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1 Introduction

Informational asymmetry, where one party in a transaction holds more knowledge than the

other, has long been a fundamental friction in economic models (Akerlof, 1970; Spence,

1973). However, the advent of big data has begun to challenge traditional boundaries of

information control (Veldkamp and Chung, 2024; Jiang and Li, 2024). This is especially true

for labor markets, where firms hold exclusive information on their employee performance

and potential (Farber and Gibbons, 1996; Altonji and Pierret, 2001; Schönberg, 2007; Kahn,

2013). The rise of internet-based platforms has fundamentally transformed the recruitment

process, with over 80% of job seekers and more than 90% of employers now relying on these

platforms as their primary tool for hiring decisions (Smith, 2015; Bradshaw, 2024). These

platforms provide new, detailed information on individual worker output, which serves as a

signal of employee productivity, mitigating informational disparities. We explore how this

shift influences labor reallocation and what it means for firm outcomes.

The impact of productivity signals on labor market dynamics is a priori unclear. Several

studies argue that larger firms attract more productive employees due to their reputational

advantages, which signal productivity in the absence of performance measures (Waldman,

1984, 1990; Bernhardt and Scoones, 1993). In this view, enhanced information could enable

smaller firms to compete for top talent, especially if they can adopt new technologies more

easily due to fewer organizational constraints. Conversely, in other studies, adverse selection

prevents productive workers at smaller firms from moving to larger ones (Greenwald, 2018;

Gibbons and Katz, 1991). In this case, stronger productivity signals might further enhance

large firms’ ability to recruit top talent. Additionally, large firms may leverage economies

of scale to invest in data-driven recruitment strategies more effectively (Brynjolfsson and

McElheran, 2016). The net effect of these productivity signals on labor market dynamics and

firm hiring behavior remains an open question, necessitating further empirical exploration.

To empirically study this question, we focus on GitHub, a software management and

version control platform, used by over 100 million worldwide users and 200,000 firms in
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the United States alone.1 Users and firms leverage GitHub to host their code and data in

repositories, fostering collaborative work through contributions from multiple users. GitHub

provides contributors the flexibility to choose the visibility of their repositories — whether

public, allowing anyone to view and download the code, or private, restricting access solely

to users within the same firm. GitHub’s unique feature is its public display of users’

contributions, including time stamps, turning it into a hub for recruiters seeking potential

employees.2 The large dimensionality and extensive public use make GitHub an ideal starting

point for studying how big data3 hosted by technology platforms impacts labor markets.

We identify the impact of information on individual output available on GitHub by

exploiting a quasi-natural experiment that changed users’ ability to signal their quality.

Prior to May 2016, the GitHub contribution calendar only displayed public contributions.

However, on May 19, 2016, GitHub introduced the option for users to include anonymized

private contributions on their profiles. Given these private contributions typically refer to

projects managed on Github by employers, the quantity of individuals’ private contributions

capture their productivity in their current firm. With this update, Github users could

instantaneously reveal the number of previously hidden private contributions, without

incurring any additional costs. Since revealing the number of private contributions could only

improve the profile of an individual at no cost, increasing their outside option, individuals’

rational response was to opt in and display their total contributions on their profiles.

We construct a novel database that integrates employee work history with individual

output to implement our research design. Employee work history is sourced from LinkedIn,

the largest online professional networking platform globally. We link this dataset to

employees’ GitHub profiles, which provide records of their daily contributions. Our final

sample covers approximately 300,000 individuals and more than 36,000 firms in the U.S. We

1https://github.com/about and https://enlyft.com/tech/products/github.
2See https://arc.dev/hire-developers/github or https://www.toptal.com/github as examples of

how numerous third-party providers assist recruiters in sourcing candidates through GitHub.
3GitHub data meet all three criteria for big data as defined by Goldstein et al. (2021): they are large in

size (a compressed subset of GitHub repositories as of November 2020 was 21 TB in size https://archiv

eprogram.github.com/arctic-vault/), possess multiple dimensions, and have a complex layout.
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develop a person-specific measure of output by employing an AKM model (Abowd et al.,

1999) on total pre-shock private contributions on GitHub. This is achieved by regressing total

private contributions on individual fixed effect, firm fixed effects and time-varying controls,

and using the individual component of contributions as our measure of employee output.

At the individual level, we examine whether information on employee-specific output

impacts the reallocation of employees between firms. We find that individuals with

1 standard deviation higher productivity increased their mobility to larger firms (those

employing over 1000 individuals), by 5.7% over the sample mean in our most robust

specification, after the GitHub policy change. The coefficients remain unchanged regardless

of granular dynamic employee and market controls, alleviating concerns of concurrent trends

influencing our results. Importantly, the lack of pre-trends in the eight quarters preceding the

change strengthens our confidence in attributing the observed impact to this specific event.

Moreover, the absence of any significant effects on a placebo sample, where individual output

is based on public contributions unaffected by the shock, helps alleviate concerns regarding

potential confounding factors. Another concern might be that only individuals looking to

move jobs choose to reveal their private contributions, biasing our results. However, our

results persist even within users who reveal their contributions and for whom we observe at

least one pre-period private contribution, thereby minimizing the likelihood of such bias.

In contrast to the increasing flow of talent towards large firms after the shock, individuals

with 1 standard deviation higher productivity are less likely to move to medium-sized firms

(those employing between 50 and 1,000 employees) by 4% relative to the sample mean, and

less likely to move to small firms (those employing 50 employees or less) by 5% relative to the

sample mean. These results are also robust to a dynamic analysis, which shows there are no

pre-trends prior to the GitHub policy change. Interestingly, when we estimate our baseline

specification by firm size buckets, we find that talent flow increases almost monotonically

across size buckets from -7% at the 11-50 size bucket to a +7% at firms with more than

10,000 employees. As such, the largest gains are captured by the largest employers in the
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economy, the so-called “superstar” firms.

Moreover, we examine where the talent flow to large firm originates from. Do we observe

reallocation of talent between large firms or are these gains to large firms at the expense of

smaller firms? Our results suggest that reallocation of talent within large firms drops, while

it is small and medium-sized firms who lose their talent to large firms. In economic terms,

the larger effects are seen amongst mobility from small firms, and less so from medium-sized

firms: individuals with 1 standard deviation higher productivity are more likely to move

from small (medium-sized) firms to large firms by 5% (3%) relative to the sample mean,

following the shock. Such moves from small/med-sized to large firms are associated with

career upgrades for talented employees, who move to more senior or higher-paying jobs in

large firms. In contrast, large firms do not lose their talented employees, but they promote

them, consistent with the fact that the outside option of talented employees increases after

the policy. After the GitHub policy change, treated employees show a significant overall rise

in productivity. Hence, the GitHub signal appears to facilitate both career advancements

and enhanced employee performance.

We next test the idea that the reduction of information asymmetry regarding employee

quality through GitHub should reduce the importance of traditional signals of employee

quality. To this end, we consider three traditional signals: the work experience of the

individual, years of schooling, and having a degree from a highly-ranked university. We

find consistent results across all our measures that talented individuals with less experience,

with less schooling, and with degrees outside of the highly-ranked universities are more

likely to move to large firms following the GitHub policy change. These results support the

hypothesis that web-based platforms have led to a ‘democratization’ of screening in the labor

markets, allowing talent to flow more freely across firms. We further show that our effects

are mitigated in the presence of limited individual mobility due to greater enforceability of

non-compete agreements.

The flow of talent towards large firms can be a result of firm-demand factors or
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labor-supply preferences. On the firm demand side, large firms tend to invest more in

technology to screen workers (Eckel and Yeaple, 2017), and are thus better able to discover

talent once the GitHub signal becomes available. To test this, we split firms based on whether

one of their Human Resource (HR) personnel uses GitHub or not. We then show that more

talented individuals move to large firms with tech-savvy HR departments as opposed to

large firms whose HR departments are not tech-savvy. Similarly, large firms already using

the GitHub platform will be better versed to identify talent based on their contributions.

To this end, we observe that talent flow to large firms is more pronounced when these firms

are GitHub users as compared to large firms not on GitHub.

On the labor supply side, employees may prefer to work for large firms as large firms

tend to offer steeper career paths to their employees (Mueller et al., 2017; Di Porto et al.,

2024). To test this, we estimate our baseline specification for two subsets of firms: those

with above-median average annual salary change and those with below-median average

annual salary change. We observe that the coefficient estimates are larger for large firms

characterized by steeper career growth as opposed to those with less steep career growth.

This potential for increased career growth may come with increased labor risk. To this end,

we divide our sample by firm stability, defined as the probability of employees experiencing

career downgrades when working for a firm. Our findings indicate that productive employees

tend to move to firms with below-median stability following the shock, suggesting that

talented employees prefer riskier jobs with increased career advancement opportunities.

Finally, we explore whether productive workers are moving to larger firms with higher

growth potential. While this could reflect both high firm demand for talent as well as worker

preferences, it is critical for understanding the efficiency of talent flows to larger firms. Our

results indicate that workers tend to move to firms with higher ex-ante growth, both in terms

of employment and sales, consistent with the idea that workers are attracted to firms with

a greater need for talent and strong growth prospects.

At the firm level, we show that heterogeneity in labor reallocation creates winners and
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losers. For this analysis, we define the treatment group as firms exhibiting above-median

average employee productivity, with productivity determined by the AKM-based individual

component of private contributions during the pre-period. Small firms with above-median

individual productivity experienced slower quarter-on-quarter employment growth after

the shock, by 13% relative to the sample mean. We also observe a higher likelihood of

left-tail outcomes, as the probability of small treated firms exiting the market increased by

38% of the mean after the shock. Small firms with above-median individual productivity

also experienced a decline in productivity, proxied by public GitHub contributions (which

are not directly affected by GitHub’s policy change). Specifically, productivity in

small firms employing highly productive individuals pre-treatment, dropped by 3 to 4%

post-announcement. Instead, large firms employing high-productivity talent pre-treatment

experienced a 4% increase in quarterly employment growth over the mean and a 5 to 6%

rise in public GitHub contributions following the policy change.

The labor market reallocation towards large firms has also implications for aggregate

industry dynamics. When aggregating our data at the industry level, we find that industries

with more GitHub contributions before the shock (2013-2016) saw a greater increase in

national labor market concentration in the five years after the shock (average concentration

over 2016 to 2021) compared to the five years before it (average concentration over 2011 to

2016). Although these results are based on correlations, they offer interesting insights into

the overarching trends and are consistent with a broad consensus that national industry-level

labor concentration has risen in the U.S. since 1980 (Autor et al., 2023).

Our paper makes significant contributions to four strands of the existing literature. A

substantial body of literature has attributed the rise of large firms to technological trends

such as the rise of the platform economy (Crouzet and Eberly, 2018; Lashkari et al., 2018;

Bessen, 2020; Firooz et al., 2022; Brynjolfsson et al., 2023; Hsieh and Rossi-Hansberg, 2023)

and big data (Brynjolfsson and McElheran, 2016; Farboodi et al., 2022; Aghion et al., 2023),

arguing that these technologies provide product market advantages (Prat and Valletti, 2022;
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Eeckhout and Veldkamp, 2022) and superior returns on investment (Tambe and Hitt, 2012)

to large firms. Our paper introduces a novel labor-market-based explanation, examining

how big data, available via platform technologies, enhance large firms’ ability to attract and

retain top talent, thus contributing to their growth and dominance.

Second, a growing body of research examines how performance metrics affects labor

outcomes. Rockoff et al. (2012) study the impact of teacher performance metrics on job

separations in teachers labor markets in New York, Floyd et al. (2024) analyze the impact

of grade disclosures on MBA graduates’ job placements, and Hager et al. (2024) explore

how citation metrics impacts assortative matching in academia. Our paper makes two key

contributions to the literature. We explore how a new, previously unobserved signal of

individual performance drives labor reallocation from smaller to larger firms, suggesting that

new information availability on the labor market contributes to the increasing dominance of

larger firms in the U.S. economy. Additionally, we leverage granular, person-day level data

from GitHub, offering a fresh and expansive view of U.S. technology workers, enabling us to

analyze these effects at an unprecedented scale.

Third, our paper contributes to the existing literature on labor reallocation across firms of

different sizes within the economy. Prior research has extensively documented how regulatory

policies influence the distribution of talent between established companies and startups. For

instance, Acemoglu et al. (2018) examine R&D taxation, Pagano and Picariello (2023) study

unemployment insurance, Araujo et al. (2023); Baghai et al. (2024) analyze bankruptcy,

Jeffers (2024) explores the impact of non-compete agreements, and Gupta (2023) investigates

the effects of immigration policies. Beyond regulatory factors, large scale trends and strategic

behavior also play a critical role in shaping talent allocation. For example, Bernard et al.

(2006); Bloom et al. (2015); Hombert and Matray (2018); Bena and Simintzi (2024) analyze

how Chinese import competition and access to offshore labor impacted labor and technology

reallocation across firms, Bernstein et al. (2023) document flight of employees towards more

established startups during the COVID downturn, and Akcigit and Goldschlag (2023) look
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into strategic hoarding of inventors by large firms. However, relatively little attention has

been given to the role the introduction of big data in labor markets has played. Our study

fills this gap by exploring how the emergence of big data on employee performance influences

the shift of talent towards larger firms.

Finally, our paper adds to the literature on re-distributive impacts of big data.

The evidence regarding the effects of these technologies has been mixed. Data-driven

decision-making has been shown to enhance credit allocation to discriminated groups

(Blattner and Nelson, 2021; Di Maggio et al., 2022), and improve investment decisions for

less sophisticated investors (D’Acunto et al., 2019; Rossi and Utkus, 2020; Coleman et al.,

2022). Conversely, big data can exacerbate biases in loan markets (Fuster et al., 2022; Foley

et al., 2020), and may lower the cost of capital for larger firms (Begenau et al., 2018). While

prior research has primarily focused on financial markets, our paper is the first to examine

the impact of big data on labor markets.

2 Setting and Data

We use data from GitHub, the world’s largest web-based platform in the software

development ecosystem. GitHub’s user base comprises of over 100 million developers–with

more than 20 million in the U.S. alone. Additionally, over 200,000 U.S. firms, including

90% of the Fortune 100 companies use GitHub for software management. In this section,

we provide a brief description of GitHub, followed by a summary of how we utilize GitHub’s

data to create a proxy for employee productivity.

2.1 GitHub: A Web-Platform for Software Management

GitHub is a web-based platform for version control and collaboration in software development

projects. GitHub allows users–independent developers and firms alike–to store, manage,

and share their data and code streamlined within projects known as repositories. By
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providing centralized online repositories for code storage and management, GitHub enables

developers, who might be dispersed geographically, to work collaboratively on projects. It

also helps stakeholders track modifications to repositories over time ensuring the integrity

and coherence of project versions. Whenever a repository is modified, a snapshot of the

repository’s contents is automatically created and forever logged with a timestamp. With

each change, along with the repository’s snapshot, GitHub also records rich metadata: who

made the change, what it consists of, and when exactly it was made. Before a proposed

modification is integrated and the new version is released, it must, however, be approved by

the repository owners (or designated managers).

An important feature of GitHub repositories is the flexibility of keeping them private

or public. Public repositories, used for open-source projects, are accessible to all users,

promoting collaboration and knowledge sharing within the entire developer community. Any

GitHub user can view the contents, previous versions, contributors or contribution history,

and even make changes (subject to approval by repository owners) to a public repository. In

contrast, private repositories are restricted to specified users or teams (members invited

by the repository owners or designated managers), providing a secure environment for

proprietary or sensitive projects. While the content of private contributions is not publicly

accessible, the requirement that each contribution must be approved by a repository manager

for incorporation into a project makes these contributions difficult to manipulate. While

today GitHub users can create an unlimited number of public or private repositories for free,

in the past only paid GitHub accounts (developers or firms paying a monthly subscription

fee) could maintain private repositories.4 Subsequently, until recently, private repositories

were mostly held by organizations seeking to protect intellectual property and maintain

confidentiality while collaborating on development projects.

4GitHub previously charged per repository, with prices ranging from $7 per month for up to 5 private
repositories to $200 per month for up to 125 private repositories. In October 2015, they changed this policy to
allow unlimited private repositories for $7 per month (Conti et al., 2021). GitHub made private repositories
free in 2019.
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2.2 GitHub Contributions: A Measure of Productivity

In addition to facilitating version control and collaboration on software projects, GitHub

provides users with individual profile pages akin to those found on traditional social media

platforms. These user profile pages allow individuals to personalize their online presence by

including their name, bio, location, affiliation with firms, and other relevant information.

A sample GitHub profile is shown in Figure B.1. GitHub’s user profile pages prominently

feature the contribution calendar, offering a visual representation of a user’s GitHub activity

over time. This calendar serves as a dynamic record of a user’s contributions (in the form

of modifications) to GitHub repositories, providing a real-time high-frequency update on a

user’s work output.

The precise records of users’ GitHub contributions provide a way to quantify the output

of software developers. GitHub hosts a vast and diverse user base comprising millions of

software developers globally, resulting in extensive coverage of coding activity across various

domains and projects. Moreover, the granularity and high-frequency of the contributions

and the large-scale coverage of GitHub make it an appealing measure of individual output,

and thereby of productivity of high-skilled professionals. Although we cannot quantify

the importance of contributions (especially the private contributions whose content is not

publicly available), all contributions have to be vetted by a repository manager before they

are recorded on GitHub, which assures a minimum level of quality.

We validate the usability of GitHub contributions by comparing them to other commonly

used measures of employee productivity and quality. Internet appendix Figure B.2 presents

binned scatter plots of the logarithm of salary and publications against log contributions.

Both plots display strong positive and linear correlations, indicating that total contributions

effectively capture employee quality and productivity. Furthermore, GitHub contributions

correlate with firm financing for startups (Conti et al., 2021), underscoring their value to

sophisticated investors, such as Venture Capitalists (VCs), as a measure of human capital.

Other studies similarly use individual GitHub contributions to assess the productivity
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of software developers, thereby reinforcing our interpretation (Holub and Thies, 2023;

El-Komboz and Fackler, 2023; Conti et al., 2023).

Unsurprisingly, recruiters and hiring managers increasingly rely on GitHub user activity

to source and evaluate potential tech-sector employees. Figure B.3 presents examples of

numerous third-party web platforms that help organizations in recruiting technical talent

via GitHub. This shift towards leveraging GitHub contributions as a key metric in the

recruitment process underscores the platform’s growing significance as a talent marketplace.

Motivated by these facts, we use GitHub as our laboratory to study the impact of web-based

labor platforms on labor reallocation and utilize GitHub contributions as a measure of

employee productivity.

2.3 GitHub Policy Shift

GitHub implemented a policy change that allowed users to reflect their GitHub contributions

more accurately. Before May 19, 2016, users could only display contributions made to

public GitHub repositories on their profiles. However, on May 19, 2016, GitHub introduced

the option for users to include the number of (anonymized) private contributions to their

existing contribution calendar. With a click of a button, users could instantaneously reveal

their previously hidden private contributions, with no additional costs. While private

contributions were always available internally to the firm, this policy change allowed users to

credibly signal their within-firm productivity (verified by GitHub) to external employers for

the first time. As an illustration, Figure B.4 shows how the policy changed users’ GitHub

contribution calendar.

GitHub’s new policy added a feature on users’ profile pages to “turn on their private

contributions” and include the number of (anonymized) private contributions in the calendar.

We use users’ pre-policy private contributions to construct an exogenously available measure

of their output. It is important to note that we observe only the number, not the content,

of private contributions, precluding the creation of a quality-adjusted contribution measure.

11



However, the requirement that each contribution be approved by a repository manager for

incorporation into a project helps ensure the quality of each contribution. Additionally, we

verify in the previous section that the raw number of contributions correlates with other

measures of productivity such as salary and publications.

2.4 Data Sources and Sample Construction

We construct a novel dataset using three main data sources: (i) user profiles from GitHub,

(ii) GitHub contributions from GitHub API, and (iii) employment records from Revelio Labs.

Revelio Labs continuously collects employees’ online resumes from various websites (such as

LinkedIn) to create a universal HR database.

We obtain data on publicly sourced profiles of U.S.-based GitHub users from

Humanpredictions, a public data aggregator that developed a proprietary database of over

150 million technical talent worldwide. This data includes users’ names, location, coding

languages, date of joining GitHub as well as their LinkedIn profile links. We further append

this dataset with users’ GitHub contributions from GitHub’s official API (Application

Protocol Interface) as described in the Internet Appendix, Section B.1. The API provides the

capability to programmatically access and retrieve all publicly available data on GitHub. We

retrieve monthly-level public and private contributions for users from 2011 to 2021. Finally,

we merge GitHub users with their employment details from LinkedIn, the largest global

online professional networking platform. We obtain individual-level LinkedIn profiles from

Revelio Labs. LinkedIn data provide comprehensive information regarding users’ educational

background (including programs pursued and graduation dates) as well as their employment

history (listing firms, positions held, and tenure duration). The dataset also provides us

with the direct LinkedIn URLs for each GitHub profile. These merges are made based on

publicly available information, where users list both LinkedIn and GitHub URLs together.

We are able to successfully merge over 1 million GitHub users with employment data from

LinkedIn. Roughly 82% of the matches are obtained by directly merging the LinkedIn URLs
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in the two datasets. For the remaining matches, we merge on users’ names and work history

(employer name, start date of job, etc.).

We then construct a matched employer-employee panel detailing each employee’s firm

and title each quarter to track employee mobility. In case of an employee listing multiple

jobs on LinkedIn at the same time (e.g., volunteering or part-time work along with a primary

job), we retain only one primary job. We do so by excluding jobs where job titles include

words related to volunteering or part-time employment activity. In case multiple jobs still

persist, we retain the one that is listed higher on the user’s LinkedIn profile (likely to be

more important) and/or that corresponds to a higher seniority level.5

As a next step, we append the users’ employment records with firm-level identifiers and

attributes. For each job, the LinkedIn data provides a URL corresponding to the firm’s

LinkedIn page that has details on its size, year of incorporation, and industry among others.

We use a snapshot of all LinkedIn firm pages as of 2017 to merge these details into our

data. We derive the size and age of firms, close to the time of GitHub’s policy change,

using these appended details. Additionally, we also merge the firm URLs with an auxiliary

dataset containing firm identifiers from FactSet (also provided by Revelio Labs). This dataset

includes a firm’s unique FactSet ID, its parent firm information, as well as its GVKEY in

case the firm is publicly listed. For a small fraction of firms that remain unmatched, we also

use firm data from Crunchbase to obtain the firm’s size, age, and other identifiers.

In our empirical analysis, we utilize GitHub’s policy change regarding users’ contribution

calendar and focus on its impact on their employment outcomes. Subsequently, we filter

out a relevant set of GitHub users for our empirical setting from the merged sample in two

steps. First, we restrict the sample to users who had joined GitHub and had made at least

one GitHub contribution before the policy change on 19th May, 2016. And second, we limit

the sample to users who had completed their highest educational degree before the policy

change, namely we exclude users who were still studying at some point after May 2016.

5Revelio assigns each job a seniority score between 1-4 based on the title and job description among other
details.
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These filters result in an initial sample size of approximately 380,000 US-based employees

across 103,000 firms.

We next filter our data to create a consistent sample of employees where we can estimate

individual component of productivity using the Abowd et al. (1999) (AKM) methodology.

Table 2 Panel A presents the sample estimates. 93% of the initial sample are part of the

connected set, representing the largest grouping of firms where employees move between the

same organizations. After filtering to retain only firms with at least two employees observed

in any given month, we are able to estimate regression coefficients for 89% of the sample.

Further refinement involves focusing solely on employees employed at for-profit firms at the

time of the policy change. This filtering process yields a final sample size of around 300,000

employees, constituting 80% of employees in the initial sample. Within this final sample,

we identify approximately 36,000 firms, representing 35% of the raw sample, as the AKM

requires discarding firms where multiple employees are not observed within the same role

and month.

2.5 Summary Statistics

Table 1 provides summary statistics for our sample. Panel A presents cross-sectional

distributions, showing that 80% of employees are male, 70% are white, and 40% hold software

engineering roles. Internet Appendix Table A.1 offers further breakdowns by industry,

coding language, and roles. The Software, Internet, and Information Technology sectors

constitute over 45% of the sample. Figure 1 presents the geographic distribution of our

sample. The data reveals that most counties in the U.S. with significant technology clusters

are represented, with New York, San Francisco, and Seattle comprising a quarter of the

sample. On average, employees have nine years of experience and a salary of nearly ninety

thousand dollars. Comparatively, the Bureau of Labor Statistics (BLS) data indicates that

software engineers are 78% male, 60% white, with over 15% living in tech hubs like New
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York, Seattle, or San Francisco, earning an average salary close to 98,000 dollars.6

Panel B presents time-varying employee outcomes. The average probability of an

employee moving is 7% per quarter, indicating an average tenure of 3.6 years, which aligns

with the median tenure for employees in technical services (3.9 years) as reported by the

BLS. Of those who move, 40% transition to large firms (over a thousand employees), 30%

to medium firms (fifty to a thousand employees), and 30% to small firms (less than fifty

employees). More than 55% of these moves result in a rank or salary increase, while 2% of

employees are promoted within the same firm each quarter.

Panel C presents firm-level characteristics. In our sample, 15% of firms are large (over

a thousand employees), 37% are medium (fifty to a thousand employees), and 48% are

small (less than fifty employees). However, as shown in Internet Appendix Table A.2, large

firms employ more than half of the workers in our sample, similar to estimates from the

Longitudinal Business Database (LBD), where large firms account for 16% of firms but

employ 47% of the workforce. The average firm in our sample grows at 3% per quarter,

comparable to 2.5% employee growth for all firms in the LBD. Most of these firms are active

on GitHub, with the average firm seeing ten public contributions per employee per quarter.

2.6 Extracting Employee Productivity: AKM Model

We first create our measure of individual productivity based on individuals’ output-GitHub

contributions. The GitHub policy change revealed new information on the total number of

employees’ private contributions, encapsulating both individual and firm-level productivity.

Hiring departments often benchmark these contributions relative to peers, factoring in the

influence of the specific firm environment on employee performance. To disentangle the

individual component of productivity, independent of the firm influence of the firm they

6Data obtained from Bureau of Labor Statistics table: https://www.bls.gov/oes/tables.htm
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work for, we adopt the methodology proposed by Abowd et al. (1999) (AKM):

Log(PvtContributions)i,f,t = ϑi + ϑf + ϑt + ϑk +Xi,f,t + εi,f,t (1)

The dependent variable represents the logarithm of one plus the number of private

contributions made by employee i, while employed at firm f during month t. We partition

each employee’s private contributions into individual, firm, role, and monthly components

using employee (ϑi), firm (ϑf ), role (ϑk) and month (ϑt) fixed effects. Additionally, Xi,f,t

includes controls for current job duration, and total work experience, ensuring that we

account for variations attributable to different roles or employee seniority. Our regression

analysis spans May 2011 to April 2016, precisely five years preceding the GitHub policy

change. This time-frame enables us to discern how pre-existing productivity information

influenced employee job outcomes. Specifically, we utilize the employee-specific private

contributions over this period (ϑi) as our proxy for individual-level productivity information.

Table 2 presents summary statistics for the AKM. Panel A shows that our connected set

covers 93% of the employees in the initial sample. We are able to calculate AKM estimates

for 80% of the initial sample employees, after applying filters as detailed in Section 2.4. Panel

B unveils that 67% of the total variation in contributions stems from differences in employee

output, with an additional 8.5% attributed to disparities in average firm output. Thus,

individual human capital explains 7.8 times the variation in contributions at the firm level.

This finding aligns with prior research on innovation, which suggests that individual-level

capabilities account for 5-10 times more variation in inventor patenting output compared to

firm-level factors (Bhaskarabhatla et al., 2021). We also test the persistence of individual

productivity estimates from the pre-shock period (2011–2016) to the post-shock period

(2016–2021). Figure A.2 presents these results, indicating that the majority of employees

remain within similar productivity quintiles before and after the shock. This persistence

suggests that our estimates capture inherent differences in individual quality, rather than
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any attempt by employees to manipulate these metrics. The results highlight that the

GitHub policy change regarding employee private contributions can be interpreted as a new

signal of employee productivity, with inherent and persistent differences among employees

accounting for the majority of variation in these contributions.

A key concern when using the AKM design is whether firm-worker matching accounts

for most of the variation in productivity. Following the approach of Card et al. (2013),

we explore this possibility. Figure A.1 presents an event study analysis that examines the

impact of job transitions on productivity during the pre-shock period (2011-2016), which is

used to estimate productivity. The outcome of interest is the logarithm of employees’ private

contributions, measured over five quarters before and after a job move. Job transitions

are categorized based on the firm-fixed effects from the AKM model for both the origin

and destination firms. The data reveal that moving between low- and high-productivity

firms has a significant effect on productivity. Workers moving between quartile 1 firms

maintain relatively low but stable productivity, while those who move from quartile 1 to

quartile 4 firms experience substantial productivity gains. Conversely, workers moving within

quartile 4 firms see little change, but those transitioning to quartile 1 firms suffer considerable

productivity losses. These results align with a simple model of additive worker and firm

effects, suggesting limited influence of better firm-worker matching, which would typically

predict productivity increases with any job transition. Additionally, if match effects were

important, a fully saturated match-effects model—including a separate dummy for each

worker-firm pair—would explain significantly more variation than our baseline AKM model

with separate firm and worker fixed effects. However, including these additional fixed effects

only raises the adjusted R2 from 73.5% to 79%, a 7.5% improvement over the mean, smaller

than the 11-15% increase found in Card et al. (2013).

To address recent concerns about the validity of using the logarithm in case of count-like

variables with several zeros and skewed distributions (Cohn et al., 2022; Chen and Roth,

2024), we further perform two analyses. First, we employ alternative AKM specifications,
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including continuous measures of contributions and categorical variables. Second, we

demonstrate that our findings hold even without using the AKM framework by utilizing

private contributions and the share of private contributions to define employees productivity.

Our results remain consistent across all these approaches, reinforcing the robustness of our

findings. Detailed discussions and the outcomes of these robustness checks are provided in

Section 3, where we describe the employee-level results.

3 Employee Level Reallocation

3.1 Mobility to large firms

In our baseline analysis, we examine whether improved information on employee

quality influences the reallocation of employees between firms. We carry out a

difference-in-differences analysis where we compare the change in employee mobility for

individuals with higher AKM-implied productivity after the GitHub policy change, as

compared to those with lower productivity. Our baseline specification is as follows:

Yi,t = βProductivityi × 1(Postt) + λXit + αi + δt + γit + εi,t (2)

where, the dependent variable Y is a binary indicator that equals 1 if employee i switches

jobs in quarter t, and 0 otherwise. Productivityi represents the normalized version of the

individual component of private GitHub contributions (ϑi), as obtained from Equation 2 in

section 2.6. We normalize Productivityi by subtracting the sample mean and dividing by the

standard deviation to enhance the interpretability of our coefficient estimates. The coefficient

of interest, denoted as β, captures the interaction between the AKM-derived productivity

estimate for each employee i and Postt – an indicator that switches on after GitHub’s policy

shift in May 2016 (i.e., after the second quarter of 2016). We include individual (αi) and

(δt) quarter fixed effects to control for any time-invariant individual differences and time
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trends. To ensure the robustness of our findings, we sequentially add several controls to

our model. First, we account for employee’s current salary and seniority (Xit). We also

include fixed effects that interact together the employee’s cohort of graduation, most used

coding language, first job role, and quarter fixed effects to account for time-varying job

trends. Additionally, we control for industry of employee’s first job (based on LinkedIn’s 144

industry categories) interacted with the geographical area (metropolitan statistical area) of

employee’s first job and time. This ensures that we are comparing employee transitions

within the same market-quarter context. Our sample covers a period of six years: from

the third quarter of 2013 (July to September quarter, three years before the shock) to the

second quarter of 2019 (April to June quarter, three years after the shock). Because our

independent variable, Productivityi, is itself estimated from the AKM regression, we use

bootstrap estimation to derive our standard errors. We bootstrap within employee clusters,

which is the treatment level in our analysis, and perform 100 iterations to obtain standard

errors.7

Table 3 presents our findings. Individuals with productivity estimates higher by 1

standard deviation augmented their likelihood of transitioning to larger firms (employing

over 1000 individuals) by 4 to 6% above the sample mean following the shock, depending

on the specification. Note our results remain statistically significant and consistent in

magnitude across columns 1 to 5, as we progressively introduce controls from solely employee

and time fixed effects to incorporating time-varying employee-level controls (salary and

seniority), dynamic job-level (cohort-programming language-role-time), and market-level

(industry-M.S.A-time) fixed effects. We also test whether the moves to large firms are

accompanied by changes in industry and location, as shown in Table A.8. We find that

the probability of moving to a larger firm increases by 6.5% over the sample mean when

7We perform bootstrapping in two stages. In the first stage, we randomly filter and estimate an AKM
sample representing a random 80% of the total employees in our connected set to get one set of productivity
estimates. We repeat this exercise for 100 iterations and obtain 100 estimates of employee productivity.
Then, in the second stage, we run our individual mobility tests using each of the 100 productivity estimates
and take the average value of the corresponding standard errors as our bootstrapped standard error.
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accompanied by a location change, compared to a 4.8% increase when the move occurs

within the same location. Furthermore, the likelihood of transitioning to a large firm across

both similar and different industries rises by 5-6% over the sample mean. These findings

support the idea that enhanced signaling plays a more crucial role in cross-location moves,

as it helps compensate for the absence of localized networks.

We also estimate the dynamic version of Equation 2 as follows:

Yi,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t (3)

The model is similar to the one detailed in Equation 2, except we estimate a separate βτ for

each quarter τ relative to the shock. The omitted quarter is the first quarter of 2016 (January

to March 2016), one quarter before the shock. We test the parallel trends identifying

assumption of the difference-in-differences methodology, by checking for any pre-trends in

βτ before the shock.

The event study corresponding to Table 3 Column 5, depicted in Figure 2, illustrates

that employees with higher private contributions pre-treatment exhibit parallel trends with

employees with lower private contributions. In other words, each pre-period coefficient

is statistically indistinguishable from zero. Notably, there is a sudden and sustained

surge in employee mobility among treated employees in the quarters following the GitHub

announcement, indicative of a rapid change in information disclosure driving the observed

outcomes.

3.1.1 Identification challenges

Two primary challenges may undermine a causal interpretation of our estimates. First,

concurrent changes in factors correlated with employee productivity could potentially yield

similar results. However, as shown in Table 3, the coefficients remain robust to granular

dynamic controls for both employees, firms, and markets. Additionally, we use a placebo
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sample of employee public contributions (those unaffected by the shock) to further rule out

the impact of unobservable employee characteristics. We exclude any public contributions

made by an employee to their own repository, as these may represent personal activity.

Unobserved employee traits should equally impact both public and private contributions.

Therefore, if our results are driven by concurrent changes in unobserved individual-specific

factors, we should observe comparable results when using public contributions as our

independent variable. We present the results in Table 4, Panel A. We decompose pre-shock

public contributions using the AKM methodology, similar to our baseline measure, to

obtain the individual component of public contributions. We find no significant change,

either economically or statistically, in the mobility of employees with 1 standard deviation

higher public contributions-based productivity after the shock. This null result supports our

conclusion that the observed effects are driven by signaling based on private contributions.

Additionally, we test if our results are influenced by trends correlated with the 2016

presidential elections or other local economic characteristics. If our results were driven by

the elections or differences in local economic conditions, we would expect to find different

impacts in areas based on their political leanings or economic characteristics. However, Table

A.9 shows no differential impact on counties that were more Republican, white, richer, or

more unequal.

As a final validation, we analyze changes in firm stock prices following the GitHub

announcement. This analysis helps isolate the immediate daily impact of the GitHub

announcement, controlling for any longer-term changes.8 Using CompuStat data from 1,679

firms, we categorize firms two ways: by their average productivity (above or below median),

and by size (with indicators for the top and bottom quartiles).9 Table A.11 shows a 65

basis point decline in returns for small firms (bottom quartile) with high GitHub private

contributions (above median), indicating market anticipation of talent loss. No significant

8Bloomberg does not report any major tech-related news announcements from 17 May 2016 to 20 May
2016.

9The bottom quartile firms have fewer than 1,200 employees while the top quartile firms have more than
18,000 employees.
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impact is observed for larger firms (top quartile) or smaller firms without GitHub exposure

(bottom quartile in size and below median average productivity). We rerun the same analysis

on 100 randomly selected dates one year before the date of the actual policy change. Figure

A.4 shows that we observe similar or more negative coefficients in less than five percent of

the cases.

Moreover, there’s a concern that individuals may endogenously opt to signal their

pre-shock productivity when they anticipate moving to larger firms, potentially biasing our

estimates upwards. To address this concern, we limit our sample to active GitHub users.

We test our findings across three alternative samples: users active on GitHub before the

shock (with more than 10 pre-period total contributions), users with at least one private

contribution before the shock, and users with at least ten private contributions before the

shock. Table 4, Panel B, presents the results. Although filtering on users reduces our sample

size significantly, our results persist both in magnitude and statistical significance for all

samples, diminishing the likelihood of such a bias driving our findings. A related concern

is that certain firms may not rely on private contributions, or somehow forbid employees

of signaling their private contributions on GitHub. Panel C restricts the sample to the

subset of firms where employee private contributions can be observed (firms with at least

positive or 10 private contributions as of the shock date). Our results are much stronger

within this sub-sample despite a reduction in sample size. A final concern is that transitory

shocks could simultaneously affect both individual productivity and mobility. To address

this issue, we estimate employee productivity separately for periods before and after the

GitHub shock. As shown in Figure A.2, individual productivity remains highly persistent,

with the majority of employees staying within the same productivity quintiles across both

periods. Furthermore, Table A.4 narrows our analysis to users whose productivity levels are

consistent in both the pre- and post-shock periods. Our findings remain robust, even when

the sample is restricted to individuals exhibiting stable private contribution productivity

throughout the study period.
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We also test the robustness of our results to different specification choices. Table A.3

presents these findings. First, as explained in section 2.6, we might be worried about

the impact of using logarithm of one plus contributions as the dependent variable in the

AKM calculations. We show that our results are robust to using other measures in the

AKM calculation in Panel A, including using the arcsine transformation of contributions,

categorical variables, and the raw contribution numbers. Panel B shows that the results

persist even if we use the raw number of private contributions instead of AKM-implied

productivity. The consistency across specifications reinforces the validity of our findings.

Another concern might be that our results are capturing differences in working styles

(e.g., making multiple small contributions versus several large ones). We address this by

showing that our results are robust when using the share of private contributions over

total contributions as dividing by total contributions helps control for these individual-level

idiosyncrasies. A concern might also stem from the usage of a continuous variable as our

treatment in a diff-in-diff setting, as detailed by Callaway et al. (2024). We show our results

are robust to using a binary indicator for productivity in Panel C.10 Panel D examines the

sensitivity of our findings to the time period over which we estimate the AKM, Panel E tests

the effect of more granular fixed effects, and Panel F shows that our results are robust to

estimating our coefficients on a matched treatment and control sample.11

3.2 Mobility to medium and small firms

We next examine the impact of the GitHub announcement on the mobility of productive

employees to small and medium-sized firms. We use a specification akin to Equation 2,

10Callaway et al. (2024) argue that the parallel trends assumption may not rule out selection bias in
difference-in-differences designs with a continuous treatment variable. Subsequently, in Figure A.3, we show
that our parallel trends assumption is robust to using a dummy indicator for treatment.

11In Panel D, we estimate the AKM using contributions from the pre-sample period, up until the the
second quarter (April to June) of 2014. Panel E involves interacting all fixed effects, including cohort,
role, language, location, industry, and time. We match treated employees (those with positive normalized
productivity estimates) with control employees (having negative normalized productivity estimates) on
gender, race, industry, location, experience, salary, and seniority in Panel F1. We additionally match on
public contributions in Panel F2.
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except we now consider transitions to medium-sized firms (50 to 1000 employees) and small

firms (less than 50 employees) as the outcome variables. The results, outlined in Table 5,

reveal that individuals with productivity estimates higher by 1 standard deviation reduced

their likelihood of transitioning to small and medium firms by 5% and 3.7% of the sample

mean post-shock, respectively. Event studies depicted in Figure 3 validate the absence of

pre-trends in all of those outcomes pre-treatment, supporting the parallel trends assumption.

We further replicate our analysis by non-parametrically estimating our baseline

specification across different firm size categories, as illustrated in Figure 4.12. Our findings

indicate that the mobility of employees with 1 standard deviation higher productivity

increases almost monotonically with firm size, ranging from -7% of the sample mean for firms

with 11-50 employees to +7% for firms with more than 10,000 employees. An exception

to this trend is observed for firms with fewer than 10 employees, where the decrease in

mobility is economically small, at -1%, and statistically insignificant. This last category

could be driven by both employees transitioning to startups and individuals founding their

own firms. In Table A.13, we explicitly examine whether there is any shift in the probability

of entrepreneurship. Our findings reveal an 11% decrease in the overall rate of new firm

formation among employees whose productivity is one standard deviation above the average

following the shock, supporting the idea of labor reallocation away from startups. In contrast,

we observe a modest 5% increase in entrepreneurial activity among employees at small firms,

where the likelihood of transitioning to entrepreneurship rises for those with similarly high

productivity. This suggests a smaller, but notable, reallocation from small firms toward

entrepreneurship as a consequence of the shock.

Overall, our findings indicate that the largest gains are captured by the largest employers

in the economy, the so-called “superstar” firms. We confirm the robustness of our results with

various definitions of superstar firms. Internet Appendix Table A.6 shows that the increase in

mobility holds when defining superstars as the top 1% and 10% by market capitalization and

12Table A.5 shows the regression counterparts of Figure 4.
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revenue, as defined in Tambe et al. (2020). Moreover, internet appendix Table A.7 reveals

that even within young firms, mobility increases to only “superstar” startups with over $500

million in funding.13 Thus, the GitHub policy change facilitates a redistribution of employees

from small and medium-sized firms to the largest firms in the economy (irrespective of age).

3.3 Heterogeneity by initial firm size

The previous specification examines the changes in employee mobility following GitHub’s

policy change. Next, we aim to additionally identify the origin firms for these employees

to establish patterns of labor reallocation. Therefore, we analyze the post-GitHub policy

change in the mobility of productive employees by firm size. Specifically, we estimate a

triple-difference specification:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)+

β2Productivityi × 1(Postt)× 1(Midi(t−1))

+β3Productivityi × 1(Postt)× 1(Smalli(t−1)) + λXit + αi + δt + γit + εi,t

(4)

The specification is an extension of Equation 2, incorporating a triple interaction

involving three indicators: the productivity estimate of employee i derived from the AKM

decomposition, an indicator that equals 1 for quarters following GitHub’s policy change,

and indicators representing the size of the firm where the individual worked in the previous

quarter. Here, 1(Mid) denotes an indicator variable that equals 1 for firms with 50-1000

employees, and 1(Small) represents an indicator for firms with fewer than 50 employees.

While we also estimate the coefficients for double interaction terms between individual

productivity and firm-size indicators, and firm-size indicators interacted with indicators for

GitHub policy change, we do not report them in the specification or results for brevity. β1

captures the impact of the policy change on more productive employees working at large

firms, while β2 and β3 assess the additional impact on employees currently employed at

13Startups with at least $500 Million have a median size of 1000-5000 employees.
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mid-sized and small firms, respectively. This specification, thus, enables us to examine

how the joint interaction of employee productivity, the GitHub policy change, and firm size

influences the outcome of interest.

We also estimate the dynamic version of Equation 4, to verify the absence of pre-trends,

as follows:

1(MoveToLargeF irm)i,t =

12∑
τ=−8

β1,τProductivityi × 1(τ = t)

+

12∑
τ=−8

β2,τProductivityi × 1(τ = t)× 1(Midi(t−1))

+

12∑
τ=−8

β3,τProductivityi × 1(τ = t)× 1(Smalli(t−1)) + λXit + αi + γit + εi,t

Table 6 presents the results. We find that mobility to large firms for individuals with

productivity estimates higher by 1 standard deviation, who were currently employed at large

firms, decreased by 8% of the sample mean, post-GitHub announcement. Conversely, the

probability of individuals with 1 standard deviation higher productivity, currently employed

at medium and small firms, increased by 3% and 5% of the sample mean post-shock,

respectively. The absence of pre-trends, when plotting the triple-difference coefficient for

both mid-sized small firms in Figure 5, underscores that we are capturing the impact

of the change in GitHub policy. Our results hence indicate that productive employees

currently employed at small and medium firms migrated to larger firms, leading to an overall

re-allocation of talent following the GitHub policy change.

3.4 Impact on promotions

Our previous analysis has primarily focused on job changes as the outcome variable. Now,

we aim to understand the impact of the GitHub policy change on promotions, encompassing

both salary increases and title advancements, within and across firms. The results,

presented in Table 7, dissect promotions into three distinct categories: those occurring
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when employees transition to large firms, those happening when employees transition to

small and medium firms, and those occurring within the same firm. We maintain the

baseline specification outlined in Equation 2 for odd columns and adopt Equation 4 for

even columns. Additionally, we introduce firm interacted employee cohort fixed effects for

within-firm promotions to ensure comparisons across employees within the same firm and

with equal tenure. Our findings, summarized below, document the impact of the GitHub

policy change on promotions.

Column 1 demonstrates that the likelihood of transitioning to a large firm with an increase

in salary and title rose by 6% above the mean for individuals with 1 standard deviation higher

productivity, following the GitHub announcement. Column 2 shows that this increase is

mainly driven by employees from mid and small-sized firms. Specifically, the probability

of moving from one large firm to another with promotion decreased by 8% of the sample

mean for those individuals with 1 standard deviation higher productivity after the GitHub

shock. Conversely, the probability of transitioning from small and medium firms to large

firms with promotion increased by 5% of the sample mean for those with 1 standard deviation

higher productivity post the GitHub announcement. These findings suggest that large firms

attracted productive employees from small and medium firms by offering improved salary

and title, after the GitHub change.

In contrast, Column 3 reveals that the probability of moving to a small or medium firm

with an improvement in salary and title decreased by 5.2% of the sample mean for individuals

with 1 standard deviation higher productivity, following the GitHub announcement. Column

4 reveals that this decrease is mainly attributed to employees from large firms. Specifically,

the probability of moving from one large firm to small or medium firm with promotion

decreased by 15% of the sample mean for those with 1 standard deviation higher productivity

after the GitHub shock. Conversely, there was less than 2.3% change in probability of moving

from one small and medium firm to another with promotion for those with 1 standard

deviation higher productivity after the GitHub shock. These results suggest that small and
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medium firms were unable to attract highly productive employees from large firms with

better title or pay.

Column 5 notably illustrates that current employers also react to the disclosure of

new productivity information, showing a significant increase of 5.9% over the mean in

the probability of within-firm promotions for employees with 1 standard deviation higher

productivity post-shock. We also plot the dynamic event study for these results in

Figure 6 and observe no pre-trends. Column 6 further demonstrates that this effect is

particularly pronounced for large firms, which experience a post-shock increase of 8.4% over

the mean in within-firm promotion probability for employees with 1 standard deviation

higher productivity. In contrast, the same effect is 5.1% of the mean for small firms,

diminished by the impact of productive employees transitioning to more senior positions at

large firms following the shock. This increase in internal promotion probability aligns with

existing theoretical models (e.g., Waldman (1984); Bernhardt and Scoones (1993)). These

models suggest that firms are hesitant to promote talented employees without credible signals

because such promotions could alert other firms to their quality, increasing the risk of losing

them to competitors.

We also explore whether these career upgrades are associated with a change in employee

productivity. We test this hypothesis in Table A.12, where we check if treated employees

experienced a larger change in productivity compared to others following the shock. We

utilize the public contributions for each employee, as these were not directly influenced by

the shock. We exclude any contributions made by an employee to their own repository,

as these may represent personal activity. We find a 9% increase over the mean in public

contributions for employees with productivity 1 standard deviation higher in pre-shock

private contributions after the GitHub shock. We find that these results are driven by

changes in the probability of experiencing very high (top decile) contributions, reducing

concerns that we are capturing bias in logarithm due to count like variables. These results

align with the notion that the shock facilitated both career advancements and enhanced
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employee performance.

In summary, our findings indicate that the sudden disclosure of productivity information

on GitHub was advantageous for productive employees, facilitating their productivity and

career progression. While large firms demonstrated an ability to retain employees through

internal promotions, small firms appeared to lose valuable talent to larger firms, which offered

these employees better career opportunities.

4 Potential mechanisms

4.1 Heterogeneity by Individual Characteristics

Previous literature has highlighted the significant information asymmetry surrounding

employee quality (Greenwald, 2018), suggesting that in the absence of direct productivity

indicators, firms may rely on hard signals, such as experience and educational background,

when making hiring decisions (Spence, 1973; Waldman, 1984). We examine this mechanism

by exploring the heterogeneity of our results across three types of alternate individual signals:

work experience, years of schooling, and having degree from a high-ranked university. We

present these results in Table 8.

Column 1 examines the heterogeneity of our results based on the total number of years of

employee experience since graduation at the time of the shock. We find that more productive

employees with less than median experience (i.e., 7 years) at the time of shock saw a 1.7

times larger increase in post-shock mobility to large firms compared to those with more than

median experience.

Columns 2 examines the differential impact of mobility based on the number of years of

schooling. Our analysis shows that more productive employees with below median schooling

tenure experienced a 2 times greater increase in post-shock mobility to large firms compared

to employees with above median schooling.

Column 3 assesses the heterogeneous impact of having a degree from a highly-ranked
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university on our results. We define elite universities as those within the top 20 ranked

universities according to U.S. News and World Report. Our findings indicate that productive

employees without an elite university affiliation experienced a mobility increase to large firms

that was 2.2 times the change observed for employees with an elite university degree. Overall,

our results support the hypothesis that web-based platforms have reduced reliance on hard

signals, such as experience and education leading to a “democratization” of screening in the

labor market. This has facilitated a less constrained flow of talent across firms, allowing

employees to advance based on productivity rather than traditional metrics.

We also test the heterogeneity based on the enforcement of non-compete agreements.

Previous research has demonstrated that non-competes significantly restrict employee

mobility (Jeffers, 2024). Hence, we expect a stronger impact of signaling on mobility in states

where non-competes are less enforceable.14 Column 4 presents our findings. As anticipated,

the data reveals a substantially larger increase in mobility for employees residing in states

without enforceable non-compete agreements, consistent with the hypothesis that we capture

the impact of signaling on labor mobility.

4.2 Heterogeneity by Firm Characteristics

The flow of talent towards large firms can result from both firm-demand and labor-supply

side factors. On the firm-demand side, larger firms may have better IT resources (Eckel and

Yeaple, 2017), enabling them to better utilize and recruit based on GitHub signals. On the

labor-supply side, previous literature has documented that large firms offer steeper career

paths than smaller firms (Di Porto et al., 2024). These steeper career paths, and the resulting

higher wage inequality, have also been demonstrated to correlate with enhanced employee

and firm productivity (Lemieux et al., 2009; Mueller et al., 2017; Wallskog et al., 2024).

Hence, a preference for such steeper career paths may drive more productive employees

14We use the US government’s official archives to get state-level variation in NCs as of 2016. Link:
https://obamawhitehouse.archives.gov/sites/default/files/competition/state-by-statenoncom

petesexplainer_unembargoedfinal.pdf
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toward larger firms. We test these hypotheses using heterogeneity tests.

First, we examine the role for tech-savvy recruiters and firms’ own GitHub usage.

Columns 1-2 in Table 9A present the results, splitting firms based on whether their Human

Resource (HR) personnel use GitHub. We find that individuals with productivity estimates

1 standard deviation above the mean increased their probability of moving to large firms with

tech-savvy HR by 8.5% of the sample mean after the GitHub policy change. In contrast, the

increase was only 2.2% of the sample mean for moves to large firms without any recruiters

on GitHub. T-tests show these coefficients to be significantly different from each other at

the 1% confidence level. Columns 3-4 in Table 9A further split the sample based on whether

firms themselves have created GitHub profiles. Large firms with a presence on GitHub may

be more adept at utilizing these signals for recruitment. Consistent with this idea, we find

that the probability of an employee with 1 standard deviation higher productivity moving

to a large firm with its own GitHub account post-shock increased by 5.8% of the sample

mean. In comparison, the increase was 4.7% of the sample mean for large firms not on

GitHub. The difference between these two coefficients is statistically significant at the 10%

confidence level. Together, these tests support the hypothesis that firms who invest more in,

or possess better, screening technologies leverage new information from web-based platforms

for recruiting talent.

Second, we classify firms based on their probability of offering salary increases. We

calculate the average annual salary change for all employees in a firm using LinkedIn data for

individuals with the same job roles as those in our GitHub sample during the pre-treatment

sample period (quarter 3 of 2013 to quarter 2 of 2016). Firms are then divided into two

subsets: those with above-median average annual salary change and those with below-median

average annual salary change. Table 9A, columns 5-6, present the results. We find that

individuals with productivity 1 standard deviation above the mean were 7.2% more likely

(compared to the sample average) to move to large firms with steeper salary growth after

the GitHub policy change. In contrast, the increase was only 2.2% of the sample mean for
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mobility to large firms with below-median salary growth. T-tests confirm that the difference

between these two coefficients is significant at the 1% level. These results support the notion

that employees prefer to join large firms due to the potential for faster career growth.

We also assess whether the increase in career growth potential increases job risk. Using

the entire LinkedIn dataset for roles matching those in our GitHub sample during the

pre-treatment sample period (quarter 3 of 2013 to quarter 2 of 2016), we determine the

probability of forced turnover for each firm. Forced turnover is defined as job separation

with a gap of at least three months, accompanied by a decrease in salary or seniority.

We categorize firms into two groups based on their forced turnover probability relative

to the median for all firms in our sample. Columns 7-8, present the results. Individuals

with 1 standard deviation higher productivity increased their mobility to larger firms with

above-median forced turnover by 6.6% above the sample mean following the GitHub policy

change. In contrast, there was a statistically insignificant decrease of 0.3% of the sample

mean for mobility to large firms with below-median forced turnover. T-tests confirm that

the difference between these two coefficients is significant at the 1% level. These findings

show that the increase in steep career growth is accompanied by a shift to “riskier” jobs for

more productive employees following the GitHub shock, suggesting that productive human

capital prefers jobs with high upside.

Finally, we explore whether productive workers move to larger firms due to their higher

growth potential. While this could reflect both high firm demand for talent and worker

preferences, it is critical for understanding the efficiency of talent flows to larger firms.

Table 9B presents our results. We first split our sample based on firm’s ex-ante growth in

columns 1-2. We estimate the firms average employment growth based on the entire LinkedIn

data during the pre-period and create indicators for move to large firms with above-median

and below-median employment growth. Individuals with 1 standard deviation higher

productivity increased their mobility to larger firms with above-median employment growth

by 7.9% above the sample mean following the GitHub policy change. In contrast, there
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was an increase of 5.1% of the sample mean for mobility to large firms with below-median

growth. T-tests confirm that the difference between these two coefficients is significant at the

1% level. Similarly, in columns 3-4, the subset splits the sample of large firms into those with

above-median and below-median Compustat based sales growth in the pre-period. We find

that the probability of an employee with 1 standard deviation higher productivity moving

to a large firm with above-median sales growth increased by 8.6% of the sample mean. In

comparison, the increase was 3.9% of the sample mean for large firms with below median

sales growth. The difference between these two coefficients is statistically significant at the

1% level.

Our results are consistent with both firm-demand and labor-supply mechanisms.

Productive workers move to large firms better able to exploit the GitHub data, and with

higher upside potential. Overall this results in the reallocation of these productive workers

to firms with ex-ante higher growth prospects.

5 Firm Level Impact

Section 3 demonstrates that high-productivity employees reallocated from small and

medium-sized firms to large firms as a result of the GitHub productivity disclosure. It is

crucial to assess whether this labor reallocation had an aggregate impact on firm outcomes. If

small and medium firms are capable of replacing workers or internally redistributing projects,

we would expect the disclosure to have no impact on firm growth or productivity. However,

if these firms are constrained in their ability to hire and train talented employees, we would

anticipate observing an aggregate impact.

We, thus, examine next the effect of the GitHub policy change on firm growth and

productivity. To this end, we aggregate our data to the firm level and use a triple-differences

specification. The basic difference-in-differences setup compares the changes in firms with

an ex-ante higher proportion of high-productivity (treated) employees with firms with a
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low proportion of high-productivity employees, before and after the GitHub announcement.

Subsequently, the third difference dissects this coefficient based on firm size, allowing us to

discern the divergent impact of the GitHub policy change on treated small and medium-sized

firms compared to treated large firms. We estimate the following regression equation:

FirmOutcomej,t = β11(Productivityj > Median)× 1(Postt)

+ β21(Productivityj > Median)× 1(Postt)× 1(Midj)

+ β31(Productivityj > Median)× 1(Postt)× 1(Smallj) + λXjt + αj + γj,t + εj,t

(5)

In our regression model, the dependent variable is an outcome variable for firm j at

quarter t. The coefficient β1 captures the interaction between 1(Productivityj > Median),

an indicator that takes the value 1 if the average AKM-derived productivity estimate in the

pre-period is greater than the median for firm j, and 1(Postt), an indicator that switches on

after GitHub’s policy shift in May 2016 (i.e., after quarter 2 of 2016). Coefficients β2 and β3

further interact these variables with indicators for firm size. Our sample covers a period of

six years: from the third quarter of 2013 (three years before the shock) to the second quarter

of 2019 (three years after the shock). To ensure robustness of our analysis, we control for

firm and industry-state-time fixed effects, controlling for constant firm-level differences and

market level time trends on our results. Additionally, we incorporate other relevant controls.

In the case of employment-related outcomes, we control for lagged employment level, while

for contribution-based productivity outcomes, we control for lagged total contribution stock

and the median pre-period contribution interacted with 1(Postt). We cluster our standard

errors at the firm level.
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We also estimate a dynamic version of the same regression as follows:

FirmOutcomej,t =

12∑
τ=−8

γτ1(Productivityj > Median)× 1(τ = t)

+

12∑
τ=−8

θτ1(Productivityj > Median)× 1(τ = t)× 1(Mid− SizedF irmj)

+

12∑
τ=−8

βτ1(Productivityj > Median)× 1(τ = t)× 1(SmallF irmj) + λXjt + αj + γjt + εj,t

(6)

The model is similar to the one detailed in Equation 5, except we estimate a separate βτ for

each quarter τ relative to the shock. The omitted quarter is the first quarter of 2016, one

quarter before the shock. We test for the parallel trends assumption by checking for any

pre-trends in βτ before the shock.

We present the results for employee growth and productivity in Table 10. Columns

1 and 2 present the results for firm employment growth. We find that large firms with

more than median individual productivity grew 4% faster than the mean after the GitHub

announcement. Above-median productivity med-sized firms grew less by 2% than large firms

following the policy shift, although the difference is not statistically significant. On the other

hand, employment growth in above-median productivity small firms decreased by 13.5% of

the mean after the announcement. Column 2 creates a proxy indicator for firm exit, defined

as a firm experiencing a headcount reduction of more than half compared to the previous

quarter. Our findings show no significant change in the probability of closures for large or

medium firms with above-median productivity levels post-GitHub shock. However, small

firms with above-median productivity witnessed a substantial 38% increase over the mean

in the probability of closures, after the GitHub announcement.15 Figure 7 demonstrates

that our results are not driven by differential pre-trends across firms. Overall, these findings

support the notion that large firms benefited from the information revealed as they could

discover new talent, while small firms experienced losses and were unable to replenish talent

15The magnitude appears large because the pre-period mean of closures is very low (0.6%), particularly
due to large firms that are much less likely to exit. The pre-period mean of exits among small firms is 1%,
suggesting that the shock leads to about 22.5% increase in their probability to exit.
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effectively.16

Columns 3 to 6 instead use employee productivity as the outcome variable. Here, we

utilize the public contributions for each employee, as these were not directly influenced by

the shock. We exclude any contributions made by an employee to their own repository, as

these may represent personal activity. The results show the number of public contributions

increased by 5.6% for large firm with productivity estimates exceeding the median post

the GitHub announcement. There was a 4 to 6% (though statistically insignificant in one

specification) increase in public contributions per employee for large firms with above-median

productivity levels post-GitHub shock. We find statistically indistinguishable changes

for med-sized firms. Notably, the entire positive impact is negated for small firms with

above-median productivity, which witnessed a 3% reduction in the number of contributions

and a 4% reduction in the number of contributions per employee after the GitHub shock.

We find that these results are driven by changes in the probability of experiencing very high

(top decile) contributions, reducing concerns that we are capturing bias in logarithm due

to count like variables. Figure 8 displays the corresponding event studies. The absence of

any discernible pre-trends before the shock is consistent with capturing the impact of the

change in GitHub policy. In summary, these results highlight that large firms were able to

enhance productivity, whereas small firms struggled to offset talent losses, resulting in an

overall reduction in productivity. We also test our results using different cut-offs for high

GitHub activity. Table A.10 confirms robustness across alternate cut-offs, including the top

quartiles and quintiles.

5.1 Industry-level implications

Sections 3 and 5 document the effects of GitHub productivity disclosure on individual

reallocation to larger firms and the subsequent impact on the growth and productivity

16In un-reported analysis we find that the results in Column 1 are robust to dropping firms which exited
from the sample. We also find that a maximum of 1.5% of our sample is aqui-hires (where more than 80%) of
the team moves to a new firm. Our results are also robust to excluding acqui-hire deals from the regression
analysis.
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of most impacted firms by size. We now proceed to evaluate whether this reallocation

has influenced broader industry dynamics, potentially leading to increased concentration

in more affected industries. To explore this, we aggregate our data to the industry level

and examine the correlation between changes in concentration and number of private

contributions in each industry.17 The change in concentration is measured by the difference

in Herfindahl-Hirschman Index (HHI) in any industry, over two periods: five years before the

shock (2011–2016) and five years after the shock (2016–2021). We use the average number

of private contributions in each industry as our independent variable.

Although these correlations do not establish causal relationships, they provide valuable

insights into broader trends, especially regarding the notable increase in industry

concentration over the past decade (Autor et al., 2023). Table A.14 presents our results.

Columns 1-2 and 3-4 test whether there was a greater increase in labor market HHI in

industries with a higher proportion of GitHub private contributions, based on LinkedIn

and SIC industry definitions, respectively. Industries with 1 standard deviation higher

share of GitHub employees with private contributions experienced a 6.4% (14.0%) larger

increase in labor concentration from 2016 to 2021, compared to 2011 to 2016, at the

LinkedIn (SIC 3-digit) industry level. Similarly, industries with a 1 standard deviation

higher average number of private contributions saw a 6.7% (13.7%) higher increase in labor

concentration over a five-year period at the LinkedIn (SIC 3-digit) industry level. These

findings demonstrate that there were greater concentration changes in labor markets within

industries where more information was unveiled following the GitHub announcement.

17There has been considerable debate on the aggregate trends with regards to local labor market
concentration trends. However, our analysis of LinkedIn data, filtered to focus on workers in the same
firms and roles as those in our sample, reveals that the labor market for these workers operates at a national
level, rather than being confined to local regions. Indeed, we examined the location transitions of workers
who changed firms during the three years prior to the GitHub shock (2013-2016). 35% of these individuals
relocated to different states as part of their job change.
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6 Conclusion

This paper represents one of the first examinations of the impact of

individual-productivity-related big data on labor distribution within the economy.

Our investigation centers on GitHub, the world’s largest repository of individual-level

productivity information. Leveraging a quasi-natural experiment, we exploit a scenario

where employees were exogenously enabled to disclose existing private contributions on

their GitHub profiles.

Our findings unveil a significant paradigm shift: higher signaling ability by individuals

triggered the reallocation of talented individuals toward larger firms. Smaller and

medium-sized firms encountered challenges in both recruiting and retaining talented

individuals post-shock. In contrast, large firms effectively retained existing talent through

internal promotions and attracted new talent. Overall productivity of treated employees also

improved after the information disclosure on individual quality. Consistent with a reduction

of information asymmetry on the labor market, the surge in productivity information

mitigated reliance on traditional signals of hard information, thereby democratizing

opportunities for talent.

However, this talent redistribution had adverse effects on the growth and productivity

of smaller firms. Further correlational evidence suggests that this talent reallocation led

to an increase in market concentration in industries with greater informational disclosure

facilitated by GitHub.

Our findings unearth a novel labor channel for big data, wherein increased employee

productivity information reallocates labor from small to large firms, amplifying the

significance of large firms in the economy. The overall welfare consequences ultimately

depend on the relative importance of the productivity gains versus the costs associated with

increased market concentration. Balancing these two factors offers a compelling direction

for future research.
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Figure 1: Sample GitHub Users by MSA

This figure presents the distribution of our sample by employee’s location (MSA) based on their first job.
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Figure 2: GitHub Shock & Employee Mobility to Large Firms

This figure presents an event study on employee mobility to large firms around the disclosure of employee
productivity information on GitHub. The x-axis plots the quarter around the shock. The dashed line
indicates the quarter 2 (April-June) of 2016, during which GitHub introduced the policy that allowed users
to display their productivity information more accurately. The quarter 1 of 2016 (Jan-March) is the omitted
quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more productive
employees estimated by the β coefficients obtained from the equation:

1(MoveToLargeF irm)i,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with the time indicator for each quarter. The dependent variable is an indicator
that equals 1 when employee i switches job to a large firm (>1000 employees) in quarter t and is 0 otherwise.
Xit represents employee’s time-varying salary and seniority controls. αi is employee fixed effects. γit
represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s
location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year
corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry,
and location represent the employee’s first job role, MSA, and industry in our sample period respectively.
Standard errors are bootstrapped within employee clusters using 100 repetitions. Light blued lines show
95% confidence intervals for estimates.
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Figure 3: GitHub Shock & Employee Mobility

This figure presents event studies on employee mobility to small-sized and medium-sized firms around the disclosure of employee productivity
information on GitHub. The x-axis plots the quarter around GitHub’s policy change. The dashed line indicates the quarter 2 (April-June) of 2016,
during which GitHub introduced the policy that allowed users to display their productivity information more accurately. The quarter 1 of 2016
(Jan-March) is the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more productive employees
estimated by the β coefficients obtained from regression estimate:

1(Move)i,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with the time
indicator for each quarter. The dependent variable is an indicator that equals 1 when employee i switches job to a mid-sized firm (50 < employees
<= 1000) for Panel (a), to a small firms (<= 50 employee) for Panel (b), in quarter t and is 0 otherwise. Xit represents employee’s time-varying
salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as
well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last
degree. Language is the employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions. Light blued lines show
95% confidence intervals for estimates.

(a) Move to Mid-Sized Firms (b) Move to Small Firms
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Figure 4: GitHub Shock & Employee Mobility to Different Size Buckets

This figure presents the economic magnitude of employee mobility to firms in different size buckets around the disclosure of employee productivity
information on GitHub. On the y-axis, we plot the economic magnitude of the differential impact of the shock on more productive employees using
the β coefficients obtained from regression estimate:

1(Move)i,t =

12∑
τ=−8

βτProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with 1(Post),
an indicator that takes the value of 1 for quarters after GitHub’s policy change (i.e., after quarter 2 of 2016). The dependent variable is an indicator
that equals 1 when employee i switches job to a firm in a given size bucket. Xit represents employee’s time-varying salary and seniority controls.
αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location
and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the
employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample
period respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions. Light blued lines show 95% confidence intervals
for estimates.
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Figure 5: GitHub Shock & Employee Mobility to Large Firms: Heterogeneity by Initial Firm
Size

This figure presents event studies on employee mobility to large firms from small and mid-sized firms around the disclosure of employee productivity
information on GitHub. The x-axis plots the quarter around the shock. The dashed line indicates the quarter 2 (April-June) of 2016, during which
GitHub introduced the policy that allowed users to display their productivity information more accurately. The quarter 1 of 2016 (Jan-March) is the
omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more productive employees, particularly at small and
mid-sized firms, estimated by the β coefficients obtained from the equation:

1(MoveToLargeF irm)i,t =

12∑
τ=−8

δτProductivityi × 1(τ = t) +

12∑
τ=−8

βτProductivityi × 1(τ = t)× 1(Mid− Sizedi(t−1))

+

12∑
τ=−8

β
′

τProductivityi × 1(τ = t)× 1(Smalli(t−1) + λXit + αi + γit + εi,t

The independent variable is a triple interaction of three indicators: normalized productivity estimate of the employee i derived from the AKM
decomposition, indicators for the size of the firm where the employee worked in the previous quarter, and the time indicator for each quarter. We
also include indicator variables 1(Mid) and 1(Small) as well as their double interactions with Productivity and time, but do not show them in the
above equation for brevity. Panel A plots interaction with 1(Mid), an indicator variable that takes the value of 1 for firms with 50-1000 employees.
Panel B plots the interaction with 1(Small), an indicator for firms with less than 50 employees. The dependent variable is an indicator that equals 1
if the employee switches job to a large firm (> 1000 employees) in that quarter. Xit represents employee’s time-varying salary and seniority controls.
αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location
and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the
employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample
period respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions. Light blued lines show 95% confidence intervals
for estimates.

(a) Mid-Sized Firms (b) Small Firms
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Figure 6: GitHub Shock & Employee Promotions at Large Firms

This figure presents an event study on employees’ within-firm promotions at large firms around the disclosure
of employee productivity information on GitHub. The x-axis plots the quarter around the shock. The dashed
line indicates the quarter 2 (April-June) of 2016, during which GitHub introduced the policy that allowed
users to display their productivity information more accurately. The quarter 1 of 2016 (Jan-March) is
the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more
productive employees, particularly at large firms, estimated by the β coefficients obtained from the equation:

1(Within− FirmPromotion)i,f,t =

12∑
τ=−8

βτProductivityi × 1(τ = t)

+

12∑
τ=−8

λτProductivityi × 1(τ = t)× 1(Mid− Sizedi(t−1))

+

12∑
τ=−8

λ
′

τProductivityi × 1(τ = t)× 1(Smalli(t−1) + αi + γit + δft + εi,f,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with the time indicator for each quarter. We also include indicator variables 1(Mid)
and 1(Small) as well as their double interactions with Productivity and time, but do not show them in the
above equation for brevity. The dependent variable is an indicator that equals 1 when employee i does not
switch jobs and her salary or seniority improves in quarter t compared to quarter t-1 and is 0 otherwise. αi

represents employee fixed effects. γit represents employee’s cohort, role, and language interacted with time
fixed effects as well as employee’s location and industry interacted with time fixed effects. δft is firm cohort
fixed effects representing an interaction of the employee’s current firm and the year of joining the firm. Cohort
represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most
preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using
100 repetitions. Light blued lines show 95% confidence intervals for estimates.
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Figure 7: GitHub Shock & Employment Growth at Small Firms

This figure presents an event study on firm-level employment growth for small firms (<= 50 employees) around the disclosure of employee productivity
information on GitHub. The x-axis plots the quarter around GitHub’s policy change. The dashed line indicates the quarter 2 (April-June) of 2016,
during which GitHub introduced the policy that allowed users to display their productivity information more accurately. The quarter 1 of 2016
(Jan-March) is the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on employment growth of small firms
with above-median employee productivity estimated by the β coefficients obtained from the following equation:

EmploymentGrowthj,t =

12∑
τ=−8

θτ1(Productivityj > Median)× 1(τ = t)

+

12∑
τ=−8

δτ1(Productivityj > Median)× 1(τ = t)× 1(MidSizedj)

+

12∑
τ=−8

βτ1(Productivityj > Median)× 1(τ = t)× 1(Smallj) + λXjt + αj + γjt + εj,t

The independent variable is a triple interaction of three binary indicators: 1(Productivityj > Median) that takes the value of 1 if firm j ’s average
AKM-based employee productivity is above median, 1(Smallj) that takes the value of 1 if firm j is small (<= 50 employees), and 1(τ = t)
that is the time indicator for each quarter. We also include the double interaction of indicator variables MidSized and 1(Small) with the indicator
1(Productivityj > Median) and time, but do not show them in the above equation for brevity. In Panel (a), the dependent variable is the employment
change (in %) for firm j in quarter t with respect to quarter t-1. In Panel (b), the dependent variable is a dummy that takes the value of 1 if the
employment at the firm drops by more than 50% in that quarter and 0 otherwise. Xjt represents firm’s time-varying lagged employment. αj is firm
fixed effects. γjt represents the firm’s industry × state interacted with time fixed effects. We cluster the standard errors at the firm level. Light blued
lines show 95% confidence intervals for estimates.

(a) Employment Growth (b) 1(Employment Reduction > 50%)
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Figure 8: GitHub Shock & Productivity at Small Firms
This figure presents event studies on firm-level productivity of small firms (<= 50 employees) proxied by their public GitHub contributions around the
disclosure of employee productivity information on GitHub. The x-axis plots the quarter around GitHub’s policy change. The dashed line indicates
the quarter 2 (April-June) of 2016, during which GitHub introduced the policy that allowed users to display their productivity information more
accurately. The quarter 1 of 2016 (Jan-March) is the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on
public contributions of small firms with above-median employee productivity estimated by the β coefficients obtained from the following equation:

1(Contributionsj,t) =

12∑
τ=−8

θτ1(Productivityj > Median)× 1(τ = t) +

12∑
τ=−8

δτ1(Productivityj > Median)× 1(τ = t)× 1(MidSizedj)

+

12∑
τ=−8

βτ1(Productivityj > Median)× 1(τ = t)× 1(Smallj) + λXjt + αj + γjt + εj,t

The independent variable is a triple interaction of three binary indicators: 1(Productivityj > Median) that takes the value of 1 if firm j ’s average

AKM-based employee productivity is above median, 1(Smallj) that takes the value of 1 if firm j is small (<= 50 employees), and 1(τ = t) that

is the time indicator for each quarter. We also include the double interaction of indicator variables MidSized and 1(Small) with the indicator

1(Productivityj > Median) and time, but do not show them in the above equation for brevity. The dependent variable in Panel (a) (Panel (b)) is a

binary indicator that takes the value of 1 if the firm j ’s total public contributions (total public contributions per employee) in the quarter is in the

top decile and is 0 otherwise. Firm contributions only include public contributions made by incumbent employees towards repositories not owned by

the employees themselves. Xjt represents firm’s time-varying lagged stock of total contributions as well as the median pre-period public contribution

interacted with an indicator for quarters after GitHub’s policy change. αj is firm fixed effects. γjt represents the firm’s industry × state interacted

with time fixed effects. We cluster the standard errors at the firm level. Light blued lines show 95% confidence intervals for estimates.

(a) Public Contributions (b) Public Contributions per Employee
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Table 1: Descriptive Statistics

This table presents descriptive statistics for employee-level variables in Panel A, and firm-level variables in
Panel B.

Panel A: Employee Level Summary

Mean Std. Dev. P10 Median P90 Obs.

1(Male) 0.79 0.41 0 1 1 302,903
1(White) 0.69 0.46 0 1 1 302,903
1(Software Engg. Role) 0.37 0.48 0 0 1 302,903
1(SF/NY/Seattle) 0.25 0.43 0 0 1 302,581
Experience (Years) 8.82 8.13 1 7 20 302,903
Initial Seniority 2.20 0.93 1 2 4 302,903
Initial Salary (in ’000 $s) 87.34 26.85 56.73 84.88 116.66 302,903
Pre-Period Total Contributions (Log) 2.60 2.16 0 2.08 5.87 302,903
Pre-Period Public Contributions (Log) 2.35 1.91 0 1.95 5.17 302,903
Pre-Period Private Contributions (Log) 0.66 1.86 0 0 3.22 302,903
1(Job Change to Large Firms) 0.03 0.04 0 0 0.08 302,902
1(Job Change to Mid-Size Firms) 0.02 0.04 0 0 0.08 302,902
1(Job Change to Small Firms) 0.02 0.03 0 0 0.06 302,902
1(Job Change) 0.07 0.07 0 0.05 0.17 302,903
1(Promotion) 0.06 0.05 0 0.04 0.13 302,903
1(Across-Firm Promotion) 0.04 0.05 0 0.04 0.10 302,903
1(Within-Firm Promotion) 0.02 0.03 0 0 0.07 302,903

Panel B: Firm Level Summary

Mean Std. Dev. P10 Median P90 Obs.

1(Large Firm) (Employees > 1000) 0.15 0.36 0 0 1 57,982
1(Mid-size Firm) (50 < Employees <= 1000) 0.37 0.48 0 0 1 57,982
1(Small Firm) (Employees <= 50) 0.48 0.50 0 0 1 57,982
Employment Change 0.03 0.09 -0.03 0.02 0.13 55,335
Public Contributions 46.49 739.07 0.17 4 65 50,307
Public Contributions/Employee 10.26 107.47 0.13 1.75 17.26 50,307

53



Table 2: Sample & Variation Breakdown for AKM Tests

This table presents the details of sample construction (in Panel A) and variance decomposition (in Panel
B) of the AKM (Abowd et al., 1999) tests done to estimate individual employee productivity from private
GitHub contributions. We isolate employee productivity from historical private GitHub contributions by
running the following regression specification:

Log(PvtContributions)i,f,t = ϑi + ϑf + ϑt + ϑk +Xi,f,t + εi,f,t

ϑi, the employee fixed effect, represents the estimated employee i’s productivity. The dependent variable
is the logarithm of the number of private contributions made by employee i in month t. The regression is
estimated on data spanning May 2011 to April 2016, exactly five years before GitHub policy change. We
control for employee’s current job duration, and total work experience. We also include firm fixed effects
(ϑf ), time fixed effects (ϑt), and employee’s role fixed effects (ϑk). Panel A shows the number of observations
in our initial sample, the connected set (the largest set of firms linked by employee mobility), the filtered set
(connected set with at least two employees in each firm-time observation), the sample for which productivity
estimates were obtained, and the final sample remaining after excluding users working in non-profit industries
at the time of GitHub’s policy change. Panel B summarizes the breakdown of the variance in the dependent
variable explained by the employee and firm components.

(1) (2) (3) (4)

Panel A: Summary Stats

Employees Parent Firms

Sample N % Initial Sample N % Initial Sample

Initial Sample 381,114 103,308
Connected Set 356,106 93.4% 77,899 75.4%
Filtered Set 342,769 89.9% 36,358 35.2%
Productivity Estimates 338,523 88.8% 36,358 35.2%
Excluding Non-Profits 302,903 79.5%

Panel B: Variation Breakdown

Var. Explained

Person F.E. 66.7%
Firm F.E. 8.5%
Residual 24.7%
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Table 3: GitHub Shock & Employee Mobility to Large Firms

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on
employee mobility to large firms. We report the differential impact of GitHub’s policy change on productive
employees estimated by the β coefficient from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + γXit + αi + θt + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with 1(Post), an indicator that takes the value of 1 for quarters after GitHub’s
policy change (i.e., after quarter 2 of 2016). The dependent variable is an indicator that equals 1 when
employee i switches job to a large firm (>1000 employees) in quarter t and is 0 otherwise. Columns 1 to
5 present estimates with varying controls and fixed effects. Cohort represents an employee’s graduation
year corresponding to the last degree. Language is the employee’s most preferred coding language. Role,
industry, and location represent the employee’s first job role, MSA, and industry in our sample period
respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions. Significance
levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Job Change to Large Firms)

Productivity × 1(Post) 0.0012*** 0.0012*** 0.0017*** 0.0017*** 0.0017***
(0.0001) (0.0001) (0.0001) (0.0002) (0.0002)

Employee F.E. Y Y Y Y Y
Time F.E. Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Time F.E. Y
Cohort × Language × Role × Time F.E. Y Y
Industry × Location × Time F.E. Y

Observations 6,804,386 6,804,386 6,804,166 3,811,484 3,199,173
# Unique Employees 302,781 302,781 302,772 170,880 143,446
R-squared 0.054 0.054 0.06 0.168 0.212
Y-Mean 0.031 0.031 0.031 0.032 0.033
Magnitude (%) 3.98 3.8 5.6 6.09 5.72
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Table 4: GitHub Shock & Employee Mobility to Large Firms: Placebo & Alternate Samples

This table presents placebo and alternate sample tests for estimates reported in Table 3. Panel A presents a placebo test with the independent variable
being an alternative productivity estimate computed by using employee’s public contributions as the dependent variable in the AKM decomposition.
Public contributions only include contributions made towards repositories not owned by the employees themselves. Panel B estimates results on a
subsample of active GitHub Users. Panel B1 only includes users with at least 10 total GitHub contributions during the pre-period (in the 12 quarters
before May 2016). Panel B2 restricts the sample to users with non-zero private GitHub contributions during the pre-period. Panel B3 restricts the
sample to users with at least 10 private GitHub contributions during the pre-period. Panel C1 (C2) excludes users who, during the pre-shock period,
work at firms that have zero (less than 10) private contributions on GitHub in our sample. All tests correspond to our baseline specification, Column
5 in Table 3. Standard errors are bootstrapped within employee clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p <
0.01).

(1) (2) (3) (4) (5) (6)

Outcome: Coefficient Std. Error Observations R-squared Y-Mean Magnitude (%)

Panel A: Placebo Test

A1: Productivity based on Public Contributions
Productivity × 1(Post) -0.0000 (0.0002) 3,182,288 0.212 0.033 -0.02

Panel B: Within Active User Comparison

B1: Pre-Period Individual Total Contributions ≥ 10
Productivity × 1(Post) 0.0019*** (0.0002) 1,708,418 0.224 0.033 8.2

B2: Pre-period Individual Private Contributions > 0
Productivity × 1(Post) 0.0012*** (0.0004) 506,974 0.271 0.043 8.56

B3: Pre-period Individual Private Contributions ≥ 10
Productivity × 1(Post) 0.0013*** (0.0003) 401,146 0.274 0.024 9.58

Panel C: Within Active Firm Comparison

C1: Firm Private Contributions > 0
Productivity × 1(Post) 0.0038*** (0.0003) 2,078,974 0.215 0.034 11.2

C2: Firm Private Contributions ≥ 10
Productivity × 1(Post) 0.0041*** (0.0003) 1,953,461 0.216 0.033 12.12
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Table 5: GitHub Shock & Employee Mobility to Medium & Small Firms

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information on employee mobility based
on destination firm size. We report the differential impact of GitHub’s policy change on productive employees estimated by the β coefficient from the
equation:

1(Move)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with 1(Post),
an indicator that takes the value of 1 for quarters after GitHub’s policy change (i.e., after quarter 2 of 2016). The dependent variable is an indicator
that equals 1 when employee i switches job in quarter t to a large firm (>1000 employees) for Column 1, mid-sized firm (50 < employees <= 1000) for
Column 2, and small firm (<= 50 employees) for Column 3. Xit represents employee’s time-varying salary and seniority controls. αi is employee fixed
effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location and industry interacted
with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample period respectively. Standard
errors are bootstrapped within employee clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3)

Outcome: 1(Job Change)

Large Firm Medium Firm Small Firm

Productivity × 1(Post) 0.0017*** -0.0010*** -0.0010***
(0.0002) (0.0002) (0.0002)

Employee F.E. Y Y Y
Time F.E. Y Y Y
Salary & Seniority Controls Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y
Industry × Location × Time F.E. Y Y Y

Observations 3,199,173 3,199,173 3,199,173
# Unique Employees 143,446 143,446 143,446
R-squared 0.212 0.211 0.222
Y-Mean 0.033 0.029 0.023
Magnitude (%) 5.72 -3.74 -5.08
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Table 6: GitHub Shock & Employee Mobility to Large Firms:
Heterogeneity by Origin Firm Size

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information on employee mobility to large firms based on the origin firm size. We report the differential
impact of GitHub’s policy change on productive employees by origin firm type estimated by the β coefficient
from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt) + β2Productivityi × 1(Postt)× 1(Midi(t−1))

+ β3Productivityi × 1(Postt)× 1(Small)i(t−1)) + λXit + αi + θt + γit + εi,t

The independent variable is a triple interaction of three indicators: normalized productivity estimate of

employee i derived from the AKM decomposition, indicators for the size of the origin firm, i.e. where

employee i worked in the previous quarter, and an indicator that takes the value of 1 for quarters after

GitHub’s policy change (i.e., after quarter 2 of 2016). 1(Mid) is an indicator variable that takes the value

of 1 for firms with 50-1000 employees and 1(Small) is an indicator for firms with less than 50 employees.

The dependent variable is an indicator that equals 1 when employee i switches job to a large firm (>1000

employees) in quarter t and is 0 otherwise. We also estimate coefficients for indicator variables 1(Mid) and

1(Small) as well as their double interactions with Productivity and 1(Post), but do not report them for

brevity. Columns 1 to 5 present estimates with varying controls and fixed effects. Cohort represents an

employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred

coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry

in our sample period respectively. Standard errors are bootstrapped within employee clusters using 100

repetitions. Significance levels: **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Job Change to Large Firms)

Productivity × 1(Post) -0.0039*** -0.0042*** -0.0028*** -0.0022*** -0.0022***
(0.0003) (0.0003) (0.0003) (0.0004) (0.0005)

Productivity × 1(Post) × 1(Mid) 0.0049*** 0.0051*** 0.0043*** 0.0031*** 0.0030***
(0.0004) (0.0004) (0.0004) (0.0005) (0.0006)

Productivity × 1(Post) × 1(Small) 0.0054*** 0.0056*** 0.0046*** 0.0039*** 0.0037***
(0.0004) (0.0004) (0.0004) (0.0005) (0.0006)

Employee F.E. Y Y Y Y Y
Time F.E. Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Time F.E. Y
Cohort × Language × Role × Time F.E. Y Y
Industry × Location × Time F.E. Y

Observations 6,455,765 6,455,765 6,455,545 3,596,761 3,022,682
# Unique Employees 300,779 300,779 300,770 169,629 142,754
R-squared 0.069 0.069 0.075 0.184 0.227
Y-Mean 0.03 0.03 0.03 0.031 0.032
Magnitude (Mid) (%) 3.27 3.14 4.86 3.29 3.01
Magnitude (Small) (%) 4.81 4.73 5.95 6.21 5.46
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Table 7: GitHub Shock & Employee Promotion

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on employee career advances. We report the
differential impact of GitHub’s policy change on productive employees by initial firm type estimated by the β coefficient from the equation:

1(Promotion)i,f,t = β1Productivityi × 1(Postt) + β2Productivityi × 1(Postt)× 1(Midi(t−1))

+ β3Productivityi × 1(Postt)× 1(Small)i(t−1)) + αi + γit + δft + εi,f,t

The independent variable is an interaction of two indicators: normalized productivity estimate of the employee i derived from the AKM decomposition,
and an indicator that takes the value of 1 for quarters after GitHub’s policy change (i.e., after quarter 2 of 2016). Even-numbered columns additionally
interact this term with indicators for the size of the firm where the employee worked in the previous quarter. 1(Mid) is an indicator variable that
takes the value of 1 for firms with 50-1000 employees, and 1(Small) is an indicator for firms with less than 50 employees. The dependent variable is
an indicator variable that is 1 if there is a promotion (salary or job-seniority increase compared to the previous quarter) and the employee switches
job to a large firm (> 1000 employees) in columns 1 and 2, switches job to a small or mid-sized firm (<= 1000 employees) in columns 3 and 4,
remains at the same firm in columns 5 and 6. We also estimate coefficients for indicator variables 1(Mid) and 1(Small) as well as their double
interactions with Productivity and 1(Post), but do not report them for brevity. αi represents employee fixed effects. γit represents employee’s cohort,
role, and language interacted with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents
an employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry, and
location represent the employee’s first job role, MSA, and industry in our sample period respectively. In columns 5 and 6, we also control for δft, firm
cohort representing an interaction of the employee’s current firm and the year of joining the firm. Standard errors are bootstrapped within employee
clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: 1(Promotion)

Move to Large Move to Small & Med. Within-Firm

Productivity x 1(Post) 0.0012*** -0.0016*** -0.0016*** -0.0045*** 0.0010*** 0.0014**
(0.0001) (0.0003) (0.0002) (0.0005) (0.0002) (0.0005)

Productivity x 1(Post) x 1(Mid) 0.0023*** 0.0042*** 0.0001
(0.0005) (0.0007) (0.0008)

Productivity x 1(Post) x 1(Small) 0.0026*** 0.0052*** -0.0005
(0.0005) (0.0008) (0.0007)

Employee F.E. Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y
Cohort x Language x Role x Time F.E. Y Y Y Y Y Y
Industry x Location x Time F.E. Y Y Y Y Y Y
Firm Cohort Y Y

Observations 3,199,173 3,022,682 3,199,173 3,022,682 2,939,059 2,918,178
# Unique Employees 143,446 142,754 143,446 142,754 143,022 142,797
R-squared 0.204 0.216 0.212 0.22 0.274 0.275
Y-Mean 0.024 0.023 0.036 0.035 0.019 0.019
Magnitude (Main) (%) 5.92 -7.9 -5.19 -14.9 5.9 8.43
Magnitude (Small) (%) 5.23 2.34 5.1
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Table 8: GitHub Shock & Employee Mobility to Large Firms:
Heterogeneity by Employee Type

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information based on employee-type. We report the differential impact of GitHub’s policy change on
productive employees, particularly those susceptible to higher information asymmetry and limited mobility,
estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)

+ β2Productivityi × 1(Postt)× 1(Groupi) + λXit + αi + γit + εi,t

The independent variable is a triple interaction of three indicators: the employee’s normalized productivity
estimate derived from the AKM decomposition, indicators for employee group, and indicator that takes the
value of 1 for quarters after GitHub’s policy change (i.e., after quarter 2 of 2016). Columns 1 includes
triple interaction for 1(Experience < Median), which takes the value of 1 for employees that have less than
median work experience at the time of shock. Column 2 includes interaction with 1(Schooling < Median),
which takes the value of 1 for employees whose years of school attended is less than median and 0 otherwise.
Column 3 includes triple interaction with 1(Non-Elite School) that takes the value 1 if the employee did
not attend a school ranked among the top 20 in the US by US News & Ranking in 2016. Column 4
includes triple interaction with 1(Less NCA Enforceability) that takes the value of 1 if the employee’s
state at the time of shock did not not have any statute governing NCAs. We also estimate coefficients for
double interaction of Group and 1(Post), but do not report them for brevity. We control for employees’
time-varying salary and seniority. Xit represents employee’s time-varying salary and seniority controls. αi

is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed
effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an
employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry
in our sample period respectively. Standard errors are bootstrapped within employee clusters using 100
repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome:

Productivity × 1(Post) 0.0012*** 0.0016*** 0.0008* 0.0012***
(0.0003) (0.0002) (0.0005) (0.0003)

Productivity × 1(Post) × 1(Experience < Median) 0.0008**
(0.0004)

Productivity × 1(Post) × 1(Schooling < Median) 0.0016*
(0.0008)

Productivity × 1(Post) × 1(Non-Elite School) 0.0010*
(0.0006)

Productivity × 1(Post) × 1(Less NCA Enforceability) 0.0006*
(0.0004)

Employee F.E. Y Y Y Y
Time F.E. Y Y Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y

Observations 3,199,173 3,199,173 3,199,173 3,199,173
# Unique Employees 143,446 143,446 143,446 143,446
R-Squared 0.212 0.211 0.212 0.212
Y-Mean 0.033 0.033 0.033 0.033
Magnitude - Main (%) 4.23 5.45 2.79 4.14
Magnitude - Interaction (%) 7.12 10.91 6.08 6.35
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Table 9A: GitHub Shock & Employee Mobility to Large Firms: Heterogeneity by Destination
Firm Characteristics

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information based on destination firm
characteristics. We report the differential impact of GitHub’s policy change on productive employees estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is an interaction of the employee’s normalized productivity estimate derived from the AKM decomposition and an indicator
that takes the value of 1 for quarters after GitHub’s policy change (i.e., after quarter 2 of 2016). The dependent variable is mobility to a subset of
large firms (> 1,000 employees) and differs in each column based on the subset. In columns 1-2, the subset is based on whether any Human Resource
professional at the firm used GitHub during the pre-period. In columns 3-4, the subset is based on whether the firm and its employees use GitHub
(derived from firm-level private contributions). In columns 5-6, the subset is based on steepness in career growth defined by whether the firm had
an above-median average annual salary change in the pre-period. Finally, in columns 7-8, the subset is based on job stability defined by whether
the firm had below-median average forced turnovers in the pre-shock period. Xit represents employee’s time-varying salary and seniority controls.
αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location
and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the
employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample
period respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05),
***(p < 0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Job Change to Large Firms with)

Tech-savvy Recruiters GitHub Usage Steep Career Growth High Stability

Yes No Yes No Yes No Yes No

Productivity × 1(Post) 0.0014*** 0.0003*** 0.0015*** 0.0001*** 0.0015*** 0.0001* 0.0000 0.0017***
(0.0001) (0.0001) (0.0002) (0.0000) (0.0002) (0.0001) (0.0001) (0.0002)

Employee F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 3,199,173 3,199,173 3,199,173 3,199,173 3,192,168 3,192,168 3,194,104 3,194,104
# Unique Employees 143,446 143,446 143,446 143,446 143,445 143,445 143,445 143,445
R-Squared 0.189 0.23 0.204 0.266 0.2 0.221 0.224 0.207
Y-Mean 0.019 0.015 0.03 0.003 0.024 0.007 0.003 0.029
Magnitude (%) 8.49 2.19 5.82 4.7 7.16 2.19 -0.35 6.6
T-test (H0 : βY es = βNo) (0.0000)*** (0.0604)* (0.0000)*** (0.0000)***
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Table 9B: GitHub Shock & Employee Mobility to Large Firms:
Heterogeneity by Destination Firm Characteristics

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information based on destination firm characteristics. We report the differential impact of GitHub’s policy
change on productive employees estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is an interaction of the employee’s normalized productivity estimate derived from
the AKM decomposition and an indicator that takes the value of 1 for quarters after GitHub’s policy change
(i.e., after quarter 2 of 2016). The dependent variable is mobility to a subset of large firms (> 1,000
employees) and differs in each column based on the subset. In columns 1-2, the subset is based on whether
average employment growth at the firm in the pre-period is high (above-median) or low (below-median).
Similarly, in columns 3-4, the subset splits the sample of large firms into those with high (above-median)
or low (below-median) sales growth. Xit represents employee’s time-varying salary and seniority controls.
αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed
effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an
employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry
in our sample period respectively. Standard errors are bootstrapped within employee clusters using 100
repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: 1(Job Change to Large Firms with)

High Employment Growth High Sales Growth

Yes No Yes No

Productivity × 1(Post) 0.0008*** 0.0009*** 0.0010*** 0.0002***
(0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y

Observations 3,191,534 3,191,534 3,152,320 3,152,320
# Unique Employees 143,445 143,445 143,441 143,441
R-Squared 0.18 0.221 0.19 0.217
Y-Mean 0.011 0.02 0.014 0.005
Magnitude (%) 7.99 5.11 8.63 3.92
T-test (H0 : βY es = βNo) (0.0027)*** (0.0001)***
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Table 10: GitHub Shock & Firm Outcomes

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on firm employment and productivity. We
report the differential impact of GitHub’s policy change on small and mid-sized firms with more productive employees pre-treatment estimated by
the β coefficient from the equation:

FirmOutcomej,t = β11(Productivityj > Median)× 1(Postt) + β21(Productivityj > Median)× 1(Postt)× 1(Midj)

+ β31(Productivityj > Median)× 1(Postt)× 1(Smallj) + λXjt + αj + γjt + εj,t

The independent variable is a triple interaction of three indicators: 1(Productivityj > Median) that takes the value of 1 if firm j ’s average AKM-based
employee productivity is above median, an indicator for firm size, and an indicator that takes the value of 1 for quarters after GitHub’s policy change
(i.e., after quarter 2 of 2016). 1(Mid) is an indicator variable that takes the value of 1 for firms with 50-1000 employees, and 1(Small) is an indicator
for firms with less than 50 employees. In column 1, the dependent variable is the percentage change in employment compared to the previous quarter.
In column 2, the dependent variable is a binary indicator which takes the value of 1 if the employment at the firm falls by more than 50% compared
to the previous quarter and 0 otherwise. In columns 3-4 and 5-6, the dependent variable is the firm’s public contributions and per-capita public
contributions, respectively. Firm public contributions only include contributions made by incumbent employees towards repositories not owned by
the employees themselves. In columns 3 and 5, the dependent variable is the logarithm of one added to the firm public contributions variable. In
columns 4 and 6, the dependent variable takes the value of 1 if the firm contribution variable in the quarter is in the top decile and 0 otherwise. We
also estimate coefficients for double interaction of indicator variables 1(Mid) and 1(Small) with 1(Post), but do not report them for brevity. Xjt

represents firm’s time-varying controls (lagged employment in columns 1-2 and lagged stock of total contributions as well as pre-period median public
contributions interacted with 1(Post) in columns 3-6). αj is firm fixed effects. γjt represents the firm’s industry × state interacted with time fixed
effects. Standard errors are clustered at the firm level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: Employment Public Contributions Per-capita Contributions

QoQ Emp. Growth Emp Reduction > 50% Log(1+Y) 1(Top Decile) Log(1+Y) 1(Top Decile)

1(Productivity > Median) × 1(Post) 0.0028* -0.0005 0.0694*** 0.0083* 0.0370** 0.0065
(0.0016) (0.0004) (0.0252) (0.0049) (0.0162) (0.0041)

1(Productivity > Median) × 1(Post) × 1(Mid) -0.0018 -0.0005 0.0038 -0.0033 0.0002 -0.0021
(0.0024) (0.0006) (0.0301) (0.0058) (0.0199) (0.0051)

1(Productivity > Median) × 1(Post) × 1(Small) -0.0125*** 0.0024*** -0.1061*** -0.0149*** -0.0668*** -0.0160***
(0.0028) (0.0008) (0.0293) (0.0056) (0.0203) (0.0052)

Controls Y Y Y Y Y Y
Firm F.E. Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y

Observations 1,106,564 1,106,564 878,160 878,160 878,160 878,160
# Unique Firms 51,038 51,038 46,471 46,471 46,471 46,471
R-squared 0.232 0.13 0.725 0.58 0.647 0.497
Y-Mean 0.072 0.005 1.248 0.102 0.766 0.1
Magnitude- Base (%) 3.95 -11.25 5.56 8.11 4.83 6.55
Magnitude - Small (%) -13.45 38.89 -2.94 -6.46 -3.89 -9.53
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Internet Appendix A

A.1 Figures

Figure A.1: Test for Endogenous Mobility in AKM Sample: Event
Study around Moves

This figure presents the evolution of employee private contributions on GitHub around job moves in the AKM
sample (May 2011 - April 2016), before GitHub’s policy change. The outcome of interest is the logarithm of
employee’s private contributions in the five quarters before and after they move. The analysis is restricted to
movers who were employed at the origin firm for at least 6 months prior to the move, and remain employed
at the new destination firm for at least 6 months following the move. Moves are then classified based on
the unobserved firm fixed component derived from the AKM corresponding to both the origin as well as
the destination firm. For instance, a move “1 to 2” signifies that an employee moves from an origin firm
whose firm fixed component, derived from the AKM, lies in quartile 1 of the distribution to a destination
firm whose firm fixed component falls in quartile 2. For simplicity, the figure only plots moves away from
firms either in the top or bottom quartile.
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Figure A.2: Persistence of Employee Productivity: Evidence from
AKM Decomposition Before and After Shock

This figure presents the relationship between employee productivity estimated from two different AKM
samples - before and after GitHub’s policy change. Panel A shows a heat map on the probability of transition
of employees across productivity quintiles derived from the two AKMs. The pre-shock productivity quintile
sorts employees into 5 buckets based on the productivity estimates from the pre-shock AKM decomposition
(AKM sample spanning May 2011 - April 2016). The post-shock productivity quintile sorts employees
similarly using AKM decomposition, but in the post-shock period (AKM sample spanning May 2016 - April
2021). A cell (row, column) represents the percentage of people in the pre-shock productivity quintile “row”
who transition to post-shock quintile “column”. For instance, cell (1, 2) indicates that 21.9% employees, who
were initially in quintile 1 based on their productivity estimates from pre-shock AKM move to quintile 2 of
productivity when estimates are derived from AKM in the post-period. Panel B shows the binscatter plot of
the two productivity estimates after controlling for employees’ industry, location, and coding language. The
entire analysis is restricted to employees for whom productivity estimates could be derived from the AKM
decomposition in both pre- and post-shock periods.

Panel A
Panel B
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Figure A.3: GitHub Shock & Employee Mobility to Large Firms:
Robustness with Dummy Treatment Indicator

This figure presents an event study on employee mobility to large firms around the disclosure of employee
productivity information on GitHub. The event study replicates the setup in Figure 2 but uses a dummy
measure of Productivity as the dependent variable. The dummy indicator takes the value of 1 if the employee’s
normalized AKM-based productivity is positive and takes the value of 0 otherwise. The standard errors are
clustered at the employee level. The rest of the variables and empirical setup remain unchanged.
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Figure A.4: Firm Market Reaction: Placebo Test

The figure below plots the histogram of estimated coefficients from 100 trials of a falsification exercise using
randomly selected placebo dates. In each trial, we randomly select a placebo event date between 19th May
2015 and 18th May 2016 (from one year before the actual date of GitHub’s policy change) and obtain a
placebo coefficient by running the regression estimate corresponding to column 2 of Table A.11. The blue
line indicates the 5th percentile of the distribution and the red line plots the the baseline coefficient estimate
from Column 2 of Table A.11.
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Tables

Table A.1: Sample Characteristics

This table presents the distribution of employees across five major industries, locations, coding languages, and
roles. Language is the employee’s most preferred coding language. Role, industry, and location correspond
to an employee’s initial job role, MSA, and industry respectively.

Panel A: Top 5 Industries Panel B: Top 5 Locations

Industry Share of Users (%) MSA Share of Users (%)

Computer Software 16.77 New York-Northern New Jersey-Long Island 11.94
Internet 15.17 Seattle-Tacoma-Bellevue 7.65
Information Technology and Services 14.04 San Francisco-Oakland-Fremont 7.41
Financial Services 4.88 San Jose-Sunnyvale-Santa Clara 5.85
Marketing and Advertising 3.57 Boston-Cambridge-Quincy 5.29

Total 54.43 Total 38.14

Panel C: Top 5 Coding Languages Panel D: Top 5 Roles

Language Share of Users (%) Role Share of Users (%)

Javascript 26.09 Software Engineer - Applications 16.66
Python 14.03 Software Engineer - Systems 15.7
Java 12.35 Full Stack Developer 5.15
Ruby 10.18 Software Developer 3.71
C# 5 Web Developer 3.26

Total 67.65 Total 44.48
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Table A.2: Distribution by Firm Size

This table presents the distribution of firms by their size buckets and the subsequent classification of firms
into small, medium, or large category.

Firm Size Buckets from LinkedIn

[1 - 10] [11 - 50] [51 - 200] [201 - 500] [501 - 1,000] [1,001 - 5,000] [5,001 - 10,000] [10,001 - )

Share (% All Firms) 19.82 28.25 21.92 9.34 5.39 8.15 2.4 4.73

Percentile 10th 25th 50th 75th 85th 90th 95th 99th

Classification Small (Size <= 50) Mid (50 < Size <= 1,000) Large (Size > 1,000)

Share (% All Firms) 48.07 36.65 15.28
Share (% All Employees) 19.35 30.23 50.42
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Table A.3: GitHub Shock & Employee Mobility to Large Firms:
Robustness
This table presents robustness tests for estimates reported in column 5 of Table 3. In Panel A, we use alternative measures
of productivity from alternative AKMs estimated by treating the dependent variable differently. In part A1 (A3), we use the
inverse hyperbolic sine (raw value) of user’s private contributions as the dependent variable. In part A2, we use five buckets of
private contributions (0, [1, 9], [10,99], [100,999], and [1000+)) as input in the AKM. In Panel B, we use different measures of
employee productivity computed without estimating the AKM. We define productivity as the logarithm of private contributions
(private contributions as a share of total contributions) in part B1 (B2). Panel C presents results from estimates using binary
dummy indicators for employees’ productivity. In C1, 1(Productivity > 0) is a dummy variable that takes the value of 1 for
employees whose normalized productivity is greater than zero and 0 for the remaining employees. In C2, C3, and C4, the
dummy variable takes the value of 1 if the employee’s productivity is in the top decile, top quartile, and top tercile respectively.
In Panel D, we use the original AKM specification but restrict the AKM sample until quarter 2, i.e., April-June quarter of
2014. We then estimate employee mobility in the quarters after quarter 2 (April-June) of 2014. In Panel E, we control for more
granular fixed effects by interacting employee’s cohort, role, language, location, and industry with time. Finally, in Panel F,
we run the test on a matched sample. Employees with positive normalized productivity estimates are matched with employees
with non-positive estimates based on demographic characteristics (gender, white or non-white, whether in software engineering,
whether located in SF/NY/Seattle, experience, salary, and seniority) in F1 and demographic characteristics along with public
contributions in F2. All panels run tests corresponding to our baseline specification, Column 5 in Table 3. Standard errors are
bootstrapped within employee clusters using 100 repetitions in Panels A, D, E, and F and are clustered at the employee level
in Panels B and C. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: Coefficient Std. Error Observations R-squared Y-Mean Magnitude (%)

Panel A: Alternate AKM Specifications

A1: AKM with Asine Function
Productivity × 1(Post) 0.0017*** (0.0002) 3,199,173 0.212 0.033 5.77

A2: AKM with Categorical Variables
Productivity × 1(Post) 0.0017*** (0.0002) 3,199,173 0.212 0.033 5.77

Panel B: Alternate Productivity Definition

B1: Log(Private Contributions)
Productivity × 1(Post) 0.0011*** (0.0001) 3,199,173 0.212 0.033 7.49

B2: Share Private Contributions
Productivity × 1(Post) 0.0042*** (0.0008) 3,199,173 0.212 0.033 5.79

Panel C: Dummy Productivity Definition

C1: Normalized Productivity Estimate > 0
1(Productivity > 0) × 1(Post) 0.0067*** (0.0005) 3,199,173 0.212 0.033 20.21

C2: Productivity in Top Decile
1(Top Decile Productivity) × 1(Post) 0.0068*** (0.0006) 3,199,173 0.212 0.033 20.55

C3: Productivity in Top Quartile
1(Top Quartile Productivity) × 1(Post) 0.0068*** (0.0005) 3,199,173 0.212 0.033 20.47

C4: Productivity in Top Tercile
1(Top Tercile Productivity) × 1(Post) 0.0052*** (0.0005) 3,199,173 0.212 0.033 15.61

Panel D: Alternate AKM Sample Period

D1: Pre Sample AKM (2011-14)
Productivity × 1(Post) 0.0011*** (0.0002) 2,014,005 0.219 0.031 4.09

Panel E: More Granular Controls

E1: Control for Cohort × Role × Language × Location × Industry × Time
Productivity × 1(Post) 0.0020*** (0.0005) 745,659 0.37 0.036 6.78

Panel F: Matched Sample

F1: Match on Individual Demographics
Productivity × 1(Post) 0.0017*** (0.0002) 1,444,081 0.247 0.033 7.67

F2: Match on Individual Demographics and Public Contributions
Productivity × 1(Post) 0.0017*** (0.0002) 1,405,593 0.246 0.032 7.28
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Table A.4: GitHub Shock & Employee Mobility to Large Firms:
Robustness by Excluding Users with Change in Pre- and
Post-Productivity Estimates

This table presents robustness tests for estimates reported in column 5 of Table 3 by excluding users with
sizeable changes in productivity estimates derived from the AKM decomposition in the pre- and post-shock
period. Change in productivity estimates is defined as the change in productivity quintile in Panel A of Figure
A.2. Column 1 (2) (3) presents robustness by limiting the sample to employees whose absolute productivity
quintile change, i.e. ∆Prod, is not more than three (two) (one). Column 4 only retains employees who
fall in the same productivity quintile in the pre- and post-period. Standard errors are bootstrapped within
employee clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: 1(Job Change to Large Firms)

Filtering Employees based on Change in Productivity Quintile (∆Prod)

∆Prod <= 3 ∆Prod <= 2 ∆Prod <= 1 ∆Prod = 0

Productivity × 1(Post) 0.0018*** 0.0020*** 0.0023*** 0.0029***
(0.0002) (0.0002) (0.0002) (0.0002)

Employee F.E. Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Cohort × Language × Role × Time F.E. Yes Yes Yes Yes
Industry × Location × Time F.E. Yes Yes Yes Yes

Observations 2,941,306 2,825,413 2,529,563 1,488,920
# Unique Employees 131,095 125,900 112,593 65,952
R-Squared 0.213 0.215 0.22 0.245
Y-Mean 0.035 0.035 0.036 0.035
Magnitude (%) 6.07 6.5 7.63 11.93
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Table A.5: GitHub Shock & Employee Mobility to Different Firm-Size Buckets

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information on employee mobility based
on destination firm size. We report the differential impact of GitHub’s policy change on productive employees estimated by the β coefficient from the
equation:

1(Move)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with 1(Post),
an indicator that takes the value of 1 for quarters after GitHub’s policy change (i.e., after quarter 2 of 2016). The dependent variable is a dummy
variable that equals 1 when employee i switches job in quarter t to a firm size as indicated in various columns. Xit represents employee’s time-varying
salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as
well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the
last degree. Language is the employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA,
and industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions. Significance levels:
*(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Job Change to)

Firm Size: [1 - 10] [11 - 50] [51 - 200] [201 - 500] [501 - 1,000] [1,001 - 5,000] [5,001 - 10,000] [10,001 - )

Productivity × 1(Post) -0.0001 -0.0009*** -0.0007*** -0.0002** 0.0000 0.0004*** 0.0002** 0.0011***
(0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173
R-Squared 0.221 0.21 0.206 0.206 0.205 0.205 0.2 0.205
Y-Mean 0.008 0.015 0.015 0.008 0.006 0.01 0.005 0.018
Magnitude (%) -1.13 -7.35 -5.54 -3.41 0.62 4.35 3.69 7.01
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Table A.6: GitHub Shock & Employee Mobility to Superstar Firms

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information
on employee mobility to superstar firms. We report the differential impact of GitHub’s policy change on
productive employees estimated by the β coefficient from the equation:

1(MoveToSuperstar)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with 1(Post), an indicator that takes the value of 1 for quarters after GitHub’s
policy change (i.e., after quarter 2 of 2016). The dependent variable is an indicator that equals 1 when
employee i switches job to a superstar firm in quarter t and is 0 otherwise. In each column, we define
superstar firms differently based on the average market capitalization or average revenue of the firm in
the three years before GitHub’s policy change. Xit represents employee’s time-varying salary and seniority
controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with
time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort
represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most
preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using
100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Mobility to Superstar Firms)

Within-Industry Top 10% Within-Industry Top 1% Across Industry Top 10% Across Industry Top 1%

Market Cap Revenue Market Cap Revenue Market Cap Revenue Market Cap Revenue

Productivity × 1(Post) 0.0009*** 0.0009*** 0.0005*** 0.0004*** 0.0010*** 0.0009*** 0.0006*** 0.0003***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087
# Unique Employees 143,447 143,447 143,447 143,447 143,447 143,447 143,447 143,447
R-Squared 0.191 0.194 0.175 0.18 0.193 0.196 0.18 0.188
Y-Mean 0.017 0.018 0.007 0.006 0.017 0.017 0.009 0.007
Magnitude (%) 6.34 5.54 8.9 7.84 6.32 5.93 7.66 6.11
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Table A.7: GitHub Shock & Employee Mobility to Star Startups

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information
on employee mobility to star startups. We report the differential impact of GitHub’s policy change on
productive employees estimated by the β coefficient from the equation:

1(MoveToStarStartup)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with 1(Post), an indicator that takes the value of 1 for quarters after GitHub’s
policy change (i.e., after quarter 2 of 2016). The dependent variable is an indicator that equals 1 when
employee i switches job to a star startup in quarter t and is 0 otherwise. We define a firm as a startup if the
firm’s age at the time of GitHub’s policy change was less than ten years. Subsequently, as indicated across
different columns, we define star startups differently based on the final venture funding round or the total
funding raised before GitHub’s policy change. Xit represents employee’s time-varying salary and seniority
controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with
time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort
represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most
preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using
100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Mobility to Star Startups)

Funding > Series B Funding > Series D Funding > $ 100 Mn Funding > $ 500 Mn Funding > $ 1 Bn

Productivity × 1(Post) -0.0002* 0.0001 0.0001 0.0001*** 0.0001***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0000)

Employee F.E. Y Y Y Y Y
Time F.E. Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y

Observations 3,145,396 3,145,396 3,145,396 3,145,396 3,145,396
# Unique Employees 143,437 143,437 143,437 143,437 143,437
R-Squared 0.173 0.168 0.166 0.155 0.151
Y-Mean 0.005 0.003 0.003 0.001 0.001
Magnitude (%) -4.53 3.76 2.49 12.95 13.87
10th percentile Firm Size [11 - 50] [11-50] [51 - 200] [201 - 500] [501 - 1,000]
Median Firm Size [51 - 200] [201 - 500] [201 - 500] [1,001 - 5,000] [1,001 - 5,000]
90th percentile Firm Size [501 - 1,000] [1,001 - 5,000] [1,001 - 5,000] [10,001 - ) [10,001 - )
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Table A.8: GitHub Shock & Employee Mobility to Different Industry
and Location

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information based on destination firm characteristics. We report the differential impact of GitHub’s policy
change on productive employees, estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is an interaction of the employee’s normalized productivity estimate derived from
the AKM decomposition and an indicator that takes the value of 1 for quarters after GitHub’s policy change
(i.e., after quarter 2 of 2016). The dependent variable is mobility to a subset of large firms (> 1,000 employees)
and differs in each column based on the subset. In columns 1-2, the subset is based on whether the move
is associated with a change in the employee’s location. In columns 3-4, the subset is based on whether
the industry categorization changes with the new job. Xit represents employee’s time-varying salary and
seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted
with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort
represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most
preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using
100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: 1(Job Change to Large Firms with)

Location Change Industry Change

Yes No Yes No

Productivity × 1(Post) 0.0010*** 0.0006*** 0.0015*** 0.0002***
(0.0001) (0.0001) (0.0002) (0.0001)

Employee F.E. Y Y Y Y
Time F.E. Y Y Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y

Observations 3,199,173 3,199,173 3,198,865 3,198,865
# Unique Employees 143,446 143,446 143,446 143,446
R-Squared 0.213 0.204 0.214 0.19
Y-Mean 0.018 0.015 0.029 0.004
Magnitude (%) 6.52 4.8 5.83 5.17
T-test (H0 : βY es = βNo) (0.0719)* (0.6133)
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Table A.9: GitHub Shock & Employee Mobility: Heterogeneity by Local Economic and
Demographic Characteristics

This table presents estimates on any heterogeneous impact of GitHub’s disclosure of employee productivity information based on local economic and
demographic characteristics. We report the differential impact of GitHub’s policy change on productive employees, estimated by the β coefficients
from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)

+ β2Productivityi × 1(Postt)× 1(MSAIndicatori) + λXit + αi + γit + εi,t

The independent variable is a triple interaction of three indicators: the employee’s normalized productivity estimate derived from the AKM
decomposition, indicators for employee’s initial location (MSA), and indicator that takes the value of 1 for quarters after GitHub’s policy change (i.e.,
after quarter 2 of 2016). Each column includes a triple interaction with a dummy indicator that takes the value of 1 if the employee’s initial MSA has
an above-median value of the economic/demographic characteristic described in the column at the time of GitHub’s policy change. Xit represents
employee’s time-varying salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted
with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year
corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry, and location represent the employee’s
first job role, MSA, and industry in our sample period respectively. Standard errors are bootstrapped within employee clusters using 100 repetitions.
Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Job Change to Large Firms)

MSA Indicator - Above Median

Republican Vote Share Share of White Population Median House Value Change in House Value Gini Index

Productivity × 1(Post) 0.0017*** 0.0017*** 0.0014** 0.0018*** 0.0018***
(0.0002) (0.0002) (0.0007) (0.0003) (0.0004)

Productivity × 1(Post) × 1(MSA Indicator) -0.0012 -0.0003 0.0002 -0.0003 -0.0001
(0.0008) (0.0005) (0.0007) (0.0003) (0.0004)

Employee F.E. Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes
Cohort × Language × Role × Time F.E. Yes Yes Yes Yes Yes
Industry × Location × Time F.E. Yes Yes Yes Yes Yes

Observations 3,132,014 3,143,808 3,143,808 3,143,808 3,143,808
# Unique Employees 140,433 140,966 140,966 140,966 140,966
R-Squared 0.209 0.21 0.21 0.21 0.21
Y-Mean 0.033 0.033 0.033 0.033 0.033
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Table A.10: GitHub Shock & Firm Productivity: Robustness

This table presents robustness tests for estimates reported in columns 3-6 of Table 10 using different
specifications for the dependent variable. In columns 1 and 3 (2 and 4), the dependent variable takes the
value of 1 if the firm contribution variable in a quarter lies is in the top quartile (top quintile) of all public
contributions in that quarter and 0 otherwise. Firm contributions only include public contributions made
by incumbent employees towards repositories not owned by the employees themselves. We also estimate
coefficients for double interaction of indicator variables 1(Mid) and 1(Small) with 1(Post), but do not
report them for brevity. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: Public Contributions Public Contributions/Employees

1(Top Quartile) 1(Top Quintile) 1(Top Quartile) 1(Top Quintile)

1(Productivity > Median) × 1(Post) 0.0156*** 0.0130** 0.0094 0.0076
(0.0060) (0.0057) (0.0063) (0.0058)

1(Productivity > Median) × 1(Post) × 1(Mid) 0.0057 0.0054 0.0061 0.0021
(0.0072) (0.0069) (0.0075) (0.0069)

1(Productivity > Median) × 1(Post) × 1(Small) -0.0223*** -0.0214*** -0.0162** -0.0142**
(0.0071) (0.0068) (0.0075) (0.0069)

Controls Y Y Y Y
Firm F.E. Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y

Observations 878,160 878,160 878,160 878,160
# Unique Firms 46,471 46,471 46,471 46,471
R-squared 0.587 0.587 0.52 0.513
Y-Mean 0.25 0.202 0.249 0.198
Magnitude (Main) (%) 6.23 6.47 3.78 3.82
Magnitude (Small) (%) -2.69 -4.15 -2.72 -3.35
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Table A.11: GitHub Shock & Firm Market Reaction

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on
firm value for Compustat firms. The dependent variable is the firm’s abnormal return using the Fama-French
3-factor model. The event window starts 252 days (one calendar year) before GitHub’s policy change and
ends on the day of the change. The independent variable Event Date takes the value 1 on the day of the
policy change and 0 otherwise. High-productive (Low-productive) firms have above-median (below-median)
AKM-based average employee productivity. Small (Large) firms comprise the bottom (top) 25th percentile
firms in terms of employee size.

(1) (2) (3) (4) (5)

All Firms High Productive Low Productive

Small Large Small Large

Event Date -0.0017*** -0.0065** 0.0016 -0.0033 0.0004
(0.0006) (0.0028) (0.0021) (0.0029) (0.0022)

#Firms 1679 112 106 136 57
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Table A.12: GitHub Shock & Individual Productivity

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information
on employees’ productivity measured by their public contributions. Public contributions only include
contributions made towards repositories not owned by the employees themselves. In column 1, the dependent
variable takes the value of 1 added to the log of employees’ GitHub contributions. In columns 2 (3) (4), the
dependent variable takes the value of 1 if an employee’s GitHub contributions in a quarter fall in the top
quartile (top quintile) (top decile) of all public contributions in that quarter and 0 otherwise. All columns
include employee’s time-varying controls (lagged stock of contributions as well as pre-period median public
contributions interacted with 1(Post)). Other independent variables, controls, and fixed effects correspond
to our main specification, i.e., column 5 of Table 3. Standard errors are bootstrapped within employee
clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Public Contributions

Outcome: Log(1+Y) 1(Top Quartile) 1(Top Quintile) 1(Top Decile)

Productivity × 1(Post) 0.0541*** 0.0172*** 0.0163*** 0.0109***
(0.0020) (0.0006) (0.0006) (0.0005)

Employee F.E. Yes Yes Yes Yes
Contribution Stock & Trend Controls Yes Yes Yes Yes
Salary & Seniority Controls Yes Yes Yes Yes
Cohort × Language × Role × Time F.E. Yes Yes Yes Yes
Industry × Location × Time F.E. Yes Yes Yes Yes

Observations 3,218,835 3,218,835 3,218,835 3,218,835
# Unique Employees 143,420 143,420 143,420 143,420
R-Squared 0.668 0.573 0.572 0.556
Y-Mean 0.669 0.287 0.246 0.137
Magnitude (%) 9.28 6.88 7.6 9.14
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Table A.13: GitHub Shock & New Firm Formation

This table presents estimates on the impact of GitHub’s disclosure of employee productivity on new firm
formation. The dependent variable takes the value of 1 if an employee switches job to start a new firm (or
becomes a founding member) in the given quarter and 0 otherwise. The independent variable is a triple
interaction of three indicators: normalized productivity estimate of the employee derived from the AKM
decomposition, indicators for the size of the origin firm, i.e., where the employee worked in the previous
quarter, and an indicator that takes the value of 1 for quarters after GitHub’s policy change (i.e., after
quarter 2 of 2016). 1(Mid) is an indicator variable that takes the value of 1 for firms with 50-1000 employees
and 1(Small) is an indicator for firms with less than 50 employees. We also estimate coefficients for indicator
variables 1(Mid) and 1(Small) as well as their double interactions with Productivity and 1(Post), but do
not report them for brevity. Cohort represents an employee’s graduation year corresponding to the last
degree. Language is the employee’s most preferred coding language. Role, industry, and location represent
the employee’s first job role, MSA, and industry in our sample period respectively. Standard errors are
bootstrapped within employee clusters using 100 repetitions. Significance levels: *(p<0.10), **(p < 0.05),
***(p < 0.01).

(1) (2)

Outcome: Move to Entrepreneurship

Productivity × 1(Post) -0.0001 -0.0004*
(0.0001) (0.0002)

Productivity × 1(Post) × 1(Mid) 0.0003
(0.0003)

Productivity × 1(Post) × 1(Small) 0.0006*
(0.0003)

Employee F.E. Yes Yes
Controls Yes Yes
Cohort × Language × Role × Time F.E. Yes Yes
Industry × Location × Time F.E. Yes Yes

Observations 3,219,087 3,040,193
# Unique Employees 143,447 142,952
R-Squared 0.216 0.23
Y-Mean 0.004 0.004
Magnitude (Main) (%) -2.71 -11.69
Magnitude (Mid) (%) -3.23
Magnitude (Small) (%) 5.03
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Table A.14: Industry Labor Market Concentration

This table presents correlations between the change in industry-level concentration around GitHub’s policy
change and the average productivity of GitHub employees within the industry. We estimate the following
equation:

∆Concentrationh = βProductivityh + εh (A.2)

The dependent variable, ∆Concentrationh, denotes the change in concentration for industry h over
the period spanning five years before the shock (2011-2016) to five years after the shock (2016-2021).
The coefficient β captures the correlation between the outcome and a measure of private contributions,
Productivityh. In columns 1-2, the industry and employment figures are sourced from LinkedIn
(144-LinkedIn industries) while in columns 3-4, the data is based on Compustat firms (SIC 3-digit industries).
In columns 1 and 3 (2 and 4), the independent variable is the normalized share of employees with positive
private contributions (normalized average number of private contributions) at the time of GitHub’s policy
change within the industry. Standard errors are clustered at the LinkedIn industry level in columns 1-2 and
SIC 3-digit industry level in columns 3-4. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: Change in Industry Labor Market Concentration (∆HHI)

All Firms (LinkedIn) Compustat Firms (SIC 3-Digit)

Share Emp with Private Contr > 0 0.064** 0.140***
(0.029) (0.002)

Average Private Contr 0.067** 0.137***
(0.027) (0.013)

Observations 143 143 221 221
R-squared 0.098 0.107 0.133 0.128
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Internet Appendix B

B.1 Measuring GitHub Contributions

In this study, we rely on two primary data sources to measure GitHub contributions:
the GitHub Archive and the GitHub API. Each source provides distinct advantages and
limitations in tracking user productivity.

The GitHub Archive (https://www.gharchive.org/), a third-party repository, records
and stores all public events on GitHub, making daily snapshots of public contributions
available for download. This dataset offers comprehensive historical coverage of public
contributions that cannot be altered retroactively, ensuring data integrity over time.
However, it is limited to public contributions, as it does not include private activity on
the platform.

In contrast, the GitHub API (https://api.github.com/graphql), which can be
accessed via live queries, provides the most up-to-date data on both public and private
contributions, making it an essential source for capturing the full range of user activity. The
API is subject to rate limits, constraining the volume of data that can be retrieved at any
given time. We use the GitHub API as our primary source of data as it the only source to
provide private contributions, critical to the identification in our paper.

A concern is that the API reflects the current state of user contributions, which may have
been amended after the original event, and may not fully align with historical records. To
assess the extent of this potential discrepancy, we compare public contributions reported by
the GitHub Archive (at the time they were made) to those retrieved from the GitHub API
(as of today). Our findings, presented in Figure B.5 Panel A, indicate that the discrepancy
between these two data sources is minimal, accounting for less than 2% of total contributions,
with 95% confidence. Additionally, Panel B shows no significant difference in this discrepancy
between users who switched jobs (movers) and those who did not (non-movers), suggesting
that strategic manipulation of contribution records is unlikely. Overall, while the GitHub
API allows us to capture both public and private contributions, the GitHub Archive provides
a valuable benchmark for verifying the stability of public contribution data over time. The
observed discrepancies between these sources are small, suggesting that measurement error
is unlikely to materially affect our analysis.
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Figure B.1: Sample GitHub Profile and Contribution Calendar

This figure presents a sample GitHub profile and the user’s contribution calendar.
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Figure B.2: Association between Employees’ GitHub Contributions,
Salaries, and Publications

This figure presents the scatter plot of employees’ GitHub contributions and salary (in panel A) and
publications (in Panel B). On the y-axis, we plot the logarithm of employees’ average salary in Panel A
and the logarithm of the number of articles authored by the employee on Google Scholar, DevTo, and
ORCiD in Panel B. On the x-axis, we plot the logarithm of the number of total GitHub contributions by the
employees. We collapse the data into equal-sized bins and plot the mean value of the variables in each bin.

Panel A Panel B
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Figure B.3: GitHub as a Source of Technical Talent

This figure presents snapshots of third-party web platforms that assist firms in sourcing potential employees
using GitHub.
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Figure B.4: GitHub Calendar Before and After Policy Change

This figure provides an illustration of the change in a user’s GitHub contribution calendar before and
after GitHub’s policy change on May 19, 2016. Prior to May 19, 2016, users’ contribution calendar only
showcased the number of contributions made by users towards public repositories on GitHub. Following the
policy change, users could also include the (anonymized) number of private contributions in their calendar,
subsequently increasing their total number of contributions and making their contribution calendar more
active.
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Figure B.5: Discrepancy in Public GitHub Contributions

This figure presents the distribution (density) of differences in GitHub contributions recorded on the day
and hour they were originally made (timestamped and stored in GitHub Archive) versus those visible
today (provided by GitHub API). GitHub contributions in the analysis are restricted to public pull request
contributions which can be fetched and matched from both GitHub Archive and API. Panel A plots the
kernel density of percentage point differences in the share of contributions made by an employee in a given
quarter (share compared to their total contributions over our sample) computed using the Archive data and
the API data. The dotted lines represent the 95% confidence interval. Panel B plots the density separately
for movers and non-movers four quarters before and after move in a matched sample: movers matched to
non-movers within the same origin firm.

Panel A

Panel B
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