observe the personalization

algorithm they use and re-train their algorithm directly. It is hard for the platforms to change the

34Bestseller rankings may change because the bestseller algorithm is Bayesian and updates rankings during the day.
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algorithms in a fast manner, so we operate under the assumption that the platforms’ algorithm does
not change in the counterfactuals. In the last part of the paper, we relax that assumption.

Next, we do not model sellers’ response to the privacy restrictions and to the changes in the
personalization algorithms. The reason is that sellers observe aggregate performance of their products
on the platform and do not see whether traffic is driven by personalization. Thus, they will not
be able to distinguish between the mechanisms that could drive traffic changes. Moreover, they
have limited knowledge about the details of the algorithms. Therefore, we only focus on consumer
behavior in the model. Next, we show the empirical facts that motivated the model and formalize

the model.

5.1. EMPIRICAL FACTS TO MOTIVATE THE MODEL

This section reports empirical patterns in the data that motivate ensuing model. Consumers’
search behavior can be described by a sequence of decisions and we organize the discussion to
capture the progression of consumer search and to highlight the decisions that are important for the
counterfactual analysis.

Viewing. When consumers reach a product category page, they do not see the entire ranking
results. They usually view only top part of the results and have to scroll down to view additional
products (Figures 14 and 15). Formally, this means consumers have limited awareness of products
and have to incur additional costs to view the remaining products.?® We observe that there are

significant differences in viewing behavior between consumers who see personalized results versus

non-personalized results. Table 10 shows that consumers in personalized group viewed four products
less within a page and viewed 1.5 pages less than consumers in the non-personalized group. Overall,
personalized group consumers viewed 83 products less and purchased products placed higher in the
ranking results. This highlights that personalized rankings change the incentives of consumers to
scroll and view additional products. When we change the rankings in the counterfactuals we expect
that consumers’ viewing incentives will change, and it is important to capture that in the model.

Learning. We observe that both in the personalized and non-personalized groups consumers exhibit
learning behavior similar to the one described in Bronnenberg, Kim and Mela (2016). After clicking
on a product and observing its utility, consumers seem to update their beliefs about the remaining
products that are similar to the clicked ones. We observe in the data that consumers gradually
converge in the attribute space to the product they eventually purchase (Figure 16). We also observe
in the data that consumers tend to stop searching for products that are similar to the ones that they

previously did not like ( Table E19 ). This phenomenon is called spatial learning in the literature

35Traditional search models usually assume full awareness, which means that consumers observe the entire set of
products that are available on the website. Two recent papers that restrain from this assumption are Greminger (2022)
and Gibbard (2022).
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FIGURE 14: Top view of the ranking page FIGURE 15: View after a scroll
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TABLE 10: Viewing patterns

Search patterns Purchase

(1) (2) 3) (4)

In-view (within a page) Search page In-view (full rank) Rank (Purchased product)

Personalized -4.163*** -1.587*** -83.752%** -25.133***
(0.102) (0.047) (2.200) (4.489)
Intercept 18.679*** 2.830%** 109.314*** 49.232%**
(0.045) (0.046) (2.164) (1.861)
Observations 2,536,098 2,536,098 2,536,098 5,659
Clusters 635,267 635,267 635,267 4,699

Notes. This table reports the output from the estimation of equation 2. Data is at the consumer-session level and

tracks the number of products and pages that were in view for a consumer. Significance levels: *p < 0.05, **p <

0.01, ***p < 0.001.
(Hodgson and Lewis, 2022). We think that learning is important to account for because if consumers
learn fast they can search in a more efficient way even under distorted personalized rankings. If we
do not account for learning, we would overestimate the negative effects of privacy restrictions.

FI1GURE 16: Convergence patterns during consumer search

(A) log(price) (B) chair width

Notes. This figure shows that consumers gradually converge towards a chosen product during search. The z-axis shows
consumer’s search decile (progression), and y-axis shows the absolute deviation of the searched product attribute from
the chosen (purchased) product’s attribute.

Multi-session search. As was mentioned in Section 3, dining chairs are big-ticket products that

require some consideration before consumers purchase. Since rankings change at each re-visit, it is
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crucial that we account for the multi-session aspect of search.
Recommendation widgets. Recommendation widgets are additional product recommendations
that are featured on the product pages. Technically, we could ignore them because they are not
personalized and do not use individual-level data. However, consumers extensively click on the
products in the widgets. Thus, we need to consider the widgets to get a complete view of consumers’
search paths. Moreover, the products in the widgets are similar to the one consumers clicked on,
which is why the widgets could be viewed as personalized to consumers’ current browsing history. We
ran a randomized experiment with the platform where we randomly removed recommendation widgets
from the product pages. We use this experiment together with the above described experiment to
estimate model parameters.
Refinement actions. Table 7 showed that consumers in the personalized group tend to filter less,
which could indicate that their search costs are lower. However, we do not model refinement actions
because we do not see any experimental evidence to support that filtering affects click, add-to-cart or
purchase behavior. Table D9 shows that consumers who filter are more active on the website, but
there are no differences in the outcomes between personalized and non-personalized group consumers
who filter. Moreover, we do not see significant differences in the types of filters applied in each group
( Figure E7 ). Thus, we decided not to model refinement actions since they do not seem to change
the outcomes under personalized rankings.3%
Inter-session actions. We decided not to model consumers’ inter-session behavior for several
reasons. First, we do not have data on how consumers search outside Wayfair.?” Second, we do not
see any differences in the distribution of traffic sources that consumers in the personalized versus
non-personalized groups use to return to the platform. We checked both the channel types (e.g.,
direct traffic, email) and the referral URLs, and did not see any differences (see Figure E5 and
Figure E6 ). Thus, our hypothesis is that personalized rankings affect consumers’ behavior within a
website visit but do not affect the way they search on other platforms, websites.

Thus, the main components in our model are viewing, clicking, learning, and purchasing patterns
of consumers. We take the spatial learning model proposed in Hodgson and Lewis (2022) as a baseline
and extend their model by allowing for consumers’ limited awareness and multi-session aspect of

search, which is crucial for our counterfactual analysis. Next, we formalize the model.

5.2. SET-UP

Consumer ¢ arrives to the website at time ¢ = 1 and searches for a product on the ranking

pages. There are J products on the website. Consumer has limited awareness, which means she

36M0reover, it is hard to solve the model with refinement actions. For an example paper, see Chen and Yao (2017).
3"We attempted to match our data with Comscore, however, due to the incompleteness of Comscore, did not get a
good overlap.
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observes only part of the products that are featured on the ranking pages. For instance, due to
screen size limitations, consumer may view only several products, and she has to scroll down to view
additional products. We call the set of products that consumer has viewed at time ¢t her awareness
set As. For each product in her awareness set, consumer observes a vector of product characteristics:
X; = [pricej, rating;, #ratings;, imagej], j € A;. These characteristics are observable directly on the
ranking pages. We represent images in two-dimensional space using the image embeddings trained
using Siamese Neural Network (Appendix G) and UMAP.

Consumer’s information set at the beginning of search is as follows. She knows (i) her preferences
towards observable product characteristics, (ii) her awareness set Ay, (iii) the observable characteristics
X of viewed products, (iv) the value of the outside option, and (v) she has rational beliefs over the
distribution of the observable characteristics of the products outside her awareness set. Given this
information set, consumer chooses between leaving, viewing and clicking.

Leaving the website is possible at any point in case consumer has sufficiently low beliefs over the
product payoffs. If consumer decides to stay she chooses between viewing and clicking.

Viewing additional products is costly. Consumer incurs a scrolling cost of ¢; to expand her
awareness set: A;11 = A; U Ry, where A; is the initial awareness set, R; is the set of products viewed
after scrolling, and A;,1 is the resulting awareness set.38

Clicking on a product reveals additional product characteristics, such as product reviews, but
is costly too. Consumer incurs a clicking cost of ¢; and can only click on a product she viewed (is
aware of). Clicking on product j reveals the true utility of the product. We follow the specification

proposed by Hodgson and Lewis (2022) and model the utility of clicking on product j as:
uij = mi(Xj) + &5 + e (4)

where m;(X;) : X; — R is the function that maps observable product characteristics X; to the
payoffs, &; is the unobserved product quality common to all consumers and drawn iid from N (0, 0]2.),
and ¢;; is the idiosyncratic taste shock drawn iid across consumers and products from N(0,02).
There are several important components of this specification that are worth mentioning. First,
consumer forms prior beliefs over product payoffs on the ranking pages (before clicking). In particular,
given products’ observable characteristics, consumer ¢ forms a prior belief over the mean payoff
wi(X;) and the prior uncertainty x;(X;, X;) of product j € A;. This part is captured by m;(X;)

39

in the utility specification 4. In particular, we assume that m;(X)>” is a function sampled from

Gaussian Process with mean p;(X )% and covariance (X, X’).*»42 Second, to reveal other a-priori

38 After scrolling consumer observes the same set of characteristics for each newly viewed product, i.e. price, etc.
39m;(X) is the vector J x 1, where each element corresponds to each product 7, i.e., mi(X;) € my(X).

40,,;(X) is the vector J x 1, where each element corresponds to each product j, i.e., y; (X5) € ui(X).

41,%(X , X /) is the J x J variance-covariance matrix of products’ payoffs.

42We describe this specification in more detail in the next subsection.
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unknown product characteristics, consumer clicks on a product and reveals §; part of the utility.
Additionally, there is an idiosyncratic taste shock to the utility e;;, which is revealed after clicking
on the product page. Together all these components constitute the true utility wu;;.

Clicking on a product helps the consumer evaluate the correctness of her prior beliefs. Suppose
consumer had high prior belief y;(X;) regarding product j, but the actual utility of the product
appeared to be low. This is illustrated in Figure 17. The teal line is the payoff function m;(X)
sampled from Gaussian Process with consumer’s prior mean and variance-covariance beliefs. Suppose
consumer thought that the payoff of the solid wood chair is high, so she clicked on it. The true utility
ui; (red cross) turned out to be low. For instance, reading reviews revealed that the product is not

good. As a result, consumer updates her posterior beliefs given the new information.
FIGURE 17: Illustration of consumer learning process

mi(X)y

~ prior mi(X) ——

actual utility | X |
(X)

Dining
chair

Solid Wood
$239.99

Thus, clicking (i) reveals additional product characteristics, (ii) reveals product utility, and (iii)
allows consumer to update her beliefs. Moreover, on the product pages, consumer views additional
product recommendations that are similar to the clicked product. This automatically expands
consumers’ awareness set at no cost. Thus, after clicking product j, consumer’s awareness set
becomes A;y1 = Ay U Rj; where Rj; is the set of products that are recommended on product j at
time ¢.43:44
After clicking a product, consumer can either purchase the clicked product, go back to the ranking

page and click on one of the products she is aware of, view additional products, or leave the website.

Next, we describe how consumer decides which action to take.

43For simplicity, we assume that while consumers have rational expectations over the remainder of the ranking pages,
consumers do not form beliefs over the recommendation widget. The rationale is that the platform shows most similar
products which means the index of the products in the recommendation widget coincide with the anchor product in
expectation.

44Consumer observes the same set of characteristics, i.e. price, ratings, numbers of ratings and images for the
products on the recommendation widgets.
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5.3. CONSUMER’S DECISION PROBLEM

Technically, one would have to write and solve a full dynamic Bellman equation to get consumer’s
optimal search path. However, with thousands of consumers and thousands of products it is not
feasible to do backward induction. Instead of solving the problem by backward induction, we use
a heuristic near-optimal approximation to the solution given the descriptive evidence in the data.
To decide whether and what to search, we assume that consumer follows an index strategy. When
consumer lands on a ranking page, we assume that she constructs a utility index for the products in

her awareness set A;;

Zijt = Whijt + NRije — Cijt, J € Aur (5)

where z;;; is the utility index of consumer ¢ for product j at time ¢, ;5 = it (X j) is consumer i’s
prior mean payoff of product j at time ¢, k;jz = kit(X;, X;) is the prior uncertainty about the j’s

.45 If consumer decides to click on a product in

payoff, ¢;j; is the cost of clicking product j at time
her awareness set, she clicks on a product with highest index: j* = argmax;c »,, 2ijt-

This index policy is similar to the Upper-Confidence Bound algorithm widely used in multi-armed
bandit literature. We prove the near-optimality of the algorithm in our setting in Appendix B. The
index policy captures that consumer has higher index for products with higher prior mean payoff
(1), but may also explore products with higher uncertainty.*® This search behavior aligns with the
standard exploration-exploitation tradeoff at the core of bandit literature.

Note that consumer may choose to view additional products before clicking. Consumer does
not observe characteristics of the products outside her awareness set: J/A;. However, Assumption

1 states that consumer has rational expectations over products outside her awareness set and she

knows the correct distribution from which the observable characteristics are sampled.

Assumption 1 (Rational expectations). Consumers do not know the full set of products available
on the platform, i.e., they have limited awareness. However, we assume that they know the correct

distribution of all the products that are not in their awareness set.

Therefore, consumer can construct an expected utility index summarizing the expected maximum

utility that she believes she can find outside her awareness set. Formally, consumer constructs:

Elmaz(ziji) — cs(rie)], j € J/ A (6)

where expectation is taken with respect to the correct distribution of the observable characteristics

of the products outside the awareness set. Two features are worth mentioning. First, consumer

45We abbreviated the wijt, kit(Xj4, X;) for simplicity.
461t is an empirical question whether consumer likes exploring uncertain products ( > 0) or dislikes it (7 < 0) or is
completely indifferent (n = 0).
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has beliefs over the maximum utility index she gets from clicking one of the products outside her
awareness set. The net utility is calculated in the same way as in Equation 5 and already includes the
clicking cost. Second, consumer incurs additional scrolling cost of ¢4(r;) to view products. Similar to
Greminger (2022), we model the scrolling cost as a function of the position in the rankings reached so
far, r;;. This means that scrolling costs are allowed to change depending on the number of products
consumer viewed so far.

Consumer decides to view the products instead of clicking if the expected maximum utility
index from viewing products outside awareness set is higher than the maximum utility index in the
awareness set

[jemJ%(“(zm) CS(th>] }Ielii Zijt (7)

Recall that the full discrete choice problem that the consumer solves is choosing between (i)

leaving, (ii) purchasing clicked item, (iii) viewing and (iv) clicking. Formally, at time ¢, consumer

chooses:
max{ wug=20 g MaTicA,,Zijt, 1| max zji — cs(rs 8
{ ,  mazsen,sr, B ma s = ca(ru)]} ®
outside option  best utility choose highest
i} observed so far  index product view more
Leave 1 products
Purchase Click 1
View

5.4. BELIEF UPDATING

At each point in time, consumer keeps track of the following state variables:*” (i) current mean
payoffs 1;(X), (ii) current covariance matrix (X, X’), (iii) best product observed so far 7, (iv)
utility of the best product observed so far 4, (v) awareness set at the beginning of time ¢, A;, and
(vi) the set of products that she hasn’t viewed yet J/A;, (vii) the set of products she hasn’t clicked
on yet. We explain the transition of the mean payoffs and the covariance function, which are the
moments of the Gaussian Process function m(X) from which the product payoff function is drawn.

After each click consumer observes the utility of product j,u;, and updates her beliefs about all
the remaining J — 1 products. Consistent with the Gaussian process specification, posterior mean

utilities on the remaining J — 1 products are updated as follows:

/ KX, X;)
w(X_j;) = p(X) + (u; — n(X;)) (9)
W) = X)) Y Ry ot e L)
posterior means prior means deviation of observed

weights utility from the prior

where p/(X_j|;) is the (J —1) x 1 vector of posterior means on the yet unclicked J — 1 products;
pu(X_;) is the (J —1) x 1 vector of prior means on these products; x(X_j, X;) is the covariance

between the payoffs of products —j and j; x(X;, X;) is the variance of the payoff of product j; Ug

4TWe drop the ¢ subscripts for convenience

31



and o2 are the uncertainties in the distribution of §; and ¢;, respectively. Intuitively, the posterior
mean payoff of a product -j is its prior mean payoff plus a weighted deviation of the actual observed
utility from the prior mean of j, (u; — pu(X;)). Weights are directly proportional to prior covariance
between j and -j. If kK(X_;, X;) = 0, i.e. the clicked product j and some other product —j are
unrelated, then the posterior on -j is not updated at all. If k(X_;, X;) is high then the posteriors
will be updated more for -j. In the example on Figure 17, one could argue that receiving low utility
on wooden chair may downgrade consumers’ beliefs about other wooden chairs but does not change
consumers’ beliefs about leather chairs.

Posterior covariances are updated as follows:

total uncertainty
about product j payoff

/ 2 2\ —1,.T
K—jlj - K—jli Kejj (Kjj+0z+02) K (10)
——
posterior prior reduction in uncertainty
covariance matrix covariance matriz

is the (J —1) x (J — 1) prior

where ”lej is the (J —1) x (J — 1) posterior covariance matrix, s_j;

covariance matrix. The intuition behind Equation 10 is that the posterior uncertainty about product

relationships decreases by the term s_j ;(k;j; + 0f + o2) kT, 5,

which is positive and increasing
in the prior covariance between products j and -j. If products are not related at all, then there is
no decrease in the uncertainty of product -j’s payoff. If products have high prior covariance, the
uncertainty is going to decrease because consumer revealed the true utility of a similar product j.
We want to emphasize the role of these updating rules in consumer’s decision problem described

in the previous subsection. At each time ¢, consumer uses the current mean payoff and covariance

beliefs when constructing the utility index:
Zijt = Wijt + NRije — Cijt, J € Air (11)

This utility index is used both for in the clicking and the viewing decisions. After every click,
consumer updates her beliefs and her utility indices are updated accordingly.
Assumptions. In the model, we make the following main assumptions. First, we assume that it is
costless for the consumer to navigate back to the ranking page from the product page. Second, we
assume that consumers have perfect recall within and across sessions. Thus, consumers remember
and keep track of all the products they have viewed previously. Third, we assume that consumer
do not forget any information they obtained across sessions:*® this allows us to model multi-session

search via propagating posteriors from the previous session as priors to the next session.

48 A more involved model could use power prior that allows for a forgetting factor. See Ibrahim, Chen, Gwon and
Chen (2015). Alternatively, one could incorporate the forgetting specification from Mehta, Rajiv and Srinivasan (2004).
We do not do this for computational reasons.
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5.5. MODEL PARAMETRIZATION

In this part, we explain how we estimate the model using detailed clickstream and pixel-level

data. Recall that the utility of consumer ¢ from purchasing product j is given by

uij = mi(X;) + & + €4 (12)

where m;(X;) is drawn from a Gaussian Process with prior mean payoff ;;(X) and r;(X, X’),
& ~ N(0, Ug) and €;; ~ N(0,02). We further parametrize the prior mean and covariance functions
as follows. Prior mean function over product payoffs is a linear function of observable product
characteristics:

n(X) = a+ X5, (13)

where X is a vector of observable product characteristics, 5; are consumer preferences over observable
characteristics. Similar to Berry, Levinsohn and Pakes (1995), we allow for consumer heterogeneity
through random coefficients such as 3; ~ N(5,Q): 3 is the mean preferences and () is the variance
matrix.

To get positive-definite variance-covariance matrix, one of the common specifications in Gaussian

process is to parametrize the prior £ matrix as a squared exponential kernel:

Xia — Xka)?
K(X;j, Xp,) = exp _ZM (14)
a Pa
where X, — X, indicates the difference between the value of attribute a =

{price,rating, #ratings,image} for products j and k, p, is the learning parameter along
the dimension of attribute a. This specification implies that the covariance between products
characterized by the observable vectors X; and X depends on the sum of the distance between
these vectors along each attribute scaled by the learning rate p. For example, if all p, = 0 then the
covariance between products j and k is zero, i.e., they are unrelated. However, if p, # 0, and the
distance between attributes X, — X}, is low then the product payoffs are highly related.

To simplify the estimation procedure, we assume that conditional on viewing the product,
clicking cost is constant ¢y and there is a logit error term ;;;, which accommodates any potential

idiosyncracies in clicking costs across consumers, products and time.

Cijt = co+ Vit (15)
~—
Typel EV
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If consumer decides to view additional products, the scrolling cost at time t is specified as:

Cs(rt) = Cs - lOg(T‘t) (16)
where ¢, is the constant part, and r; is the product rank reached so far at time ¢.

5.6. ESTIMATION

Parameters to be estimated. The main parameters to be estimated are preference parameters in
the prior mean function, a, 8 and ); learning rates p,; baseline clicking cost ¢y and scrolling cost cg;
the exploration parameter 7 in the utility index function; product fixed effects {;; and the variances
o2, o?.

In the clickstream data, for each consumer at each point in time we observe the ordered list of
products, i.e., product rankings that are served to the consumer. We also observe the vector X; for
each product. Pixel-level data tells us which products were viewed by a consumer at each point in
time. Thus, for each consumer at each point in time we observe (i) the awareness set at time ¢, Ay,
(ii) products that she has not viewed yet J/ Ay, (iii) products that she has not clicked yet.

Given initial parameter values, for consumer i we can draw ; ~ N(5,Q) and calculate prior
mean payoffs and variance-covariance functions as in Equations 13 and 14. Next, given clicking and
scrolling cost consumer constructs utility indices in Equations 5 and 6. In the data, we observe
whether consumer decides to click or to view the product. Upon clicking, consumer reveals product’s
utility. We draw the payoff function m;(X) ~ GP(p(X),x(X,X’)). Given the initial o¢, 0., we
can construct the utility as in Equation 12. After each click, we update consumer’s posterior beliefs
according to Equations 9 and 10. Next, we observe whether consumer decided to click further, view
additional products, leave, or purchase the clicked product.

To estimate the model, we construct the likelihood function of the observed search paths and
purchased options. Given the assumption of logit error terms on the clicking costs (Equation 15),

the probability that the consumer chooses to search product j conditional on being in state S is

exp(E[maz(Q,u;)|S] — co)

exp() + > ey exp(E[max(a, w)|S] — co) (17)

P(jilS) =

where 4 is the best utility searched so far. This structure nicely follows because we assumed logit
cost error terms. Had we observed the entire state space for each consumer including the drawn
utility payoffs, writing the likelihood function would be straightforward: the likelihood of consumer i
searching for T; periods would be:

T;

Li({Git}iol{S}i20,0) = T[] Pi(jielSr) (18)
t=0
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However, since we do not observe the drawn utilities, we have to integrate them out. Recall that
due to the Gaussian structure, the distribution of the drawn utilities is G(u;) = N(a+ X;8; + &, L),
where diagonal elements of ¥; are x(X;, X;) 4+ 02 + a? and off-diagonal elements are x(X;, X;/).
Given that in addition to the utility draws we have to integrate out the random coefficients (F(3;)),

the likelihood function is as follows:

Li{ia}io,310) = [ [ Lt} o, S g, 0)dG (i) dF (5) (19)

During the estimation, we maximize the products of the individual likelihood functions in Equation
19 across all consumers. Due to the size of the data and potential incidental parameters problem
when estimating large number of product fixed effects, we use Batch Stochastic Gradient Descent
algorithm (Keskar et al., 2016) that samples consumers in batches of 500-1500 and minimizes the

negative likelihood function.

5.7. IDENTIFICATION

Prior mean and variance parameters. The probability that each product is searched first
identifies the prior mean parameters, 5 and «, and the total variance of prior beliefs. To explain
identification of the variance of random coefficients, we use standard argument for the discrete
choice model identification (Keane, 1997). If we observe more variation in the attributes of the
searched products across individuals than within individual search paths, this would indicate higher
heterogeneity in random coefficients 3;.

Price parameter. Estimating price parameter would be prone to endogeneity because more popular
products could be priced higher. To address this concern, we use a period of time when the platform
ran price experiments in the category. Price experiments randomly varied prices of products from
-12% to +12% as shown in Figure 18. Only a subset of products were part of the experiment.
However, we still use the existing experimental variation to address the price endogeneity.*’
Clicking and scrolling costs. Experimental variation in the rankings and pixel-level data allows
us to identify the clicking and scrolling cost. Baseline scrolling can be identified from the number
of scrolls that consumer makes in the data. However, the clicking cost can no longer be identified
simply from the number of searches that consumer makes. The reason is that consumer has to view
the product to click on it. Therefore, the experimental variation in the product rankings allows us to
identify the clicking cost.

Product fixed effects. The probability that product j is purchased, conditional on being clicked

identifies product fixed effects, {;. If a product is rarely purchased compared to the others with

49Alternatively, we could estimate the average price elasticities directly from the experiment and create a moment
condition so that the implied price elasticity from the model would be arbitrarily close to the experimental price
elasticity. This could be accommodated at the additional computational cost.

35



FIGURE 18: Price experiments
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Notes. This figure shows the distribution of % price changes during the price
experiments. The distribution is bimodal because experiment involved both
the random increase and the decrease of prices.

similar observable attributes, then it must be that £; < 0.

Learning parameters (p,) are identified from the observational data. Suppose product j has
negative fixed effect, {; < 0. Given the covariance matrix, we know which products are most similar
to product j in the observable characteristic space. Probability of clicking on a product that is
similar to j should be lower in case consumer exhibits learning, i.e., p, > 0. Similarly, the probability
of clicking on a product that is similar to j with §; > 0 should be higher under learning.
Exploration parameter is also identified both from the observational and experimental data.
Suppose product j has negative fixed effect, {; < 0. If there is a product k that is very similar
to product j, then under learning framework consumer has to have lower probability of searching
product k, as explained above. However, consumer could also stay in that region especially if product
payoff uncertainty kip is high. Therefore, while jumps in attribute space identify the learning
parameter, the reluctance to jump when sampling a product with a negative fixed effect identifies

the exploration rate parameter.

5.8. ESTIMATION RESULTS

We estimate the model on two samples as required by the counterfactuals. Recall that in the
counterfactuals, we change the product rankings by mimicking the privacy restrictions of interest.
First counterfactual deletes first-party data, i.e., that of consumers who arrive directly to the website.
Second counterfactual deletes third-party data belonging to consumers who arrive from advertising
channels. Thus, there are two samples that we estimate the model on: (i) consumers who arrive
directly to the website and were first-party cookie-recognized, and (ii) consumers who arrive from

advertising channels. Table E14 and Table E15 in the Appendix show the results of the t-test
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confirming that the search and purchase behavior of these two samples of consumers are different.

Thus, for the validity of the counterfactuals we estimate the model twice.

TABLE 11: Estimation results for cookie-recognized consumers

Estimates

I} st.err.
Price (3) -0.814 (0.003)
Rating 0.682 (0.002)
# Ratings 1.839 (0.013)
Image () -0.268 (0.009)
Image (y) 0.899 (0.004)
Scrolling cost ($) 0.113
Clicking cost ($) 0.200
Pprice 1.826 (0.004)
Prating 0.023 (0.301)
Ptratings 1.405 (0.019)
Pimage(x) 0.871 (0.008)
Pimage(y) 1.290 (0.004)
Log-likelihood 4,934
# Consumers 9,500

Table 11 shows the estimation results for the cookie-recognized consumers, and Table 12 shows
the estimation results for the advertising-based consumers. Qualitatively the results are similar
across both samples: consumers dislike high prices and like products with higher ratings and higher
number of ratings. When it comes to images, higher  and y correspond to modern chairs as is
illustrated in Figure G26 . Therefore, the model predicts that consumers in both samples prefer
chairs more similar to modern or traditional styles. Scrolling cost is almost twice smaller than the
clicking cost in dollar terms, which is intuitive. Consumers seem to be learning along all dimensions
except product ratings (all other p’s are positive and significant).

There are several differences between two samples worth mentioning. First, consumers who arrive
from advertising are less price sensitive (Bpme = —0.430 versus -0.814 among cookie-recognized
consumers). Second, consumers arriving from advertising have lower search costs (both clicking
and scrolling). These patterns are consistent with the Table E15 provided in the Appendix, where
consumers who arrive from advertising search more and purchase more expensive products.

Thus, overall, the estimates make sense. To validate the model, we checked how well the model
fits the data moments. First, we test the model fit using the observational data moments, namely,
the awareness set size of the consumers ( Figure J30 ). We also test the model fit by comparing
predicted and data patterns during the Chrome event that occurred in 2020. During this event
consumers’ search costs increased substantially and we confirm that the model can predict the data

patterns well ( Figure J31 ).
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TABLE 12: Estimation results for advertising-based consumers

Estimates

15} st.err.
Price (3) -0.430 (0.004)
Rating 0.817 (0.000)
# Ratings 2.005 (0.020)
Image () -0.109 (0.001)
Image (y) 1.720 (0.029)
Scrolling cost ($) 0.051
Clicking cost ($) 0.095
Pprice 1.901 (0‘001)
Prating 0.050 (0602)
Ptratings 1.783 (0.004)
Pimage(z) 0.180 (0.002)
Pimage(y) 1.302 (0.003)
Log-likelihood 15,209
# Consumers 8,000

6. COUNTERFACTUALS

This section shows the results of the counterfactuals we ran to evaluate the impact of privacy

policies on the personalization outcomes. First, we describe the changes that occur in each
counterfactual. Next, we explain the simulation procedure and present the results.
I. First-party data restrictions. Recall that one of the big changes was Safari regulation that
automatically resets cookies after seven days of consumer inactivity. Thus, if consumer arrives to
the website more than seven days later than the initial session, the platform will not recognize her
because first-party cookies were reset. To mimic Safari’s 7 day cookie reset policy, first, we re-trained
personalization algorithm where the input data consisted only of the most recent 7-day searches for
each consumer. That is, if consumer’s inter-session arrival time was more than 7 days, we split the
data and created a new customer identifier. We then input the fragmented data into the model and
re-trained it. For completeness, we compare the 7-day model with the re-trained models where we
kept 60, 90 and 180 days of data for each consumer. Figure 19 shows the accuracy of the resulting
personalization algorithm. The z-axis shows the number of personalized recommendations shown
to the consumer. The y-axis shows the predictive accuracy of the model, where accuracy is defined
as the percent of personalized items among the items that consumer eventually clicked on. Note
that we use the offline evaluation approach standard in Computer Science to plot these graphs: we
fix the set of items consumer clicked on and evaluate whether the newly trained model would have
recommended those items. Two points are worth mentioning. First, 7-day model exhibits significantly
worse performance than all the other models. Second, there seems to be diminishing returns from
data because 60, 90, and 180-days models perform similarly when they are allowed to show more
recommendations.

In the first counterfactual, we change the personalized rankings using 7-day model assuming same
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FIGURE 19: Training accuracy by training data size
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Notes: This figure shows the algorithm accuracy when we use 180, 90, 60, and 7
days of data. The z-axis is the number of personalized recommendations shown.
They y-axis shows the algorithm accuracy defined as the % of personalized
items among the clicked ones.

fraction of Safari users in the counterfactuals as in the real data.’?®! We fix the estimated set of
parameters for cookie-recognized consumers (Table 11) and simulate how consumers respond to the
personalized rankings generated using 7-day model.

II. Chrome 2024 restriction on third-party cookies. In the second counterfactual, we
concentrate on the effect of third-party cookie restrictions on recognition when consumers arrive from
the display advertising channel. We mimic the Chrome restrictions by de-recognizing consumers who
arrive from display advertising. Recall that it is 26% of the traffic in our sample (Figure 2).

Note that if consumers are completely not recognized then they would see non-personalized
recommendations and the comparison of personalized versus non-personalized rankings is already
captured by the experiment. Instead, we simulate two more interesting situations. First, we re-train
the personalization algorithm using the fragmented data where we de-recognize consumers who
arrive from Chrome display advertising channel. The algorithm re-training generates counterfactual
rankings. Next, in the simulations, we assume that consumers arrive from display advertising channel
and, therefore, are anonymized under Chrome restrictions. Their first session is non-personalized,
and in subsequent sessions they get personalized recommendations using the re-trained algorithm.

Second approach is as follows. Note that Chrome plans to offer an alternative solution where
platform may not be able to track consumers using third-party cookies, but will be able to get access

to their aggregate interests. In addition to the simulations explained above, we also simulate a

50In the data, the share of Safari users is approximately 40%.

5114 might be useful for the reader to think of this as a linear regression y = a + X + ¢, where 7-day model is
characterized by the parameters a, 5. We input consumers’ browsing histories as X’s and the model gives the predicted
ordered list of rankings.
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situation where Chrome does not show the platform who the consumer is but may share aggregated
data based on consumers’ browsing history. For instance, Chrome may indicate that consumer is
interested in modern chairs or glam style chairs. The benefit of the aggregated information is that
platform can keep personalizing, and, from the regulatory perspective, the platform does not know
the price point consumer is interested in.%?

To simulate the aggregate information, we use a simple heuristic rule that clusters consumers
into the product styles they are interested in. The major styles of dining chairs are: modern &
contemporary, traditional, scandinavian, posh & luxe, industrial, french country, farmhouse, and
coastal. Using a consumer’s browsing history, we calculate the number of clicked chair styles among
all viewed products, and classify the consumer into the cluster (style) that got the highest share of
clicks.® We then personalize recommendations by showing a mix of bestseller and smaller seller’s
products from the chair style consumer is most interested in. We then simulate how consumers will
respond to this type of recommendations.

Both approaches lead to qualitatively similar, but quantitatively different results, so in the
subsequent discussion we show the results for the first approach, and we include the results from the
second approach in the Appendix K.

ITI. Probabilistic Recognition Algorithm. Third counterfactual evaluates an algorithm proposed
in Korganbekova and Zuber (2023) that aims at helping platforms adapt to privacy restrictions. The
idea behind the algorithm is as follows. We use a device’s behavioral data (e.g., clickstream data and
purchase behavior) and IP address information to predict the association between the device and the
existing customer identifier. We use XGBoost algorithm to classify consumers.

Counterfactual simulations. The simulation procedure for all three counterfactuals is similar.
We fix the estimated set of parameters. The first and third counterfactuals use the estimates for
the cookie-recognized consumers (Table 11) and the second counterfactual (advertising) uses the
estimates from Table 12. Each consumer sees non-personalized bestseller recommendations during
the first session. They decide between clicking, viewing, leaving, and purchasing. Suppose consumer
searched for some products and left. We assume that consumer’s probability of re-visiting the website,
i.e., multi-session search, is equal to the fraction of clicked products among viewed ones. This is
motivated by the empirical patterns in the data and serves as a proxy for consumers’ interest level.
One could argue that the opposite could be true: consumers who clicked a lot and left are less
likely to return because they made up their minds. To account for that we add noise by allowing no

re-visit with probability e € U(0,1). When consumer re-visits the website, we have their browsing

52Hovvever7 in Section 4, we showed that the platform benefits in long-term from showing better consumer-product
matches, instead of pushing consumers towards higher margin items.

53Note that accounting for the share of clicks among viewed products is a more accurate measure than to simply
calculate the number of clicks. We could also give more weight to more recent clicks but wanted to keep the counterfactual
simple.
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history and can generate rankings according to the counterfactuals. Table 13 summarizes all three
counterfactuals.

TABLE 13: Summary of counterfactuals

Counterfactual 1. Safari blocks first-party cookies

Estimates used: Table 11
1.1 Use 7-day personalized ranking algorithm.

Counterfactual 2. Chrome 2024 blocks third-party cookies

Estimates used: Table 12
2.1 Fragment the data by de-recognizing consumers who arrived from display advertising.
2.2 Show personalized rankings using re-trained model.

Counterfactual 3. Probabilistic Identity Recognition

Estimates used: Table 11
3.1 Identify cookie-recognized consumers who searched for multiple sessions.
3.2 Apply probabilistic recognition algorithm to associate devices with the consumer identifiers.

In the first counterfactual, we generate the product rankings using 7-day personalized model
assuming the same fraction of Safari users as in real data, and simulate how consumers respond
to them. In the second counterfactual, we use re-trained algorithm where the data is fragmented
as a result of Chrome restrictions. In the third counterfactual, we proceed as follows. We take
cookie-recognized consumers who browsed using multiple devices. We take their first sessions until
the device change as given. As they re-visit the website using a new device, we run a separate
probabilistic identity recognition algorithm to predict the association between the new device and
the unique consumer identifier. We know the ground truth association between the devices and
the consumers but conceal it to evaluate the algorithm. The algorithm produces a probability
distribution indicating the probability that a device is associated with a consumer identifier. We take
the consumer identifier with the highest predicted association and show the personalized rankings
based on the associated consumer identifiers’ browsing history. Note that in this counterfactual we
use business-as-usual personalization algorithm. Next, we evaluate the consumers’ actions given the
new set of rankings.

The main outcomes of interest are (i) consumer welfare, (ii) consumers’ search and purchase
outcomes, (iii) seller revenue, and (iv) platform’s revenue and profit. To have a common comparison
benchmark, we compare consumer welfare to the welfare gains from the personalized rankings. We ran
simulations with 10,000 consumers, where for each preference parameter and Gaussian Process draw,
we generate and show personalized rankings. Consumer’s welfare from a ranking is defined as the
utility obtained from the item purchased under that ranking, net of total clicking and scrolling costs
incurred during search. We average consumer welfare across multiple rankings and then calculate

the difference between the personalized rankings and non-personalized rankings welfare. We find
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that the welfare from personalized rankings amounts to $25.3 per purchase. See Table K23 in the
Appendix for full results.

Figure 20 shows the dollar and percent changes in consumer welfare as a result of privacy
restrictions. The comparison benchmark is the personalized rankings. We find that consumers lose
$4.78 after first-party cookie blocking, $6.98 after third-party cookie restrictions, and $3.06 if we use
probabilistic recognition versus full data personalization. Thus, in percentage terms up to 28% of
welfare gains from personalization are lost as a result of privacy restrictions. It is worth mentioning
that (i) consumers are still better off than in the non-personalized condition despite the decrease in

welfare, and (ii) our probabilistic algorithm can mitigate up to 56% of welfare losses.

FIGURE 20: Counterfactual results: consumer welfare

Notes: This figure shows the results of the counterfactual simulations
on consumer welfare by the three counterfactuals ran. Chrome
counterfactual is using approach 1 and approach 2 results can be found
in the Appendix.

We breakdown the changes in welfare by the losses from the match value (utility), clicking
costs, scrolling costs, and decreases in purchase probability for all three scenarios in Table K23
. To illustrate, the welfare losses after Chrome restrictions are driven by the decrease in purchase
probability (-24.65%), significant decrease in the match value conditional on purchase (-54.11%), and
increase in the scrolling costs (+32.53%). Partially, the losses are offset by the fact that consumers
click less and, therefore, there are savings in the clicking costs (+11.28%). Given that the biggest
driver of the welfare losses is the decrease in match value, this implies that consumers find it hard to
find and, subsequently, purchase items that are more relevant towards their particular taste. Having
said that, we also may be underestimating the welfare losses because we do not account for potential
hassle costs in case consumers have to return the product post-purchase.

To investigate the heterogeneity across consumers, we re-ran simulations focusing on different
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types of consumers. Namely, we breakdown the losses in welfare depending on the level of consumers’

search costs. We re-simulate the search and purchase behavior of the consumers with below and
above median search costs. Figure 22 shows that consumers with high search costs will be most
hurt by the 7-day Safari policy, losing $8.51 compared to the $1.06 lost by consumers with lower
search costs. Similarly, above median search cost consumers will incur significantly higher welfare
losses compared to those of consumers with lower search costs, i.e., $12.05 versus $1.92. However,
the proposed ranking algorithm can significantly lower the welfare losses both for high search cost

and low search cost consumers.

FIGURE 21: Counterfactual results: consumer welfare

Notes: This figure shows the results of the counterfactual simulations
on consumer welfare by the three counterfactuals ran. Chrome
counterfactual is using approach 1 and approach 2 results can be found
in the Appendix.

Next, we investigate the heterogeneity depending on both consumers’ search costs and price
sensitivity. We find that blocking third-party cookies will hurt consumers who are more price
responsive and have high search costs (top left dark part of Figure 22a). Maximum achievable
utility in this category is $5-6. The mechanism is as follows: the algorithm is unable to pick up that
consumers are price responsive because it uses aggregate data, and, therefore, shows higher priced
items. Because consumers have high search costs they are more likely to leave the website without
purchasing (in which case, the utility is zero). Alternatively, they buy an item with lower utility
than they would otherwise get in the full personalized condition. Consumers who have low price
sensitivity and low search costs get the highest possible utility among all groups (right bottom part
of Figure 22a).

Figure 22b shows that using the probabilistic recognition algorithm, we can increase welfare for
the consumers in the mid range: the dark blue region in Figure 22a moves from $(6,7] region to

$(7,9] range. Less price responsive groups with lower search costs are also better off. The takeaway
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FIGURE 22: Heterogeneity in consumer welfare by search costs and price elasticities

(A) Chrome 2024 event (B) Probabilistic Recognition

Notes. This figure shows the heterogeneity analysis to investigate the impact of privacy restrictions and alternative
algorithm on consumer welfare. We simulate the consumer welfare by different price elasticity and search costs group.

is that while the algorithm can benefit consumers that have lower search costs and are more prone to
re-visit the website, it is hard to help more vulnerable sets of consumers: more price sensitive and
those with high search costs, because they leave without arriving back. Thus, these results call for
alternative regulation that would take into account that privacy regulation hurts vulnerable groups
of consumers more than others.

Next, we evaluate the impact of privacy restrictions on the seller outcomes. We divide sellers
into two groups based on the historical revenue earned: 10th percentile-revenue sellers and 90th
percentile-revenue sellers (Figure 23). We find that privacy restrictions do not affect large sellers’
revenue as much as they affect smaller sellers. First-party cookie restrictions decrease smaller sellers’
revenue by 5.64%, and third-party Chrome restrictions decrease revenue by 8.59%.

The mechanism is as follows: with distorted data, personalization algorithms do not show relevant
items and sometimes tend to resort to showing large sellers’ products. Therefore, the privacy
restrictions lead to the decrease in smaller sellers’ revenue. Our proposed algorithm performs better
because in the cases where it correctly predicts the association between devices and consumers, it will
be equivalent to the full personalization algorithm. The takeaway from this part of the analysis is
that privacy restrictions disproportionately hurt smaller sellers on the platform, and this is something
current regulation may want to fix.

Finally, we investigate the consumers’ search/purchase outcomes which directly translate to
platform’s revenue and profit. We use the platform’s detailed cost data to calculate profits. Figure
24 shows three sets of results: (i) comparison between full personalization and non-personalized
rankings (full personalization), (ii) comparison between Chrome outcomes and non-personalized
rankings (Chrome), and (iii) probabilistic algorithm versus non-personalized rankings (probabilistic).

Note that in this part of the analysis we use the non-personalized rankings as a benchmark to put the
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FIGURE 23: Counterfactual results: seller outcomes

Notes: This figure shows the results of the counterfactual simulations on
seller outcomes. Blue bars correspond to sellers that were in the 10th
percentile by historical revenue, and orange bars are the 90th percentile
sellers. The z-axis shows the three counterfactuals and the y-axis shows
the % revenue change as a result of privacy restrictions.

experimental results in perspective. Thus, blue bars are plotted experimental results from Section 4,
and the rest are calculated based on the model.

F1GURE 24: Counterfactual results: consumer and platform outcomes

® Full personalization ¢ Chrome ™ Probabilistic
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Notes: This figure shows the shares of traffic that arrive from different sources. The
total doesn’t sum up to 100, because one consumer can arrive through multiple
channels. Majority of consumers would be recognized via first-party cookies given
that they arrive from Google product ads or Direct traffic. For the consumers who
arrive from display advertising, the platform relies on third-party cookies.

First, we see that both click and conversion rates, and revenue decrease significantly in the
Chrome condition (orange bars in Figure 24). However, probabilistic recognition algorithm can

recover substantial parts of the benefits from personalization (green bars), although all metrics
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are still lower compared to the full personalization condition. We also see that platform profits
are less impacted than their revenues. The reason is that bestseller products are typically located
in platform-owned distribution centers, which make their shipping costs lower. Therefore, for the
platform it is cheaper to ship bestseller products rather than smaller sellers’ products. Therefore,
although we see significant decreases in revenue as a result of Chrome restrictions, the profit is
impacted less. Moreover, we also have evidence that larger (bestseller) products tend to give more
discounts and allowances on the wholesale costs, which additionally helps maintain profits even under
privacy restrictions ( Table E13 ).

There are three main takeaways from the counterfactual analysis described in this section. First,
privacy restrictions hurt consumers who are more price responsive and have higher search costs.
Second, privacy restrictions disproportionately hurt smaller sellers who rely on personalization
algorithms to gain prominence on the website. Finally, platform revenue is hurt by the privacy
restrictions, while its profit is relatively not impacted because of the different cost structure for large

and small sellers.

6.1. DISCUSSION

There are several concerns that could arise related to the counterfactuals. In the first
counterfactual, we use the 7-day model to generate rankings. One could argue that the platform
could keep using the entire historical data in order to generate rankings. However, we view the
counterfactual as the way to evaluate the long-term impact of these privacy restrictions. In the
long-term, the value of the historical data may fall either due to different product assortment or
changes in consumer preferences, which is why the platform will use the available more recent data.

In the second counterfactual, the underlying assumption is that platform keeps advertising.
However, Chrome restrictions could affect the ability to advertise to begin with, in which case
consumers would not see the platform’s ads at all. However, since Chrome is offering differential

privacy and other Privacy Sandbox-based solutions,>*

we assume that the platform will be able to
advertise in some form. For instance, it would not be able to show re-targeted ads featuring products
similar to the browsed ones, but it could show generic platform ads.

Finally, with all counterfactuals, one could worry that consumers may start authenticating in
case they see irrelevant products. This is one of the limitations of the study where we do not know
how consumers’ authentication decisions will change as a result of privacy restrictions. Moreover,
platforms may offer other solutions to make authentication process easier, such as biometric login.

As a result, more consumers will login voluntarily and the platform will continue collecting the data

directly from consumers without relying on cookies. These are platform actions that we cannot take

54Gee the Privacy Sandbox article for more details.
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into account in one paper, but this could open an interesting future stream of work that could help

platforms mitigate the negative consequences of privacy restrictions.

7. CONCLUSION

In this paper, we empirically study the effects of personalization and privacy restrictions on the
retail platform, its consumers and sellers. To do that, we use large-scale field experiments ran with
Wayfair, their detailed clickstream data and the platform’s personalization algorithm. First, we use
the experiments to quantify the reduced-form measures of welfare gains from personalization on
consumers, sellers and the platform. Second, we develop a novel multi-session consumer search model
in the presence of personalized recommendations to evaluate how current and upcoming privacy
restrictions affect consumers, sellers and the retail platform. Finally, we evaluate how probabilistic
recognition solutions may help mitigate the negative consequences of privacy restrictions.

Experimental results suggest that personalization benefits consumers, smaller sellers and the
platform. Consumers in the personalized condition buy more expensive but higher quality products,
and they are 10% less likely to return the purchased product. Second, we show that smaller
sellers are 15% more likely to be shown higher up on the product ranking pages, and therefore
generate substantial part of their revenue from personalized impressions. These results suggest that
personalization leads to better matches of consumers and sellers, and that it gives chance for the
smaller sellers to grow their businesses.

To evaluate how alternative privacy policies impact consumers and sellers, we develop a structural
model of consumer search and learning in the presence of recommendations. We re-train platform’s
personalization algorithm with distorted data mimicking privacy restrictions of interest to generate
counterfactual recommendations. Next, we use the model to simulate how consumers’ search and
purchase behavior change under counterfactual recommendations. The results imply that a consumer
gets $25 welfare gain from personalization per purchase. However, privacy restrictions, such as
Chrome blocking third-party cookie tracking or Safari blocking first-party cookie tracking will decrease
these welfare gains by up to 50%. More price responsive consumers and smaller sellers are hurt the
most.

To the best of our knowledge, this is the first paper that empirically studies the impact of
current and upcoming privacy restrictions on personalization algorithms and their subsequent effects
on consumers, sellers, and platforms’ outcomes. The question has significant importance because
personalization plays key role in navigating consumers through thousands or even millions of products
that platforms carry. Our results suggest that privacy restrictions disproportionately hurt smaller
sellers and more price responsive consumers. This calls to alternative privacy regulations that address

privacy concerns without unduly burdening small businesses or hindering consumer experiences. We

47



show that probabilistic recognition algorithms can help platforms mitigate the negative consequences

of the privacy restrictions, striking a balance between privacy and personalization.
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A. CURRENT PRIVACY POLICIES AND THEIR IMPACT

To validate the countefactuals, we identified a natural experiment: a change in browser policies
that, while announced in advance, was rolled out unexpectedly, leaving the focal platform unprepared
for it. Namely, in March of 2020 Chrome rolled out SameSite policy updates that blocked the use of
cookies in third-party contexts and affected the traffic that was originating from advertising. The
policy allowed to use cookies in the first-party context, but blocked all third-party requests. As
a result, if consumer saw Wayfair ad on a third-party website, e.g. weather.com and clicked on
it, as she navigates to wayfair.com, consumer’s cookies were reset. Cookie resetting means that
the consumer gets a complete new user identifier and Wayfair does not have access to consumer’s
browsing histories. As a result, Wayfair’s ability to personalize is limited. The policy was short-lived
in that Chrome rolled it back in April 2020, worried that a large number of advertisers depended on
third-party cookies in Covid times.?>. Despite the transient nature of the policy, it had significant
effects on platform’s ability to recognize the traffic and to personalize. Below, we describe the policy
in more detail and show the impact on consumers and the platform. We use this natural experiment

to check how well the model can replicate the observed data.
FIGURE A1l: Timeline of the Chrome SameSite update releases

Small % of Policy rolled-out Policy rolled back
users dffected Chromle v80+
users dffected

Feb 2020 Mar-Apr 2020 Apr 3 of 2020

Notes: Chrome released the updates gradually for a fraction of Chrome Canary and Dev users starting October
2019, and in March of 2020, Chrome increased the target population affecting most Chrome users. However, on April
3, 2020, in light of global pandemic, Chrome decided to roll back the changes not to hurt advertisers who rely on
third-party data. Afterwards, starting July 14, 2020, they rolled out the changes again with the rollout population
gradually increasing on July 28, 2020 and on August 11, 2020 - the changes were rolled out to 100% of Chrome Stable
users. Source: Official Chrome SameSite updates.

Chrome SameSite policy updates are secure-by-default changes that protect all cookies from
external access unless otherwise specified by the user. Most Chrome version 80+ users were affected
and didn’t change the default setting.’ Academic research also found that even when offered an
opportunity to opt out from online advertising very few consumers choose to change the default
settings (Johnson, Shriver and Du, 2020). As a result, during one month in March-April of 2020, the

platform was limited in its ability to recognize Chrome users unless they logged in to the website

55For detailed policy releases, see the SameSite updates.

56 As was documented for Apple’s App Tracking Transparency (ATT) changes, consumers tend to stick with the
default browser and app settings and do not change them. See Harvard Business Review: Apple Is Changing How
Digital Ads Work. Are Advertisers Prepared?
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voluntarily.

Figure A2 shows that the recognition rates on Chrome dropped drastically during the policy
period. The z-axis of Figure A2 shows month-year. The roll-out of Chrome SameSite policy in
March-April 2020 highlighted in grey, and y-axis shows scaled device recognition rates. We observe
similar trends in the recognition rates before March 2020 (indicating that parallel trend assumption
is satisfied). However, Chrome (red line) exhibits a drop in the recognition rates in March-April

2020, recovering only in April when the changes were rolled back.

FIGURE A2: Recognition rates per major browser (February 2020 - June 2020)

Notes. This figure shows the platform’s recognition rates before, during and after the
Chrome changes (February - June 2020). The shaded area is the period during which
Chrome policy kicked in. The graph explicitly shows recognition on Chrome browser
drastically decreased during that period and only started recovering in April 2020 (red
line). The y-axis is hidden for data sensitivity reasons.

To further quantify the extent of recognition drop, we estimated difference-in-differences regression
on the constructed browser-day level panel that documents daily recognition among different browsers.
In Equation 20, j is the browser, ¢ - day, 1{j = Chrome} is the indicator for Chrome, 1{after} is
the indicator for the period between March 2, 2020 and different dates after April 3, 2020.

yjt = a+ f11{j = Chrome} + Bo1{after} + f31{j = Chrome}1{after} +cj; (20)

Table A1, Column 1, shows that Chrome recognition rates dropped by 3.2 percentage points after
the policy was implemented. The results are robust to different policy window definitions. Columns
(2) and (3) of Table Al show that under a narrower window, the effect of recognition rates is around
3.2-3.7 percentage points. We cannot disclose the intercept for data sensitivity reasons, but each

percentage point in recognition amounts to the loss of data for millions of consumers.
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TABLE Al: Difference-in-differences results for Chrome policy-related recognition rates

Dependent variable:

Recognition rate
Feb 1-May 1, 2020 Feb 1-Apr 3, 2020 Feb 1 -Apr 15, 2020

(1) (2) (3)

After 1.620*** —0.268 0.302
(0.481) (0.500) (0.527)
Treatment 7.303*** 7.868*** 74717
(0.442) (0.623) (0.631)
Afterx Treatment —3.220*** —3.785%** —3.388***
(0.834) (0.867) (0.914)
Observations 330 180 195

Notes. This table reports the results of the difference-in-differences estimation (Equation 20)
investigating the effect of Chrome SameSite policy on platform’s recognition rates. Data is at
the browser-day level. Intercept is hidden for data sensitivity reasons. Significance levels: *p <
0.05, **p < 0.01, ***p < 0.001.

Table A2 shows that the reduction in recognition rates resulted in lower platform revenue.

Platform revenue decreased by 2.8 - 3.2 percent after the Chrome policy was rolled out.

TABLE A2: Effect of Chrome on revenue

Dependent variable:

Scaled revenue
Feb-April 2020 Feb-May 2020

(1) (2)
Afterx Treatment —0.032%** —0.028**

(0.012) (0.011)
Observations 180 330

Notes. This table reports the interaction terms from estimation
of specification 20. We investigate the effect of Chrome SameSite
updates on the platform revenue. Intercepts are hidden for
data sensitivity reasons. Significance levels: *p < 0.05, **p <
0.01, ***p < 0.001.

Table A3 shows that the drop in revenue was driven by lower conversion rates after Chrome
policy change (Column 4) and lower number of orders (Column 5). Consumers click more (Column 1)
which could mean they incur higher search costs to find relevant items after privacy restrictions were
introduced. We do not find significant differences in add-to-cart or basket page landing probability,
but conversion rates drop significantly.

Finally, we evaluate the impact of the privacy restriction on the data that was

Data impact for the training models. Data can be used in two ways: first, sequence of products
searched is important; second, sequence of events (actions) performed on the website by a consumer.

I find that total rows of training data goes down by 5% and total number of products goes down by

2%. Thus, training data amount is definitely impacted even with one month of the policy changes.
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TABLE A3: Impact of Chrome SameSite changes on consumer outcomes

Purchase funnel Purchase outcomes
(1) (2) 3) (4) (5) (6)
Clicks  Add-to-cart Basket page Converted  Orders  Average revenue
Chrome 1.207%* -1.270*** -1.168*** -1.037**  -1.105*** 8.258%**
(0.385) (0.098) (0.094) (0.049) (0.053) (2.546)
After 0.748** 0.973*** 1.073*** 0.661*** 0.780*** 1.001
(0.352) (0.090) (0.086) (0.045) (0.048) (2.327)
Afterx Chrome  0.859* -0.127 -0.160 -0.216***  -0.297*** -6.251*
(0.498) (0.127) (0.122) (0.063) (0.068) (3.291)
Observations 304 304 304 304 304 304

Notes. This table reports the results of the difference-in-differences estimation (Equation 20) investigating the
effect of Chrome SameSite policy on consumers’ search and purchase outcomes. Intercept is hidden for data
sensitivity reasons. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE A4: Data impact as a result of Chrome SameSite changes

Total rows Log products

Treatment 3.282%** 0.085***
(0.251) (0.008)
After 7.035%** 0.141***
(0.456) (0.014)
Afterx Treatment  -3.123*** -0.051%**
(0.230) (0.007)
Product FE 2,437,195 2,437,195

Notes. This table reports the results of the difference-
in-differences estimation (Equation 20) investigating
the effect of Chrome SameSite policy on the scaled
number of rows and log products. Intercept is hidden
for data sensitivity reasons. Significance levels: *p <
0.05, **p < 0.01, ***p < 0.001.
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B. PROOF OF NEAR-OPTIMALITY OF THE UCB ALGORITHM WITH SEARCH COSTS

The proof is built on the material in Golovin et al. (2014) and Nemhauser et al. (1978). The
main difference is that in Engineering it is common not to account for potential search costs, but in
our setting it is crucial to account for the search costs.

Consider a problem when consumer learns a payoff function f(z), z € D where x is an action
taken by a consumer. The goal is to maximize the function f(z;) with respect to action i, i.e.
max;, f(x¢). In our setting, the action is the product to click on. Instantaneous regret is defined as
re = f(2*) — f(x;) and the cumulative regret is Ry = Y., 7. Intuitively, regret represents the loss
from clicking on a product that is different from the product that maximizes the payoff function

f(x;). Consumer’s goal is to minimize the cumulative regret Ry.5”

Proposition 1. Searching using Upper Confidence Bound to learn a function f(x) leads to a finite

regret bound of O(v/Tyrlog|D]) with high probability 1 — 4§, 6 € (0,1). Regret bound is

P[RT § \/CITBT'YT VT Z 1] Z 1 —5

where C1 = 8/log(1+ o=2) and T is the number of rounds of sampling an individual point.

Proof. Fix some t > 1 and x € D. Conditional on all the utility values sampled so far,
ULy ey Up—1, X1,..,L4—1 are deterministic and subsequent payoff functions are drawn from f(z) ~

N(pi—1(x),0? {(x)). For a standard normal variable r ~ N(0,1), we can show that

1 00 1 /o
Plr>c] = 7/ e 2y = —/ e/ 2k 2,
\V2m Je 27 Je

el / o (r=0?/2—clr—c) g,
21 Je

Because e “("~¢) < 1 and the rest of the integral resembles Gaussian density integrated from c to
00, wWe can write

6762/2i /OO ef(rfc)Q/Qefc(rfc)dr < 16702/2
27 Je -

ci—1(x)

, we get that for any given x € D and
O't_l($)

Using 7 = (f(2) — pu—1(2)) /011 (2) and ¢ = 1 —

timepoint ¢ > 1,

Pllf(x) — p-1(z)| > nor-1(z) — cr-1(x)] < e~ @=e@)?/2

57We re-write the objective function in this way for tractability. Intuitively, minimizing cumulative regret means
that consumer wants to reach the best possible product with minimal regret, e.g. time spent on clicking on 'wrong’
products.
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Applying the union bound over all x € D, we get

P{ Uzep |f(x) — pe-1())] > nov—1(ze) — Ct—l(fﬂt)} < > Plf(® = m-1(2))] > nov-1(x) — cr-1(x4)]

xeD

S |D‘67(77*Ct—1(xt)/g-t_l(m))2/2

By defining the variables appropriately, we can apply union to all timepoints t € A to get

hE

P{ Uzep |f(x) — pe—1(2))| > nor—1(z¢) — Ct—l(fﬂt)} <) _Plf(x—pm-1(x))| > not—1(z) — ce—1(x4)]

Il
—

t
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If we change the inequality to upper bound the term |f(x) — pi—1(x))| for all € € D and all

t > 1, we can write

|f(x) — pe—1(x))| < no—i1(xs) — -1 (x4)

Next, we construct a bound for the instantaneous regret function: r, = f(x*) — f(a;). Upper
Confidence Bound algorithm specifies choosing x; as the argmax of ;1 (x;) + 81/ %041 () at each

timestep. Thus, we have
pre—1(w) +noe-1(z) — co1(xe) = p—1(2") + nor-1(z") — -1 (2”) (21)

This can be rewritten as

re = f(2") = f(2r) <nora(27) —ca (@) + f(2e) — (@) < 2[noa (@) —ca(e)] - (22)

We now continue towards constructing regret bounds for the cumulative regret function. For
a Gaussian process with a covariance matrix o2, the expression for the information gain can be
written as

I(yrs fr) = Hlyr) — Hyrlfr) = Hlyr) ~ glogl2meo?T] (23)

Since the determinant of the diagonal matrix is the product of the diagonal elements, we write

1 o1& >
§log|27rea I = 5 ;log@ﬂea ) (24)
We can expand out H(yr) as
1
H(yr) = H(yr—1) + H(yrlyr—1) = H(yr—1) + 5log(2me(o” + o7y (v7))) (25)

29



We can write the variance term in the entropy expression as a sum of variances due to the fact that
x1,...,x7 are deterministic conditioned on yr_1, and the conditional variance a%_l(xT) does not

depend on yp_1. Expansion of the entropy terms gives us

H(yr) = Zlog 2me(o? + o2 (x1))) (26)
23

Substituting (26) and (24) into (23) gives us

I(yr; fr) = H(yT) — H(yr|fr)

= fZlog 2re(o? + o2 1 (x1))) — fZlog (2mea?)
t=1

:Zlog(%re o?+o7 l(cct)))

2meo?

T

= Z (140202 | (x1))

Let’s denote 81/% = n— Ctl((w)y We know that r? < 48,02 ;(x;), Vt > 1 with probability
Ot—1\T

> 1—4. Since f; is nondecreasing for increasing t < T', we can write

ABro7_y (z1) < 4Brop_ (z4)

Using the restriction that x(z,2’) <1 for all z, 2’ means that o7 ; (z;) < 1 for all ¢. For positive s,

o202 (xy) o2
Tog 1+ 720, () = Tog(1 7 07)

-2

0720,52,1(%) < log(1+ 0720371 (x¢))

~ log(1+072)

ABrapy(x) = 4Bro” (o 20} (1)) < 4Bra*Calog(1 + o0 207 (21))

where Co = 072 /log(1 + 0~2). We can combine the inequalities derived for the instantaneous regret
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and write

T T T
Sort<4Brd o () < 4Bro®Cy Y log(l+ 0 207 (1))

t=1 t=1 t=1

T
= 802 Cf3r (; > log(1+ 0_203_1(%)))

t=1

= C1Br1(yr; fr) < C1Bryr

where C1 = 802Cy = 8/log(1 + 072).

Next, using Cauchy-Schwarz inequality, we get

(8] ())&

Therefore, Ry < +/T Zthl r? < /CiTBrvyr. This inequality holds with probability > 1 — 4. This

concludes the proof of Proposition 1.
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C. RANDOMIZATION CHECKS

This section provides randomization checks for the consumers that were part of the A/B tests I
ran with the platform. All variables are scaled for data anonymity reasons. Table C5 shows that all
p-values are large indicating that there are no significant a-priori differences between the treatment
and control group consumers.

TABLE C5: Randomization check in dining chairs (return to p. 14)

Non-personalized Personalized Difference p-value

(1) (2) (3) (4)

Historical Purchases ($) 886.98 937.77 -50.79 0.21
(-1.26)

Historical Quantity Bought 6.19 6.51 -0.32 0.22
(-1.22)

Estimated networth 348,657.63 346,654.85 2,(002.?7 0.13

1.51

Estimated income 70,847.86 70,779.64 68.22 0.63
(0.48)

Age 24.90 24.89 0.01 0.60
(0.52)

Home Value 175,067.06 175,177.83 -110.77 0.85
(-0.19)

Prices searched 87.24 87.29 -0.05 0.84
(-0.20)

Gender dummy (0,1) 0.85 0.85 0.00 0.82
(0.22)

Observations 319,783 315,484

Notes. This table provides randomization check between the treatment and control groups in the
experiment ran on the ranking pages. The numbers are scaled for data anonymity purposes.
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D. ADDITIONAL EXPERIMENTAL RESULTS

These results are likely attenuated because not everyone will see personalized impressions. If
I look only at the consumers that had history to personalize from then I'll see that the results
are even higher. Note that because the experiment was randomized regardless of the historical
patterns of consumers, we have a balanced sample across two groups. In the non-personalized group
there are 1,799,908 consumers, while in the personalized group there’re 1,806,831 consumers. The
randomization checks are in the appendix. That means that around 36% of people in each group had
historical searches on the website.

TABLE D6: Personalization experiment results: search and purchase outcomes (return to p. 17)

Logistic OLS
(1) (2) 3) (4) (5) (6) (7)
Clicks  Add-to-cart Basket page Converted Log(Revenue) Purchases Log(Profit)
Personalized 0.002 0.013*** 0.011*** 0.017*** 0.009*** 0.007*** 0.006™**
(0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
Intercept 1.016*** -1.271% -1.382%** -2.275%* 0.579*** 0.253*** -
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001)

Observations 9,818,022 9,818,022 9,818,022 9,818,022 9,818,022 9,818,022 9,818,022

Notes. This table reports the output from the estimation of equation 1 for all nine million consumers. Data is at the
consumer-level. Columns (1)-(4) report the logistic specification and Columns (5)-(7) report the OLS specification results.
Robust standard errors in parentheses. The intercept in profit Column (7) is hidden for data sensitivity reasons. Statistical
significance: *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE D7: Effect of personalization on repeat visits and product returns (all consumers) (return to p. 19)

Repeat purchases Returns
(1) 2 () (4) (5) (6) (7)
7 days 30 days 90 days 150 days 365 days 500 days product returns

Personalized 0.019***  0.012** 0.017**  0.014**  0.012**  0.017"** 0.010***
(0.007) (0.005) (0.003) (0.004) (0.004) (0.005) (0.003)

Personalized x Personalized product -0.104***
(0.010)

Intercept -2.083***  -1.203***  -0.305***  -0.374™*  0.092***  0.303*** -2.7647*
(0.005) (0.003) (0.002) (0.003) (0.003) (0.004) (0.002)

Observations 933,510 933,430 1,511,657 933,328 933,246 602,954 9,056,732

Notes. This table shows the effects of personalization on repeat purchases and product return rates for all consumers in the experiment.
Columns (1) - (6) are estimated using logit version of 1. Data are at the consumer level. Column (7) is the estimation of Equation
3. Data are at the consumer-purchased product level. Consumers in the personalized group might buy the item that was part of the
organic rankings and wasn’t personalized to them and we control for that by interacting the treatment dummy with the indicator for
whether the product was personalized. For statistical power, we’ve included all consumers who were shopping in dining chairs category and
their visits to the same marketing category, i.e. dining chairs, chairs, Each column represents the set of people who purchased a dining
chair and we check the probability they will purchased in 7, 30, 90 etc. days. Robust standard errors in parentheses. Significance levels:
*p < 0.05, **p < 0.01, ***p < 0.001.

yi = o+ Pitreatment; + B filtered; + Bstreatment; X filtered; + ¢; (27)
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TABLE D8: Personalization experiment results: search and purchase outcomes (consumers with browsing
history) (return to p. 17)

Logistic OLS
(1) (2) 3) (4) (5) (6) (7)
Clicks ~ Add-to-cart Basket page Converted Log(Revenue) Purchases Log(Profit)
Personalized 0.000 0.014*** 0.011*** 0.018*** 0.020%** 0.017%** 0.013***
(0.004) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
Intercept 2.143%* -0.218** -0.258*** -1.201*** 1.443*** 0.656™** -
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 3,121,011 3,121,011 3,121,011 3,121,011 3,121,011 3,121,011 3,121,011

Notes. This table reports the output from the estimation of equation 1 for the consumers with browsing history. Data is

at the consumer-level. Columns (1)-(4) report the logistic specification and Columns (5)-(7) report OLS specification results.
the results of OLS regression on the experimental data. Robust standard errors in parentheses. Statistical significance:
*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE D9: Further evidence that filtering doesn’t change outcomes (return to p. 27)

Logistic OLS
(1) (2) 3) (4) (5) (6) (7)

Clicks  Add-to-cart Basket page Converted Log(Revenue) Purchases Log(Profit)
Personalized 0.010 0.013** 0.016*** 0.015** 0.021** 0.026*** 0.017**

(0.013)  (0.006) (0.006) (0.006) (0.009) (0.008) (0.007)
Filtered 0.143*** 0.260*** 0.230*** 0.384*** 0.617*** 0.528*** 0.501%**

(0.021)  (0.009) (0.009) (0.009) (0.014) (0.016) (0.011)
Personalized x Filtered  -0.040 -0.007 -0.007 -0.001 0.001 -0.006 -0.004

(0.029)  (0.012) (0.012) (0.013) (0.020) (0.023) (0.016)
Intercept 2.957%** 0.188*** 0.096*** -0.962*** 1.808*** 0.975%** -

(0.009)  (0.004) (0.004) (0.004) (0.006) (0.006) (0.005)
Observations 635,267 635,267 635,267 635,267 635,267 635,267 635,267

Notes. This table reports the results of Equation 27. We investigate whether filtering plays an important part in changing consumer
outcomes. Data is at the consumer level. Standard errors in parentheses. Intercept in Column (7) is hidden for data sensitivity
reasons. Robust standard errors. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE D3: Treatment Intensity (return to p. 15)

44

42

40

38

% personalized (among first four pages)

36

2 4 6 8 10
session order

Notes. This figure shows the relationship between the session order and

the % of the personalized products on the first four pages. Platform
personalizes more as it collects more data on consumer clicks.
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E. ADDITIONAL DESCRIPTIVE STATISTICS

TABLE E10: Number of devices and browsers used (return to p. 10)

Observations Mean St.Dev. Min 25% 50% 75% Max

# Devices

multi-session consumers 321,967 3.06 2.97 1.00 1.00 2.00 4.00 14.00
purchasing consumers 43,110 4.88 3.50 1.00 2.00 4.00 7.00 14.00
# Browsers

multi-session consumers 321,967 1.31 0.54 1.00 1.00 1.00 2.00 6.00
purchasing consumers 43,110 1.02 0.15 1.00 1.00 1.00 1.00  3.00

Notes. This table reports the number of devices and browsers used by consumers who visited the websites for
multiple sessions. Median consumer searches on two devices from the same browser, and purchasing consumers
search more intensively and use four devices.

FIGURE E4: Recognition rates by browser in 2019 (return to p. 8)

Notes. This figure illustrates the dynamics of recognition rates in 2019. The Safari
ITP 2.1 that blocks first-party cookies was introduced on February 21 of 2019.
However, we do not see significant differences in the recognition rates.
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TABLE E11: Difference-in-differences effects of Safari privacy restrictions on recognition rates (return to p. 8)

Recognition rate (%)

(1) (2) (3)
Feb 21, 2019 to Jan 31, 2019  Feb 21, 2019 to Mar 21, 2019  Feb 21, 2019 to Mar 1, 2019

Safari -5.284*** -4.693*** -4.766***

(0.403) (0.608) (0.601)
After 16.899*** -12.162*** -12.876%**

(0.464) (0.614) (1.020)
Afterx Safari 0.593 -1.017 -0.326

(0.682) (0.827) (1.179)
Observations 1,464 1,464 1,464

Notes: This table reports the results of the difference-in-differences estimation (Equation 20) investigating the effect of Safari
policy on platform’s recognition rates. Data is at the browser-day level. Intercept is hidden for data sensitivity reasons.
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.

F1cure E5: Consumer arrival by channel type (return to p. 27)

Notes. This figure shows the distribution of the inter-session arrival channels that consumers in
the personalized and non-personalized groups use. The distribution seems balanced between
two groups, which serves as an indication that personalization may not affect actions consumers
take outside the website.
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FIGURE E6: Consumer arrival by referral type (return to p. 27)
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Notes. This figure shows the distribution of referral URLs consumers arrive from during re-visits.
The distribution of websites seems to be balanced between personalized and non-personalized

group, which serves as an indication that personalization may not affect actions consumers take
outside the website.

FIcure E7: Filtering behavior by personalized condition (return to p. 27)

Notes. This figure shows the distribution of the filters applied by consumers in the personalized
and non-personalized groups. The figure highlights that conditional on filtering, consumers
apply similar set of filters.

These graphs show that the personalization effect is consistent across different brand quintiles.
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TABLE E12: Heterogeneity in product characteristics

Observations Min Mean Median Max St.Dev.

price ($) 35,873 446 431.99  349.99  2999.99  291.27
sort rank 35,873 14.81 514.96  470.70  5809.35  254.18
rating (1-5) 14,909 1.00 4.47 4.65 5.00 0.69
impressions 35,873 1.10 10.46 10.43 18.35 1.79
clicks 35,873 0.00 6.35 6.21 14.76 2.16
add-to-cart 35,873 0.00 3.83 3.71 12.79 2.57
quantity 35,873 0.00 1.99 1.39 11.42 2.20
revenue 35,873 0.00 5.29 6.90 16.12 4.56

Notes. This table reports summary statistics among dining chair products: prices,
historical rank, rating, historical scaled impressions, clicks, add-to-cart rates, quantity
sold, and revenue.

FiGURE E8: Number of dining chairs within a product

Notes: This figures shows the percent 1-, 2- 4, 6-chair sets among all chairs available
on the website. The figure highlights that most products have either one or two
chairs in the set, which is why there are opportunities for the repeat purchases of
the products because typically consumers would need multiple chairs.

TABLE E13: Prices, wholesale costs and profits by seller mass marketness (return to p. 46)

(1) 2) 3)
Log price () Log wholesale cost ($) Log markup (%)
Mean cosine similarity — -0.0477*** -0.0499*** 0.0240***
(0.00810) (0.00960) (0.00491)
Observations 53,801 53,801 53,801

Notes: This table shows the results of estimation: y; = a + Bcosine; +¢;. We investigate
the correlation between the mean cosine similarity of a product and the retail price, wholesale
cost, and the markup. We hide the intercepts for data sensitivity reasons in this table. The
table shows that products that are more mass market (bestseller - have higher mean cosine
similarity to other products) have lower prices, lower wholesale costs and higher markups for
the platform. This is why profits are less impacted under privacy restrictions.
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F1GURE E9: Purchased products versus existing products
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Notes: This figure shows the distribution of products’ mean cosine similarities
among all products and those products that are purchased at least once. The
distributions are close showing that consumers have heterogeneous preferences and
buy all types of products. Products with high mean cosine similarity are more mass
market, while low mean cosine similarity products are more niche.

TABLE E14: Differences in search and purchase behavior by authentication decision
(return to p. 36)

Logged in  Cookie-recognized Difference p-value

(1) (2) (3) (4)

Clicks 4.25 2.70 1.55%%* 0.00
(111.52)
Clicked Prices ($) 173.77 177.03 -3.26%** 0.00
(-5.96)
Add-to-carts 1.12 0.94 0.18%** 0.00
(32.08)
Add-to-cart Prices ($) 163.79 165.21 -1.42 0.16
(-1.40)
Orders 0.55 0.52 0.02%** 0.00
(8.05)
Purchased Prices ($) 152.82 145.51 (7.32*) 0.03
2.23

Notes: This table shows the results of the t-test between the search and purchase behavior
of people who log in versus those who are cookie recognized. All the differences are significant
and indicate that consumers who login click and order more and are less price elastic.

69



TABLE E15: Differences in search and purchase behavior by traffic source (return to p. 36)

Display Advertising People Other Difference p-value

1) (2) 3) (4)

Clicks 2.70 1.75 0.95%** 0.00
(56.10)

Clicked Prices ($) 109.59 85.94  23.65%** 0.00
(53.77)

Add-to-carts 0.24 0.16 0.08%** 0.00
(35.20)

Add-to-cart Prices ($) 95.05 81.29  13.76%** 0.00
(17.72)

Orders 0.02 0.02 -0.00%** 0.00
(-3.49)

Purchased Prices ($) 83.17 76.56  6.61%FF* 0.00
(3.44)

Notes: This table shows the results of the t-test between the search and purchase outcomes
of consumers who arrive from display advertising and those who arrive from other sources. All
the differences are significant indicating that consumers who arrive from display advertising are
significantly less price elastic and potentially have lower search costs.

FicUrRE E10: Diminishing returns of the data

(A) Scaled revenue (B) Scaled profit

Notes. This figure shows the scaled revenue (A) and scaled profit (B) as a function of historical (pre-experiment)
clicks made by consumers who participated in the ranking experiment. There is a positive and significant relationship
between the amount of browsing history and scaled revenues and profits. However, there is diminishing returns of data
because marginal data point brings less and less revenue/profit and both lines become flatter. Back-of-the envelope
calculation would say that every click would bring approximately $2.69 before the economies of scale kick in and it
drops to $0.23 after the maximum is reached.
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F1cure E11: Types of consumers arriving through different channels

Notes: This figures shows the distribution of consumer types arriving from different channels.
Most channels have similar shares of consumer types except for TV, Email and Push Notifications.
This is intuitive because it is mostly most active "Activated Customers’ that use these channels.
The difference between Acquired Member and Activated Customer is the level of their activity:
the latter is more active on the website.

TaBLE E16: Correlations b/w purchased product and search products’ prices by personalization condition

Price of the Purchased Product

(1) (2)

Personalized Product Non-personalized Product

Avg. Searched Price 0.711%* 0.490***
Min. Searched Price 0.241*** 0.009**
Max. Searched Price 0.190*** 0.002

Observations 2,123 64,615

Notes. This table shows the correlations between the purchased products’ and
searched products’ prices by personalization status of the product. Significance
levels: *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE E17: Main consumer metrics in the sample

Total Clicked Added-to-cart Purchased
Absolute 635,267 581,423 166,902 43,110
Percent terms  100.0% 91.5% 26.3% 6.8%

Notes. This table shows the absolute and relative (to total # of consumers)
number of consumers who clicked, added to cart and purchased.
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TABLE E18: Heterogeneity in dining chair prices

Main Material Mean Price ($) Median Price (8) St.Dev. Price (8) % of Products

Wood 524.26 389.99 413.96 33.33
Wicker / Rattan 523.81 449.99 354.77 1.86
Upholstered 499.86 379.99 398.71 54.89
Metal 300.24 222.00 248.16 2.92
Plastic / Acrylic 272.75 217.99 210.96 7.00

Notes. This table shows the heterogeneity dining chair prices across different chair materials.

Ficure E12: Change in ranks by brand sizes
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Notes. This figure illustrates the relationship between brand size and the changes in
the rankings when product is shown as part of the personalized rankings. Brand size
is defined as the total number of products offered by a brand. The x—axis represents
the quintiles of brands categorized by their product count. The y-axis represents
the differences in product ranks in personalized impressions versus non-personalized
impressions. The numbers inside orange circles indicate the median rank change for
each quintile.
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FiGURE E13: Change in pages by brand sizes
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Notes. This figure illustrates the relationship between brand size and the changes
in the pages when product is shown as part of the personalized rankings. Brand
size is defined as the total number of products offered by a brand. The z—axis
represents the quintiles of brands categorized by their product count. The y-axis
represents the differences in product ranking pages in personalized impressions
versus non-personalized impressions. The numbers inside orange circles indicate the
median page change for each quintile.

TaABLE E19: Jumps in the search process (return to p. 25)

(1) (2) (3) (4)

Aprices Acosine similarity — Awidth Adepth

Standardized sales  6.588*** 0.866*** -0.040***  -0.127***
(0.560) (0.019) (0.012) (0.022)
Purchased -51.432%** 1.202%** -0.617%**  -0.769***
(3.163) (0.149) (0.028) (0.044)
#Ratings -13.402%** -0.470*** -0.013 0.067***
(0.609) (0.022) (0.016) (0.025)
St.Dev. Ratings -9.507*** 0.085*** -0.021%**  0.046™**
(0.816) (0.028) (0.007) (0.011)
Rating -7.697F** -0.021 -0.103***  -0.115™**
(1.246) (0.044) (0.010) (0.016)
Intercept 264.160*** 18.438*** 2.429%**F 2 R47***
(6.107) (0.215) (0.051) (0.079)
Customer FE Yes Yes Yes Yes
N 4,798,732 2,917,274 820,034 826,132

Notes: We calculate the step size in quantitative attributes (e.g. price, cosine similarity

with the previously clicked product, width and depth of the chair): the difference
between the attribute value of the previously searched product and that of next product.
[Ayiiel = |Yije — viji—1] = a+ Bisales;ji_1 + Bapurchased;ji_1 + Baffratingsijz—1 +
Bast.dev.ratings;ji_1 + Bsrating;jt—1 + €ijt—1, where 7 is the consumer, jt is the product
searched at search instance ¢, y-variables are absolute step size between attribute value of
the previously searched product and the current one, sales;;j; — 1 is the standardized sales
of product searched at search instance t — 1 (previously searched one), purchased;;; — 1 is
the indicator for whether consumer 7 purchased product j searched at ¢ — 1, #ratings;; -
number of ratings product j carries, st.dev.ratings;j; - standard deviation in the ratings
of the previously searched product and rating is the absolute rating of the product that we
control for.
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F1GUurRE E14: Convergence patterns in consumer search

(A) chair height (B) chair depth

(¢) number of chairs in a set (D) seat width

Notes. This figure shows that consumers exhibit spatial learning behavior

documented in Bronnenberg, Kim and Mela (2016). The z-axis shows consumer’s

search decile (progression), and y-axis shows the absolute deviation of the searched
product attribute from the chosen (purchased) product’s attribute.

F1GUurE E15: Sessions after Chrome Display Advertising arrival
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Notes. This figure illustrates the number of sessions consumers search for after
arriving from Chrome Display Advertising channel. Median consumer keeps
searching for additional three sessions after arriving from the advertising channel.
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F1cURE E16: Session order at Chrome Display Advertising arrival
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Notes. This figure illustrates the session order at which consumers arrive from

Chrome display advertising. Median consumer who arrives from Chrome display
advertising, does so at session number three.

FIGURE E17: Price inelastic consumers by state

Notes. This figure illustrates the implied price elasticities based on consumers’
previous clicking and purchase behavior.
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FiGure E18: Total clicks by state

Notes. This figure illustrates the number of total clicks based on consumers’ previous
clicking and purchase behavior.

FiGURE E19: Days of search by state

Notes. This figure illustrates the days of search based on consumers’ previous
clicking and purchase behavior.
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FIGURE E20: Tenure on the website
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Notes. This figure illustrates the distribution of days products existed on the
website.
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F. BELIEF UPDATING

F.1. PRIOR MEAN UPDATING

Table F20 below gives an intuition behind belief updating process that occurs as a result of

Gaussian process specification. Suppose consumer clicked on product j and observed true utility u;.

Given the observed utility, the model allows the consumer to update her beliefs about the remaining

products (Equation 28). Consumer first calculates how much the observed utility from product j

deviates from her prior belief (u; — 1(X;)) and then updates posterior beliefs about other products

according to the weights implied by Gaussian distribution.

w(X_j;) = w(Xy) +
———— ———

posterior means prior means

’{(X*ijJ'

)

k(X X;5) + o + o2

weights

(uj — p(X;)) (28)

deviation of observed utility from the prior

TABLE F20: Posterior updates of mean utilities

Updating

Explanation

uj > pu(X;) and £(X_j;, X;) high

u; < p(X;) and K(X_j, X;) high

uj > p(X;) and k(X_j;, X;) low

uj < p(X;) and k(X_j, X;) low

P (X_j;) = m(X—j)

NI(X—]'U) > pu(X_j)

p(X_jp;) < pu(X—j)

w(X_j5) < w(X—y)

1 (X_j) = n(X—j)

observed utility is equal to the prior, and, consequently,
posteriors are not updated.

if products X_; and X; are highly related, and
consumers got positive utility signal, then they will
update positively the posterior mean on X_;.

if products X _; and X; are highly related, and
consumers got negative utility signal from X_;, then
they will think that the products similar to the observed
one have low utility and will decrease posterior mean
utility beliefs.

if products X_; and X; are not quite related or
negatively related, then getting positive signal from X
either does not affect the beliefs about the dissimilar
products or may decrease them.

if products X_; and X; are not quite related or
negatively related, then getting negative signal from X
either does not affect the beliefs about the dissimilar
products or may increase them.
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F.2. PRIOR COVARIANCE UPDATING

In the model, consumer updates both the posterior mean beliefs about product qualities, as well
as the strength of the relationship between products. The updating process follows Equation 29.
Every click on a product may reduce uncertainty about product qualities, which is reflected in the

posterior covariance matrix. Table F21 gives an intuition for different updating scenarios.

total uncertainty
about product j payoff

! = . . 2 2y -1.T
K—jli - K—jlj —ki—jj (Kjj+og+02) KL (29)
M . ) .
posterior covariance matrix prior covariance matrix reduction in uncertainty

TABLE F21: Posterior updates of covariance matrix

Case Updating Explanation

!

K_j j are zeros or low KL = F—jlj if observed product X; is unrelated to product X_j, i.e.
t_j,; = 0 then corresponding posterior covariances of

product —j with other products do not change.

k_j,j are high ff’_m. < K_j| if observed product X; is highly related (similar) to
product X_j, i.e. k_;; is high, then corresponding
posterior covariances of product —j with other products
will decrease. The intuition is that observing a
product decreases uncertainty about the payoffs of other

products similar to the observed one.
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G. LOWER-DIMENSIONAL PRODUCT REPRESENTATION: EMBEDDINGS

We use Deep Learning, namely Convolutional Neural Networks (CNNs), to construct image
similarity. The goal of the model is to represent each product as a numerical vector with 512 x 1
dimensionality. To train the model, we need product images and ground truth training data that
has true labels of product similarity. For training, we use more than 1.5 million images generously
provided by Wayfair. Each product has multiple pictures associated with it (Figure G21) and this
provides ground truth labels. That is, if the images correspond to the same product, then in the
pairwise comparison the label is one, and zero otherwise. The goal of the trained Convolutional
Neural Network is to project the images to a lower dimensional space in a way that would place

images of the same product close together, while all the dissimilar images will be located at a distance.

FicUre G21: Different images of the same product

Figure G22 illustrates this: the goal is to learn a lower-dimensional representation of the image
such that the image in Panel (A) and the matched image of the same product in Panel (B) map to
the same point in the embedding space, while image in Panel (C) which corresponds to a completely
different product is separated by at least a margin m in the embedding space.

Formally, we use the Convolutional neural networks (CNNs) (see Hadsell, Chopra and LeCun
(2006) and Bell and Bala (2015) for more details). A convolutional neural network is a function f
that maps each image I into an embedding position z, given parameters 0: fy : I — x. The goal
of CNN is to solve for the parameter vector 6 such that the produced embeddings x are such that
similar images are placed nearby, while dissimilar images are more distant.

Suppose there are three images, I, Iy, I.. Images I, and I are two different images of the same
object (Panels (A) and (B) of Figure G22), while image I, and I, correspond to two completely
different objects (Panels (B) and (C) of Figure G22). Via CNN fp, the images are mapped into the
embeddings x4, xp, x.. If the model is trained well and produces ’good’ embeddings, then the correct
(positive) pair x, and x3 should be close together, while the incorrect (negative) pair x; and z. is
further apart.

The objective function for this kind of task is called contrastive loss and was proposed by Vedaldi,

Jia, Shelhamer, Donahue, Karayev, Long and Darrell (2014). We minimize the loss function defined
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FiGURE G22: Idea behind embeddings

(A) Image Iq (B) Image I

(c) Image I.

Notes: The figure illustrates the idea behind image embeddings. Products in Panel
(A) and (B) are very similar, and the model’s task is to put these products close
in the embedding space. Meanwhile, product in Panel (C) should be more distant
from (A) and (B) in the embedding space.

as
L) =Y Ly(q, ) +> Le(xy, ) (30)
——— ———
TarTh Penalty if similar images Tooe Penalty if dissimilar images
are far away are nearby
where Ly(7q,2) = ||7e — 2|13 and L(xp,2.) = maz{0,m? — ||z, — x¢||3}. The objective (loss)

function consists of two parts: Ly (x4, xp) penalizes a positive pair (x4, zp) if the embeddings of the
images of the same product are too far apart, and L.(xs, 2.) penalizes a negative pair (zp,x.) if the
images of two different items are closer than the margin m.

We minimize the objective function in Equation 30 with respect to parameters 6 using stochastic
gradient descent with momentum (Krizhevsky, Sutskever and Hinton (2017), Bottou, Curtis and

Nocedal (2018)):

WD) ) o O g0y (31)
00
olt+1) . p®) +U(t+1) (32)

where v is the momentum sequence, p € [0,1) is the momentum and « € [0, 00) is the learning
rate. For computational reasons, to efficiently compute the loss function L and the gradient %, we
follow Hadsell, Chopra and LeCun (2006). Their approach is to construct a siamese network, which
is the two copies of the CNN that share the same parameters 6. The network takes as an input two

images I1, I, 0 and the indicator variable for whether the images are a positive pair (y = 1) or a

negative pair (y = 0), and outputs the loss function L (Figure G23).
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FIGURE G23: Siamese network

Notes. This figure illustrates the architecture of the Deep Neural Network that we
used to create image embeddings. the Source: Bell and Bala (2015).

For training, we used more than 1.5 million images of approximately 320,000 products. We took
all images available for fifty®® thousand dining chair products and supplemented them with products
from other furniture categories, e.g. sofas, office chairs, ottomans, beds. Using products from other
categories ensures better training of the image recognition model.

Different images of the same product constitute a positive pair, and the model should deliver
embeddings (vectors) that are similar in some distance metric, e.g. cosine similarity. For negative
examples, for each product, we sampled other products from the same category and other categories.

The output of the model is the 512 x 1 vector that characterizes each product. Next, we can
calculate cosine similarities between different products’ vectors to identify how similar or dissimilar
products are. Figures G24 and G25 show some examples of products that have high cosine similarity
(> 0.9) and the examples of dissimilar products (< 0.1), where we calculated cosine similarities using
the model output. Figure G26 a condensed output of the model in two-dimensional space, where we

used UMAP to project 512 x 1 images into two-dimensional space.
FiGURE G24: Examples of products with high cosine similarity

(A) Cosine similarity: 0.9294 (B) Cosine similarity: 1.0000

Notes. This figure shows the examples of the products with high cosine similarities. Typically, products that have
cosine similarity higher than 0.9 are visually very similar.

58 At each point in time, there are approximately thirty thousand dining chairs on the website, but historically there
were alltogether fifty thousand chairs and we use all the available pictures.
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FicUure G25: Examples of products with low cosine similarity

(A) Cosine similarity: -0.0001 (B) Cosine similarity: 0.0074

Notes. This figure shows the examples of the products with low cosine similarities. Typically, products that have cosine
similarity lower than 0.5 are visually very different.

FIGURE G26: Output of embedding images in two-dimensional space (return to p. 37)

Notes: This figure shows a partial output of the image embedding model. The actual image emebdding is 512 x 1
vector. We used UMAP (Uniform Manifold Approximation and Projection) to reduce the dimensionality to get
two-dimensional vectors.
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H. PERSONALIZED RANKINGS ALGORITHM

On the ranking pages, Wayfair uses a sequential recommendation model to learn most recent
consumer preferences and to provide recommendations that better match consumer tastes. The input
to the model is simple: it is a sequence of items that a consumer has browsed previously within
a category. During the sample period, the algorithm leveraged only within-category browsing and
trained separate models for each product category. Model architecture is depicted on Figure
129. The input to the algorithm is an ordered sequence of consumer searches. First, the model
learns similarity between different products and represents each product in a numerical vector form,
i.e. item embedding. Similarly, the information on the order of searches is stored in the positional
embeddings. Next, combined lower-dimensional representation of consumer searches stored in the item
and positional embeddings is passed into subsequent layers of the model. There is a self-attention layer
that learns the relationship between different items and decides which lower-dimensional attributes
to store in the item embeddings. Next, the resulting summed embeddings are passed through the
fully-connected layer with a sigmoidal (logistic) activation and binary cross-entropy loss. The final
output of the model is the list of scores for all items in the training set. These scores are then used to
provide the top n recommendations. The recommended products can include both previously-unseen

and previously-seen products. See Mei, Zuber and Khazaeni (2022) for more details.

FIGURE H27: Architecture of the personalization algorithm

Notes: This figure shows the architecture of the personalization algorithm used by Wayfair. The input to the algorithm
is an ordered sequence of consumer’s browsing history, e.g. consumer browsed for eight chairs. This sequence of searches
is encoded into item and positional embeddings and the result if passed through the multi-level perceptron layer. The
final output of the model is a list of scores for all items in the training set. Next, products are ranked according to the
scores to provide top n recommendations. Source: Mei, Zuber and Khazaeni (2022).
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I. RECOMMENDATIONS ON THE PRODUCT PAGES

On the product pages, consumers will see additional product recommendations. These
recommendation widget is called compare similar items. It consists of five products, the first
product is the anchor product itself, and there are four additional products. On Wayfair, consumers
can click on a product, add it to cart, add it to favorite board and finally purchase.

To create these recommendations, Wayfair uses data on how consumers co-purchase, co-add-to-
cart and co-click the products. First, they create a bipartite random graph that calculates the visit
counts to every product, using consumer clicks and add-to-carts. Next, the algorithm simulates a

random walk to predict which products consumers are more likely to click on.

F1cURrE 128: Building Bipartite graph algorithm

Notes: The platform builts the bipartite graph at the category level. The random
walk starts by initializing the visit counts for every SKU to zero.

FIGURE 129: Simulation of random walk

Notes: During the random walk process, we record the visit count for all SKUs
in the graph. The top K SKUs with the highest visit count will become the final
recommendation.
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J. MODEL FIT AND VALIDATION

This section shows the results of the model fit analysis. First, we test the model fit by comparing
the observed and predicted awareness set sizes, i.e. the number of products consumers viewed. Figure
J30 shows the observed awareness set size on the x-axis and the predicted measure on the y-axis.
The size of the circle indicates the number of people with a given awareness set size. The model
predicts the awareness set particularly well, which ensures some credibility in the model.

We chose awareness set size as the model fit measure because it captures one of the main aspects
that we model: viewing. If the model predicts the awareness sets well that means it captures search

behavior sufficiently well.

FIGURE J30: Model fit: awareness set size (return to p. 37)

300

Predicted mean # products in awareness set

T T T
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Observed mean # products in awareness set

Notes: This figure plots the simulated and observed data moment: size of the

consumers’ awareness sets. The size of the dot is proportional to the number of
consumers in each group. The orange line is the the 45-degree line.

Next, we check the model fit on other consumer-level and seller-level metrics. Table J22 shows
that the model can predict the number of clicks, prices searched and the ranking page position of the

purchased product, and the share of different sellers well.

TABLE J22: Model fit: consumer outcomes

Data Predicted
Consumers
# clicks 3.42 3.17
awareness set size 59.46 60.32
price searched ($) $234 $239
position purchased 49 47
Sellers
share of 10th percentile sellers 100%* 95%
share of 90th percentile sellers 100%! 97%

! Share normalized to 100% for data sensitivity reasons.
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Finally, we validate the model using the data from Chrome privacy policy that was introduced in
2020 (Appendix A). The model predicts the number of times consumer leaves the product page and
re-visits the ranking page. We chose this metric because it captures the main components of the
model, i.e., viewing products and clicking and then navigating back to the ranking page. The orange
line on Figure J31 shows the increase in the number of re-visits of ranking page during the Chrome

event. The predicted and observed data moments match well, further validating the model.

FIGURE J31: Model fit: search behavior during Chrome SameSite updates (return to p. 37)

Notes: This figure plots the simulated and observed data moment: the increase
in the ranking page re-visits during Chrome event. The red line corresponds to
the observed data and blue line is the predicted data moment. The shaded area
indicates the 95% confidence interval across simulation draws.
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K. COUNTERFACTUAL RESULTS

Figures K32 and K33 show the comparison between two approaches to simulating Chrome
restrictions. In Approach 1, we fragment the data and re-train the personalization algorithms using
fragmented data. Next, we re-train platform’s personalization algorithm using the fragmented data.
This is the approach that we report in the main text.

In Approach 2, we assume that Chrome will indicate aggregate clustering group for the consumer
interests, e.g., modern style. To simulate that, first, we segment consumers into clusters (styles) of
interest based on their browsing history. We calculate the number of clicked products of a certain style
among the viewed ones and classify consumer into a cluster that received highest click-through-rate.
Next, we show personalized recommendations of a style of interest mixing small and large sellers’
products in the rankings.

Both approaches give qualitatively similar results but we report the Approach 2 in the Appendix
because it makes a strong assumption about the kind of information that is revealed to to the
platforms. Moreover, we apply a simple heuristic approach and show a mix of small and large sellers’
products. In reality, the platform might use a complete different algorithm given the identified
clusters. Approach 1 is a scenario that is more realistic to happen and requires less heuristic choices

compared to Approach 2.

F1GURE K32: Comparison of two approaches for Chrome counterfactuals: consumer welfare

Notes: This figure compares the counterfactual welfare measures between
two approaches of simulating Chrome restrictions.
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F1GURE K33: Comparison of two approaches for Chrome counterfactuals: seller revenue

Notes: This figure compares the counterfactual seller revenue measures
between two approaches of simulating Chrome restrictions.

TABLE K23: Counterfactual results (return to p. 42)

) 2) (3) (4)
"Full” data vs Bestseller 7 day vs 'Full’ data | Chrome 2024 vs 'Full’ data | Algorithm vs ’Full’ data
Consumer
A welfare ($) +25.3 vs +16.4 (A = $8.9) 478 -6.98 -3.06
purchase probability +12.09% -17.52% -24.65% -23.45%
match value +48.70% -33.45% -54.11% -30.36%
scrolling cost savings +38.37% -43.24% -32.53% -35.42%
clicking cost savings +0.83% -5.79% +11.28% -10.77%
Seller
revenue (10th percentile) +10.23% -5.64% -8.59% -2.34%
conversion prob (10th percentile) +1.64% -2.30% -2.84% +1.23%
revenue (90th percentile) +0.24% +0.28% +0.31% +0.12%
conversion prob (90th percentile) +1.00% +1.5% +1.10% +0.78%
Platform
Arevenue (%) +2.19% -1.15% -1.94% -0.82%
Aprofit (%) +1.25% -0.21% -0.39% 0.13%

Notes. This table reports the full counterfactual simulation results. Column (1) shows the changes in consumer, seller and platform outcomes under
personalization using full data versus non-personalized rankings. Column (2) compares using Safari-style 7 day cookie reset policy with the full personalization
case. Column (3) compares forthcoming Chrome 2024 policy to the full personalization. Column (4) compares the proposed algorithm with the full data

scenario.
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