Charging Uncertainty: Real-Time Charging Data and Electric Vehicle Adoption

Omar Asensio Georgia Tech and HBS

> Luke Heeney MIT

Elaine Buckberg Harvard

Christopher Knittel MIT and NBER Cassandra Cole Harvard

James H. Stock Harvard and NBER

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

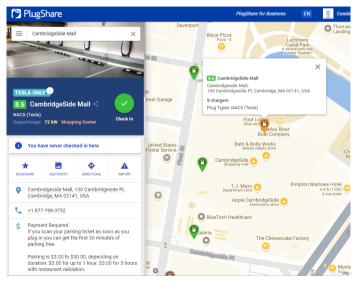
NBER Economics of Transportation in the 21st Century, October 18, 2024

Motivation: Why real-time data?

- Electric vehicle adoption crucial for meeting EPA greenhouse gas emissions standards and broader US climate goals.
- Prior literature finds charging infrastructure is key in drivers' vehicle choice (Springel 2021; Sommer and Vance 2021; Li et al 2017; Zhou and Li 2018, Xing, Leard, and Li 2021) and money spent on charging infrastructure has greater impact than money spent on vehicle subsidies (Cole et al 2023).
- But charging experiences are poor: Rempel et al 2022 (72.5% of Bay Area chargers functional), Asensio et al 2020 (almost half of public charging reviews are negative), Asensio & Liu 2024 (78% average reliability score nationwide).
- Real-time data has significant potential to save drivers time and ease range anxiety, especially on long trips far from home.

What is the current state of real-time data on highway DC fast chargers?

- Our definition of real-time data: real-time information on charger status and price available alongside charger location and type in a central app(s)
- Precedent for requiring real-time data: mandated for all NEVI-funded chargers
- CPOs (charge point operators) may not want to share data: concerns about business-stealing, revealing downtime or utilization, forgoing potential monetization


What would be the impact on EV adoption of requiring real-time data reporting at all public highway fast chargers?

- 1. Two novel data sources: scraped data from PlugShare.com and survey evidence
- 2. Current status of real-time data
- 3. Two-sided model of EV industry
 - Consumer vehicle choice, accounting for variability in charging experience

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Charging station supply
- 4. Results: impact of real-time data on EV adoption, carbon emissions

Data on real-time data: PlugShare.com

Data collection: regular scraping of details of public DC fast chargers (\geq 50kW) within two miles of exits on 6 interstates covering 40 states (I-5, I-10, I-75, I-80, I-90, I-95) between March and August 2024

Real-time data accelerating EV transition relies on drivers' beliefs about station reliability, conditional on having real-time data or not

- Surveyed 908 prospective car buyers and 813 current EV drivers
- Asked to assess probability of successfully charging at:
 - 1. Charger with real-time data reporting at least one plug working and available
 - 2. Charger with real-time data reporting at least one plug working but none available
 - 3. Charger without real-time data

Will present key results where relevant to our model – see paper for more details!

Real-time data reporting on August 18, 2024:

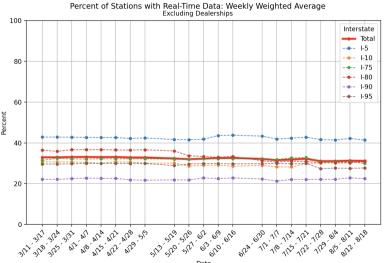
	I-5	I-10	I-75	I-80	I-90	I-95	Total
Total Stations	350	187	150	214	189	336	1,426
% w/RT Data	45.4%	31.6%	33.5%	30.0%	23.3%	28.6%	33.2%
Non-Tesla Stations	248	116	91	133	111	188	887
% w/RT Data	64.1%	50.9%	49.5%	53.4%	39.6%	51.1%	53.4%
Non-Tesla/EA	197	82	70	89	81	150	669
% w/RT Data	80.7%	72.0%	64.3%	79.8%	54.3%	64.0%	70.9%

Excluding Tesla and EA improves real-time data reporting, at the cost of 53% of stations.

Real-time data reporting on August 18, 2024:

	I-5	I-10	I-75	I-80	I-90	I-95	Total
Total Stations	350	187	150	214	189	336	1,426
% w/RT Data	45.4%	31.6%	33.5%	30.0%	23.3%	28.6%	33.2%
Non-Tesla Stations	248	116	91	133	111	188	887
% w/RT Data	64.1%	50.9%	49.5%	53.4%	39.6%	51.1%	53.4%
Non-Tesla/EA	197	82	70	89	81	150	669
% w/RT Data	80.7%	72.0%	64.3%	79.8%	54.3%	64.0%	70.9%

Real-time data reporting varies substantially.


Real-time data reporting on August 18, 2024:

	I-5	I-10	I-75	I-80	I-90	I-95	Total
Total Stations	350	187	150	214	189	336	1,426
% w/RT Data	45.4%	31.6%	33.5%	30.0%	23.3%	28.6%	33.2%
Non-Tesla Stations	248	116	91	133	111	188	887
% w/RT Data	64.1%	50.9%	49.5%	53.4%	39.6%	51.1%	53.4%
Non-Tesla/EA	197	82	70	89	81	150	669
% w/RT Data	80.7%	72.0%	64.3%	79.8%	54.3%	64.0%	70.9%

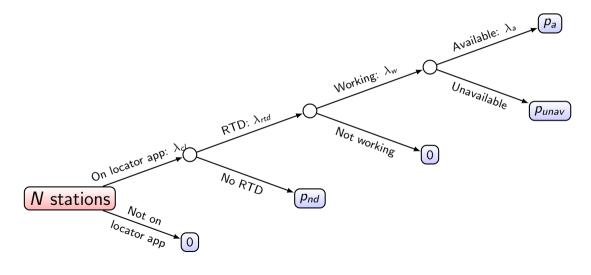
Real-time data reporting varies substantially.

Reporting of real-time data is stagnant.

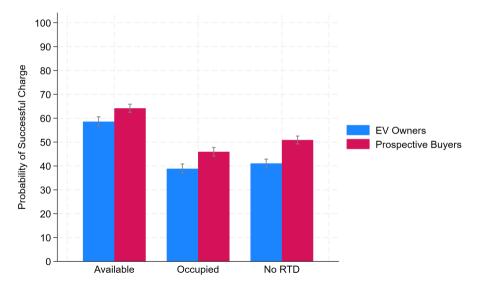
Date

Adapt model from Cole et al (2023), modifying utility function so that number of DC fast chargers is a random variable

- Consumers choose to purchase an EV or ICE within a vehicle class (cars or light trucks) to maximize expected utility
- ► Utility from an ICE:


$$U_{ijt,ICE} = P^{eta_P}_{ICE,t} e^{\psi_{ICE,t}} e^{arepsilon_{ICE,ijt}}$$

Utility from an EV:


$$U_{ijt} = E[P_{EV,t}^{\beta_{p}}(\mu_{t}N_{t,l3})^{\beta_{l3}}(N_{t,l2}/Q_{t-1})^{\beta_{l2}}e^{\psi_{jt,EV}}e^{\varepsilon_{ijt,EV}}]$$

where μ_t is a Bernoulli random variable representing perceived charger reliability

Parameterizing μ_t : probability of successful charge across charger types

Parameterizing p_a , p_{unav} , and p_{nd} from survey data

Representative charging firm: profit is expected profit across chargers with and without real-time data

- Key assumptions:
 - Out-of-service stations and stations not appearing on a charging locator deliver no profit
 - Stations without real-time data work with the same probability as stations with real-time data
 - Profits from working stations with real-time data are the same as profits from working stations without real-time data

Yields profit function:

$$\pi_t = \lambda_{cl} \lambda_w (\exp(\kappa)/(N_t))^{\frac{1}{\gamma}} Q_t$$

Representative charging firm builds stations until they are indifferent between building today or in the next period:

$$\pi_{t,l3}(N_t, Q_t) = C_t - \frac{1}{1+r}C_{t+1}$$

Yielding our charging station supply function:

$$\ln(N_t) = \kappa + \gamma \ln(\lambda_{cl}\lambda_w) + \gamma \ln(Q_t) - \gamma \ln(\tilde{C}_t)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

4 key simulation scenarios:

- Baseline: EV penetration under current policy (IRA & IIJA) with no change in real-time data availability; calibrated to 48% of 2030 new car sales
- **Scenario 1**: Real-time data reporting (λ_{rtd}) increases to 100% by 2029
- **Scenario 2**: Scenario 1 + uptime for DCFCs (λ_w) increases to reach 95% in 2029
- Scenario 3: Scenario 2 + driver confidence in real-time data (*p_{rtd}*) increases to 100% in 2029

Run Monte Carlo simulations of each scenario, drawing parameters from distributions of scraped PlugShare data and survey data

	Baseline		ons provide RTD	and 95	% uptime		ull driver nce in RTD
			ppts over		ppts over		ppts over
			baseline		baseline		baseline
2025	11.4%	11.5%	0.10	11.5%	0.15	11.8%	0.46
2026	21.0%	21.3%	0.32	21.2%	0.20	22.3%	1.37
2027	29.2%	29.7%	0.55	29.8%	0.64	32.1%	2.96
2028	36.6%	37.3%	0.76	37.8%	1.18	41.3%	4.76
2029	43.0%	44.0%	0.94	44.7%	1.67	49.4%	6.36
2030	48.0%	48.9%	0.94	49.7%	1.73	54.4%	6.36

		All sta	tions provide			and	full driver
	Baseline		RTD	and 9	5% uptime	confide	nce in RTD
			% over		% over		% over
			baseline		baseline		baseline
2025	4.61	4.63	0.39%	4.63	0.54%	4.69	1.71%
2026	7.77	7.84	0.91%	7.83	0.74%	8.08	3.93%
2027	12.05	12.21	1.30%	12.21	1.34%	12.84	6.49%
2028	17.22	17.49	1.58%	17.57	2.02%	18.75	8.85%
2029	23.04	23.45	1.78%	23.64	2.61%	25.51	10.73%
2030	29.20	29.73	1.83%	30.04	2.89%	32.53	11.43%

Impact of RTD scenarios on carbon emissions from LDVs

	All stations provide RTD	and 95% uptime	and full driver confidence in RTD
2025	-0.1	-0.2	-0.6
2026	-0.3	-0.2	-1.5
2027	-0.7	-0.8	-3.9
2028	-1.2	-1.7	-7.5
2029	-1.7	-2.7	-11.4
2030	-2.4	-4.0	-16.0

Note: assumptions on power sector emissions from Stock & Stuart (2021)

Real-time data reporting is poor, doing little to alleviate bad charging experiences.

- Survey respondents do not fully trust real-time data, but it provides a marked improvement over stations without real-time data.
- Real-time data reporting *alone* has little effect on EV adoption, but can have a significant impact when accompanied by increased driver trust in data:
 - ▶ 11.4% increase in the size of the light-duty EV fleet in 2030
 - ▶ 6.4 percentage point increase in EV sales share in 2030 from 48.0% to 54.4%
- Can lead to considerable reductions in carbon emissions from LDVs
 - Accomplishes additional 20% of IRA/IIJA reductions from LDVs (as predicted in Cole et al 2023) at virtually no fiscal cost – vs. \$451 billion

Thank you! ccole@g.harvard.edu

<□> <0</p>