
HOW SHOULD MONETARY POLICY RESPOND TO HOUSING INFLATION?

Javier Bianchi, Alisdair McKay, Neil Mehrotra

November 2024, NBER Monetary Economcis

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

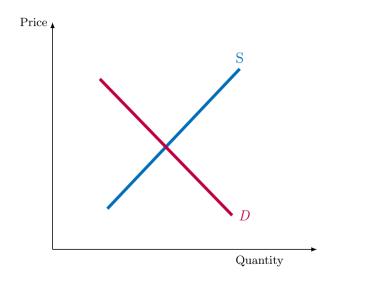
Price of Shelter Driving Current Inflation

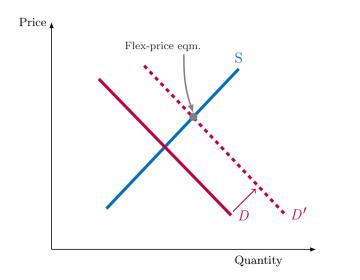
New Keynesian Theory: Shelter Inflation is very Costly

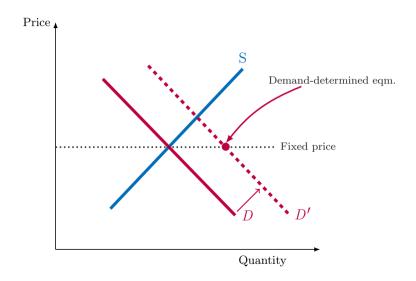
- Larger welfare costs of π in sectors with more sticky prices and more inelastic supply Aoki (2001), Woodford (2003, ch. 6), Benigno (2004), Eusepi-Hobijn-Tambalotti (2011)
 - Equilibrium is demand determined: producers have to supply at posted price
 - \Box Higher stickiness \Rightarrow larger response in demand
 - \square More inelastic supply \Rightarrow larger change in inputs to meet demand
- Rents are highly sticky (e.g. 12-month contracts)
- Housing supply essentially fixed in the short run
 - \rightarrow Monetary policy should respond aggressively to a rise in housing demand

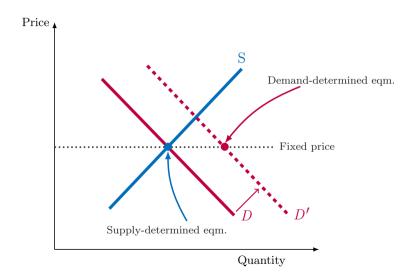
• Implausible that supply of housing adjusts in the short-run to satisfy demand

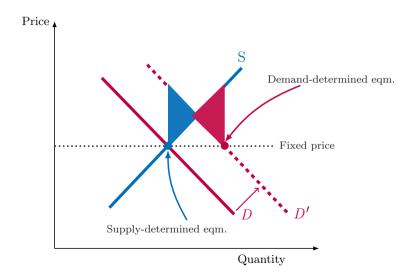
- Implausible that supply of housing adjusts in the short-run to satisfy demand
- What we do:
 - Develop multi-sector model with demand rationing in the housing sector
 - Optimal monetary policy (and comparison with simple targeting rules)

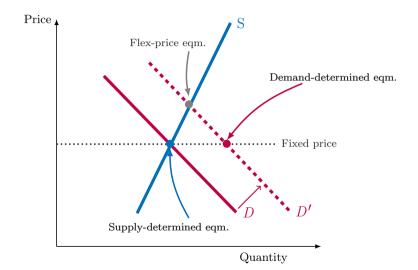

- Implausible that supply of housing adjusts in the short-run to satisfy demand
- What we do:
 - Develop multi-sector model with demand rationing in the housing sector
 - Optimal monetary policy (and comparison with simple targeting rules)
- Preview:
 - Without congestion costs: zero-weight on housing inflation
 - With search friction: tradeoff between congestion and output gap

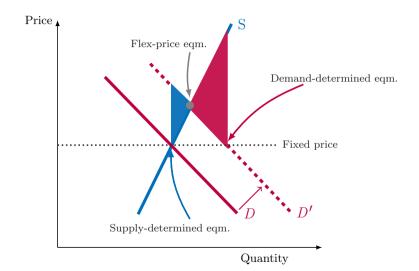

Quantitatively: optimal to ignore housing inflation


- Implausible that supply of housing adjusts in the short-run to satisfy demand
- What we do:
 - Develop multi-sector model with demand rationing in the housing sector
 - Optimal monetary policy (and comparison with simple targeting rules)
- Preview:
 - Without congestion costs: zero-weight on housing inflation
 - With search friction: tradeoff between congestion and output gap


Quantitatively: optimal to ignore housing inflation

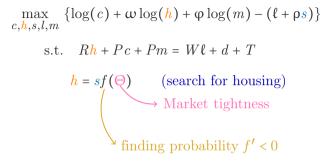

• Broader point— 3 considerations: (i) degree of stickiness; (ii) supply elasticity; (iii) rationing mechanism





Roadmap

1. Static model:


- Prices of goods and rents fixed:
 - $\hfill\square$ Goods: output is demand-determined
 - \Box Housing: disequilibrium resolved via search

→ mimics supply-determined if excessive demand

- 2. Dynamic quantitative model:
 - Staggered pricing for goods and rentals
 - Compare optimal policy, CPI and goods-price targeting

STATIC MODEL

$\{\log(c) + \omega \log(h) + \varphi \log(m) - (\ell + \rho s)\}$

• Search split across HH members

 $\max_{c,h,s,l,m} \left\{ \log(c) + \omega \log(h) + \varphi \log(m) - (\ell + \rho s) \right\}$

s.t. $Rh + Pc + Pm = W\ell + d + T$

 $h = sf(\Theta)$ (search for housing) Market tightness finding probability f' < 0

• Search split across HH members

Firms

- Produce goods, $y = z\ell$
- Rationing: meet demand at $P=\bar{P}$

 $\max_{c,h,s,l,m} \{ \log(c) + \omega \log(h) + \varphi \log(m) - (\ell + \rho s) \}$ s.t. $Rh + Pc + Pm = W\ell + d + T$ $h = sf(\Theta)$ (search for housing) \longrightarrow Market tightness finding probability f' < 0

• Search split across HH members

Firms

- Produce goods, $y=z\ell$
- Rationing: meet demand at $P=\bar{P}$

Landlords

• Inelastically supply \bar{h}

Total profits $d = z\ell - W\ell + Rg(\Theta)\bar{h}$

 $g~{\rm prob.}$ of landlord finding tenant

 $\max_{c,h,s,l,m} \{ \log(c) + \omega \log(h) + \varphi \log(m) - (\ell + \rho s) \}$ s.t. $Rh + Pc + Pm = W\ell + d + T$ $h = sf(\Theta)$ (search for housing) \longrightarrow Market tightness finding probability f' < 0

• Search split across HH members

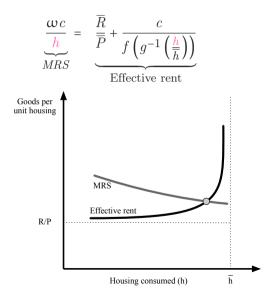
Firms

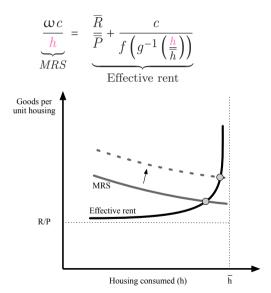
- Produce goods, $y = z\ell$
- Rationing: meet demand at $P=\bar{P}$

Landlords

• Inelastically supply \bar{h}

Total profits $d = z\ell - W\ell + Rg(\Theta)\bar{h}$


g prob. of landlord finding tenant


Government M = T

Definition of fixed-price equilibrium

$$c = \frac{m}{\varphi}$$
 $\qquad \qquad \frac{\omega}{h} = \frac{1}{c} \left(\frac{\overline{R}}{\overline{P}} \right) + \frac{\rho}{f(\Theta)}. \qquad \qquad \frac{W}{\overline{P}} = c,$

Constrained efficient allocation

• Planner directly chooses allocation subject to technology and search frictions

$$\max_{c,s} \left\{ \log(c) + \omega \log\left(sf\left(\frac{s}{\overline{h}}\right)\right) - \left(\frac{c}{z} + \rho s\right) \right\}$$
 (Ignoring money for welfare)

Constrained efficient allocation

• Planner directly chooses allocation subject to technology and search frictions

$$\max_{c,s} \left\{ \log(c) + \omega \log\left(sf\left(\frac{s}{\bar{h}}\right)\right) - \left(\frac{c}{z} + \rho s\right) \right\}$$
 (Ignoring money for welfare)

• Optimality

$$c = z$$
$$\frac{\omega}{h} \left[f(\Theta) + f'(\Theta)\Theta \right] = \rho$$

• Flex-price outcome is not necessarily constrained efficient (Hosios, 1990)

- Excess search if
$$\frac{\overline{R}}{\overline{P}} < -\frac{\omega c}{h} \frac{f'(\Theta)\Theta}{f(\Theta)}$$

Optimal monetary policy

$$\max_{c,s,M} \left\{ \log(c) + \omega \log \left(sf\left(s/\bar{h}\right) \right) - \left(\frac{c}{z} + \rho s \right) \right\}$$

subject to

$$\frac{\omega}{sf\left(s/\bar{h}\right)} = \left(\frac{1}{c}\right)\frac{\bar{R}}{\bar{P}} + \frac{\rho}{f\left(s/\bar{h}\right)}$$
$$c = \left(\frac{1}{\varphi}\right)\frac{M}{\bar{P}}$$

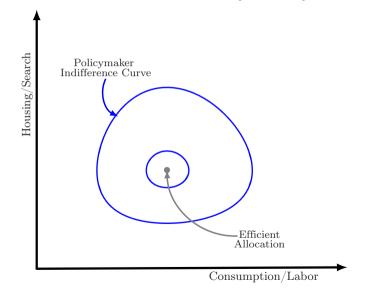
Optimal monetary policy

$$\max_{c,s} \left\{ \log(c) + \omega \log\left(sf\left(s/\bar{h}\right)\right) - \left(\frac{c}{z} + \rho s\right) \right\}$$

subject to

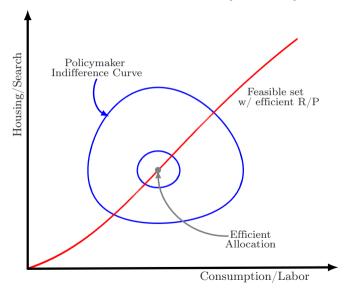
$$\frac{\omega}{sf\left(s/\bar{h}\right)} = \left(\frac{1}{c}\right)\frac{\bar{R}}{\bar{P}} + \frac{\rho}{f\left(s/\bar{h}\right)}$$

Optimal monetary policy

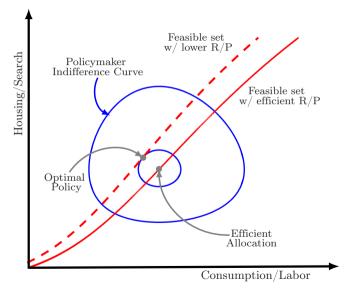

$$\max_{c,s} \left\{ \log(c) + \omega \log\left(sf\left(s/\bar{h}\right)\right) - \left(\frac{c}{z} + \rho s\right) \right\}$$

subject to
$$\frac{\omega}{sf\left(s/\bar{h}\right)} = \left(\frac{1}{c}\right) \frac{\overline{R}}{\overline{P}} + \frac{\rho}{f\left(s/\bar{h}\right)}$$

Targeting rule


$$\underbrace{1 - \frac{\omega}{h} \left(f(\Theta) + f'(\Theta)\Theta \right)}_{\text{Housing congestion}} = [\text{term } < 0] \times \underbrace{(c - z)}_{\text{Output gap}}$$

 $\Rightarrow\,$ If housing market is tight, then goods market is slack


Tradeoffs for Monetary Policy

Tradeoffs for Monetary Policy

Tradeoffs for Monetary Policy

Taking Stock

- Two-sector model with two different rationing mechanisms
- Monetary policy faces a tradeoff between output gap and housing congestion
- In the paper, simple extension with housing production
 - Equilibrium with search mimics "short-side" rule:
 - \Box If excess demand, quantity closer to supply-determined eqm. \rightarrow Details

Taking Stock

- Two-sector model with two different rationing mechanisms
- Monetary policy faces a tradeoff between output gap and housing congestion
- In the paper, simple extension with housing production
 - Equilibrium with search mimics "short-side" rule:
 - $\hfill\square$ If excess demand, quantity closer to supply-determined eqm. $\rightarrow \mbox{Details}$
- Next: dynamic model & quantitative analysis

Dynamic Model

- Goods sector same as NK model
 - Intermediate good producers with staggered pricing a la Calvo

Dynamic Model

- Goods sector same as NK model
 - Intermediate good producers with staggered pricing a la Calvo
- Long-term rental market for housing
 - Exogenous separations (prob. δ) and renegotiation (prob. ξ)
 - Law of motion for rental units

$$h_{t+1} = (1 - \delta)h_t + f(\Theta_t)s_t$$

- Rental rate is a weighted average of outstanding and Nash-bargained rents

$$R_t = \mathbf{\chi} \bar{R}_t + (1 - \mathbf{\chi}) R_t^{Nash}$$

Result

The decentralized equilibrium coincides with the constrained efficient allocation if

- 1. Bargaining power HH = matching function elasticity (Hosios)
- 2. $\chi = 0$ (rents fully determined by Nash bargaining)
- 3. No price dispersion across intermediate goods
- 4. No output gap in goods

Result

The decentralized equilibrium coincides with the constrained efficient allocation if

- 1. Bargaining power $HH = matching function elasticity (Hosios) \sim calibrated to hold$
- 2. $\chi = 0$ (rents fully determined by Nash bargaining)
- 3. No price dispersion across intermediate goods
- 4. No output gap in goods

Result

The decentralized equilibrium coincides with the constrained efficient allocation if

- 1. Bargaining power HH = matching function elasticity (Hosios) $\sim \sim^{\mathfrak{I}}$ calibrated to hold
- 2. $\chi = 0$ (rents fully determined by Nash bargaining)
- 3. No price dispersion across intermediate goods
- 4. No output gap in goods

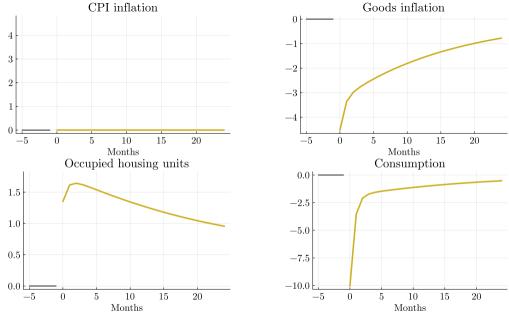
Achieved by setting $\pi^{\text{goods}}=0$

Result

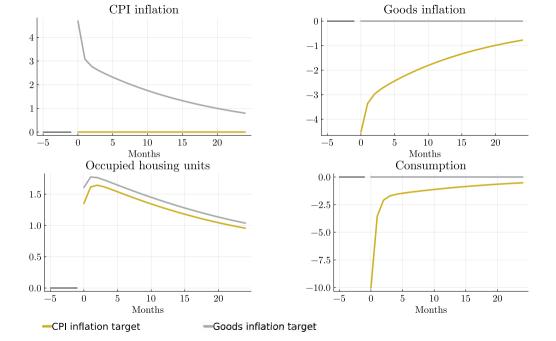
The decentralized equilibrium coincides with the constrained efficient allocation if

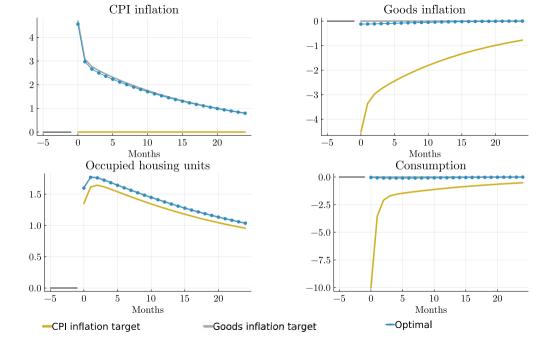
- 1. Bargaining power $HH = matching function elasticity (Hosios) \sim calibrated to hold$
- 2. $\chi = 0$ (rents fully determined by Nash bargaining) 3. No price dispersion across intermediate goods
- 4. No output gap in goods

Achieved by setting $\pi^{\text{goods}} = 0$

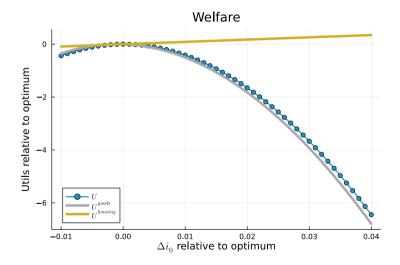

 $\Rightarrow \chi > 0$ is only reason to depart from $\pi^{\rm goods} = 0$

Calibration and Main Experiment


- Monthly model, standard parameters for goods sector
- Calibrate steady-state to 2019
 - Match size of housing, renter mobility, vacancy rate, spending on real estate


Calibration and Main Experiment

- Monthly model, standard parameters for goods sector
- Calibrate steady-state to 2019
 - Match size of housing, renter mobility, vacancy rate, spending on real estate
- Permanent increase in ω_t to match rise in housing share from 15% to 18%
 - Change in demand for space, e.g., WFH (e.g., Mondragon-Wieland, 2022)
 - Rigidity (χ) to match pass-through from new rents (Zillow) to CPI shelter
- Three policies: (1) $\pi^{cpi} = 0$; (2) $\pi^{goods} = 0$; (3) Optimal policy
- Computation: non-linear perfect foresight



-CPI inflation target

Why ignoring housing inflation is optimal?

Additional Results in the Paper

- Shelter inflation due to catch-up effects → Figure
- Without price dispersion between goods → Figure
- Without inelastic housing demand $(h^o = 0) \rightarrow \text{Figure}$
- With equal stickiness in both sectors \rightarrow Figure
- With median price duration of 3.4 months \rightarrow Figure

Conclusion

- Welfare costs of inflation depend on rationing mechanism
- Our model with demand rationing in housing: optimal policy is to ignore housing π

EXTRA SLIDES

Household Problem

$$H_{t}(h, X, B) = \max_{\substack{c, h', X', \\ s, \ell, B'}} \left\{ (1 - \omega_{t}) \log c + \omega_{t} \log (h^{o} + h') - \psi(1 - \omega_{t}) (\ell + s) + \beta H_{t+1} (h', X', B') \right\}$$

subject to

$$P_t c_t + \frac{B'}{1+i_t} + X' = B + W_t \ell_t + P_t d_t,$$

$$h' = (1-\delta)h + f(\Theta_t)s,$$

$$X' = (1-\delta)(1-\xi)X + R_t \left[\xi(1-\delta)h + f(\Theta_t)s\right],$$

Environment

• Preferences

• Search

$$\sum_{t=0}^{\infty} \beta^{t} \left\{ \log c_{t} + \boldsymbol{\omega}_{t} \log \left(h^{o} + h_{t+1} \right) - \psi \left(\ell_{t} + s_{t} \right) \right\},$$
$$h_{t+1} = (1 - \delta)h_{t} + f(\Theta_{t})s_{t}$$
$$\Theta_{t} \equiv s_{t} / [\bar{h} - (1 - \delta)h_{t}]$$

• Production of goods

$$\begin{split} c_t &= \left(\int_0^1 \, y_{jt}^{\frac{\eta-1}{\eta}} \, dj\right)^{\frac{\eta}{\eta-1}} \\ y_{jt} &= z\ell_{jt} \quad \forall \end{split}$$

Price setting

- Intermediate goods producers face Calvo friction
 - Constant production subsidy \Rightarrow efficient steady state

Price setting

- Intermediate goods producers face Calvo friction
 - Constant production subsidy \Rightarrow efficient steady state
- Rent within a match is fixed in nominal terms until
 - separation (prob. δ per period)

or

- renegotiation (prob. ξ per period)

Price setting

- Intermediate goods producers face Calvo friction
 - Constant production subsidy \Rightarrow efficient steady state
- Rent within a match is fixed in nominal terms until
 - separation (prob. δ per period)

or

- renegotiation (prob. ξ per period)
- Rents for new and renegotiated leases adjust gradually:
 - $-R_t^* =$ Nash bargaining rent
 - $-\bar{R}_t$ = average outstanding rent
 - Actual rent $R_t = \chi \bar{R}_t + (1 \chi) R_t^*$

Calibration: scope for misallocation

• Thought experiment: suppose no resources used in housing sector, then no misallocation

Calibration: scope for misallocation

- Thought experiment: suppose no resources used in housing sector, then no misallocation
- Use tenant bargaining power to target search effort

$$f(\Theta)\left(\frac{\omega}{h} - \frac{1}{c}\frac{R}{P}\right) = 1$$

- Given target for h, $R/P \uparrow \Rightarrow f(\Theta) \uparrow \Rightarrow \Theta \downarrow \Rightarrow s \downarrow$

Calibration: scope for misallocation

- Thought experiment: suppose no resources used in housing sector, then no misallocation
- Use tenant bargaining power to target search effort

$$f(\Theta)\left(\frac{\omega}{h} - \frac{1}{c}\frac{R}{P}\right) = 1$$

- Given target for h, $R/P \uparrow \Rightarrow f(\Theta) \uparrow \Rightarrow \Theta \downarrow \Rightarrow s \downarrow$
- Empirical target: share of output devoted to brokers' commissions $(1.2\% \times PCE)$
- Conservative: nominal rigidities in rents can distort the whole real estate sector
- Resources used in real estate are small relative to housing budget share (15%)

Calibrating δ and ξ

- δ and ξ play a role in that they affect estimation of χ
 - Lower values induce longer periods of fixed rents within a match
 - Average rents become more inertial even with $\chi=0$

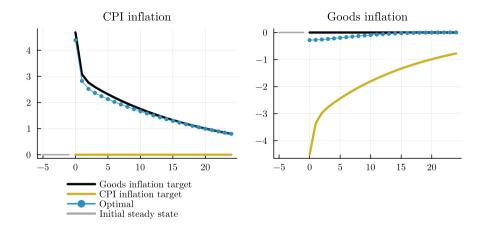
Calibrating δ and ξ

- δ and ξ play a role in that they affect estimation of χ
 - Lower values induce longer periods of fixed rents within a match
 - Average rents become more inertial even with $\chi=0$
- ξ set so leases turnover after one year (on average)

Calibrating δ and ξ

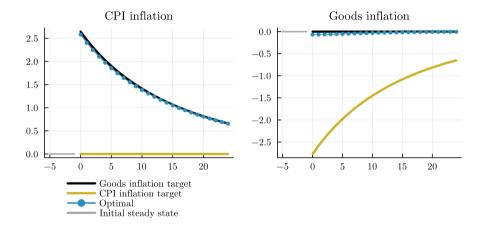
- δ and ξ play a role in that they affect estimation of χ
 - Lower values induce longer periods of fixed rents within a match
 - Average rents become more inertial even with $\chi=0$
- ξ set so leases turnover after one year (on average)
- δ estimated from American Community Survey \rightarrow "how long have you lived here?"
 - Assume two types: low- and high- δ
 - Find 29% have high- $\delta = 0.035$, remainder have low- $\delta = 0.005$

Competitive equilibrium


Definition

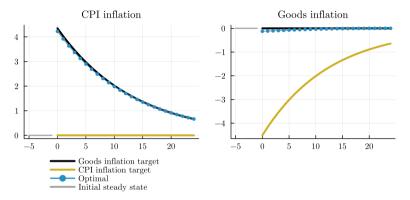
Given fixed prices $\{\bar{P}, \bar{R}\}$ and a government policy $\{M, T\}$, a **competitive equilibrium** in this economy is given by $\{c, h, s, l, W, \Theta, d, m\}$ such that:

- 1. Household optimality conditions
- 2. Search process $h = f(\Theta)s \Leftrightarrow h = g(\Theta)\overline{h}$
- 3. Goods and labor market clearing: $\ell = c/z$
- 4. Definitions of m = M/P, Θ , and d

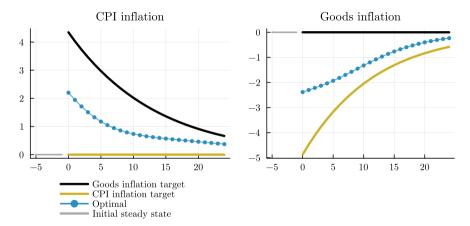

Return

Without price dispersion within goods

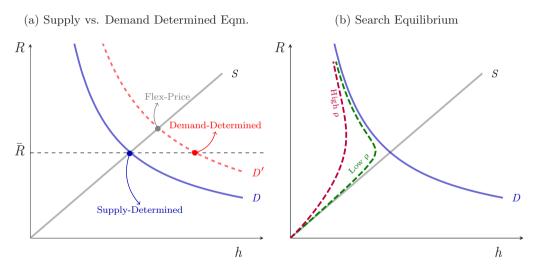
 $\scriptstyle \flat$ Return to main slide


Without inelastic housing demand $(h^o = 0)$

Note: real estate sector is now 4.3% of PCE

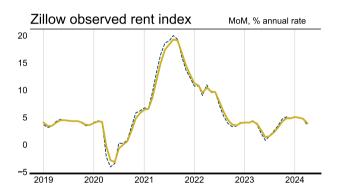

 ${\scriptstyle \blacktriangleright}$ Return to main slide

Using equal stickiness in both sectors


- When a rent is renegotiated, it is set to the Nash bargained rent.
- We set $\chi=1$ so all new leases are set to the average outstanding rent.
- We set the frequency of renegotiation to match the frequency of price changes in mode.

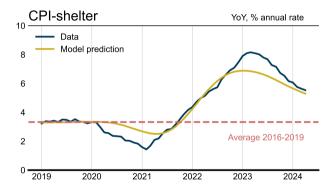
Using median price duration of 3.4 months

Note: 3.4 month median duration corresponds to all price changes including sales and product substitutions \rightarrow Return to main slide


Short-Side Rule and Search Equilibrium

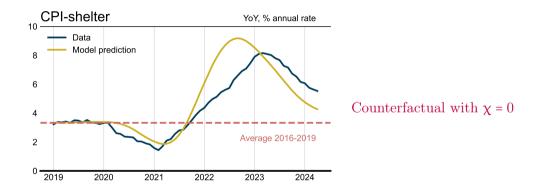
 $\scriptstyle \flat$ Return to main slide

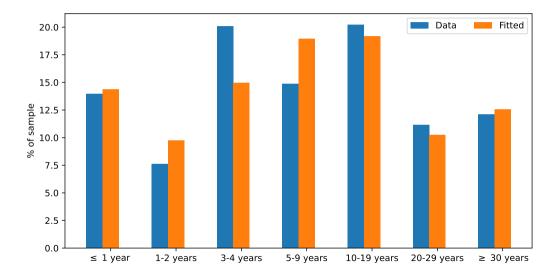
State space model:

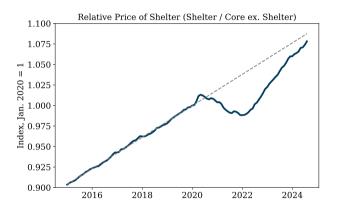

- CPI-shelter = average rent (Δ 6m)
- Zillow rent = Nash rent
- BLS NTR = typical new rent
- All series observed with measurement error
- Estimate by ML
- $\chi = 0.66$

State space model:

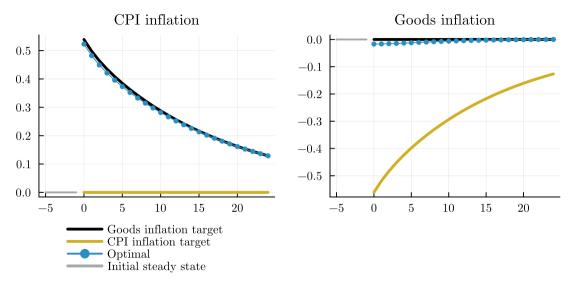
- CPI-shelter = average rent (Δ 6m)
- Zillow rent = Nash rent
- BLS NTR = typical new rent
- All series observed with measurement error
- Estimate by ML

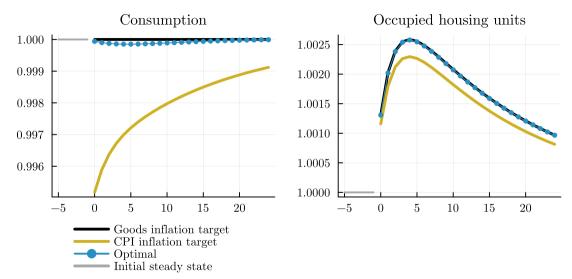

•
$$\chi = 0.66$$

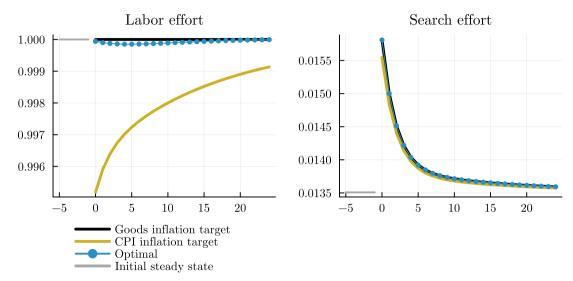

State space model:


- CPI-shelter = average rent (Δ 6m)
- Zillow rent = Nash rent
- BLS NTR = typical new rent
- All series observed with measurement error
- Estimate by ML

•
$$\chi = 0.66$$




How long have you lived here? (ACS)



- Relative price of shelter fell below trend in '21 & '22
- A period of "catchup" ensues
- Simulate a 5% deflation of real outstanding rents
- Affects allocation due to $\chi>0$

