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Abstract

We develop the concept of a Behavioral Impulse Response (BIR), which uses the

dynamics of forecast errors to trace out how deviations from full-information rational

expectations (FIRE) are corrected over time. BIRs based on professional forecasts of

macroeconomics outcomes and corporate earnings imply that violations of FIRE occur

much more frequently than suggested by existing tests. These deviations tend to correct

gradually, often over several quarters, with sizable variation in correction speeds across

different forecast targets and forecasters. Our theoretical analysis highlights why BIRs

provide a simple yet powerful set of moments that can be used to discipline models of

belief formation.
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1 Introduction

There is a growing recognition within macroeconomics and finance that households, investors,

and corporate managers do not always adhere to full-information rational expectations

(FIRE) when making predictions.1 According to this paradigm, individuals should form

statistically efficient forecasts that optimally utilize all available information. Yet, in reality,

forecasts often deviate from FIRE due to behavioral biases (Bordalo et al., 2020b; Afrouzi

et al., 2023), imperfect information (Coibion and Gorodnichenko, 2012, 2015), and model

uncertainty (Timmermann, 1993; Schwartzstein and Sunderam, 2021; Farmer et al., 2023).

The prevalence of these deviations raises a natural next question: do people “wake up”

rapidly when their forecasts depart from FIRE or do corrections occur more gradually?

To appreciate the practical importance of this question, consider a world in which

corporate managers are fully rational, but investors overreact to positive news (Stein, 1996).

If investors correct themselves quickly after an overreaction, then managers may ignore short-

lived stock price inflation when making hiring, investment, and capital structure decisions.

Conversely, managers may react more strongly when markets overreact if such errors are

long-lived, thereby exerting tangible effects on the economy.

In this paper, we develop a new tool called a behavioral impulse response (BIR) that

characterizes the process by which deviations from FIRE are corrected over time. As their

name suggests, BIRs draw inspiration from a long tradition in macroeconomics that uses

vector autoregressions (VARs) to study how shocks propagate dynamically through a system

(Sims, 1980). In a similar spirit, BIRs capture how forecast errors evolve following a forecast

revision.2 BIRs are extremely portable and easy to estimate, relying only on OLS regressions

1For instance, departures from rationality have been used in models of the macroeconomy (Sims, 2003;
Woodford, 2003; Mankiw and Reis, 2002; Gabaix, 2020; Pflueger et al., 2020), corporate practice (Baker et
al., 2007; Malmendier, 2018), and capital markets (Barberis et al., 2015a, 2021).

2Properly speaking, impulse responses are defined as a response to “shocks” or other residuals in an
economic model. BIRs are responses to innovations in forecasts, which are always catalyzed by an impulse of
some sort (information arrival, behavioral error, etc.), but not necessarily structural shocks in the traditional
sense (e.g, in a structural VAR).
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and an observable term structure of forecasts. Furthermore, as we show more precisely below,

they deliver a simple yet powerful set of moments that can help differentiate between models

of belief formation and thus guide the development of theory.

To understand how BIRs work, consider a sequence of forecasts Ft, Ft+1, ..., Ft+n−1 for a

fixed target yt+n, such as 2025Q4 GDP growth, and define et = yt+n−Ft as the realized error

associated with the time-t forecast, Ft. In an influential study, Coibion and Gorodnichenko

(2015) develop a test for whether Ft adheres to FIRE by studying the conditional expectation

of et following a forecast revision, Rt = Ft−Ft−1, at time t. BIRs build on this test by jointly

studying the conditional mean of all future forecast errors et, et+1, ..., et+n−1 following a

revision Rt. More formally, we define the BIR, B(j), at horizon j as follows:

B(j) = Et[et+j|Rt = 1]− Et[et+j|Rt = 0], 0 ≤ j < n.

The first point on the BIR, B(0), is the object of interest in Coibion and Gorodnichenko

(2015). Under FIRE, it—and the rest of the BIR curve—must equal zero because forecast

errors should not be predictable. Negative values of B(0) are often interpreted as evidence of

overreaction, since upward revisions are reliably followed by more disappointing realizations

of yt+n. Conversely, positive values of B(0) are generally viewed as underreaction because

upward revisions are consistently followed by more positive forecast errors.3

Each subsequent point along the BIR curve then measures how future forecast errors are

expected to evolve following a unit revision at time t. Equivalently, because the difference

between two consecutive forecast errors reveals the revision between the two periods, the

shape of the BIR captures how long the deviation from FIRE at time t remains in future

3There is some debate in the literature about the precise interpretation of B(0) (Afrouzi et al., 2023;
Kučinskas and Peters, 2022). We follow Coibion and Gorodnichenko (2015) and Bordalo et al. (2020b) in
referring to B(0) < 0 as overreaction. Regardless, B(0) ̸= 0 is a clear violation of FIRE.
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forecasts. To see this more explicitly, notice that:

B(j − 1)−B(j) = Et[Rt+j|Rt = 1]− Et[Rt+j|Rt = 0],

where Rt+j = Ft+j − Ft+j−1 is the one-period revision made at t+ j. In the extreme, if the

deviation from FIRE at t is permanent, then all future revisions will be zero on average so

that B(0) = ... = B(n− 1) ̸= 0. This type of behavior will manifest as a perfectly flat BIR,

whose level is determined by the nature of the reaction at t.

The BIR will take on a different shape when deviations from FIRE are short-lived. For

illustration, assume that forecasts overreact at time t, meaning B(0) < 0. If forecasters

correct this deviation immediately, all future forecast errors should average to zero, resulting

in B(1) = ... = B(n − 1) = 0. Additionally, the fact that forecasters correct their time-t

overreaction after one period implies that their revision at t + 1 is predictably negative.

This correction process is directly embedded in the shape of the BIR (see Figure 1), since

Et[Rt+1|Rt = 1]− Et[Rt+1|Rt = 0] = B(0)−B(1) = B(0) < 0.

The estimation of BIRs is straightforward and parallels the large literature on local

projection methods in macroeconomics (see Jordà (2023) for a recent survey). In our

empirical work, we estimate them using two datasets that are commonly used in the belief-

formation literature. The first is the Survey of Professional Forecasters (SPF), a survey that

contains forecasts by multiple individuals of various macroeconomic and financial series (e.g.,

Mankiw et al. (2003a), Coibion and Gorodnichenko (2012)). The second is the Institutional

Brokers’ Estimate System (IBES), a panel of individual equity analyst forecasts of earnings

for publicly traded U.S. stocks (e.g., Bouchaud et al. (2019), Van Binsbergen et al. (2023)).

Both datasets are sampled quarterly. Consistent with prior research, aggregate BIRs esti-

mated by pooling forecasts of all series made by all forecasters show that individuals in both

datasets tend to overreact (i.e., B(0) < 0), especially at long horizons (Giglio and Kelly,

2017; Bordalo et al., 2020b; Afrouzi et al., 2023). This overreaction is corrected gradually
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over time. For example, when forecasters in SPF predict macroeconomic outcomes that

will be realized in three quarters, about 40% of the overreaction from their time-t forecasts

persists in forecasts made two quarters later.

Across forecasters, statistical tests based on BIRs show that deviations from FIRE are

common in both the SPF and IBES, occurring far more frequently than suggested by existing

tests in the literature. For the longest available forecast horizon in SPF (three quarters),

almost 60% of forecasters reject the null of FIRE using BIRs, compared to less than 20%

using the Coibion and Gorodnichenko (2015) test (henceforth CG-test). Importantly, these

rejection rates account for the multiple hypotheses testing problem following Benjamini and

Hochberg (1995). The difference between the two tests of FIRE is even more pronounced in

IBES, where forecaster-level rejection rates via BIRs are well over 70% for horizons exceeding

six quarters and are about ten times higher than those implied by CG tests. At the series

level (i.e. forecast targets), BIRs also demonstrate a substantially enhanced ability to detect

statistical deviations from FIRE.

For most series in SPF and IBES, these deviations tend to be in the form of overreaction,

at least at longer horizons (Bordalo et al., 2020b, 2024). The speed with which they are

corrected, however, varies widely across series. This is true in both the SPF and IBES. To

illustrate, consider the BIR for six-quarter ahead forecasts in IBES, the longest horizon for

which a reasonably sized panel of forecasts is available. For some series, correction occurs

almost immediately, within one quarter, while for others, little to no correction is evident

for nearly a year. Some of these differences can be attributed to series persistence, with

less persistent series exhibiting more overreaction but relatively faster correction.4 At the

same time, correction speeds still vary meaningfully even within series that have comparable

degrees of under or overreaction at time t, suggesting that the size of deviations from FIRE

4Overreaction also tends to be slightly higher for series with more volatility (e.g., based on stock returns),
though correction speeds are somewhat invariant to series volatility.
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and the correction process are likely governed by distinct properties of the data-generating

process.

We also document economically meaningful differences in the level and shape of BIRs

across forecasters, again focusing on forecast horizons of three and six quarters in SPF and

IBES, respectively. Roughly 70% of forecasters in both datasets exhibit overreaction to news

at time t. Moreover, there is sizable variation in correction speed across forecasters in SPF

and IBES, much more so than across series. For instance, about one-fourth of forecasters

in SPF overreact to news at time t yet show no correction in forecasts made two quarters

later. Conversely, overreaction for an equal number of SPF forecasters is fully corrected

within two quarters. Furthermore, corrections vary strongly within forecasters who react

similarly to news at time t. This fact implies that deviations from FIRE and the process by

which they are corrected are likely driven by distinct cognitive factors. Interestingly, BIRs

for both IBES and SPF forecasters converge to FIRE over time, consistent with some form

of learning. These broad patterns are also present in a subsample of SPF forecasters who

cover the majority of possible series, alleviating concerns that selection of forecasters into

certain series mechanically drives cross-sectional variation in BIRs.

In the latter part of the paper, we use the estimated BIRs to assess the strengths and

weaknesses of different models of belief formation.5 Our analysis is organized around a

general class of models—what we call the “linear autonomous class”—that encompasses a

wide range of belief formation processes that have been studied in prior work, including

adaptive expectations (Cagan, 1956; Nerlove, 1958), diagnostic expectations (Bordalo et al.,

2020a; Bianchi et al., 2024a), noisy information and sticky information (Giannoni and Wood-

ford, 2003; Coibion and Gorodnichenko, 2012), and many others. Our primary theoretical

5A natural concern with such an exercise is that the BIRs we estimate may not purely reflect forecaster
beliefs and could at least partially reflect strategic considerations. For example, equity analysts in IBES
may alter their forecasts to enhance their relationship with corporate managers. For this reason, we focus
on properties of BIRs that are robust across both IBES and SPF, as the latter contains only macroeconomic
outcomes. See Section 4 for additional discussion.
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contribution is to derive a closed-form expression for the BIR of the entire linear autonomous

class.

To illustrate the paper’s main proposition, we focus on three popular models of belief

formation, starting with the model of diagnostic expectations used by Bordalo et al. (2020a).

A calibrated version of the model using estimates from the literature shows that diagnostic

expectations succeed in matching the level of BIRs observed empirically, both in the SPF

and IBES datasets. Our theoretical analysis further reveals that models of diagnostic

expectations imply an abrupt correction process: in standard applications, any overreaction

at time t is fully corrected within one period. While this appears to be a reasonable

approximation for some forecasters in SPF and IBES, most have a correction process that

is fairly slow and smooth.

Next, we analyze the model from Afrouzi et al. (2023), who study belief formation

when forecasters face information processing costs. By design, their model is quantitatively

successful at matching the level of BIRs and the dependence of overreaction on the persistence

of the forecast target. Costly information processing also implies a correction process that is

smooth and decelerating, with most of the gains occurring in the first few periods, especially

for series with low persistence. However, in the data, there are a meaningful number of

forecasters for whom the correction process is extremely slow at first, only to accelerate

after many periods. Moreover, the correction process does not depend as heavily on series

persistence in the data as it does in the model.

The third model we study features extrapolative expectations, as in Hirshleifer et al.

(2015). Under common calibrations used in the literature (e.g., Nagel and Xu (2022)),

forecasters with extrapolative expectations overreact to a degree that resembles what is

observed in SPF and IBES. Nevertheless, these models imply a correction process that is

much too slow relative to the data.

In our last theoretical exercise, we move outside the class of linear autonomous models and
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demonstrate how BIRs can be paired with simulations to study virtually any model of belief

formation. We specifically analyze the model from Farmer et al. (2023), in which Bayesian

agents must form forecasts of a process consisting of a unit root and a transitory component,

both of which are unobserved. Farmer et al. (2023) show how model uncertainty of this

kind severely slows Bayesian learning, leading to persistent deviations from FIRE, like those

documented by Coibion and Gorodnichenko (2015). Using their simulation code, we ask

whether model uncertainty can also generate realistic BIRs. We find that model uncertainty

shows some promise in matching empirical BIRs, even those with a slow correction process,

but the success depends critically on the initial priors of the forecasters. Whether the initial

priors we consider are plausible is an open and interesting question for future research.

Literature Review As mentioned above, BIRs extend the influential tests of FIRE de-

signed by Coibion and Gorodnichenko (2015). This extension yields two primary benefits.

First, tests of FIRE via BIRs offer more statistical power because they are based on joint

restrictions across the entire BIR curve, as opposed to tests of a single restriction like the one

proposed by Coibion and Gorodnichenko (2015). Second, and more importantly, BIRs shed

light on the dynamics of correction by examining the temporal evolution of forecasts for a

fixed target. Our theoretical analysis shows that these dynamics are useful for disciplining

models of belief formation. In this respect, our approach is closely related to recent work

by Augenblick and Rabin (2021), who develop a test of Bayesian updating based on how

forecasts of a fixed target evolve through time.6

Our paper also complement previous research that has estimated the impulse response

of forecast errors to identified macroeconomic shocks, mainly to characterize information

frictions facing forecasters (Coibion and Gorodnichenko, 2012), explain discrepancies between

individual and consensus forecasts (Angeletos et al., 2021), and examine forecasters’ reactions

6A large literature tests FIRE based on forecasts, including Mincer and Zarnowitz (1969), Lovell (1986),
Thomas (1999), Mankiw et al. (2003b), Kohlhas and Walther (2021), Bianchi et al. (2022), and many others.
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to specific structural shocks (Kučinskas and Peters, 2022).7 These studies use forecast errors

of a moving target (e.g., the time-series of one-period ahead forecast errors), whereas BIRs

are based on forecast errors of a fixed target. As mentioned above, this subtle distinction is

precisely what allows BIRs to characterize the correction process. Another nice feature of

BIRs is they do not require one to take a stance on whether forecasters—or econometricians

for that matter—can observe and identify structural shocks, which is especially challenging

in macroeconomic settings (Bauer and Swanson, 2023). Like CG tests, BIRs rely on the

much weaker assumption that forecasters are aware of their own history of revisions.

The remainder of the paper is organized as follows. In Section 2, we formally define BIRs

and describe a simple way to estimate them. Section 3 then estimates BIRs in both the SPF

and IBES datasets. Section 4 contains our theoretical analysis, which focuses primarily on

how to use BIRs to assess models of belief formation. Section 5 highlights how BIRs can be

paired with simulations to evaluate more complex models of belief formation, like the one

studied by Farmer et al. (2023). Section 6 concludes. Additional details and results are also

contained in a separate online appendix.

2 Behavioral Impulse Responses: Definition and Estimation

In this section, we formally define BIRs and highlight some of their basic properties. We

then discuss why BIRs are useful for testing theories of belief formation. Finally, we describe

how to estimate BIRs on any dataset in which forecasts of a fixed target (e.g., 2024Q4 GDP)

are tracked over time.

2.1 Definition and Basic Properties

The notation employed in this paper closely follows the conventions used in fixed-income

asset pricing research (e.g., Cochrane and Piazzesi (2005)). Let yt denote the realization

7In recent work, Bianchi et al. (2024b) embed forecasts from a machine learning model in a structural
asset pricing model to study how the stock market reacts to different types of news.
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of a stochastic time series, such as GDP or corporate earnings growth. F
(n)
t is the forecast

of yt+n made at time t, or the n-period ahead forecast of y. For now, we consider only

forecasts of a single time series made by a single individual. It is straightforward to extend

the notation to accommodate multiple time series and forecasters, as we do in the empirical

analysis contained in Section 3. e
(n)
t = yt+n − F

(n)
t is the realized forecast error associated

with the forecast F
(n)
t . For a fixed target yt+n, the sequence of forecasts from t onwards is

therefore given by F
(n)
t , F

(n−1)
t+1 , ..., F

(1)
t+n−1. Similarly, e

(n)
t , e

(n−1)
t+1 , ..., e

(1)
t+n−1 is the sequence of

forecast errors. Finally, R
(n)
t = F

(n)
t −F

(n+1)
t−1 is defined as the one-period forecast revision of

yt+n made at t.

Next, we formally define the behavioral impulse response function.

Definition 1 The behavioral impulse response function (BIR) for forecast horizon n is given

by

B(n, j) = E
[
e
(n−j)
t+j |R(n)

t = 1
]
− E

[
e
(n−j)
t+j |R(n)

t = 0
]
, j = 0, 1, ..., n− 1 (1)

Given a unit revision made at t, {B(n, j)}n−1
j=0 traces out the expected sequence of forecast

errors, holding fixed the forecast target yt+n. As their name suggests, BIRs are rooted in

the vast macroeconomics literature on impulse response functions, dating back at least to

Sims (1980). In the usual macroeconomic setting, an impulse response function traces how

an outcome of interest, like inflation, responds dynamically to a shock, like a surprise change

in the stance of monetary policy. Analogously, in our setting, a behavioral impulse response

traces out how forecast errors evolve following a revision Rt at time t.

Under full-information rational expectations (FIRE), BIRs take a very simple form that

is useful for hypothesis testing: they must be zero for all forecast horizons, n, and periods

j after the time-t revision. This follows from the fact that forecast errors are unpredictable

under FIRE.
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Remark 1 Under FIRE, B(n, j) = 0, ∀n, j

The initial point along the BIR curve, B(n, 0) = E
[
e
(n)
t |R(n)

t = 1
]
− E

[
e
(n)
t |R(n)

t = 0
]
, is

familiar to behavioral economics research on belief formation (Bordalo et al. (2020b); Coibion

and Gorodnichenko (2015); Farmer et al. (2023)). It measures the expected forecast error

associated with a revision made at time t. When B(n, 0) < 0, an upward revision made

today predicts a more negative future forecast error. As mentioned in the introduction,

this is typically interpreted as an overreaction to the news because the information that

prompted the upward revision results in a disappointing realization of yt+n. By the same

token, B(n, 0) > 0 can be interpreted as underreaction to news relative to FIRE. The

literature on belief formation has consistently found B(n, 0) < 0 at the individual level and

has built theories trying to explain this phenomenon (Bordalo et al. (2020b); Afrouzi et al.

(2023)).

While the extant literature focuses primarily on the link between today’s error and today’s

revision, the main innovation in this paper is to also study the link between future errors

and today’s revision. For example, if a forecaster tends to overreact to the news today, how

quickly, if ever, do they realize their mistake? Do they revise their forecast immediately, or

does it take time? The remaining points (j > 0) along the BIR curve answer these questions.

To see this more formally, first note that the difference between the forecast error at

times t+ 1 and t reveals the revision at t+ 1:

e
(n−1)
t+1 − e

(n)
t =

[
yt+n − F

(n−1)
t+1

]
−
[
yt+n − F

(n)
t

]
= −

[
F

(n−1)
t+1 − F

(n)
t

]
= −R(n−1)

t+1 .
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Or, more generally, e
(n−j)
t+1 − e

(n−j+1)
t = −R(n−j)

t+1 . From this identity, it follows that:

B(n, j − 1)−B(n, j) = E
[
R

(n−j)
t+j |R(n)

t = 1
]
− E

[
R

(n−j)
t+j |R(n)

t = 0
]
, j > 0.

This equation says that the difference between two successive points on the BIR curve reveals

the expected revision between those dates, conditional upon a unit revision made at time

t. Thus, BIRs embed the trajectory of future revisions following a revision made at time t.

Under FIRE, these revisions should also not be predictable by R
(n)
t , implying a perfectly flat

BIR.

Stylized Example Returning to the question posed above, consider a data-generating

process where the rational forecast of yt+n is always zero, like, for example, an i.i.d process

with zero means. Next, suppose that at time t the forecaster irrationally revises its forecast

up from F
(n+1)
t−1 = 0 to F

(n)
t = 1, implying R

(n)
t = 1. Further, suppose that the forecaster

comes to its senses in the next period, revising the forecast back down and keeping it at the

rational forecast after that.

Figure 1 plots the implied BIR in this stylized example for n = 10. The first point on

the BIR curve is B(n, 0) = −1 because the revision made at time t leads to a forecast that

overshoots by one unit. The remaining points along the BIR curve are all zero because

the forecaster realizes the mistake and makes no more errors. The mistake correction also

implies that the revision at that time t + 1 is R
(n−1)
t+1 = −1. The magnitude of this correc-

tion is naturally embedded in the BIR because B(n, 0) − B(n, 1) = E
[
R

(n−1)
t+1 |R(n)

t = 1
]
−

E
[
R

(n−1)
t+1 |R(n)

t = 0
]
= −1

As this example highlights, BIRs measure the initial degree of over- or under-reaction to

news at time t and how subsequent revisions then respond. This is the sense in which BIRs

summarize the dynamics of belief formation. Consequently, any theory of belief formation

must match the level and shape of BIRs that are estimated empirically. BIRs are also useful

11



because they offer a natural way to study how belief formation varies across forecasting

environments. For instance, they can be used to characterize how belief formation varies

across individuals, stocks, or the nature of news. We highlight these applications later in

Section 3, after describing how to estimate BIRs.

2.2 Estimation and Inference

Estimation BIRs can be easily estimated using any data that tracks forecasts of a fixed

target through time. Given these datasets often contain multiple series and forecasters, we

now extend the baseline BIR model as follows. Let ys,t+n denote the realization of series s

at time t + n, where s could be GDP growth or the earnings per share of a publicly listed

firm. F
(n)
i,s,t is the forecast made by individual i at time t of the realization of series s in n

periods and e
(n)
i,s,t = ys,t+n−F

(n)
i,s,t is the associated forecast error. R

(n)
i,s,t = F

(n)
i,s,t−F

(n+1)
i,s,t−1 is the

revision made by forecaster i at time t for series s’s realization at t+ n.

The estimation process for BIRs closely aligns with the methodologies used in the macroe-

conomics literature. Specifically, assuming a linear conditional mean function, BIRs can be

estimated by running n different regressions of forecast errors on past revisions:

e
(n−j)
i,s,t+j = c

(n)
j + ψ

(n)
j R

(n)
i,s,t + v

(n−j)
i,s,t+j, ∀j = 0, , , , .n− 1, (2)

in which case the B(n, j) = ψ
(n)
j . This estimation strategy is akin to the local projection

methods described originally by Jordà (2005) and summarized recently by Jordà (2023).

Non-linear conditional mean functions are straightforward to accommodate as well. The

alternative to estimating impulse responses with local projections is through a vector au-

toregression (VAR). As shown by Plagborg-Møller and Wolf (2021), the VAR-based and

local projection approaches deliver the same impulse response in the population, though

their finite-sample properties may differ. In general, VARs provide more efficient estimates

but at the cost of higher bias, partly because they depend on appropriately defining the
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lag length of the model (Li et al. (2022)). With these considerations in mind, we proceed

with local projections mainly because they are easier to adapt to panel settings of the kind

considered in our empirical work and because our applications use large panels in which

precision is less of a concern.

The estimation strategy in regression (2) imposes homogeneity of BIRs across individuals,

time, and targets (series). The resulting estimates should, therefore, be viewed as roughly the

average BIR within a given dataset. The assumption of homogeneity can be easily relaxed

by estimating BIRs on different subsamples of the data, like for each individual i or series

s. We explore BIR heterogeneity later in our empirical work.

Inference of Point Estimates Jordà (2023) discusses the main inference issues when

estimating local projections using macroeconomic data. As he points out, the residuals

of a local projection regression generally have a moving average structure that can affect

the construction of standard errors. Consequently, corrections targeting serial correlation

in errors, such as the popular Newey-West HAC estimators, are preferable. In our panel

context, clustering standard errors within each forecaster-series cell, (i, s), is a simple way

to account for these regression error structures, though more efficient solutions are possible.

In our empirical work, we also cluster standard errors within each revision date and series

cell, (t, s), to account for common information shocks that may induce revisions for a series

to be cross-sectionally correlated at a given time.

Hypothesis Testing For many applications, it is desirable to test the coefficient restric-

tions of an entire BIR curve jointly. For instance, testing whether an estimated BIR can

reject the null hypothesis of FIRE amounts to a joint test of whether B(n, 0) = B(n, 1) =

... = B(n, n− 1) = 0. An important advantage of this joint test is that it offers more power

to reject FIRE than testing the single restriction of B(n, 0) = 0, as is commonly done in the

literature (e.g., Coibion and Gorodnichenko (2015)).
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To implement such a test, notice that equation (2) can be estimated for all j in a single

panel regression that appropriately stacks the data. Specifically, suppose there are i = 1, ..., I

forecasters, s = 1, ..., S series, and t = 1, ..., T periods. This means the last n-period forecast

is made at T − n. The entire BIR curve can then be estimated in one pass by running the

following stacked regression:

e
(n)
i,s,t = c

(n)
0 + ψ

(n)
0 R

(n)
i,s,t + v

(n)
i,s,t

e
(n−1)
i,s,t+1 = c
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for all i, s, t. This one-shot regression approach simply requires stacking the data used to

run each individual regression in (2) and then allowing the intercept and slope to vary with j.

Here, it is critical to cluster standard errors within each revision date and series cell, (t, s),

since revisions will clearly be mechanically correlated along this dimension. Hypothesis

testing on the vector ψ = (ψ
(n)
0 , ψ

(n)
1 , ..., ψ

(n)
n−1)

′ of BIR coefficients then proceeds in the

standard fashion. Testing whether two BIR curves from subsamples of the same overall

dataset are equal can be achieved using the same stacking procedure, then allowing the

intercepts and slopes to vary with j and the subsamples of interest (e.g., a particular series).

3 BIRs in Practice

In this section, we establish some basic properties of BIRs using forecasts from two standard

datasets in macroeconomics and finance: the SPF and IBES. The SPF is a quarterly survey,

administered by the Federal Reserve Bank of Philadelphia, that contains predictions from
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professional forecasters on several macroeconomic and financial outcomes (e.g., nominal

GDP). We cover the fifteen series listed in Table A1 of the Internet Appendix, which

largely draws on Bordalo et al. (2020b). IBES contains analyst-by-firm level forecasts of

quarterly EPS, semi-annual EPS, annual EPS, and long-term EPS growth over a number of

horizons. We focus on quarterly EPS forecasts because they are the most populated for longer

forecast horizons. We largely follow standard practice from the literature when cleaning and

processing both datasets. These steps are detailed in Internet Appendix IA.1, where we also

define forcasted growth rates, forecast errors, and discuss how we handle outliers. For a given

series s, forecast horizon n, and date t, a forecaster must have a complete set of forecasts

from t− 1 to t+ n to be included in the analysis.

3.1 Aggregated BIRs

We begin our empirical analysis by estimating aggregate BIRs based on forecasts pooled

across all series and forecasters.

3.1.1 SPF

Figure 2a contains the estimated BIR from the SPF dataset for n = 3, the longest available

horizon in the SPF, along with 95% confidence bands based on standard errors that are

clustered by forecaster-series, (i, s), and series-date, (s, t). Table 1 presents the full set of

point estimates contained in the plot, their standard errors, and the number of observations

used to estimate the BIR. Plots for shorter-horizon BIRs ar presented in Figure A2a of

the Internet Appendix. The first point on the BIR in Figure 2a, B(n, 0), is negative and

statistically different from zero. This finding reflects the well-known fact that individual

forecasters in the SPF typically overreact to new information (Bordalo et al., 2020b).8

8Our baseline estimate of B(3, 0) is not directly comparable to any single Coibion and Gorodnichenko
(2015) regression coefficient reported in Bordalo et al. (2020b) because we use slightly different definition of
growth rates and pool forecasts across all series (see Internet Appendix IA.1.1).
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The novelty of BIRs lies in the subsequent parts of the curve, like for instance B(3, 1).

Its magnitude implies that following a unit revision to a forecast made at t of yt+3, the

magnitude of the forecast error next quarter is roughly two-fifth of the forecast error made

at time t. In other words, on average, 60% of the initial overreaction in the time-t forecast

is undone within one period. The next point on the BIR curve, B(3, 2), is roughly equal to

B(3, 1), suggesting no further correction from t+1 and t+2. By t+3, forecasters have more

or less corrected their initial overreaction. This finding is not surprising given that B(3, 3)

is reflects the so-called nowcast of yt+3 that is made midway through quarter t+ 3

The bottom two rows of Table 1 show p-values for two different joint tests of each BIR

curve. The first, labeled p(FIRE), tests the null hypothesis that the estimated BIR is

generated under FIRE. As mentioned above, this is a joint test of whether B(n, j) = 0 for

all j. At all horizons, we reject the null of FIRE with p-values below 0.001. The last row

of Table 1 presents p-values from a weaker test of FIRE, namely that all points along the

BIR curve are equal, even if they differ from zero. Recall from the discussion in Section 2.1

that this is equivalent to testing whether future revisions can be predicted by current ones,

which should not be the case under FIRE. One might also label this as a test of forecaster

“stubbornness” since it uncovers whether forecasters tend to stick with their forecast after

a revision. Unsurprisingly, this null is easily rejected for all n.

3.1.2 IBES

Figure 2b plots the average BIR in the IBES data for n = 6, the longest horizon for which

we have a reasonably sized panel of forecasts. Internet Appendix IA.1.2 provides complete

details on how we clean and process IBES and Figure A2b presents BIRs for all possible

horizons. The confidence bands in Figure 2b are based on standard errors that are clustered

by analyst-stock and stock-date, and the full set of point estimates are also reported in

Table 2. The first point on the BIR, B(6, 0), indicates that the average IBES forecaster
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overreacts to news received at t, much like the average SPF forecaster.9 The remaining

points of the curve show that this deviation from FIRE is corrected gradually and at a

relatively slower pace compared to the SPF. By t+1, only about 20% of the overreaction in

the time-t forecasts has been corrected, and the initial deviation’s half-life extends beyond

a year. Unsurprisingly, as shown in the bottom two rows of Table 2, the BIR easily rejects

the null of FIRE.

The BIR in Figure 2b supports a crucial aspect of the hypothesis proposed by Bordalo

et al. (2024), henceforth BGLS, which centers on the established observation that high stock

valuation ratios at time t are predictive of lower future returns (Campbell and Shiller, 1988).

Contrary to theories positing time-varying discount rates as the explanation, BLGS argue

that return predictability stems from overreaction in forecasts of future cash flows. The basic

idea is that the market irrationally exaggerates its response to the news at time t; positive

news leads to overly optimistic expectations of future cash flows and unwarranted inflation

of stock prices. This overvaluation is corrected over time as earnings growth fails to meet

expectations, resulting in a reversion in prices and predictability low returns. At the heart

of this process is the market’s eventual acknowledgment of its initial error. Figure 2b offers

direct evidence of this correction, illustrating that IBES forecasters do adjust their forecasts,

albeit slowly, after an initial overreaction to the news.10

3.2 How pervasive are deviations from FIRE?

Relative to existing methods, statistical tests of FIRE based on BIRs are more powerful

because they are based on joint restrictions on the conditional dynamics of current and

9Bouchaud et al. (2019) document underreaction in consensus forecasts for 1-year forecasts of annual, not
quarterly, EPS. We show in Internet Appendix IA.2.5.1 that their focus on consensus forecasts and annual
EPS drives the differences between our results.

10Bordalo et al. (2024) focus primarily on forecasts of long-term growth (LTG) for S&P 500 firms. BIRs
are harder to estimate for LTG forecasts because they have an ambiguous horizon, ranging from 3-5 years.
Similar to BLGS, however, we find overreaction in individual forecasts at this horizon, i.e., B(6, 0) < 0. In
Internet Appendix IA.2.5.3, we also confirm similar BIRs for large stocks, like those studied by BLGS.

17



future forecast errors. In this subsection, we showcase this feature of BIRs by testing the

null hypothesis of FIRE in the cross-section of series and forecasters. We then benchmark

the resulting rejection rates against those from the popular test proposed by Coibion and

Gorodnichenko (2015), henceforth the CG-test.

Forecast Targets (Series) Table 3a summarizes the fraction of series in the SPF and

IBES that reject one of two tests of FIRE. The first is CG-test of whether the initial point

B(n, 0) on the BIR equals zero. The second is based on whether the entire BIR curve equals

zero. As discussed in Section 2, this is equivalent to jointly testing whether forecast revisions

at time t predict contemporaneous forecast errors and subsequent revisions. To construct the

table, we estimate BIRs for every horizon n and series s in either the SPF or IBES, pooling

data across all forecasters covering each series. A series-horizon cell must have a least 10

observations to be included in the analysis. For each horizon n, the table reports the fraction

of series for which the null of FIRE is rejected under both tests at a 5% confidence level.

For both tests, we adjust individual p-values to account for the multiple testing problem

following the procedure in Benjamini and Hochberg (1995).

Consistent with Bordalo et al. (2020b), the first row of Table 3a shows that the large

majority of series in the SPF reject the CG-test of FIRE, regardless of horizon. The second

row contains the fraction of series that reject the null of FIRE based on the entire BIR curve.

Rejection rates are moderately larger for all forecast horizons when using this more stringent

test.

The third and fourth rows of Table 3a present the results for series in IBES. Rejection

rates using the CG-test are fairly low for almost all horizons, typically around 5%. Rejection

rates are substantially higher when using the entire BIR, especially for longer horizon

forecasts. At shorter horizons, forecasts for about 30% of series reject the null of FIRE using

BIR-based tests, roughly eight times the amount that do with CG-tests. The discrepancy

between CG and BIR-based tests becomes even more pronounced for longer-horizon forecasts.
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For forecast horizons over six quarters, rejection rates are between seven and sixty times

higher using BIRs and approach 60%. This is at least partly driven by the fact that the

number of restrictions increases with horizon.

Forecasters Table 3b summarizes tests of FIRE in the cross section of forecasters. Unlike

Table 3a, which is reflects BIRs estimated for each series, this table is based on BIRs that

are estimated for each forecaster i. Under CG-tests, slightly less than 20% of forecasters

in the SPF reject the null hypothesis of FIRE at both n = 2 and n = 3. These rejection

rates increase threefold when using the entire BIR. The contrast between the two tests is

even more striking for IBES forecasters: across all forecasting horizons, about 5% of equity

analysts in IBES reject CG-tests. The fourth row of Table 3b shows that rejection rates

rise by a factor of five to nearly 30% based on BIRs for shorter-horizon forecasts (n ≤ 3).

For longer-horizon forecasts, over 70% of IBES forecasters reject the null of FIRE, which is

nearly ten times the rate observed under CG-tests.

To summarize, the results in Table 3 show that deviations from FIRE are common in

both the SPF and IBES datasets, occurring much more frequently than suggested by existing

tests in the literature. Table A5 in the Internet Appendix highlights the importance of

correcting for the multiple hypothesis testing problem in this exercise. For example, without

the Benjamini and Hochberg (1995) correction, almost 30% of forecasters in SPF reject

FIRE based on CG-tests, compared to about 20% after the correction. The Benjamini and

Hochberg (1995) correction impacts rejection rates even more for IBES because the number

of forecasters and series is much larger. Under CG-tests, rejection rates fall by a factor of

about four for both series and forecasters after the correction. Rejection rates are much

higher overall—and the attenuation from the correction is much weaker—when using BIRs

to test for deviations from FIRE. BIRs offer an improved ability to statistically detect these

deviations by imposing joint restrictions on the dynamics of forecast errors and revisions.
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This observation parallels Jordà (2023), who argues that hypothesis testing using traditional

impulse responses offer more statistical power than tests based on individual point estimates.

3.3 Series-Level Analysis

While the preceding analysis points to frequent deviations from FIRE in the cross section of

series and forecasters, it is silent on the magnitude of these deviations and the speed with

which they are corrected. In this subsection, we quantify variation in the level and shape of

BIRs varies across series and explore possible correlates of correction speed.

3.3.1 How much do BIRs vary across series?

Table 4a summarizes how the initial level, B(3, 0), of BIRs varies across all fifteen series in

the SPF. The table focuses on n = 3, the longest possible forecast horizon for BIRs in the

SPF. The median series in SPF exhibits overreaction in the CG-sense, such that forecasts at

time t overshoot their target by −0.35 units for every unit revision at t. All but three series

in SPF overreact, again consistent with the findings of Bordalo et al. (2020a).11

Table 4b examines how much correction speeds vary across series. Wj = B(3, j)/B(3, 0)

is a natural measure of correction speed, as it captures how much deviations from FIRE at

time t remain in forecasts made j periods later. High values of Wj indicate a slow correction

process. For example, suppose B(3, 0) < 0 and W1 = 1. In this case, all of the overreaction

in the forecast made at time t remains in the forecast made one quarter later. On the other

hand, a value of W1 = 0 means deviations from FIRE are on average corrected immediately.

To construct Table 4b, we split series s into two groups based on the sign of B(3, 0). Series

that initially overreact (B(3, 0) < 0) are further sorted into terciles based on W1. For all

series in a given tercile, we estimate a pooled BIR and report estimates ofWj, with standard

errors based on the delta method. The bottom two rows of Table 4b report the pooled

11The three series that exhibit initial underreaction are the T-Bill yield, growth in GDP Price Index
(PGDP), and growth in housing starts (HOUSING)
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B(3, 0) estimate and the number of series in each group. The last column of the table also

contains estimates from a pooled BIR of the three series that underreact in the SPF.

Correction speeds vary meaningfully across series in the SPF. In the overreacting and

low-W1 group, the small and statistically insigificantWi indicates that overreaction at time t

is fully undone within one quarter. In contrast, for overreacting and high-W1 series, forecasts

made one and even two periods later still embed about half of the overreaction from the time-

t forecast. Interestingly, the initial degree of overreaction is similar across the two groups, a

fact that we return to in more detail below. Figure 3a visualizes the results in Table 4b by

plotting the BIRs for the low and high-Wi overreacting series.

Next, we characterize variation in the level and shape of series in IBES. We focus on

forecast horizons of six quarters (n = 6), again in order to study the properties of longer-

horizon forecasts while still maintaining a reasonably sized panel of forecasts. The second

row of Table 4a summarizes the level of BIRs in the cross-section of IBES. Forecasts made

at time t for the median IBES series overreact, with a CG-coefficient of B(6, 0) = −0.35.

Moreover, the majority of series in IBES exhibit overreaction, though the proportion is

slightly lower than in the SPF. The distribution of B(6, 0) in IBES also has much wider tails

compared to the SPF.

Table 4c shows how correction speeds vary across series in IBES. The table is assembled

similarly to Table 4b, with the exception that over and underreacting series are both split

into quartiles based on W1. This more granular sorting is possible due to the larger number

of stocks in IBES relative to the series in SPF. The table reveals a striking degree of

heterogeneity across series in IBES in terms of correction speed. For example, for overreacting

and high-W1 series, all of the overreaction from time t is still present in forecasts made one

year later, whereas virtually none remains for the overreacting and low-W1 group. Similar

amounts of heterogeneity are present in series that underreact.

Figure 3b provides a visual depiction of BIR heterogeneity across series in IBES. For
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readability, the plot shows the pooled BIR for series in the top and bottom quartiles of

W1, both for under and overreacting series. Nearly 20% of stocks in IBES overreact and

correct so slowly that their BIRs are convex, whereas a similar fraction of series overreact

but correct quickly enough to generate concave BIRs. The orange and blue lines show that

there is comparable heterogeneity in correction speeds among stocks that underreact.

3.3.2 What factors determine correction speed?

We now study some potential sources of variation in correction speed across series, focusing

on the following candidates: (i) the size of the initial deviation from FIRE, (ii) series

volatility, and (iii) series persistence.

Initial Reaction Magnitude We first examine the relationship between the degree of over

or underreaction at time t and the speed of subsequent correction. This link is important

from the perspective of behavioral theories. To see why, suppose that the speed of correction

is fully determined by the size of the initial deviation from FIRE at time t. For instance, one

might expect series with large overreactions also to have slower correction speeds. Under

this scenario, a realistic behavioral model could use a single aspect of the data-generating

process to modulate both the degree of overreaction and the speed of correction. Conversely,

if the speed of correction varies independently from the degree of overreaction, a model would

need the dynamics of belief formation to depend on multiple aspects of the data-generating

process.

The results in Table 4 provide an early indication that correction speeds are not com-

pletely pinned down by the degree of initial reaction. Consider, for example, the analysis

of the SPF series in Table 4b. Across the first three columns, the level of overreaction is

virtually identical. Yet, correction speedsW1 vary meaningfully—in other words, some series

overreact and correct quickly, whereas others overreact equally as much but correct slowly.

More formally, we can reject the null hypothesis that W1 is equal for the three groups at
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conventional confidence levels.12 In Table 4c, which contains results for IBES, there appears

to be a positive relationship between B(6, 0) and W1. When moving from the first to the

fourth column, the speed of correction declines by construction, and the magnitude of B(6, 0)

also increases, though not monotonically, suggesting an imperfect link between the two.

Figure 3c explores this issue in more detail using a series of double sorts, again focusing

on IBES due to the much larger number of series. Specifically, series that overreact are first

split into groups based on the magnitude of B(6, 0), then further split based on W1. Within

each resulting group, we then estimate a pooled BIR. The process is then repeated for series

that underreact, resulting in a total of eight estimated BIRs. By design, this sorting process

creates variation in correction speed W1 while roughly holding fixed the degree of initial

reaction B(6, 0). In the plot, series with similar levels of reaction are grouped by color, and

those with slow (fast) corrections are depicted by a dashed (solid) line.

The figure reveals significant variation in correction speeds, even after accounting for the

size of the initial deviation from FIRE. In the most overreacting group, depicted in blue,

the dashed blue line represents the pooled BIR for the slow-correcting series, while the solid

line represents the fast-correcting series. While we cannot reject the null hypothesis that

the initial degree of overreaction, B(6, 0), differs between the two groups, the plot shows

that their correction speeds are quite different. In the fast-correcting group, forecasts made

one year later retain 48% of the initial overreaction from time t. In contrast, 75% of the

initial overreaction persists in the slow-correcting group a year later, and these differences are

statistically significant at conventional confidence levels (p = 0.005). Similar patterns emerge

when looking at the other series in the plot. Another way to see the distinction between

correction speeds and the initial reaction is to compare slow-correcting series that differ in

their initial reaction, like those depicted by the dashed orange and blue lines. Overreaction

at time t is over ten times larger for the series embedded by the dashed blue line, yet the

12The null of equal W1 for the first and third groups is also rejected, as is the null of equal W2 across all
three groups.
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correction process for the two groups appears very similar. We further confirm the relatively

weak link between B(n, 0) and W1 at the series level for both SPF and IBES in Internet

Appendix Figure A6.

Volatility Next, we explore how correction speed varies with the properties of the under-

lying data-generating process for each series, starting with volatility. Figure 4a displays two

pooled BIRs, one for series with high return volatility in IBES and another for series with

low volatility. Volatility is defined as the average monthly stock return volatility in quarter t

when the revision used for the BIR is made. Stock return volatilities are taken from Jensen

et al. (2023). Low and high-volatility series are, respectively, those in the bottom and top

terciles of stock return volatility.

The first thing to note from the figure is that overreaction appears more pronounced in

series with high volatility, though this difference is not statistically significant. The correction

processes for high-volatility stocks are comparable, albeit a bit slower, to low-volatility stocks

during the first year. For high-volatility stocks, about 70% of the overreaction from time t

remains in forecasts made one year later compared to about 50% for low-volatility stocks.

Correction then accelerates after t+4 for high-volatility stocks. Figure 4b shows that a similar

pattern holds in SPF, at least in the sense that series with high volatility exhibit larger initial

overreaction. Volatility, in this case, is defined using the unconditional standard deviation

of the residuals from fitting an AR(p) model, where p is chosen using the AIC criteria.

Persistence In recent work, Afrouzi et al. (2023) present experimental and observational

evidence that overreaction is larger for series with low persistence. Motivated by their

analysis, we investigate the dependence of correction speed on series persistence. Figure

4c shows pooled BIRs estimated for series that have low and high cash-flow persistence.

Following Bouchaud et al. (2019), cash-flow persistence is defined based on an AR(1) model

of each series’ annual operating cash flows scaled by assets. Series with low persistence
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are in the bottom tercile of AR(1) coefficient and vice versa. Consistent with Afrouzi et

al. (2023), Figure 4c shows that series with low persistence have more overreaction. The

correction process for this group is also slightly faster as well, though it is hard to draw strong

conclusions given the size of the confidence bands. Figure 4d shows a similar story holds in

the SPF, at least in the sense that low persistence is associated with more overreaction.

3.4 Forecaster-Level Analysis

In this subsection, we mirror the analysis from above to analyze how BIRs vary across

forecasters rather than series.

3.4.1 How much do BIRs vary across forecasters?

The first row in Table 5a presents summary statistics for B(0) across forecaster-level BIRs

in SPF. As in Bordalo et al. (2020a), the median forecaster in SPF overreacts, with a CG-

coefficient of −0.35. Moreover, nearly three-quarters of forecasters in SPF overreact. The

table also shows that the initial degree of overreaction varies quite strongly across forecasters.

Table 5b summarizes differences in correction speeds across forecasters in SPF. Each

column in the table contains estimates of Wj from a BIR that is pooled across forecasters

that either overreact or underreact. Within the set of overreactors, groups are formed by

splitting forecasters into terciles based on their individual W1. For underreactors, we only

split forecasters into two groups due to their more limited size. The table reveals a striking

amount of variation in correction speed across forecasters. Consider, for instance, the set

of overreacting forecasters in the first three columns. For those that correct the fastest,

overreaction in time-t forecasts more or less reversed within one quarter and is fully undone

within two. For those in the bottom tercile, 117% (t = 8.74) of the overreaction from time t

remains in forecasts made one quarter later, and 95% (t = 8.15) remains two quarters later.
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Figure 5a visualizes the results in Table 5b by plotting the BIRs for the slowest and fastest

correcting forecasters.

For completeness, we repeat the preceding analysis for equity analysts in IBES. The

second row in Table 5a shows how their individual B(6, 0) varies in the cross-section. Similar

to SPF forecasters, most equity analysts in IBES overreact for n = 6. The median CG-

coefficient is also comparable across the two datasets, though the tails of the distribution

are somewhat wider in IBES.

Table 5c summarizes correction speeds across IBES analysts. Much like Table 5b, the

table is constructed by sorting analysts based on the sign of B(6, 0), splitting them further

based on W1, then estimating pooled BIRs within each group. Because there are more

analysts in IBES compared to SPF, analysts are sorted into quartiles based on W1, as

opposed to halves. Correction speeds vary strongly across equity analysts. For analysts

who overreact and correct slowly, on average 128% (t = 4.92) of the overreaction at time t

persists in forecasts made a year later. In contrast, for fast-correcting analysts, only 22%

(t = 3.37) of the initial overreaction remains after one year. A similar degree of heterogeneity

is present within the set of analysts that underreact. As Figure 5b shows, these differences

in correction speeds give rise to both concave and convex BIRs.

Given the variation in BIRs across series documented in Section 3.3.2, one concern is

that the forecaster-level variation in Table 5 and Figure 5 is driven by selection. To see why,

suppose the entire BIR is fully determined by the properties of the data-generating process

(e.g., its persistence) and that all forecasters are identical. For instance, all forecasters may

be equally diagnostic in the model of Bordalo et al. (2019) or have the same priors in Farmer

et al. (2023). Further, suppose that each forecaster covers only a subset of possible series.

In this scenario, BIRs will appear to vary across forecasters, but only because of series are

governed by different data-generating processes. There are a few reasons, however, to think

that these selection issues are not driving our results. For one, compared to Figure 3a, Figure
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5a shows there is substantially more variation across forecasters than across series in SPF.

Moreover, in Internet Appendix Section IA.2.4, we document similar levels of heterogeneity

across forecasters in SPF that cover all possible series. Thus, the variation in Table 5 and

Figure 5 likely reflects properties of forecasters, not series.

3.4.2 Why do some forecasters correct faster than others?

Initial Reaction Forecasters may differ in correction speed simply because some over or

underreact more than others. It is straightforward to see from Table 5 that this is not the

case—some forecasters overreact and correct quickly on average, whereas others overreact

by the same degree but correct slowly. For example, in Table 5b, B(0) for overreacting SPF

forecasters in the middle and top terciles of W1 are roughly the same in magnitude, and we

cannot reject the null that they are equal. However, for forecasters in the middle tercile,

the forecast made at t + 2 contains over half of the overreaction from the forecast made at

time t. On the other hand, for forecasters in the top tercile, nearly all of the overreaction

remains after two quarters. Similarly, in Table 5c, overreacting IBES forecasters in the

bottom and top quartiles of W1 have similar levels of initial overreaction but strongly differ

in correction speed. These two groups are not small, representing 32% of all forecasters in

IBES. The disconnect between initial reaction and correction speed in both SPF and IBES

is also clear in Figures 5a and 5b. These patterns suggest that models of belief formation

need at least two distinct belief-related parameters to jointly explain over or underreaction

and the subsequent process of correction.

Experience Given the large and heterogenous deviations from FIRE documented in Figure

5, a natural question is whether BIRs are a static feature of IBES analysts or whether

behavioral responses to information change over time. BIRs offer a simple way to study this

question because they can be estimated over different phases of an analyst’s career. Figure 6

implements this idea for analysts with at least one decade for forecasts in either SPF (Figure
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6a) or IBES (Figure 6b). The threshold of ten years is roughly the median experience in both

datasets. For a given forecaster i, we compute BIRs using the first five years of forecasts,

requiring at least ten observations to be included. Bearly
i is the average level of forecaster

i’s BIR during this “inexperienced” phase of their career. Forecasters are then sorted into

three terciles based on Bearly
i . This means that the most overreacting forecasters are in the

bottom tercile and the underreacting are in the top. Within each tercile, we then estimate

two pooled BIRs: one using data during the first five years of each forecaster’s career and

another based on forecasts for all subsequent years when they are more “experienced.” The

figure shows the resulting BIRs from both career phases for the group of forecasters who

overreacted early in their careers. In the Internet Appendix Section IA.2.5.4 , we document

similar results for the smaller set of underreactors.

Figure 6 reveals a robust relationship between BIRs and experience in both the SPF and

IBES datasets: forecasters appear to become more rational as their careers progress. In SPF,

overreaction is fairly large and relatively slow correcting for inexperienced forecasters, with

nearly two-thirds of their overreaction at time t still present in forecasts made one quarter

later. For experienced forecasters in SPF, overreaction in time-t forecasts is economically

small and statistically insignificant, and any overreaction is fully corrected within one period.

Figure 6b paints a similar picture for equity analysts in IBES, confirming that the findings

from the SPF are not driven by any issues with how individual contributors are tracked in

that dataset.13

3.5 State Dependence

Our final empirical analysis asks whether the level and shape of BIRs varies with the nature

of news received by forecasters. A simple way to measure the sentiment of news received

by each forecaster is based on the sign and size of their revision. For example, a large and

positive revision is an indication that a forecaster received very positive news. Figure 7a

13For a complete discussion of these issues, see the SPF documentation.
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implements this idea in IBES by estimating BIRs for n = 6 based on the sign of Ri,s,t and its

absolute magnitude. Specifically, large positive revisions are defined based on whether |Ri,s,t|

is in the top tercile of all positive revisions. All remaining positive revisions are considered

small. Small and large negative revisions are defined analogously.

The most striking aspect of Figure 7a is that equity analysts underreact to negative news

but overreact to positive news. Moreover, for negative news, underreaction is relatively larger

for smaller negative news. At the same time, the correction speed for large negative news is

much faster than for small negative news. On the other hand, overreaction to positive news

is similar regardless of whether the news is large or small, as is the process of correction.

In Internet Appendix IA.2.5.5, we show this result holds for different forecast horizons as

well. Interestingly, Figure 7b shows that this asymmetry is not present in the SPF, where

overreaction is present for both positive and negative news. Overreaction is larger, and the

speed of correction is faster for positive news, though these differences are not estimated

with great precision.14

One potential explanation for this result is that analysts in IBES may downplay neg-

ative news and overstate positive news in an effort to enhance their relationship with the

management of the stocks they cover. However, the fact that underreaction is smaller for

very bad news is somewhat challenging for this incentive-based view. Presumably, analysts

have the strongest incentive to downplay the very worst news. We view pinning down the

microfoundations of this result as an interesting avenue for future theory. Given it may reflect

incentives, we do not consider this particular pattern when discussing the implications for

theories of belief formation in later sections.

Figure 7c asks a related question: do forecasters react differently to news during reces-

sions? Recession dates are taken directly from the Business Cycle Dating Committee of

14This type of pattern is harder to rationalize under the view that deviations from FIRE arise due to
information frictions (Mankiw and Reis, 2002; Coibion and Gorodnichenko, 2012), given the ability of
professional forecasters to observe the realization of y should presumably not depend on the sentiment
of the news.
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the National Bureau of Economic Research (NBER). The figure shows that BIRs for IBES

forecasters depend heavily on the state of the economy. Outside of recessions (orange line),

equity analysts exhibit a modest amount of overreaction that is then corrected almost entirely

in one quarter. In contrast, they are almost seven times more overreactive during recessions

(blue line). The speed of correction during recessions is somewhat linear. For n = 6, roughly

half of the overreaction at time t is still embedded in forecasts one year later. We show in

Internet Appendix Figure A9 that some of this overreaction can be attributed to the Covid-

19 pandemic. Relative to IBES forecasters, Figure 7d shows that the belief formation process

varies much less with the state of the economy for SPF forecasters.15 While overreaction

does appear marginally larger during recessions, we cannot reject the null hypothesis that

the two BIRs are different (p = 0.302).

4 Using BIRs to Assess Behavioral Models of Belief Formation

In this section, we derive BIRs for a general class of behavioral models that allows for

fairly flexible departures from rationality. This class encompasses a wide range of the most

popular models in the literature, including extrapolative expectations (Hirshleifer et al., 2015;

Nagel and Xu, 2022), diagnostic expectations (Bordalo et al., 2020b), and costly information

acquisition (Afrouzi et al., 2023). We then assess the strengths and weaknesses of different

models by comparing their implied BIRs with those estimated from Section 3, focusing on

properties that are robust across SPF and IBES. This approach should alleviate concerns

that forecasts in IBES do not fully reflect the true beliefs of equity analysts, given possible

career incentives to cater EPS forecasts to firm management. Such incentives are presumably

weaker or non-existent for SPF forecasters because their targets are macroeconomic and

broad financial market outcomes. In other words, the properties of BIRs that exist in both

15For the SPF sample, the recession periods are 1969Q4-1970Q4, 1973Q4-1975Q1, 1980Q1-1980Q3,
1981Q3-1982Q4, 1990Q3-1991Q1, 2001Q1-2001Q4, 2007Q4-2009Q2, and 2020Q1-2020Q2.
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datasets are more likely to reflect the true beliefs of forecasters and are, therefore, appropriate

for calibrating models of belief formation.

4.1 General Setup

Throughout this section, we study the forecasting problem for a stochastic process yt, t ≥ 0.

The information set of the forecaster is generated by a set of signals St ∈ RP , where some

of the St signals can be lagged versions of yt. Formally, this information set is described

by the filtration Ft = σ({(yτ , Sτ )}τ≤t) generated by (yt, St) ∈ RP+1. The stochastic process

Zt, t ≥ 0, is adapted to F = {Ft} if Zt is Ft-measurable for each t ≥ 0. We use Et[yt+n] =

Et[yt+n|Ft] to denote forecast of yt+n under FIRE and Ft[yt+n] to denote the forecast based

on potentially incomplete information or behavioral biases. When there is no ambiguity, we

denote multi-period forecasts by F
(n)
t = Ft[yt+n] for n ≥ 1.

To derive BIRs, we focus on a particular class of models in which forecasts depend linearly

on the history of rational forecasts. This class, which we label as linear autonomous forecasts,

is formally defined as follows.

Definition 2 Forecasts Ft are defined as linear autonomous if they take the following form:

Ft[yt+n] =
∞∑
τ=0

γ(n, τ)Et−τ [yt+n] + ν
(n)
t (3)

for some coefficients γ(n, τ) and an independent noise process ν
(n)
t .

The coefficients γ(n, τ) define the loading of the forecast on current and past rational

forecasts. Though it is of course possible to define a broader class of processes in which

Ft[yt+n] is an arbitrary function of rational forecasts, we think it is natural to focus on linear

functions because they preserve the linearity of forecasts across targets, meaning Ft[a1yt+n +

a2ỹt+n] = a1Ft[yt+n] + a2Ft[ỹt+n].
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A key property of linear autonomous forecasts is that they encompass many popu-

lar behavioral models of belief formation, including adaptive expectations (Cagan, 1956;

Nerlove, 1958), extrapolative expectations (Barberis et al., 2015b; Hirshleifer et al., 2015),

noisy information and sticky expectations (Giannoni and Woodford, 2003; Coibion and

Gorodnichenko, 2012), diagnostic expectations (Bordalo et al., 2020a), smooth diagnostic

expectations (Bianchi et al., 2024a), misestimation of persistence (Gabaix, 2019), and costly

information processing (Afrouzi et al., 2023). Appendix A shows how to cast each of these

models in the linear autonomous class. As one example, consider the model of diagnostic

expectations from Bordalo et al. (2020a). In this model, forecasts are given by:

Ft[yt+n] = Et[yt+n] + θ(Et[yt+n]− Et−J [yt+n]), (4)

where the diagnosticity parameter θ modulates the size of the behavioral bias in the forecast,

and J controls the number of revisions that drive the bias. θ = 0 corresponds to FIRE and

positive values of θ imply forecasts overreact. This model of beliefs clearly fits into the linear

autonomous class in Definition 2. Specifically, for J = 1, γ(n, 0) = 1 + θ, γ(n, 1) = −θ, and

γ(n, τ) = 0 for τ > 1.

4.2 BIRs for Linear Autonomous Forecasts

We now derive BIRs within the class of linear autonomous forecasts. To do so, we make the

following assumptions about the data-generating process for yt.

Assumption 1 yt evolves according to:

yt+1 = β′St + εt+1 , (5)

for some vector β ∈ RP and an i.i.d. stochastic process εt with zero mean and variance σ2
ε .
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Assumption 2 The signals St evolve according to

St+1 = ρSt + ξt+1, (6)

where |ρ| < 1 is a scalar that controls the (equal) persistence of signals, and ξt+1 is an i.i.d.

stochastic process with zero mean.

Assumption 3 The process qt = ρ−1Et[yt+1] is stationary with a long-run variance σ2
q .

Assumption 1 says that the true yt+1 is a linear function of lagged signals plus an error term.

This assumption is without loss of generality because linearity can always be achieved by

expanding the set of signals to include a non-linear transformation of the “true” set of signals

(Kelly et al., forthcoming). Moreover, because St can include lags of y, Assumption 1 nests

cases in which yt is an arbitrary AR(q) process. Assumption 2 is stronger and puts a simple

dynamic structure on the signals that inform each forecast. Combined with Assumption 1,

it implies that the FIRE-forecast can be written as:16

Et[yt+n] = ρn−1Et[yt+1] = ρnqt. (7)

Assumption 3 then imposes that this rational forecast is stationary. Finally, we make one

more additional assumption on the weight function γ(n, τ) to make the analysis of BIRs

more tractable.

Assumption 4 (Separability) The weight function γ(n, τ) that defines the belief forma-

tion process can be written as:

γ(n, τ) = k0(n)1τ=0 + δ(n)κ(τ), (8)

16Under a more general structure in which St+1 = ΨSt + ξt+1, it is straightforward to show that forecasts
under FIRE are given by Et[yt+n] = β′(Ψ)n−1St.
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where, without loss of generality, we impose the normalization
∑∞

τ=0 κ(τ)ρ
2τ = 1.

The notion of separability in Assumption 4 is satisfied in all of the behavioral models

discussed above. For example, continuing with the example of diagnostic expectations from

above and setting J = 1, κ(0) = (1 − ρ2)−1, κ(1) = −(1 − ρ2)−1, and κ(τ) = 0 for τ > 1.

Moreover, δ(n) = θ(1 − ρ2). Under Assumptions 1-4, we can now derive the paper’s main

proposition regarding the shape of BIRs in the linear autonomous class of belief formation

models.

Proposition 2 (BIRs in the Linear Autonomous Class) Under Assumptions 1-4, BIRs

are given by:

B(n, j) =
A(n, j)− ρ2A(n+ 1, j + 1)

D(n)
, (9)

where

A(n, j) = −δ(n− j)
[
Γ(j) + δ(n)Ξ(j)

]
D(n) = DMZ(n) + ρ2DMZ(n+ 1)− 2ρ2(1 + δ(n+ 1)

+ δ(n)Γ(1) + δ(n)δ(n+ 1)Ξ(1))

DMZ(n) = 1 + 2δ(n) + δ(n)2Ξ(0)

Ξ(j) =

j∑
τ=0

κ(τ) +
∞∑

τ1=1

∞∑
τ2=0

κ(τ1 + j)κ(τ2)ρ
2max(τ1,τ2)

Γ(j) =

j∑
τ=0

κ(τ) +
∞∑
τ=1

κ(τ + j)ρ2τ

(10)

Proposition 2 shows that BIRs are a complex function of κ(τ) and δ(n), the two objects

that define the linear autonomous class of forecasts.
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4.3 BIRs in Leading Behavioral Models

We now apply Proposition 2 to solve for the BIR in several leading behavioral models.

4.3.1 Diagnostic Expectations

To start, we continue with the example of diagnostic expectations from Bordalo et al. (2020a).

In this case, Proposition 2 implies that the BIR is as follows.

Corollary 3 In the model of diagnostic expectations (Bordalo et al., 2020a) given by Equa-

tion (4), the BIR for J = 1 and diagnosticity parameter θ equals:

B(n, j) =
A

D
1j=0 (11)

where δ = θ(1− ρ2) and:

A = −δ[1 + δΞ]

D = DMZ + ρ2DMZ − 2ρ2(1 + δ)

DMZ = 1 + 2δ + δ2Ξ

Ξ = (1− ρ2)−1

(12)

To visually illustrate the implications of Corollary 3, Figure 8a displays BIRs for varying

diagnosticity and signal persistence parameters. Using diagnosticity estimates from Bordalo

et al. (2020a) and Bordalo et al. (2019), we set θ ∈ {0.5, 0.9}. For signal persistence, we

explore two extremes, setting ρ ∈ {0.1, 0.9}.

Figure 8a reveals several strengths of the diagnostic expectations framework. First and

foremost, the initial level B(n, 0) of the model-implied BIR lines up well with those found in

the SPF and IBES datasets (Figures 2a and 2b). Moreover, holding θ fixed, a lower signal

persistence ρ results in a more pronounced overreaction, which is directionally consistent
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with Bordalo et al. (2020a), Afrouzi et al. (2023), and the analysis of persistence that we

present in Section 3.3.2.

While Figure 8a demonstrates how diagnostic expectations can match the level of ob-

served BIRs, it also highlights a potential shortcoming of the model. To understand the

core issue, note that for J = 1, the n-period forecast at time t depends on the rational

forecast and the rational revision: F
(n)
t = Et[yt+n] + θ(Et[yt+n] − Et−1[yt+n]). In turn, the

forecast error next period depends on the rational forecast error and the rational revision:

e
(n−1)
t+1 = (yt+n − Et+1[yt+n]) + θ(Et+1[yt+n] − Et[yt+n]). By definition, both components are

unpredictable by any variable at time t, including the diagnostic time-t revision R
(n)
t , hence

why the BIR goes to zero immediately. The abrupt discontinuity in the model-implied BIR

turns out to be a more general feature of theories in which forecasts depend on finite lags of

rational revisions, including the model of smooth diagnostic expectations in Bianchi et al.

(2024a). We demonstrate this point formally via the following proposition.

Proposition 4 Suppose that Ft[yt+n] depends only on revisions in rational forecasts between

t and t− J (i.e., κ(τ) = 0 ∀τ > J and
∑J

τ=0 κ(τ) = 0). Then, for any j ≥ J , B(n, j) = 0.

Proposition 4 demonstrates that models like diagnostic and smooth diagnostic expec-

tations rely on an abrupt correction mechanism. Specifically, these models imply that

forecasters, given a lag structure J , fully rectify any overreaction at t by time t+J , resulting in

a discontinuity in the model-implied BIR at B(n, J). The purple line in Figure 8a illustrates

this result by plotting the BIR for J = 3, θ = 0.9, and ρ = 0.9. The flat and negative BIR for

j = 0, 1, 2 indicates an initial overreaction to news followed by no correction for two periods.

At j = 3, diagnostic forecasters then “wake up” and fully reverse their overreaction.

For both SPF and IBES forecasters, this pattern of abrupt correction appears inconsistent

with the data. For instance, for n = 3, Figure 2a shows that SPF forecasts correct about

60% of their overreaction at time t within one period. Figure 2b demonstrates an even slower

correction process for IBES forecasters. Moreover, 5a shows that correction is much slower
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for a subset of SPF forecasters. Similarly, IBES forecasters exhibit a relatively slow and

smooth correction process (Figure 2b), some much more so than others (Figure 5b).

Heterogeneous speeds of correction, like those seen in Figure 5b, also pose a challenge for

models featuring diagnostic expectations. The reason why is that the level and shape of the

diagnostic-BIR are largely pinned down by the diagnosticity and persistence parameters, θ

and ρ. Consequently, it is difficult for such models to produce two BIRs that have identical

initial levels of overreaction but differ in their speeds of correction.

4.3.2 Costly Information Processing

Next, we consider the belief formation process proposed by Afrouzi et al. (2023), who

develop a model to accommodate the fact that overreaction to contemporaneous news is

larger for longer-horizon forecasts and series with less persistence, both in experimental and

observational data. Afrouzi et al. (2023) focus on the special case in which yt is an AR(1)

process with mean µ and persistence parameter ρ. We show in Appendix A that this simple

version of the model is a part of the linear autonomous class. Applying Proposition 2 to this

model yields the following BIR.

Corollary 5 Suppose yt+1 = (1− ρ)µ+ ρyt+ εt and that forecasts follow the model of costly

information processing in Afrouzi et al. (2023), whereby:

Ft[yt+n] = const(n) + Et[yt+n] + δ(n)Et[yt+n], (13)

with

δ(n) = (1− ρn)ρ−n min

{
1,

(
ωτ

(1− ρn)2

)1/(1+γ)
}

(14)
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for some ω, τ , γ ≥ 0. Then, the BIR is given by:

B(n, j) = A(n, j)
1− ρ2

D(n)
(15)

where

A(n, j) = −δ(n− j)
[
1 + δ(n)

]
DMZ(n) = (1 + δ(n))2

D(n) = DMZ(n) + ρ2DMZ(n+ 1) − 2ρ2(1 + δ(n+ 1))(1 + δ(n)) .

(16)

Moreover, B(n, j) is monotone increasing and concave in j.

Figure 8b uses Corollary 5 to plot BIRs for two different parameterizations from Afrouzi

et al. (2023), one for when ρ = 0.2 and another for ρ = 0.95. These values roughly

correspond to the average AR(1) coefficients we respectively estimate for the low- and high-

persistence series in the SPF in Section 3.3.2. The variance σ2
ε of εt is fixed at 0.2 across both

parameterizations. Additionally, the scale and convexity of information processing costs are

set to ω = 1 and γ = 2, respectively. Following Section 6.2 of Afrouzi et al. (2023), the

baseline precision τ that agents have about the long-run mean of y equals (1− ρ2)/σ2
ε .

The Figure 8b depicts the model-implied BIRs when y has either high (orange line) or

low (blue line) persistence. The model was designed to match the fact that overreaction is

larger for less persistent series and it does so well, though the degree of overreaction for the

low-persistence series is a bit higher in the model than in the data. What is more interesting

in the speed of correction within the model. For series with low persistence, corrections

occur smoothly yet fairly quickly compared to series with high persistence. In other words,

correction speed in the model appears tightly tied to B(0). In Section 3.3.2, we found this

link to be much weaker in the data.

Corollary 5 also highlights another shortcoming of the model, namely that the model-
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implied BIR is concave in j: following an initial overreaction, forecasters in the model

gradually correct their mistakes but at a decelerating rate. This means that the model

cannot match the BIRs for the slowest-correcting forecasters in the SPF and IBES datasets.

For instance, in Figure 5a, we find that for some forecasters in SPF, the BIR is convex in j

and thus implies an extremely slow correction process.

4.3.3 Extrapolative Expectations

Lastly, we consider a model in which forecasters extrapolate from past realizations of y.

The specific setup we consider largely draws on Hirshleifer et al. (2015) while also bearing

similarities to Nagel and Xu (2022). Unlike Barberis et al. (2015b), who develop an asset

pricing model centered on price extrapolation, both Hirshleifer et al. (2015) and Nagel and Xu

(2022) focus on the extrapolation of past fundamentals. We follow both papers in assuming

that the true data generating process has a constant mean, so that yt+1 = ȳ + εt+1, where

εt+1 is i.i.d.17 In addition, forecasts are assumed to evolve according to:

Ft[yt+1] = µt

µt+1 = (1− ρ− ρ̃)µ̄ + ρµt + ρ̃yt+1,
(17)

where ρ̃ modulates the degree of extrapolation from the most recent realization of y, ρ

controls the impact of extrapolation made from past realizations of y, and µ̄ is the forecasters

perceived long-run mean. Hirshleifer et al. (2015) provide several possible microfoundations

for this particular belief formation process, like, for instance, if the forecaster perceives

a time-varying growth rate for y. Applying Proposition 2 to this model then yields the

following BIR.

Corollary 6 (BIRs for extrapolative expectations) In the model of extrapolative ex-

17In Appendix C, we allow for an autoregressive structure in yt, so that Et[yt+1] = ȳ + ρy(yt − ȳ). The
expressions for BIRs are more involved in this case.
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pectations given by (54), the BIR is given by:

B(n, j) = − ρj

(ρ+ ρ̃)j
1− ρ(ρ+ ρ̃)

(1 + (ρ+ ρ̃)2 − 2ρ(ρ+ ρ̃))
< 0 . (18)

In particular, B(n, j) is independent of n, and is increasing and concave in j.

Consistent with Hirshleifer et al. (2015) and Nagel and Xu (2022), Corollary 6 shows that

extrapolative expectations can generate both overreaction (B(n, 0) < 0)) and the pattern of

smooth decay observed in empirically estimated BIRs. However, the corollary also reveals

that the extrapolative expectations model in Equation (54) fails to accurately reflect how

the level of BIRs varies with the forecasting horizon n (see, for instance, Table 2). This

follows from the fact that n appears nowhere in the expression for the BIR.

To visualize the BIR implied by extrapolative expectations, Figure 8c plots the BIR using

the following parameters: n = 6, µ̄ = 0, ρ̃ = 0.018, and ρ = 1− ρ̃. Under this parameteriza-

tion, the model of extrapolative expectations in (54) reduces to the one considered by Nagel

and Xu (2022), who choose the value of ρ̃ based on the analysis of inflation expectations

in Malmendier and Nagel (2015). The initial level of the BIR, in this case, equals -0.5

and is comparable to what is observed empirically. However, in addition to its lack of

dependence on forecast horizon n, the BIR is essentially flat under this parameterization of

extrapolative expectations. The implication is that following overreaction to the news at

time t, extrapolative agents counterfactually correct their mistakes at a very slow pace —

essentially, all of their initial overreaction remains after five quarters.

4.4 Discussion

The analysis in this section leverages BIRs to assess the strengths and weaknesses of promi-

nent behavioral models of belief formation. A key finding is that many models can match

the initial level of BIRs, though unsurprisingly the model in Afrouzi et al. (2023) most

accurately captures the dependence on series persistence. However, all models have a harder
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time matching the slow pace of correction observed for many forecasters in SPF and IBES.

Moreover, BIRs often display heterogeneity that is incompatible with these models, most

notably the fact that correction speeds vary even for forecasters that appear to react equally

to news at time t.

More broadly, the results in this section also highlight the benefits that BIRs offer over

traditional impulse responses of forecast errors to identified structural shocks. For one, the

discontinuous correction process that is inherent to models of diagnostic expectations is not

readily apparent in the impulse responses studied by Angeletos et al. (2021) and ?. In

addition, our analysis of how BIRs vary across forecasters and stocks would be considerably

more difficult to implement with traditional impulse response methods because of the latter’s

dependence on well-identified shocks. For instance, with traditional impulse responses,

analyzing whether equity analysts overreact or underreact to specific stocks would require

identifying exogenous shocks to those stocks. Furthermore, BIRs capture how forecast errors

dynamically respond to all news received at time t, not just a particular shock, which is often

what matters for economic outcomes (e.g., prices).

5 BIRs and Model Uncertainty

In this section, we demonstrate how BIRs can be paired with simulations to explore models

of belief formation that lie outside of the linear autonomous class studied in Section 4.

We specifically consider belief formation for Bayesian forecasters in the presence of model

uncertainty (e.g., Timmermann (1993)). Our specific setup mirrors that of Farmer et

al. (2023), henceforth FNS. Using their formulation of model uncertainty, which operates

through an unobserved components model, we characterize the conditions under which a

Bayesian forecaster can generate BIRs that are observed in the SPF and IBES datasets.
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5.1 Setup

Farmer et al. (2023) study belief formation about the following data generating process

(DGP) for yt:

yt = µt + xt,

µt = µt−1 +
√
γσηt, ηt ∼ N(0, 1)

xt = ρxt−1 +
√

1− γσωt, ωt ∼ N(0, 1) (18)

In this model, the target series yt is the sum of a random walk, µt, and an AR(1) process,

xt, both of which are unobserved. The parameters governing yt are ρ, σ, and γ. They

respectively control the persistence of xt, the conditional variance of yt, and the share of

this variance attributable to µt shocks. Like the states, xt and µt, these parameters are also

unknown to forecasters, who only observe quarterly realizations of yt.

FNS endow forecasters with beliefs about the initial states, µ1 and x1, which we spec-

ify below. In addition, forecasters have the following initial priors about the parameters

governing yt:

ρ ∼ N(µp, σ
2
p), γ ∼ B(αγ, βγ), σ2 ∼ IG(1.25, 0.5625), (19)

where B is the beta distribution and IG is the inverse-gamma distribution. We define

Θ = (µp, σ
2
p, αγ, βγ) as the parameter vector that defines the forecasters’ initial priors about

ρ and γ. As in FNS, the priors for σ2 are held fixed throughout our analysis.

In the latter part of their paper, FNS simulate yt by assuming parameter values for ρ, γ,

and σ and then study the time-series of forecasts for different initial priors Θ. Using their

replication kit, we conduct a similar exercise to explore the conditions under which Bayesian

forecasters in this setting will generate BIRs that resemble the ones found in the SPF and
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IBES datasets. Our simulation exercise specifically proceeds as follows. First, we simulate

five different paths of yt according to the DGP in (18), each of length T = 260 (for the IBES,

we use T = 190 to match the time frame of the real data). When matching SPF forecasts,

we set the true ρ = 0.02 and γ = 0.02. For IBES forecasts, we set ρ = 0.5 and γ = 0.25. For

both SPF and IBES analysis, we set σ = 0.5. As we discuss below, these parameters were

chosen so that the simulated yt roughly resembles the average realized series in the SPF and

IBES datasets, at least in terms of their observed persistence.

Next, we set forecasters’ beliefs about the initial states to be µ1 ∼ N(y1, 1) and x1 ∼

N(0, 1), such that the two are perfectly negatively correlated given the DGP in Equation

(18). Armed with their initial beliefs about the states (µ1, x1) and parameters of the DGP

contained in Θ, forecasters observe simulated realizations of yt and update their beliefs

according to Bayes Law. After ten years of realizations, they then form forecasts of yt+n in

each quarter t based on their beliefs at that time. This updating sequence exactly follows

FNS and generates a panel of forecasts for each simulated sample of yt. For each sample

of simulated forecasts, we estimate a BIR, denoted by B̃(n, j; Θ). We use this notation to

reiterate the dependence of the forecasts—and hence the BIR—on the initial beliefs Θ.

We then search over the initial belief vector Θ to best match the average individual BIR

observed in the SPF or IBES datasets, as plotted in Figures 2a and 2b, respectively. That

is, we select Θ to minimize
∑

j[B(n, j) − B̃(n, j; Θ)]2. As in the data, we use n = 3 for

the SPF and n = 6 for the IBES BIRs. For each optimal Θ∗, we then simulate n = 100

different samples of y and estimate the BIRs as described above for the given initial beliefs

Θ∗. Finally, we compute the average BIR across the n samples, along with confidence bands

based on the standard deviation of each point on the BIR divided by
√
n.
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5.2 Main Findings

Figure 9a plots the resulting simulated BIR along with the true one from the SPF. The figure

shows that the model fits the data fairly well. The initial levels of the BIRs are close, though

there is slightly more overreaction in the model. The speed of correction in the model also

aligns well with the data. In the model, over half of the overreaction in the time-t forecast

is eliminated by t + 1, slightly lower than the 60% observed empirically. Figure 9c shows

the distribution of initial beliefs, governed by Θ∗, and the true parameter values (vertical

dotted line). As in FNS, overreaction occurs when beliefs about ρ and γ are biased upward.

The true ρ and γ equal 0.02, whereas agents in the model have priors for ρ and γ that are

centered around 0.18 and 0.3, respectively.

Figure 9b presents the simulated BIR (in blue) when targeting the average individual

BIR from IBES (in orange). Once again, the model is able to generate a relatively realistic

BIR. The initial level of overreaction in the model, as captured by B(n, 0), is very close

to the data. In addition, the slow speed of correction embedded in the true BIR is also

present in the model. In the data, roughly 80% of the overreaction in the time-t forecast is

still present in the forecast made one quarter later, compared to about 90% in the model.

There is virtually no additional correction between t + 1 and t + 2 in the data, whereas an

additional 25 pp of correction occurs in the model. The fact that the model can generate

relatively slow corrections is interesting given the behavioral models we explored in 4 had a

harder time doing so. With that said, the speed of correction does accelerate too quickly in

the model for j > 2 relative to the data.

Figure 9d displays the initial belief distributions that underlie Figure 9b. Unlike the

SPF, overreaction in this case occurs through a mixture of downward biased beliefs about

ρ and upward biased beliefs about γ: beliefs about ρ are centered at 0.05, well below the

true ρ = 0.5, and beliefs about γ are centered around 0.99, well above the true γ = 0.25. To

develop some intuition for how beliefs about how γ and ρ modulate the speed of correction,
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the green line in Figure 9b shows a simulated BIR for initial beliefs that are centered around

ρ = 0.95 and γ = 0.90. These beliefs were chosen to match the initial level of overreaction in

the data while also ensuring a rapid correction process. The results of this exercise suggest

upward-biased beliefs about γ may be the driving force behind overreaction at time t, whereas

beliefs about ρ may play a bigger role in the correction process.

It may be tempting to view Figure 9 as evidence that model uncertainty can generate

realistic BIRs at the individual level, even when corrections to overreactions at time t are

slow. This interpretation hinges on two key questions. First, does our simulated DGP

realistically approximate the series forecasted by SPF forecasters and IBES analysts? While

a definitive answer to this question is outside of the scope of this paper, Figure 10 offers a

preliminary answer by comparing sample paths of the simulated y with the average realized

y in both the SPF and IBES datasets. For instance, Figures 10a and 10b show the cross-

sectional average realized SPF series alongside three sample paths of the simulated y, and

Figure 10c and 10d do the same for the IBES series. Visually, the true and simulated series

appear similar, at least in terms of their persistence. The AR(1) coefficients for the average

and simulated realized SPF series equal 0.33 and 0.37, respectively. Similarly, the AR(1)

coefficients for the average and simulated IBES series are 0.95 and 0.88, respectively.18

The second question is whether forecasters’ initial beliefs Θ∗ about the parameters

governing y in our simulation are reasonable, as they are crucial for driving both the initial

degree of overreaction and the speed of correction. This question is challenging to answer

definitively and presents a valuable direction for future research. For the time being, we take

Figure 9 as evidence of the potential for model uncertainty to account for deviations from

FIRE observed in survey data. As FNS argue, model uncertainty is especially appealing

for explaining deviations from FIRE in professional forecasts, as there are strong career

incentives to generate forecasts that are free of behavioral biases. More broadly, the results

18For both the SPF and IBES simulations, the AR(1) coefficient is based on the average AR coefficient
across the n = 100 simulations.
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in this section highlight how BIRs can be paired with simulations to explore belief formation

in situations where a closed-form BIR is not readily available.

6 Conclusion

In this paper, we develop the concept of a behavioral impulse response function, which

captures how forecast errors and revisions of a fixed target dynamically respond following a

forecast revision made at time t. Intuitively, BIRs capture how much and in which direction

forecasts deviate from FIRE at time t, as well as the subsequent correction process. BIRs

offer more powerful tests of FIRE relative to existing methods like the one proposed by

Coibion and Gorodnichenko (2015) because they impose joint restrictions on how all future

forecast errors and revisions respond to a revision at time t. They can be easily estimated

using OLS regressions on any dataset that features a term structure of forecasts.

We estimate BIRs using individual forecasts of macroeconomic and financial variables

from the SPF and earnings per share from the IBES. Our analysis reveals that BIRs from both

datasets strongly reject the null hypothesis of FIRE, showing a clear tendency for individual

forecasters to overreact when forecasting distant targets. On average, deviations from FIRE

are corrected gradually in both datasets, though correction speeds vary meaningfully across

forecast targets and forecasters. Although popular behavioral models of belief formation

can match the level of BIRs, they often have a harder time matching their shape. The slow

correction that is observed for many forecasters (and series) poses a particular challenge for

existing models, as does the fact that correction speed varies meaningfully even holding fixed

the size of the initial deviation from FIRE.

We also highlight how BIRs can be paired with simulations to explore belief formation

in more complicated settings, such as when forecasters are uncertain about the true model

of the world. Here, we uncover suggestive evidence that model uncertainty may explain

the dynamic deviations from FIRE observed in BIRs. However, further research is needed
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to assess the plausibility of the initial beliefs underpinning these sorts of models. Moving

forward, we recommend that researchers studying belief formation incorporate BIRs to refine

and validate their models, comparing derived or simulated BIRs against empirical estimates

like those presented in this study.
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Kučinskas, Simas and Florian S. Peters, “Measuring Under- and Overreaction in

Expectation Formation,” The Review of Economics and Statistics, 11 2022, pp. 1–45.

Li, Dake, Mikkel Plagborg-Møller, and Christian K Wolf, “Local Projections vs.

VARs: Lessons From Thousands of DGPs,” Working Paper 30207, National Bureau of

Economic Research July 2022.

50



Lovell, Michael C., “Tests of the Rational Expectations Hypothesis,” The American

Economic Review, 1986, 76 (1), 110–124.

Malmendier, Ulrike, “Behavioral Corporate Finance,” in B. Douglas Bernheim, Stefano

DellaVigna, and David Laibson, eds., Handbook of Behavioral Economics - Foundations

and Applications 1, Vol. 1 of Handbook of Behavioral Economics: Applications and

Foundations 1, North-Holland, 2018, pp. 277–379.

and Stefan Nagel, “ Learning from Inflation Experiences *,” The Quarterly Journal

of Economics, 10 2015, 131 (1), 53–87.

Mankiw, N. Gregory and Ricardo Reis, “Sticky Information versus Sticky Prices: A

Proposal to Replace the New Keynesian Phillips Curve*,” The Quarterly Journal of

Economics, 11 2002, 117 (4), 1295–1328.

, , and Justin Wolfers, “Disagreement about Inflation Expectations,” NBER

Macroeconomics Annual, 2003, 18, 209–248.

, , and , “Disagreement about Inflation Expectations,” NBER Macroeconomics

Annual, 2003, 18, 209–248.

Mincer, Jacob A and Victor Zarnowitz, “The evaluation of economic forecasts,” in

“Economic forecasts and expectations: Analysis of forecasting behavior and perfor-

mance,” NBER, 1969, pp. 3–46.

Nagel, Stefan and Zhengyang Xu, “Asset pricing with fading memory,” The Review of

Financial Studies, 2022, 35 (5), 2190–2245.

Nerlove, Marc, “Adaptive expectations and cobweb phenomena,” The Quarterly Journal

of Economics, 1958, 72 (2), 227–240.

Òscar Jordà, “Local Projections for Applied Economics,” Annual Review of Economics,

2023, 15 (1), 607–631.

Pflueger, Carolin, Emil Siriwardane, and Adi Sunderam, “Financial Market Risk

Perceptions and the Macroeconomy*,” The Quarterly Journal of Economics, 03 2020,

135 (3), 1443–1491.

51



Plagborg-Møller, Mikkel and Christian K. Wolf, “Local Projections and VARs

Estimate the Same Impulse Responses,” Econometrica, 2021, 89 (2), 955–980.

Schwartzstein, Joshua and Adi Sunderam, “Using Models to Persuade,” American

Economic Review, January 2021, 111 (1), 276–323.

Sims, Christopher A., “Macroeconomics and Reality,” Econometrica, 1980, 48 (1), 1–48.

, “Implications of rational inattention,” Journal of Monetary Economics, 2003, 50 (3),

665–690. Swiss National Bank/Study Center Gerzensee Conference on Monetary Policy

under Incomplete Information.

Stein, Jeremy C., “Rational Capital Budgeting in an Irrational World,” Journal of

Business, 1996, 69 (4), 429–455.

Thomas, Lloyd B., “Survey Measures of Expected U.S. Inflation,” Journal of Economic

Perspectives, December 1999, 13 (4), 125–144.

Timmermann, Allan G., “How Learning in Financial Markets Generates Excess Volatility

and Predictability in Stock Prices,” The Quarterly Journal of Economics, 1993, 108 (4),

1135–1145.

Woodford, Michael, Imperfect Common Knowledge and the Effects of Monetary Policy,

Princeton University Press,
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Figure 1: Stylized Example of a BIR. This figure shows a stylized BIR for an iid, mean zero forecast
target. The forecaster generating the BIR is assumed to have a rational forecast up to time t, after which
they irrationally revise their forecast up by one unit. They then realize their mistake at time t+1 and revise
their forecast accordingly.
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(a) Average BIR in SPF
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(b) Average BIR in IBES
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Figure 2: Average BIRs from SPF and IBES. Panels (a) and (b) show baseline BIR estimates
for different in n in SPF and IBES, respectively. 95% confidence intervals in both panels are based on
standard errors that are clustered by forecaster-series (i, s) and series-date (s, t), where t is the date of the
first observed revision for a given forecast horizon n. The black dashed line in both plots shows the BIR
under FIRE. See Section 2.2 for complete estimation details.
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(a) SPF
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Figure 3: Variation in BIRs Across Series. Figure 3a visualizes variation in BIRs across series in
SPF. To construct the plot, we estimate series-by-series BIRs and divide them based on the sign of B(n, 0).
Within the set of series that exhibit underreaction (B(n, 0) > 0), we estimate a pooled BIR and plot it in
blue. Within the set of series that exhibit overreaction, we further split them into one of two groups based
on W (n, 1) = B(n, 1)/B(n, 0), a measure of correction speed. Within each resulting group, we then estimate
a pooled BIR and plot it. Figure 3b shows BIRs resulting from an analogous process in IBES, with the only
difference being that we split series that exhibit underreaction into two groups based on W (n, 1). Figure 3c
applies the same methodology, but splits series in IBES based on the magnitude of B(n, 0) and then W (n, 1).
The legends in each plot show the percentage of series assigned to each group. 95% confidence intervals are
based on standard errors that are clustered by forecaster-series, (i, s), and series-date, (s, t). The black
dashed line in each plot shows the BIR under FIRE. See Section 2.2 for complete estimation details.
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(c) IBES - Persistence Sorts
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(d) SPF - Persistence Sorts
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Figure 4: Correction Speeds and Series Characteristics. Figures 4a and 4b show pooled BIRs
for series with high or low volatility in IBES and SPF, respectively. Volatility for each stock in IBES is defined
as the average monthly stock return volatility in quarter t. In SPF, it is defined based on the residuals from
an AR(p) model, where p is chosen according to the AIK . In both instances, low- and high-volatility series
are defined based on terciles of volatility. Figures 4c and 4d show pooled BIRs based on sorts of persistence.
In IBES, persistence is measured using an AR model for annual operating earnings scaled by assests, as in
Bouchaud et al. (2019). In SPF, it is measured using an AR model of each series. We partition series into
terciles by measure of persistence and estimate the BIRs on the top and bottom group. 95% confidence
intervals are based on standard errors that are clustered by forecaster-series, (i, s), and series-date, (s, t).
The black dashed line in each plot shows the BIR under FIRE. See Section 2.2 for complete estimation
details.
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Figure 5: Variation in BIRs Across Forecasters. Figure 5b visualizes variation in BIRs across
forecasters in SPF and IBES. For both datasets, BIRs are first estimated for each forecaster, then forecasters
are split based on whether they initially over or underreact. Within the set of overreactors, forecasters are
further split in to k bins based on W1 = B(n, 1)/B(n, 0). The same process is repeated for underreactors. A
pooled BIR is then estimated for each bin and plotted in the figure. k = 3 in Figure 5a for SPF forecasters
that overreact and k = 2 for those that underreact. k = 4 in Figure 5b for both types of IBES forecasters,
and BIRs are only shown for the top and bottom quartiles of W1. 95% confidence intervals are based on
standard errors that are clustered by forecaster-series, (i, s), and series-date, (s, t). The black dashed line in
each plot shows the BIR under FIRE. See Section 2.2 for complete estimation details.

57



(a) SPF

0 1 2 3
j

0.8

0.6

0.4

0.2

0.0

0.2

B
(n
,j

)

FIRE
Inexperienced
Experienced

(b) IBES

0 1 2 3 4 5 6
j

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

B
(n
,j

)

FIRE
Inexperienced
Experienced

Figure 6: BIRs and Experience. This figure shows how BIRs vary with forecaster experience. We
start by estimating BIRs for each forecaster using their first five years of data, requiring at least ten forecasts.
We sort forecasters i by the average level of their BIR, denoted as Bearly

i , and assign them to terciles. Within
each tercile, we then estimate pooled BIRs using: (i) the first five-years of forecasts made by the forecaster
(labeled as the “inexperienced” BIRs in blue); and (ii) all forecasts made after year five (labeled as the
“experienced” BIR in orange). Figures 6a and 6b show the estimates for forecasters in SPF and IBES,
respectively. For both plots, estimates are shown for forecasters that overreact early in their careers (i.e.,

the bottom tercile of Bearly
i ). Results for underreactors can be found in Internet Appendix Figure A7. The

black dashed line shows the full information rational expectations benchmark. 95% confidence intervals in
the plot are based on standard errors clustered by analyst-stock, (i, s), and stock-date, (s, t)



(a) IBES: Good vs Bad News
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(c) IBES: Recessions vs Non-Recessions
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(d) SPF: Recessions vs Non-Recessions
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Figure 7: BIRs and the Nature of Shocks. This figure shows how BIRs vary with the nature of
news received by forecasters. Panel (a) shows BIR that condition on the sign and size of the revision made
by each forecaster. Large positive (negative) revisions are defined as the top tercile of positive (negative)
revisions and small positive (negative) revisions are all others. Panel (b) shows a similar result for the SPF,
but only conditions on the sign of revisions. Panel (c) conditions on whether revisions in IBES are made
during NBER recessions. Panel (d) repeats panel (c) for SPF.
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(c) Extrapolative Expectations
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Figure 8: BIRs under Diagnostic and Extrapolative Expectations Panel (a) of this figure
shows BIRs for different levels of diagnosticity (θ) and signal persistence (ρ) under the model of diagnostic
expectations from Bordalo et al. (2020a). Panel (d) shows the BIR from Afrouzi et al. (2023), with the exact
calibration detailed in Section 4.3.2. Panel (c) shows the BIR implied by the model of Nagel and Xu (2022),
using the constant-gain learning parameter of 0.018 estimated in Malmendier and Nagel (2015).



(a) SPF Overreaction Simulation
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(b) I/B/E/S Overreaction Simulation

0 1 2 3 4 5 6
j

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Be
ha

vio
ral

 Im
pu

lse
 R

esp
on

ses

FIRE
Simulation (Slow Correction)
Simulation (Fast Correction)
IBES

(c) SPF Priors

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

7.5
ρ

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

γ

(d) I/B/E/S Priors

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4
ρ

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

γ

Figure 9: BIRs with Model Uncertainty Panel (a) of this figure shows BIRs estimated on the
pooled SPF forecasts with n = 3. The plot also shows BIRs from the simulated model of Farmer et al.
(2023) with the best-matched priors. Panel (b) shows the BIR for the I/B/E/S pooled forecasts with n = 6
and the simulated Bayesian forecasters in Farmer et al. (2023) with the best-matched priors. Panel (c) and
(d) show the best-matched priors with respect to the SPF and I/B/E/S BIRs, respectively. See Section 5
for complete details.



(a) Quarterly Mean SPF Realization

(b) SPF Sample Simulated Series
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Figure 10: BIRs with Model Uncertainty Panel (a) of this figure shows the quarterly cross-
sectional average realization of the SPF forecast targets. Panel (b) shows three randomly simulated paths
according to Farmer et al. (2023) with ρ = 0.18, γ = 0.30. Panel (c) shows the quarterly cross-sectional
average EPS in the I/B/E/S sample. Panel (d) shows three randomly simulated paths according to Farmer
et al. (2023) with ρ = 0.05, γ = 0.99.



(1) (2) (3)

B(n, 0) −0.321∗∗∗ −0.324∗∗∗ −0.257∗∗∗

(0.063) (0.061) (0.068)

B(n, 1) −0.127∗∗ −0.172∗∗∗ −0.078∗

(0.051) (0.053) (0.041)

B(n, 2) −0.109∗∗ −0.097∗∗

(0.047) (0.047)

B(n, 3) −0.037

(0.046)

n 3 2 1

Adj. R2 (%) 0.35 0.67 0.83

Observations 41,841 50,212 59,938

p(FIRE) <0.001 <0.001 <0.001

p(Equal B) <0.001 <0.001 <0.001

Table 1: BIRs Estimated from SPF Data. This table shows point estimates for BIRs based on
the SPF forecast data. Columns (1), (2), and (3) show BIR estimates for n = 3, 2, 1, respectively. Each
row in the table corresponds to a different j. Standard errors are listed in parentheses below each point
estimate and are clustered by forecaster-series, (i, s), and series-date, (s, t). The row with p(FIRE) reports
the p-value from testing the null hypothesis of FIRE, namely that all points along the BIR curve equal zero,
i.e. B(n, j) = 0,∀j. The row with p(Equal B) reports the p-value from testing the null hypothesis that all
points along the BIR curve are equal, which is a weaker test of FIRE. The adjusted-R2 is based on averaging
over the individual regressions used to estimate each point on the BIR curve (e.g., B(n, 0), ..., B(n, n)). See
Section 2.2 for complete estimation details. ∗, ∗∗, and ∗∗∗ denote p-values of less than 0.10, 0.05, and 0.01,
respectively.



(1) (2) (3) (4) (5) (6)

B(n, 0) −0.296∗∗∗ −0.172∗∗∗ −0.047∗ 0.006 −0.014 −0.014

(0.038) (0.031) (0.025) (0.018) (0.016) (0.012)

B(n, 1) −0.245∗∗∗ −0.177∗∗∗ −0.054∗∗ 0.005 −0.024∗∗ −0.031∗∗∗

(0.037) (0.029) (0.022) (0.015) (0.012) (0.008)

B(n, 2) −0.239∗∗∗ −0.175∗∗∗ −0.080∗∗∗ −0.007 −0.022∗∗∗

(0.035) (0.026) (0.019) (0.013) (0.007)

B(n, 3) −0.223∗∗∗ −0.162∗∗∗ −0.087∗∗∗ 0.004

(0.032) (0.021) (0.014) (0.009)

B(n, 4) −0.205∗∗∗ −0.142∗∗∗ −0.065∗∗∗

(0.027) (0.017) (0.010)

B(n, 5) −0.151∗∗∗ −0.061∗∗∗

(0.020) (0.010)

B(n, 6) −0.055∗∗∗

(0.012)

n 6 5 4 3 2 1

Adj. R2 (%) 0.61 0.38 0.12 0.00 0.01 0.03

Observations 47,521 92,053 161,347 266,616 463,271 701,754

p(FIRE) <0.001 <0.001 <0.001 0.012 <0.001 <0.001

p(Equal B) <0.001 <0.001 <0.001 0.007 0.074 <0.001

Table 2: BIRs from IBES Data. This table shows point estimates for BIRs based on the I/B/E/S
quarterly earnings forecast data. Each row in the table corresponds to a different j. Standard errors are
listed in parentheses below each point estimate and are clustered by forecaster-series, (i, s), and series-date,
(s, t). The row with p(FIRE) reports the p-value from testing the null hypothesis of FIRE, namely that all
points along the BIR curve equal zero, i.e. B(n, j) = 0,∀j. The row with p(Equal B) reports the p-value
from testing the null hypothesis that all points along the BIR curve are equal, which is a weaker test of
FIRE. The adjusted-R2 is based on averaging over the individual regressions used to estimate each point
on the BIR curve (e.g., B(n, 0), ..., B(n, n)). See Section 2.2 for complete estimation details. ∗, ∗∗, and ∗∗∗

denote p-values of less than 0.10, 0.05, and 0.01, respectively.



Data Test

n

2 3 4 5 6 7 8 9 10

SPF B(n, 0) = 0 0.80 0.80

SPF B(n, j) = 0, ∀j 0.87 0.87

IBES B(n, 0) = 0 0.07 0.03 0.04 0.04 0.06 0.03 0.04 0.06 0.30

IBES B(n, j) = 0, ∀j 0.25 0.28 0.33 0.40 0.48 0.55 0.65 0.61 0.60

# Series SPF 15 15

# Series IBES 4604 3507 2674 1955 1267 610 269 79 10

(a) By Series

Data Test

n

2 3 4 5 6 7 8 9 10

SPF B(n, 0) = 0 0.17 0.17

SPF B(n, j) = 0, ∀j 0.45 0.63

IBES B(n, 0) = 0 0.05 0.04 0.05 0.05 0.05 0.07 0.08 0.09 0.13

IBES B(n, j) = 0, ∀j 0.24 0.36 0.49 0.58 0.72 0.79 0.90 0.95 0.97

# Forecasters SPF 209 189

# Forecasters IBES 4566 2920 2053 1451 955 436 209 104 38

(b) By Forecaster

Table 3: How Pervasive are Deviations from FIRE? This table summarizes tests of FIRE across
series and forecasters. Table 3a is based on BIRs estimated by for each series s and horizon n, whereas Table
3a is based on BIRs estimated for each forecaster i and horizon n. For each BIR, the first test of FIRE is
based on whether B(n, 0) = 0, following Coibion and Gorodnichenko (2015). The second test of FIRE is
based on whether B(n, j) = 0 for all j. For both tests, we report the fraction of BIRs for which the null
of FIRE is rejected with 95% confidence. For both tests, we adjust individual p-values to account for the
multiple testing problem following Benjamini and Hochberg (1995). The bottom rows of each table show
the unique number of series and forecasters, respectively, in the cross-section for every n.



Data N mean p10 p25 p50 p75 p90 P(B(n, 0) < 0)

SPF 15 -0.22 -0.45 -0.40 -0.33 -0.14 0.19 80

IBES 1267 -0.39 -1.41 -0.88 -0.35 0.09 0.65 70

(a) Distribution of Initial Reaction in SPF and IBES

W1 bins for Overreactors

Underreactors
1 2 3

W1 0.14 0.39*** 0.53*** 0.97***

W2 0.03 0.11 0.51*** 0.64***

W3 0.01 -0.18 0.20 0.36**

B(3, 0) -0.32*** -0.36*** -0.34*** 0.30***

# Series 4 4 4 3

(b) SPF: Correction Speed

W1 bins for Overreactors W1 bins for Underreactors

1 2 3 4 1 2 3 4

W1 -0.01 0.77*** 0.99*** 1.55*** 0.47*** 0.76*** 1.02*** 1.74***

W2 -0.15 0.75*** 0.87*** 1.58*** 0.32** 0.58*** 0.86*** 1.55***

W3 -0.01 0.65*** 0.76*** 1.49*** 0.18 0.43*** 0.76*** 1.40***

W4 -0.00 0.59*** 0.66*** 1.31*** 0.11 0.33*** 0.61*** 1.07***

W5 0.13 0.48*** 0.47*** 0.83*** 0.05 0.32*** 0.50*** 0.75**

W6 -0.08 0.20*** 0.24*** 0.25** 0.13 0.21** 0.27*** 0.09

B(6, 0) -0.27*** -0.61*** -0.87*** -0.38*** 0.51*** 0.73*** 0.88*** 0.25**

% Forecasters 16 16 16 16 9 10 8 9

(c) IBES: Correction Speed

Table 4: Series-level Deviations from FIRE This table summarizes the size and correction of
deviations from FIRE across series in the SPF and IBES. In Table 4a, we estimate series-level BIRs and
sort series into one-hundred different groups based on the estimated B(n, 0). Within each group, we then
estimate a pooled BIR and report summary statistics on the resulting B(n, 0). In Table 4b, we first sort
series in SPF based on whether their B(n, 0) is negative (overreactors) or positive (underreactors). Within
the set of overreactors, we further sort series into terciles on W (n, 1) = B(n, 1)/B(n, 0). Within each group,
we then estimate a pooled BIR and report the resulting W (n, j) = B(n, j)/B(n, 0), a measure of correction
speed. Because there is a limited number of series that exhibit underreaction in SPF (B(n, 0) > 0), we do
not sort further and instead report the estimated W (n, j) when pooling across all series that underreact.
Table 4c repeats this exercise for series in IBES, separately dividing series that overreact or underreact into
quartiles based on W (n, j). In all tables n = 3 for SPF and n = 6 for IBES.



Data N mean p10 p25 p50 p75 p90 P(B(n, 0) < 0)

SPF 189 -0.28 -1.14 -0.67 -0.37 0.05 0.50 73

IBES 955 -0.27 -1.44 -0.73 -0.27 0.23 0.89 65

(a) Distribution of Initial Reaction in SPF and IBES

W1 bins for Overreactors W1 bins for Underreactors

1 2 3 1 2

W1 -0.27 0.55*** 1.15*** 0.63*** 1.44***

W2 -0.10 0.46*** 0.92*** 0.57*** 1.28***

W3 -0.11 0.27** 0.41*** 0.24 1.29***

B(3, 0) -0.31*** -0.61*** -0.55*** 0.30*** 0.36***

% Forecasters 24 24 24 14 13

(b) SPF: Correction Speed

W1 bins for Overreactors W1 bins for Underreactors

1 2 3 4 1 2 3 4

W1 0.20** 0.76*** 1.03*** 1.48*** 0.17 0.68*** 0.99*** 1.57***

W2 0.17* 0.65*** 0.96*** 1.58*** -0.03 0.54*** 0.94*** 1.45***

W3 0.20** 0.49*** 0.84*** 1.64*** -0.09 0.42*** 0.83*** 1.23***

W4 0.23*** 0.43*** 0.70*** 1.39*** -0.27 0.19*** 0.70*** 1.03***

W5 0.26*** 0.27*** 0.54*** 1.05*** -0.15 0.17** 0.64*** 0.82***

W6 0.08 0.16*** 0.19*** 0.33*** 0.00 0.15** 0.28*** 0.24

B(6, 0) -0.37*** -0.69*** -0.81*** -0.35*** 0.32*** 0.61*** 0.66*** 0.29***

% Forecasters 16 16 16 16 9 9 9 9

(c) IBES: Correction Speed

Table 5: Forecaster-level Deviations from FIRE This table summarizes the size and correction of
deviations from FIRE across forecasters in the SPF and IBES. In Table 4a, we estimate forecaster-level BIRs
and sort forecasters into one-hundred different groups based on the estimated B(n, 0). Within each group,
we then estimate a pooled BIR and report summary statistics on the resulting B(n, 0). In Table 4b, we first
sort forecasters in SPF based on whether their B(n, 0) is negative (overreactors) or positive (underreactors).
Within the set of overreactors, we further sort forecasters into terciles on W (n, 1) = B(n, 1)/B(n, 0). Within
each group, we then estimate a pooled BIR and report the resulting W (n, j) = B(n, j)/B(n, 0), a measure of
correction speed. Table 4c repeats this exercise for forecasters in IBES, separately dividing forecasters that
overreact or underreact into quartiles based on W (n, j). In all tables n = 3 for SPF and n = 6 for IBES.



A Linear Autonomous Forecasts and Leading Behavioral Models

We now show that many popular models of belief formation produce forecasts that a part

of the linear autonomous class.

• Adaptive Expectations of Cagan (1956) and Nerlove (1958) model forecasts as:

Ft[yt+1] = δyt + (1− δ)Ft−1[yt+1] .

If yt is an AR(1) process with the autocorrelation coefficient ψ, then yt = ψ−1Et[yt+1].

In this case, it is straightforward to show that:

Ft[yt+1] =
∞∑
τ=0

(1− δ)τδψ−1Et−τ [yt+1] ,

which clearly satisfies the conditions of Definition 2.

• Extrapolative Expectations (Barberis et al., 2015b; Hirshleifer et al., 2015) take

the form:

Ft[yt+1] = yt + ϕ(yt − yt−1) (20)

Assuming yt follows an AR(1) process with coefficient ψ as above, we can rewrite

extrapolative expectations as

Ft[yt+1] = ψ−1Et[yt+1] + ϕ(ψ−1Et[yt+1]− ψ−2Et−1[yt+1]), (21)

which again satisfies the conditions of Definition 2.



• Noisy Information/Sticky Expectations (e.g., Giannoni and Woodford (2003);

Coibion and Gorodnichenko (2012)) postulate

Ft[yt+n] = (1− λ)Et[yt+n] + λFt−1[yt+n] + εt(n).

Iterating this backward yields:

Ft[yt+n] =
∞∑
τ=0

λτ (1− λ)Et−τ [yt+n] + noiset . (22)

• Diagnostic Expectations of Bordalo et al. (2020b) postulate that

Ft[yt+n] = Et[yt+n] + θ(Et[yt+n]− Et−J [yt+n]). (23)

for some lag J ≥ 1, which is clearly a special case of Definition 2.

• Smooth Diagnostic Expectations introduced in (Bianchi et al., 2024a) postulate

that

Ft[yt+n] = Et[yt+n] + δ(n)(Et[yt+n]− Et−J [yt+n]). (24)

for some lag J ≥ 1, which is clearly a special case of Definition 2. (Bianchi et al.,

2024a) provide a micro-foundation for the dependence of δ(n) on n, linking it to the

volatility of the underlying stochastic process.

• Mis-estimation of persistence. As described in Gabaix (2019), the agent anchors

the persistence parameter ψ to a default level of persistence, ψ∗,

ψ̂ = mψ + (1−m)ψ∗, (25)



where m ∈ (0, 1) controls the degree of irrationality. Assuming that

yt+1 = ψyt + εt+1 (26)

holds, we get

Ft[yt+n] = (ψ̂/ψ)n−1Et[yt+n], (27)

which is clearly a special case of Definition 2.

• Limited Information Processing Capacity. Afrouzi et al. (2023) develop a model

of limited information capacity that generates deviations from FIRE with the strength

of the deviations depending on the persistence ψ of the process as well as the forecasting

horizon. They consider a simple AR(1) model,

yt = (1− ρ)µ + ρyt−1 + εt, (28)

so that

Et[yt+n] = ρnyt + (1− ρn)µ (29)

and show that, with limited information capacity,

Ft[yt+n] = ρj(δ1(n)yt + δ2(n)µ), (30)

where the dependence of δ1, δ2 on n is subtle and non-linear. We discuss this model

below. Here, we only note that it obviously fits Definition 2:

Ft[yt+n] = ρn(δ1(n)yt + δ2(n)µ) = δ1(n)Et[yt+n] + µ̂(n) (31)



for some constants µ̂(n).

B Proofs for BIR Theory

Proposition 7 Under the hypotheses of Proposition 2,

Cov(yt+n, Ft[yt+n]) = ρ2nσ2
q (1 + δ(n)) > 0

Cov(Ft+j[yt+n], Ft[yt+n]) = ρ2nσ2
ε1j=0 + ρ2n σ2

q (1 + δ(n) + δ(n− j)Γ(j) + δ(n− j)δ(n)Ξ(j)) ,

(32)

where

Ξ(j) =

j∑
τ=0

κ(τ) +
∞∑

τ1=1

∞∑
τ2=0

κ(τ1 + j)κ(τ2)ρ
2max(τ1,τ2) (33)

and

Γ(j) =

j∑
τ=0

κ(τ) +
∞∑
τ=1

κ(τ + j)ρ2τ (34)

Proof of Propositions 7 and 2. We have

Et[Ft+j[yt+n]] = Et[
∞∑
τ=0

γ(n− j, τ)ρn+τ−jqt+j−τ ]

=
∞∑

τ=j+1

γ(n− j, τ)ρn+τ−jqt+j−τ

+ qt

j∑
τ=0

γ(n− j, τ)ρn

= qt

j∑
τ=0

γ(n− j, τ)ρn +
∞∑
τ=1

γ(n− j, τ + j)qt−τρ
n+τ

(35)



and

Et[yt+n − Ft+j[yt+n]] = Et[yt+n]− Et[Ft+j[yt+n]]

= ρnqt − qt

j∑
τ=0

γ(n− j, τ)ρn −
∞∑
τ=1

γ(n− j, τ + j)qt−τρ
n+τ

= ρnqt

(
1−

j∑
τ=0

γ(n− j, τ)

)
−

∞∑
τ=1

γ(n− j, τ + j)qt−τρ
n+τ

(36)

and hence

Cov(Et[yt+n − Ft+j[yt+n]], Ft[yt+n]− Ft−1[yt+n])

= Cov(Et[yt+n], Ft[yt+n]) − Cov(Et[yt+n], Ft−1[yt+n])

− Cov(Ft+j[yt+n], Ft[yt+n]) + Cov(Ft+j[yt+n], Ft−1[yt+n]) .

(37)

We have

Cov(yt+n, Ft[yt+n]) = Cov(Et[yt+n], Ft[yt+n]) = ρ2nCov(qt, k0(n)qt + δ(n)
∞∑
τ=0

κ(τ)ρτqt−τ )

= ρ2nσ2
q (k0(n) + δ(n)Γ)

(38)

and, similarly, by stationarity,

Cov(yt+n, Ft−1[yt+n]) = Cov(yt+n+1, Ft[yt+n+1]) = ρ2(n+1)(k0(n+ 1) + δ(n+ 1)Γ) . (39)



Then,

Cov(Ft+j[yt+n], Ft[yt+n]) = σ2
ε(n)1j=0

+ Cov(Et[Ft+j[yt+n]], Ft[yt+n])

=︸︷︷︸
(35)

σ2
ε(n)1j=0

+ Cov(qt

j∑
τ=0

γ(n− j, τ)ρn

+
∞∑
τ=1

γ(n− j, τ + j)qt−τρ
n+τ ,

∞∑
τ=0

γ(n, τ)qt−τρ
n+τ )

= σ2
ε(n)1j=0

+ Cov(qtk0(n− j)ρn + qtδ(n− j)

j∑
τ=0

κ(τ)ρn

+ δ(n− j)
∞∑
τ=1

κ(τ + j)qt−τρ
n+τ , ρnk0(n)qt + δ(n)

∞∑
τ=0

κ(τ)qt−τρ
n+τ )

= σ2
ε(n)1j=0 + ρ2nσ2

q (k0(n)k0(n− j) + k0(n− j)δ(n)Γ + k0(n)δ(n− j)Γ(j))

+ ρ2nδ(n− j)δ(n)σ2
q

j∑
τ=0

κ(τ)Γ

+ ρ2nδ(n− j)δ(n)σ2
q

∞∑
τ1=1

∞∑
τ2=0

κ(τ1 + j)κ(τ2)ρ
2max(τ1,τ2)

= σ2
ε(n)1j=0 + ρ2nσ2

q (1 + δ(n)Γ + δ(n− j)Γ(j)) + ρ2nδ(n− j)δ(n)σ2
qΞ(j)

(40)

where we have defined

Γ(j) =

j∑
τ=0

κ(τ) +
∞∑
τ=1

κ(τ + j)ρ2τ (41)



Thus, by stationarity,

Cov(Ft+j[yt+n], Ft−1[yt+n]) = Cov(Ft+j+1[yt+n+1], Ft[yt+n+1])

= ρ2(n+1)σ2
q (1 + δ(n+ 1)Γ + δ(n− j)Γ(j + 1)) + ρ2(n+1)δ(n− j)δ(n+ 1)σ2

qΞ(j + 1)
(42)

Thus,

Cov(yt+n − Ft+j[yt+n], Ft[yt+n]− Ft−1[yt+n]) = −σ2
ε(n)1j=0

+ ρ2nσ2
q ((1− ρ2) + Γ(δ(n)− ρ2δ(n+ 1)))

− ρ2n σ2
q ((1− ρ2) + (δ(n)Γ + δ(n− j)Γ(j)− ρ2(δ(n+ 1)Γ + δ(n− j)Γ(j + 1))))

− ρ2n σ2
q δ(n− j)(δ(n)Ξ(j) − ρ2δ(n+ 1)Ξ(j + 1))

= −σ2
ε(n)1j=0

− ρ2n σ2
qδ(n− j)

[
(Γ(j)− ρ2Γ(j + 1))

+ (δ(n)Ξ(j) − ρ2δ(n+ 1)Ξ(j + 1))
]

(43)

□

Proof of Proposition 4. The claim follows directly from Proposition 2. □

Corollary 8 (BIRs in (Smooth) Diagnostic Expectations) Suppose that

Ft[yt+n] = Et[yt+n] + θ(n)(Et[yt+n]− Et−J [yt+n]). (44)

Then,

Ξ(j) = (1− ρ2J)−1(1− (1− ρ2J)−1(ρ2(J−j) − ρ2J))1j<J

Γ(j) = (1− ρ2J)−1(1− ρ2(J−j))1j<J

(45)



and

κ(τ) = (1− ρ2J)−1


1, if τ = 0

−1, if τ = J

0, if τ ̸∈ {0, J}

and δ(n) = θ(n)(1− ρ2J).

Proof of Corollaries 3 and 8. We perform the proof directly for smooth diagnostic ex-

pectations.

We have that κ(τ) is given by:

κ(τ) = (1− ρ2J)−1


1, if τ = 0

−1, if τ = J

0, if τ ̸∈ {0, J}

and δ(n) = θ(1− ρ2J). Then,

γ(n, τ) = 1τ=0 + δ(n)κ(τ) . (46)



Then,

Ξ(j) =

j∑
τ=0

κ(τ) +
∞∑

τ1=1

∞∑
τ2=0

κ(τ1 + j)κ(τ2)ρ
2max(τ1,τ2)

= (1− ρ2J)−11j<J − (1− ρ2J)−2

∞∑
τ1=1

1τ1≥11τ1+j=J(ρ
2max(τ1,0) − ρ2max(τ1,J))

= (1− ρ2J)−11j<J − (1− ρ2J)−2(ρ2(J−j) − ρ2J)1j<J

= (1− ρ2J)−1(1− (1− ρ2J)−1(ρ2(J−j) − ρ2J))1j<J

Γ(j) =

j∑
τ=0

κ(τ) +
∞∑
τ=1

κ(τ + j)ρ2τ

= (1− ρ2J)−1(1− ρ2(J−j))1j<J

(47)

□

Corollary 9 For J > 1, we have

B(n, j) = const


1− ρ2, j ≤ J − 1

0, j > J − 1

(48)

where

const = −θ(1 + θ)((1 + ρ2)DMZ − 2ρ2(1 + θ(1− ρ2J) + θ(1 + θ)(1− ρ2(J−1))))−1 (49)

with

DMZ = 1 + 2θ(1− ρ2J) + θ2(1− ρ2J) (50)



Proof of Corollary 9. Recall that

B(n, j) =
A(n, j)− ρ2A(n+ 1, j + 1)

D(n)
, (51)

where

A(n, j) = −δ(n− j)
[
Γ(j) + δ(n)Ξ(j)

]
D(n) = DMZ(n) + ρ2DMZ(n+ 1)− 2ρ2(1 + δ(n+ 1)

+ δ(n)Γ(1) + δ(n)δ(n+ 1)Ξ(1))

DMZ(n) = 1 + 2δ(n) + δ(n)2Ξ(0)

(52)

Thus, for J > 1, we have

A(n, j) = −θ(1 + θ)[1− ρ2(J−j)]1j<J

DMZ = 1 + 2θ(1− ρ2J) + θ2(1− ρ2J)

D(n) = (1 + ρ2)DMZ − 2ρ2(1 + θ(1− ρ2J) + θ(1 + θ)(1− ρ2(J−1)))

(53)

□

C Extrapolative Expectations

Recall that, in the main text (Corollary 6), we study simple extrapolative expectations

in the following setting: The true data generating process has a constant mean so that

yt+1 = ȳ + εt+1, where εt+1 is i.i.d., while forecasts are assumed to evolve according to:

Ft[yt+1] = µt

µt+1 = (1− ρ− ρ̃)µ̄ + ρµt + ρ̃yt+1,
(54)



where ρ̃ modulates the degree of extrapolation from the most recent realization of y, ρ

controls the impact of extrapolation made from the past.

In this appendix, we introduce an extension of the model of extrapolative expectations

studied in the main text, allowing for persistence in the underlying process.

Corollary 10 Suppose that Et[yt+1] = ȳ + ρy(yt − ȳ), whereas the agent believes

Ft[yt+1] = µt

µt+1 = (1− ρ− ρ̃)µ̄ + ρµt + ρ̃yt+1

Ft[µt+1] = (1− ρ− ρ̃)µ̄ + (ρ+ ρ̃)µt ,

(55)

The model is linear, autonomous, and separable, with

δ(n) =
ρ̃

ρ+ ρ̃

1

1− ρρy
((ρ+ ρ̃)/ρy)

n, κ(τ) = (1− ρρy)(ρ/ρy)
τ (56)

where const makes sure that Γ(0) = 1. We have

B(n, j) =
A(n, j)− ρ2A(n+ 1, j + 1)

D(n)
, (57)

where

D(n) = DMZ(n) + ρ2DMZ(n+ 1)− 2ρ2(1 + δ(n+ 1)

+ δ(n)Γ(1) + δ(n)δ(n+ 1)Ξ(1))

DMZ(n) = 1 + 2δ(n) + δ(n)2Ξ(0)

(58)



A(n, j) = δ(n− j)[Γ(j) + δ(n)Ξ(j)]

Ξ(j) =
1− ρρy

1− (ρ/ρy)
+ (ρ/ρy)

j+1(1− ρρy)
ρ2y − 1 + ρ3ρy

(1− ρ2)(1− (ρ/ρy))

Γ(j) =
1− ρρy
1− ρ/ρy

+ (ρ/ρy)
j+1

ρ2y − 1

(1− ρ/ρy)

(59)

Proof of Corollaries 10 and 6. We have

Ft[yt+n] = Ft[µt+n−1] = cost + (ρ+ ρ̃)n−1µt (60)

while

µt = (1− ρ− ρ̃)µ̄ + ρµt−1 + ρ̃ρ−1
y (Et[yt+1]− ȳ) = const +

∞∑
τ=0

ρτ ρ̃ρ−1
y Et−τ [yt−τ+1]

= ˜const +
∞∑
τ=0

ρτρ−(τ+n−1)
y ρ̃ρ−1

y Et−τ [yt+n]

(61)

Recall that we look for a representation

γ(n, τ) = k01τ=0 + δ(n)κ(τ), (62)

where, by the above,

γ(n, τ) = (ρ+ ρ̃)n−1ρτρ−(τ+n−1)
y ρ̃ρ−1

y . (63)

Thus, k0 = 0. Define

κ(τ) = (1− ρρy)(ρ/ρy)
τ . (64)



Then,

∞∑
τ=0

κ(τ)ρ2τy = 1, (65)

and we can define

δ(n) =
γ(n, τ)

κ(τ)
=

(ρ+ ρ̃)n−1ρτρ
−(τ+n−1)
y ρ̃ρ−1

y

(1− ρρy)(ρ/ρy)τ

=
(ρ+ ρ̃)n−1ρ−n

y ρ̃

(1− ρρy)

(66)



Let b = (ρ/ρy). Then, we have

Ξ(j) =

j∑
τ=0

κ(τ) +
∞∑

τ1=1

∞∑
τ2=0

κ(τ1 + j)κ(τ2)ρ
2max(τ1,τ2)
y

= (1− ρρy)

j∑
τ=0

bτ + (1− ρρy)
2

∞∑
τ1=1

∞∑
τ2=0

bτ1+j+τ2ρ2max(τ1,τ2)
y

= (1− ρρy)
1− bj+1

1− b

+ (1− ρρy)
2

∞∑
τ1=1

τ1∑
τ2=0

bτ1+j+τ2ρ2τ1y + (1− ρρy)
2

∞∑
τ1=1

∞∑
τ2=τ1+1

bτ1+j+τ2ρ2τ2y

= (1− ρρy)
1− bj+1

1− b

+ (1− ρρy)
2

∞∑
τ1=1

bj+τ1ρ2τ1y

1− bτ1+1

1− b
+ (1− ρρy)

2

∞∑
τ1=1

bj+τ1
(bρ2y)

τ1+1

1− bρ2y

= (1− ρρy)
1− bj+1

1− b

+ (1− ρρy)
2
bj+1ρ2y
1− b

(
1

1− bρ2y
− b2

1− b2ρ2y

)
+ (1− ρρy)

2
bj+3ρ4y

(1− b2ρ2y)(1− bρ2y)

=
1− ρρy
1− b

+ bj+1
(
− 1− ρρy

1− b
+ (1− ρρy)

2
ρ2y

1− b

(
1

1− bρ2y
− b2

1− b2ρ2y

)
+ (1− ρρy)

2
b2ρ4y

(1− b2ρ2y)(1− bρ2y)

)
=

1− ρρy
1− (ρ/ρy)

+ (ρ/ρy)
j+1
(
− 1− ρρy

1− (ρ/ρy)
+ (1− ρρy)

2
ρ2y

1− (ρ/ρy)

(
1− ρ2 − (1− ρρy)(ρ/ρy)

2

(1− ρρy)(1− ρ2)

)
+ (1− ρρy)

2
ρ2ρ2y

(1− ρ2)(1− ρρy)

)
=

1− ρρy
1− (ρ/ρy)

+ (ρ/ρy)
j+1(1− ρρy)

ρ2y − 1 + ρ3ρy

(1− ρ2)(1− (ρ/ρy))

(67)



Similarly,

Γ(j) =

j∑
τ=0

κ(τ) +
∞∑
τ=1

κ(τ + j)ρ2τy

= (1− ρρy)
1− bj+1

1− b
+ (1− ρρy)

∞∑
τ=1

bτ+jρ2τy

= (1− ρρy)
1− (ρ/ρy)

j+1

1− ρ/ρy
+ (1− ρρy)(ρ/ρy)

j+1ρ2y
1

1− ρρy

=
1− ρρy
1− ρ/ρy

+ (ρ/ρy)
j+1

ρ2y − 1

(1− ρ/ρy)

(68)

Thus,

A(n, j) = δ(n− j)[Γ(j) + δ(n)Ξ(j)]

=
ρ̃

ρ+ ρ̃

1

1− ρρy
((ρ+ ρ̃)/ρy)

n−j

[
1− ρρy
1− ρ/ρy

+ (ρ/ρy)
j+1

ρ2y − 1

(1− ρ/ρy)
+

ρ̃

ρ+ ρ̃

1

1− ρρy
((ρ+ ρ̃)/ρy)

n
( 1− ρρy
1− (ρ/ρy)

+ (ρ/ρy)
j+1(1− ρρy)

ρ2y − 1 + ρ3ρy

(1− ρ2)(1− (ρ/ρy))

)]
(69)

B(n, j) =
A(n, j)− ρ2A(n+ 1, j + 1)

D(n)
, (70)

where

D(n) = DMZ(n) + ρ2DMZ(n+ 1)− 2ρ2(1 + δ(n+ 1)

+ δ(n)Γ(1) + δ(n)δ(n+ 1)Ξ(1))

DMZ(n) = 1 + 2δ(n) + δ(n)2Ξ(0)

(71)



In the simpler case of ρy = 0, we have

Ft[yt+n] = (ρ+ ρ̃)n−1µt, µt = const +
∞∑
τ=0

ρτ ρ̃yt−τ (72)

while

Et[µt+1] = const + ρµt (73)

Et[Ft+j[yt+n]] = const + (ρ+ ρ̃)n−1−jρjµt

Et[yt+n − Ft+j[yt+n]] = µ̄ − const − (ρ+ ρ̃)n−1−jρjµt

Cov(Et[yt+n − Ft+j[yt+n]], Ft[yt+n]− Ft−1[yt+n])

= Cov(−(ρ+ ρ̃)n−1−jρjµt, (ρ+ ρ̃)n−1µt − (ρ+ ρ̃)nµt−1)

= −(ρ+ ρ̃)2n−2−jρjVar[µ] + (ρ+ ρ̃)2n−1−jρj+1Var[µ]

Var[Ft[yt+n]− Ft−1[yt+n]] = Var[µ]((ρ+ ρ̃)2(n−1) + (ρ+ ρ̃)2n − 2(ρ+ ρ̃)2n−1ρ)

(74)

so that

B(n, j) =
−(ρ+ ρ̃)2n−2−jρj + (ρ+ ρ̃)2n−1−jρj+1

(ρ+ ρ̃)2(n−1) + (ρ+ ρ̃)2n − 2(ρ+ ρ̃)2n−1ρ
= ρj

ρ(ρ+ ρ̃)− 1

(ρ+ ρ̃)j(1 + (ρ+ ρ̃)2 − 2ρ(ρ+ ρ̃))

(75)

□

Proof of Corollary 5. Recall that

B(n, j) =
A(n, j)− ρ2A(n+ 1, j + 1)

D(n)
, (76)



where

A(n, j) = −δ(n− j)
[
Γ(j) + δ(n)Ξ(j)

]
D(n) = DMZ(n) + ρ2DMZ(n+ 1)− 2ρ2(1 + δ(n+ 1)

+ δ(n)Γ(1) + δ(n)δ(n+ 1)Ξ(1))

DMZ(n) = 1 + 2δ(n) + δ(n)2Ξ(0)

(77)

Thus, for J > 1, we have

A(n, j) = −θ(1 + θ)[1− ρ2(J−j)]1j<J

DMZ = 1 + 2θ(1− ρ2J) + θ2(1− ρ2J)

D(n) = (1 + ρ2)DMZ − 2ρ2(1 + θ(1− ρ2J) + θ(1 + θ)(1− ρ2(J−1)))

(78)

where

Ξ(j) =

j∑
τ=0

κ(τ) +
∞∑

τ1=1

∞∑
τ2=0

κ(τ1 + j)κ(τ2)ρ
2max(τ1,τ2)

Γ(j) =

j∑
τ=0

κ(τ) +
∞∑
τ=1

κ(τ + j)ρ2τ

(79)

where κ(τ) = δ0,τ , so that

Ξ(j) = 1

Γ(j) = 1 .
(80)

The claim follows. □
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