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Abstract

We develop a credit market competition model that distinguishes between the information
span (breadth) and signal precision (quality), capturing the emerging trend in fintech/non-bank
lending where traditionally subjective (“soft”) information becomes more objective and concrete
(“hard”). In a model with multidimensional fundamentals, two banks equipped with similar
data processing systems possess hard signals about the borrower’s hard fundamentals, and the
specialized bank, who further interacts with the borrower, can also assess the borrower’s soft
fundamentals. Increasing the span of the hard information hardens soft information, enabling
the data processing systems of both lenders to evaluate some of the borrower’s soft fundamentals.
We show that hardening soft information levels the playing field for the non-specialized bank by
reducing its winner’s curse. In contrast, increasing the precision or correlation of hard signals
often strengthens the informational advantage of the specialized bank.
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As a crucial intermediary sector in modern economies, commercial banks serve as the main
conduit between savers and creditworthy borrowers, leveraging a broad spectrum of information in-
cluding customer financial data, collateral assessments, market and economic trends, and advanced
data analytics. One of the recent technology developments enhancing the quality of information
available to lenders and improving their screening capabilities is big data technology. This innova-
tion transforms qualitative, subjective assessments into quantifiable, objective metrics—a process
known as “hardening soft information” (Liberti and Petersen, 2019; Hardik, 2023). In this paper,
we are interested in how the hardening of soft information affects credit market equilibrium and
what differentiates this trend from previous technological innovations.

The farming industry provides an illustrative example of how technology can transform tradi-
tional lending practices. In the past, farm loans required extensive in-person visits from specialized
loan officers, who leveraged their expertise to evaluate the borrower’s abilities and farm infrastruc-
ture quality. This hands-on approach was necessary to evaluate these “soft” fundamentals, as the
officers needed to directly observe factors like crop rotation techniques, pest management strategies,
and barn conditions to accurately assess loan risks. Today, satellite imaging and AI-enabled data
analysis allow lenders to gather some of these insights remotely via computerized “hard” data. Al-
though on-site assessments still provide important insight, new technologies have expanded access
to farm data, demonstrating how technology can expand the information span of “hard signals”
without completely disrupting specialized but “soft” human expertise.

As the example above highlights, the remarkable recent and ongoing technological advance-
ments have the potential to alter the information available to participants in the credit market
and significantly impact the industrial landscape of the banking sector. We offer an economic
framework to analyze the welfare implications of this technological advancement by incorporating
a novel information structure into an otherwise conventional credit market competition model. In
the model, the quality of the borrower depends on multiple fundamental states, which broadly be-
long to two categories—“hard” states and “soft” states as distinguished by the type of information
technology capable of assessing these states. Before making lending decisions, lenders can access
private signals about these two categories. We refer to a signal that reflects the borrower’s hard
states as a “hard-information-based signal” or simply a “hard signal,” and likewise, a signal that
reflects the borrower’s soft states as a “soft-information-based signal” or a “soft signal.” Crucially,
hard states might overlap with soft states, so hard and soft signals might be correlated. This corre-
lation and its potential implications for credit market competition are the main innovation relative
to the model in our companion paper Blickle, He, Huang, and Parlatore (2024).

Our framework highlights the difference between the breadth (information span) and quality
(signal precision) of data. When hard states cover more fundamental states that are critical to the
borrower’s quality, the information span of the hard signal expands. This expansion captures the
core idea of “hardening soft information” in the context of credit market competition. In contrast,
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increasing the precision of hard signal improves the accuracy in the assessment of the existing hard
characteristics. Although both of these improvements are associated with technological advances
that reduce the overall uncertainty faced by lenders, we show that changes in the span and the
precision of hard information have vastly different impacts on credit market outcomes.

In our model of credit market competition, as we outline in Section 1, a specialized bank
competes with a non-specialized bank. Each lender has a private hard signal about the hard
fundamental states that stems from data processing. Additionally, the specialized lender has access
to a private soft signal about the borrower’s soft states. We assume that the hard signal is binary and
decisive in that each lender makes an offer only if it receives a positive realization. The soft signal—
which differentiates our paper from existing models such as Broecker (1990) and Marquez (2002)—is
continuous and guides the fine-tuned interest rate offering of the specialized bank. In addition to
analytical convenience, this loan-making rule of the specialized bank matches the observed lending
practices well. Essentially, in our model, the specialized bank acquires two signals, one being
“principal” while the other being “supplementary.” The former determines whether to lend and the
latter affects the detailed pricing terms.1

Section 2 fully characterizes the competitive credit market equilibrium with specialized lending
in closed form. As in Blickle, He, Huang, and Parlatore (2024), our model has a unique equilibrium,
which can fall into two distinct categories depending on whether the non-specialized bank makes
zero profits. In the “zero-weak” equilibrium, the winner’s curse faced by the non-specialized “weak”
bank causes it to randomly withdraw from competition upon receiving a positive hard signal and
earn zero profits. In the “positive-weak” equilibrium, the Winner’s Curse is less severe so the non-
specialized weak bank always participates upon a positive hard signal and earns positive profits.

Our main analysis in Section 3 examines how the span of hard information affects the equilib-
rium in the credit market. In our model, the information technology available to lenders affects
their screening and their beliefs about the competitor’s available information (through strategic
considerations), which determines the severity of the winner’s curse. In general, an expansion in
the information span of the hard signal reduces Type II errors (making bad loans) from hard-
information-based screening for both specialized and non-specialized lenders. This economic force,
however, is stronger for the non-specialized lender who now learns (partially) about its specialized
opponent’s soft signal. Put differently, a greater span of hard information increases the overlap
between hard and soft states, thereby leveling the playing field by reducing the winner’s curse
faced by the non-specialized bank due to the specialized opponent’s soft signal. As a result, the
non-specialized lender starts making positive profits when the information span is sufficiently large.

As one of the main results of the paper, we contrast an increase in the span of hard information
with two other types of information technology advancement: an increase in the precision of each

1Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal
serves the role of internal ratings (of borrowers who are qualified for credit).
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hard signal and an increase in the correlation between the two hard signals. These technological
improvements improve the overall screening ability of banks, but affect competition in the credit
market differently. We show that while an increase in the span of hard information levels the playing
field for the non-specialized bank, an increase in the precision of hard signal or the correlation of
hard private signals amplifies the informational edge of the specialized bank, especially when the
hard signal is sufficiently informative.

Intuitively, there are two effects that differentiate broader versus more precise hard information.
The first effect pertains the event in which Bank B receives a positive hard signal while Bank A

receives a negative one. Given the symmetric structure of the hard signals, a disagreement in
their realization has no informational content. Therefore Bank B can potentially profit in such
scenarios when it is the one making an offer and winning the borrower. While increases in the span
of information increase the likelihood of this disagreement event, a higher hard signal precision
decreases such profitable opportunities for Bank B as the two lenders’ hard signals become more
correlated.

The second effect regards the soft characteristics that Bank B is uninformed about but can par-
tially infer when both banks receive positive hard signals. From Bank B’s perspective, an increase
in the span of hard information reduces the residual uncertainty about the soft fundamental. In
contrast, as discussed above, an increase in the precision of hard information raises the likelihood
that both lenders receive favorable hard signals and compete. This means that Bank B suffers
more frequently from the winner’s curse as these residual soft fundamentals can only be assessed
by the specialized Bank A through its soft signal.

It is also worth highlighting that these distinctions emerge from our examination of credit
market competition with specialized lending, which is a practically relevant setting demonstrated by
Blickle, He, Huang, and Parlatore (2024).2 Both information precision and information span affect
the posteriors of some fundamentals that each lender would like to learn, but they have drastically
different implications on the posterior distribution of the opponent’s private information especially
when both lenders are asymmetrically informed. Improving the hard signal’s precision allows both
lenders to have a more precise evaluation of borrower quality, while enlarging the information span
provides the non-specialized lender direct insights into its opponent’s pricing strategy: the former
tends to reinforce the position of specialized lender, while the latter “levels the playing field.”

Why is it important to differentiate between the various aspects of information technologies?
We stress that the recent significant advancement in information technology should have improved
the hard-information-based screening technology for both types of lender equally; specialized and
established banks can adopt these technologies just as effectively as non-specialized banks and
new fintech challengers. However, the fast-growing empirical literature on fintechs (see, e.g. Berg,

2Blickle, He, Huang, and Parlatore (2024) show that banks with asymmetric private information are needed to
match the empirical patterns of a lower loan pricing and lower non-default rate among loans granted by specialized
lenders.
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Fuster, and Puri, 2022) seems to suggest that new technologies have helped relatively weaker
(fintech) lenders catch up, intensifying competition in the credit market. Building a model with
asymmetric lenders but symmetric technological improvement, our theory clarifies that extending
the information span, rather than the mere improvement in the precision of existing signals, can
deliver the observed empirical patterns in a robust way. As elucidated in our opening motivating
example of loans to the farming industry, big data technology empowers non-specialized lenders to
utilize “hardened soft information.”

The process of “hardening soft information,” which expands the span of hard information, has
important implications for the equilibrium credit allocation and the resulting welfare. We formally
prove that total welfare, measured as the expected surplus from projects that are funded, is always
increasing in the span of hard information. Besides, we also show that when the hard signal
precision is relatively low, the specialized bank’s profits could also increase in the parameter range
of positive-weak equilibrium. This highlights the modelling feature that information span reflects
the improvement of information technology in the entire banking industry, which benefits both
specialized and non-specialized lenders.

Throughout the paper, we model the hard information technology as generating one binary
hard signal from hard fundamental characteristics that may expand. As an extension of the model,
we consider an alternative way of modeling the hardening of soft information by introducing an ad-
ditional signal on hardened soft fundamentals. We analytically show that this alternative modeling
delivers similar economic implications to our baseline model.

Literature Review

Lending market competition and common-value auctions. Our paper is built on Broecker (1990)
which studies lending market competition with screening tests with symmetric lenders (i.e., with
the same screening abilities). Hauswald and Marquez (2003) study the competition between an
inside bank that can conduct credit screenings and an outside bank without such access. He, Huang,
and Zhou (2023) consider competition between asymmetric lenders with different screening abilities
under open banking when borrowers control access to data, and Goldstein, Huang, and Yang (2022)
highlight the endogenous response from banks’ liability side once the incumbent bank’s borrower
data become open to a challenger bank, where maturity transformation of using short-term funding
to support long-term loans plays an important role. Asymmetric credit market competition can
also arise naturally from the bank-customer relationship, since a bank knows its existing customers
better than a new competitor does.3 In these models, for analytical tractability it is often assumed
that private screening yields a binary signal and lenders participate in bidding only following the
positive signal realization.

3This idea was explored by a two-period model in Sharpe (1990) where asymmetric competition arises in the
second period (with the corrected analysis of a mixed-strategy equilibrium offered by Von Thadden (2004)). A
similar analysis is present in Rajan (1992).
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Building on the framework established in our companion paper Blickle, He, Huang, and Parla-
tore (2024), our paper considers competition between asymmetric lenders with multiple sources of
information. In both papers a non-specialized lender has access to a private “hard” signal about
the borrower’s credit quality, while the specialized lender receives not only an independent private
“hard” signal but also a “soft” one, both of which are informative about the borrower’s quality.
The distinction is that in Blickle, He, Huang, and Parlatore (2024), hard (soft) signals reflect in-
dependent borrower characteristics that drive the loan quality. This paper, however, allows these
underlying states to overlap, resulting in correlated hard and soft signals. Naturally, the span
of hard information has a tight link to correlation, which allows us to study its implications of
“hardening soft information” on credit market competition.

In a closely related paper, Karapetyan and Stacescu (2014) argue that sharing borrower’s “hard”
information (say default history) in fact increases the incumbent bank’s incentive to further acquire
“soft” information regarding borrower’s quality.4 Although their model also involves the stronger
bank having more than one private signal, one important difference is that in Karapetyan and
Stacescu (2014) there is always a strict Blackwell ordering of information between two lenders,
simply because the hard information becomes public after sharing. In contrast, conditionally in-
dependent hard signals in our model allow for the possibility of having a profitable weaker lender,
yielding much richer empirical predictions and welfare outcomes.

Specialization in lending. There is a growing literature documenting specialization in bank lending;
the early work includes Acharya, Hasan, and Saunders (2006). Paravisini, Rappoport, and Schnabl
(2023) shows that Peruvian banks specialize their lending across export markets benefiting bor-
rowers who obtain credit from their specialized banks. Based on data for US stress-tested banks,
Blickle, Parlatore, and Saunders (2023) documents that specialization is linked with lower interest
rates and better performance in the industry of specialization, pointing to a strong link between
specialization in lending and informational advantages. Our paper contributes to this literature by
providing a framework that can rationalize these patterns, allowing us to understand the economic
mechanisms behind them and their implications more deeply.

The nature of soft/hard information in bank lending. The existing literature on soft and hard
information (e.g., Stein, 2002; Liberti and Petersen, 2019) emphasizes that the latter is easily
verifiable and hence transferable (within an organization); for instance, Bertomeu and Marinovic
(2016) and Corrao (2023) model “soft” information via a cheap talk game a la Crawford and
Sobel (1982) where the messages are soft and carry no intrinsic meaning themselves.5 Since we do

4In that paper, the hard information that banks are sharing is not that soft information that banks acquire at
a cost. If sharing leads incumbent banks to lose their edge, they should have a stronger incentive to acquire soft
information (which cannot be shared).

5For related empirical studies, see Liberti and Mian (2009), Paravisini and Schoar (2016). Recently, based on
Harte Hanks data, He, Jiang, Xu, and Yin (2023) shows a significant rise in IT investment within the U.S. banking
sector over the past decade, particularly among large banks. They also establish a causal link between communication
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not explicitly model communications within or across banks, whether the information is verifiable
is irrelevant to the core economics that our model aims to capture. However, complementing the
traditional way of modeling hard/soft information which focuses on communication (e.g., Bertomeu
and Marinovic, 2016; Corrao, 2023), our paper highlights the novel concept of “information span”
that is necessary to understand the recent phenomenon where certain soft information becomes
hardened. Furthermore, similar to Karapetyan and Stacescu (2014) where hard information can be
shared, as hard information is transferable and can be analyzed by anyone, once soft information
becomes hardened into verifiable data, it also becomes accessible to nonspecialists. This levels the
playing field for non-specialized lenders, a development that improves welfare in our analysis.

Fintech. Our paper connects to the growing literature on fintech disruption.6 Empirical studies
document the use of alternative data in fintech lending, which is consistent with our emphasis on
the increasing span of hard information.7 In particular, Huang, Zhang, Li, Qiu, Sun, and Wang
(2020) shows that unconventional data from the Alibaba platform, such as business transactions,
customer ratings, and consumption patterns improve credit assessment. Our paper emphasizes that
the recent development of cashless payments increases the scope of firms that could be assessed by
hard information (Ghosh, Vallee, and Zeng, 2022), and perhaps more importantly, the combination
of payments and big data technology enlarges the span of hard information.

1 Model Setup

We consider a credit market competition model with two dates and one good. There are two ex-ante
symmetric lenders (banks), indexed by j ∈ {A, B} and one borrower firm; everyone is risk neutral.

1.1 The Setting

Project. At t = 0, the firm needs to borrow one dollar to invest in a (fixed-scale) risky project
that pays a random cash flow y at t = 1. The cash flow realization y depends on the project’s
quality denoted by θ ∈ {0, 1}. For simplicity, we assume that

y =

1 + r when θ = 1

0 when θ = 0,
(1)

IT investments and banks’ capacity to generate and transmit soft information, which motivates our modeling of the
soft signal as the outcome of interactions with borrowers.

6See Berg, Fuster, and Puri (2022); Vives (2019), e.g. for a review of bank-fintech competition.
7Examples of alternative data include phone device and spelling (Berg, Burg, Gombović, and Puri, 2020), mo-

bile phone logs (Agarwal, Alok, Ghosh, and Gupta, 2020). Along the line of our model with different dimensions
of information, Huang (2023) develops a theoretical framework wherein the importance of information concerning
underlying qualities varies between collateral-backed bank lending and revenue-based fintech lending such as Square.
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where r > 0 is exogenously given so only the good project pays off. We will later refer to r as
the interest rate cap or the return of a good project. The project’s quality θ is the firm’s private
information at t = 0, and the prior probability of a good project is q ≡ P (θ = 1). Later we will use
“project success,” “good project” and/or “good borrower” interchangeably to refer to θ = 1. The
project quality θ is unobservable.

Hard and soft states. The project success θ ∈ {0, 1} depends on two fundamental states, one
being “hard” denoted by θh and the other being “soft” denoted by θs. We assume that both
fundamental states are binary so that θh ∈ {0, 1} and θs ∈ {0, 1}, with

qh ≡ P (θh = 1) , and qs ≡ P (θs = 1) .

Importantly, θh and θs are potentially correlated, and the correlation is related to the span of hard
information technology.

Multi-dimensional fundamental states and information span Following the O-ring theory
of economic development (Kremer, 1993), we model the hard and soft states by a setting with
multi-dimensional fundamental states. As a main contribution of our paper, this offers a novel way
to study the “span” of the information available to banks.

More specifically, suppose that the success of the project θ depends on N characteristics in the
following multiplicative way:

θ =
N∏

n=1
θn =

θh︷ ︸︸ ︷
Nh

h∏
n=1

θn ·
Nh

h +Nh
s∏

n=Nh
h

+1

θn ·
N∏

n=Nh
h

+Nh
s +1

θn

︸ ︷︷ ︸
θs

. (2)

We assume that {θn} follow independent Bernoulli distributions, i.e., θn = 1 with probability
qn ∈ [0, 1] for all n = 1, ..., N ; they capture “(unobservable) characteristics” that are critical to
the ultimate success of the project, such as product quality, market and funding conditions, the
regulatory environment, etc. As shown in (2), the hard state θh covers the first Nh ≡ Nh

h + Nh
s

characteristics while the soft state covers the last N −Nh
h . Importantly, hard and soft states overlap

across the middle Nh
s characteristics, which leads to correlated fundamental states. Later we will

vary Nh
s —i.e., the span of hard information—and study the implication of this on credit market

competition.
Since the order of characteristics plays no role in the analysis, it is without loss of generality to
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analyze a simplified setting with three independent fundamental states as follows:

θh︷ ︸︸ ︷
θ = θh

h · θh
s · θs

s︸ ︷︷ ︸
θs

, (3)

with priors denoted by

qh
h ≡ P

(
θh

h = 1
)

, qh
s ≡ P

(
θh

s = 1
)

, and qs
s ≡ P (θs

s = 1) .

As we will explain shortly, θh
h in (3) captures those fundamental states that are already “hard” even

before the technology progress, θh
s captures those states that were used to be “soft” but now can

be covered by hard information thanks to the technology progress, while θs
s captures those states

that remain soft. When θs
h = 1 for sure (i.e., qs

h = 1 or Nh
s = 0 in Eq. (2)), this model degenerates

into independent hard and soft fundamental states as in Blickle, He, Huang, and Parlatore (2024).

Credit market competition. At date t = 0, given its private information about the borrower’s
project quality (see Section 1.2), each bank j can choose to make a take-it-or-leave-it offer to the
borrower firm or to make no offer (i.e., exit the lending market). An offer consists of a fixed loan
amount of one and an interest rate r. The borrower firm accepts the offer with the lowest rate if it
receives multiple offers.

1.2 Information Technology and Information Span

Information technology corresponds to mappings from some fundamental states to signals. We
will introduce two types of signals, each modeled as a specific mapping from its corresponding
fundamental state θh or θs to a bank-specific signal realization. To capture specialized lending, we
assume that both lenders have hard-information-based private signal hj for j ∈ {A, B} about θh

while only specialized bank A has the soft-information-based private signal s about θs. Figure 1
provides a summary of information technology.

Hard signals. We assume that both lenders have access to “hard” data (including financial and
operating data in the past as well as “alternative data” that become available following the big
data technology), which they can process to produce a hard-information-based private signal hj

about the firm’s fundamental state θh. We call them “hard” signals, and for tractability we assume
these hard signals to be binary, i.e., hj ∈ {H, L}, with H (L) being a positive (negative) signal of
θh. (Binary hard signal is related to the assumption that hard signals are “decisive;” see Section
1.4.) Conditional on the (relevant) state, hard signals are independent across lenders.8

8In the companion paper Blickle, He, Huang, and Parlatore (2024), we consider a general (binary) information
technology where hard signals are potentially correlated.
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Figure 1: Information Technology, Hard (top panel) and Soft (bottom panel)

More specifically, the hard signal technology Hj takes the binary fundamental state θh ∈ {0, 1}—
which could vary as the information span changes as will be introduced next—as input and generates
a binary signal hj ∈ {H, L} as output. Following most of the literature with exogenous symmetric
information technology (Broecker, 1990; Marquez, 2002), we assume that

P
(
hj = H |θh = 1

)
= P

(
hj = L |θh = 0

)
= α for j ∈ {A, B} . (4)

As illustrated in the top panel of Figure 1, α ∈
(

1
2 , 1
)

measures the precision of the hard signal,
and captures equal probabilities of Type I and Type II errors. Given the binary fundamental state
θh, the hard signal technology Hj thus can be summarized by two parameters: the prior of input
qh = Pr (θh), and the signal’s precision α given in (4).

Span (of hard) information Define

η ≡ 1 − Pr(θh
s = 1) = 1 − qh

s > 0. (5)

We call η the information span (of hard signals). Corresponding to a larger Nh
s in (2) (or θh

s

becomes more important in (3)), an expansion of the coverage of θh leads to a smaller qh
s and hence

a greater η. All else equal, the larger η, the broader the span of hard information hj ’s, and the
greater the hard signal’s information content (and capturing more of information that was soft
previously, i.e., θh

s ).
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As a key distinction between our paper and the existing literature (Broecker, 1990; Marquez,
2002), the span of hard information η controls the input θh of the hard signal technology Hj . More
specifically, before soft information gets hardened the input is θh = θh

h with a prior of qh = qh
h while

after the technology improvement the input becomes θh = θh
hθh

s with a prior of qh = qh
hqh

s = (1−η)qh
h;

see Equation (3). Importantly, from the perspective of any hard signal technology Hj , this only
changes the prior of the binary input θh, i.e., qh (η) = (1 − η) qh

h, while keeping the precision α

constant.9

The binary structure of the hard signal captures the coarseness with which much of the hard
information is used in practice,10 and the main insight that the information span stemming from
the big data technology differs from the signal precision is robust to a more general non-binary
hard signal structure. In addition, we intentionally assume that both lenders have the same hard
information technology because we are interested in how different aspects of information technology
improvement affect the relative market power when both lenders enjoy the technology advancement
symmetrically.11

Soft signal. Additionally, we endow Bank A with a signal s, which captures the bank being
“specialized” in the firm. Similar to Blickle, He, Huang, and Parlatore (2024) we assume that the
signal s is continuous. Our preferred interpretation of this additional signal is as a soft-information-
based private signal, collected after due diligence or face-to-face interactions with the borrower
after on-site visits. Besides mathematical convenience, the continuous distribution captures soft
information resulting from research tailored to the particular borrower and, therefore, allows for a
more granular assessment of the borrower’s quality.

Similar to the hard signal, the soft signal technology should be viewed as a mapping SA from the
soft fundamental state θs ∈ {0, 1} to a variable s that is correlated with θs, as shown in the bottom
panel of Figure 1. It is without loss of generality to directly work with the posterior probability of
the soft state being good θs = 1 given the soft signal realization, i.e.,

s ≡ Pr[θs = 1|s] ∈ [0, 1]. (6)

We denote the density function of s by ϕ(s)ds ≡ P(s ∈ (s, s + ds)), which satisfies
∫ 1

0 ϕ (s) ds = 1
and the prior consistency

∫ 1
0 sϕ (s) ds ≡ qs.

For later exposition purposes, our numerical examples consider s = Pr[θs = 1|θs + ϵ] =
9Many papers that adopt the binary-fundamental-binary-signal structure, including Marquez (2002), conduct the

comparative statics on the prior of the project quality, with the implicit assumption that the signal precision can be
kept at a constant.

10For example, credit scores are binned in five ranges even though scores are computed at a much granular level
and go from 300 to 850.

11In the companion paper Blickle, He, Huang, and Parlatore (2024), we consider a general (binary) information
technology that is potentially asymmetric between lenders.
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E [θs|θs + ϵ] where ϵ ∼ N (0, 1/τ) with τ capturing the signal-to-noise ratio of Bank A’s soft infor-
mation technology. This soft signal precision τ captures similar economics as α, and we stress that
it has different implications from the information span parameter η.

In light of Figure 1, one can derive the density of s conditional on θs = 1, which we denote by
ϕ1 (s) ≡ ϕ (s| θs = 1). Using the short-hand notation s ∈ ds for s ∈ (s, s + ds), we have

ϕ1 (s) ≡ 1
ds

P(s ∈ ds|θs = 1) =
P(θs = 1|s ∈ ds) · 1

dsP(s ∈ ds)
P(θs = 1)

= s · ϕ(s)
qs

. (7)

Similarly, we can calculate

ϕ0 (s) ≡ ϕ (s| θs = 0) = (1 − s)ϕ(s)
1 − qs

.

As s is the posterior expectation of θs and a higher value of s is “good news” (Milgrom, 1981), these
two densities, i.e., ϕ1(·) and ϕ0(·), satisfy the strict Monotone Likelihood Ratio Property (MLRP).

1.3 Discussions on Modelling and Related Literature

Our model departs from the literature in several ways that warrant discussion.

Hardening soft information. The concept of information span η allows us to model “hardening
soft information.” To see this, consider Eq. (3) in Section 1.1. There, the first term θh

h captures
those fundamental states that are already “hard” even before the information technology progresses;
we call them “always hard” fundamentals. The second term θh

s captures those states that were
used to be “soft” but now can be covered by hard signals thanks to the technology progress;
the coverage of these “hardened soft” fundamentals grows with information span η. Finally, θs

s

captures those states that remain soft; and we call them “always soft” fundamentals. Essentially,
technological advancement (e.g. big data and machine learning) enables lenders to acquire pertinent
hard objective data points, i.e., hard signals hj for both lenders, about these “hardened soft”
fundamentals θs

h, which previously could only be collected through human interactions and were
accessible only to the specialized lender.

Throughout the paper, we use the hardening of soft information as an example of technological
change that can increase the span of hard information. We do this for two reasons: first, to fix ideas
and provide a concrete setting in which our model applies; and second, this application is practical
relevant in the context of the current “Big Data” environment. As we explain below, verifiability
does not play a role in the modeling of “hard” and “soft” information in our framework. Instead, our
results are broader and apply to any circumstance in which access to information is democratized
and characteristics previously accessible only to a monopolist are now “learnable” by all market
participants.
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Connection to the literature of soft/hard information. The literature on soft and hard
information (e.g., Stein, 2002; Liberti and Petersen, 2019) often emphasizes that the latter is easily
verifiable and hence transferable (within an organization); for example, Bertomeu and Marinovic
(2016) and Corrao (2023) model “soft” information via a cheap talk game a la Crawford and Sobel
(1982) where the messages are soft and carry no intrinsic meaning themselves. Since we do not
explicitly model communications within or across banks, whether the information is verifiable or
not is irrelevant to the core economics that our model aims to capture.

Nevertheless, our information technology discussed above, i.e., hard signals are available for both
lenders while only the specialized lender has access to the soft signal, connects to this traditional
view of soft information. Exactly due to the non-verifiable nature of soft information, loan officers
often need to collect it individually and possess the expertise to interpret it, whereas verifiable
hard information can be processed by anyone in a rather routine way. What is more, when soft
information becomes hardened so that the IT equipment and software can analyze it from data,
naturally some soft information becomes verifiable and hence available to non-specialists. This is
exactly the logic in Karapetyan and Stacescu (2014) where hard information can be shared while
soft cannot.

Hard information technology. In general, an information technology corresponds to mappings
from some fundamental states to signals, and, as usual, there are potentially important modeling
choices when specifying the details of the (hard) information technology.12 As the top panel of
Figure 1 illustrates, the hard information technology takes the entire binary hard fundamental θs

as input and generates a binary signal as output. But this is not the only way to model this in a
setting with multi-dimensional fundamental states. Given our hard fundamental θh = θh

s θs
s, another

natural modeling is to keep the original hard and soft signals (hj ’s and s) and introduce additional
signals of the hardened soft fundamental θs

h. Section 4.1 considers this alternative and shows that
our economic implications are qualitatively similar to our baseline modeling.

Information span versus signal precision. The information span η is a key parameter in
our analysis. By incorporating multi-dimensional information, our model highlights the distinction
between the information span η and information precision (α for h-signal and τ for s-signal).
Take α as an example. Recall that α measures the quality/precision of hard information while
η measures the breadth/span of hard information. Both are significant aspects affected by the
astonishing technological advancement in the past decades, but feature important differences. When
the computer was introduced, it was faster and easier to process and compile bank statements.
This improvement in processing made information more precise but did not change its scope much.
However, the use of “big data,” a distinctive trend in information technology during the last decade,

12Information design along the line of Kamenica and Gentzkow (2011); Bergemann and Morris (2016) addresses
this issue but is beyond the scope of this paper.
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has changed what can be digitized as hard information (think of Amazon predicting consumer
preferences). As many scholars have argued, big data technology has expedited the process of
“hardening soft information” by converting subjective or qualitative data (soft information) into
more objective or quantifiable (hard) metrics; for recent evidence in the banking industry, see,
for example, Hardik (2023). By incorporating multi-dimensional information, our model allows us
to distinguish between these two aspects, which, as we explain below, have distinctive economic
implications on credit market competition.

Endogenous information structure. Throughout we take the lenders’ asymmetric information
technologies as given. Blickle, He, Huang, and Parlatore (2024) endogenize this asymmetric infor-
mation technology in a symmetric setting with two firms, a and b, where Bank A (B) endogenously
becomes specialized by acquiring both hard and soft signals for firm a (b), while non-specialized
Bank B (A) only acquires the “hard” signal of the firm a (b). There, we highlight a key difference
when acquiring these two types of signals: a one-time investment—for example, installing IT equip-
ment and software—enables lender j to receive two hard signals, one for each firm, whereas soft
information must be collected separately for each firm. This is connected to our point regarding
the modeling of soft/hard information.

1.4 Decisive Hard Signals and Parametric Assumptions.

For tractability reasons, we assume that the hard signal is “decisive” for participation: Bank j

participates if and only if it receives hj = H. For the specialized Bank A, the hard signal serves
as “pre-screening,” in the sense that the bank rejects the borrower upon receiving an L signal,
while upon an H signal it makes a pricing decision based on its soft signal s. In other words,
for the specialized lender, the “principal” signal is the one that determines whether to lend, and
the “supplementary” one helps its loan pricing.13 We therefore impose the following parameter
restrictions to ensure hard signal being “decisive.”

Assumption 1. (Decisive Hard Signals)

1. Bank A rejects the borrower upon an L hard signal, regardless of any soft signal s:

qh (1 − α) r < (1 − qh) α; (8)
13Alternatively, the principal signal represents the result of a credit screening test, while the supplementary signal

serves the role of internal ratings (of borrowers who are qualified for credit). This ranking portrays the key role
played by hard information for large banks when dealing with new borrowers. Indeed, as documented on page
1677 of Crawford, Pavanini, and Schivardi (2018), Italian large banks list the factors they consider in assessing any
new loan applicant’s creditworthiness, with the following order of importance: i) hard information from the central
bank (financial statement data); ii) hard information from Credit Register; iii) statistical-quantitative methods; iv)
qualitative information (i.e., bank-specific soft information codifiable as data); v) availability of guarantees; and vi)
first-hand information (i.e., branch-specific soft information).
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2. Bank B is willing to participate if and only if its hard signal hB = H:

qαr > (qh − q) α + (1 − qh) (1 − α) . (9)

Assumption 1 says that the hard signal has to be sufficiently strong (informative) to serve as
pre-screening of loan applications for both lenders. Condition (8) states that it is not profitable
for Bank A to compete upon receiving a hard signal L even when the soft signal reveals that the
soft fundamental θs is good with certainty; this then implies that Bank B with hard signal only
also chooses not to compete upon hB = L. Condition (9) states that upon hB = H, Bank B is
willing to lend at the highest possible interest rate if it is the monopolist lender. This condition
also implies that Bank A with an additional soft signal is willing to lend at r if it is the monopolist
lender upon hA = H and some favorable enough soft signal realizations.

1.5 Credit Market Equilibrium Definition

We now formally define the credit market equilibrium with specialized lending, along the line of
Blickle, He, Huang, and Parlatore (2024).

Bank strategies. Conditional on the hard signal, we define the space of interest rate offers to be
R ≡ [0, r] ∪ {∞}. Here, r is the exogenous maximum interest rate (or project return, see Section
1.1) and ∞ captures the strategy of not making an offer.

For Bank A, we denote its pure strategy by rA (s) : S → R, which induces a distribution of its
interest offerings denoted by F A (r) ≡ Pr

(
rA ≤ r

)
according to the underlying distribution of the

soft signal. (At this point we take as given that Bank A uses pure strategy, though we formally
prove this result in Proposition 1). And, the endogenous support of the equilibrium interest rates
when making an offer will be shown to be a sub-interval of [0, r]. Therefore, with a slight abuse
of terminology, we refer to that subinterval as the “support” of the interest rate distribution even
though loan rejection (r = ∞) could also occur along the equilibrium path.

Bank B randomizes its interest rate offerings conditional on a positive hard signal in equilibrium,
with an endogenous cumulative distribution F B (r) ≡ Pr

(
rB ≤ r

)
. Since domain of offers includes

r = ∞ which captures rejection, it is possible that F B (r) = P
(
rB < ∞|hB = H

)
≤ 1.

The borrower picks the lower rate from two competing offers. For instance, conditional on
hA = hB = H, if Bank B quotes rB < ∞, then its winning probability 1 − F A

(
rB
)

equals the
probability that Bank A with soft signal s offers a rate that is higher than rB; note that this includes
the event that Bank A rejects the borrower (rA(s) = ∞), presumably because of an unfavorable
soft signal.14 When rA = rB = ∞, the borrower fails to get the loan.

14Upon ties, i.e. rA = rB < ∞, borrowers randomly choose the lender with probability one-half, although the
details of the tie-breaking rule do not matter as ties occur as zero-measure events in equilibrium.
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Definition 1. (Credit market equilibrium) A competitive equilibrium in the credit market (with
decisive hard signals) consists of the following lending strategies and borrower choice:

1. A lender j rejects the borrower or rj = ∞ upon hj = L for j ∈ {A, B}; upon hj = H,

i) Bank A offers rA (s) : [0, 1] → R ≡ [0, r] ∪ {∞} to maximize its expected lending profits
given hA = H and s, which induces a distribution function F A (r) : R → [0, 1];

ii) Bank B offers rB ∈ R to maximize its expected lending profits given gB = H, which
induces a distribution function F B(r) : R → [0, 1];

2. The borrower chooses the lowest offer min{rA, rB}.

As standard, there exists an endogenous lower bound of interest rate r > 0, so that the two
distributions F j (·), j ∈ {A, B} share a common support [r, r] (besides ∞ as rejection). The
following lemma is standard in the literature and shows that resulting equilibrium strategies in our
setting are well-behaved.

Lemma 1. (Equilibrium Structure) In any credit market equilibrium

a. The two lenders’ interest rate distributions F j (·), j ∈ {A, B} are smooth over [r, r), i.e. no
gap and atomless, so that they admit well-defined density functions

b. At most only one lender can have a mass point at r.

2 Credit Market Equilibrium Characterization

We now solve for the credit market equilibrium with specialized lending and potentially overlap-
ping information spans. Blickle, He, Huang, and Parlatore (2024) characterize the credit market
equilibrium under two key conditions: i) binary signals are decisive, and ii) the two binary and
one continuous signals are conditionally independent when success (i.e., independent conditional
on the project’s success). Our setting with arbitrary information span satisfies both conditions and
therefore can be viewed as a special case of the general information structure in Proposition 4 in
Blickle, He, Huang, and Parlatore (2024). For this reason, our exposition of this section will be
less formal and instead focus on illustrating the key properties of the equilibrium, especially the
differences from the special case of η = 1 in Blickle, He, Huang, and Parlatore (2024).

2.1 Bank Profits and Optimal Strategies

Joint Distributions of Signals and Posterior

We first define the joint and posterior probabilities of project success θ = 1 for a collection of
certain events. Denote by the ordered subscript {hAhB} ∈ {HH, HL, LH, LL} to the events of the
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corresponding hard signal realizations, where HL stands for Bank A’s (B’s) hard signal being H

(L). Denote by phAhB the joint probability of any collection of hard signal realizations; here, the
“bar” indicates “taking the average over all possible soft signal realizations.” For instance,

pHH ≡ P
(
hA = H, hB = H

)
= qhα2 + (1 − qh) (1 − α)2 . (10)

Similarly, we denote by µhAhB the posterior of project success conditional on hAhB; for instance

µHH ≡
P
(
hA = H, hB = H, θ = 1

)
P (hA = H, hB = H)

= qhα2

qhα2 + (1 − qh) (1 − α)2 qs
s. (11)

Competing lenders also need to assess the probabilities of hard signals together with the soft
signal. Denote by phAhB (s) ds ≡ P

(
hA, hB, s ∈ ds

)
the joint probability of the two hard signals

being hAhB and s ∈ ds (i.e., the soft signal s falls in the interval (s, s + ds)). Similarly, µhAhB (s)
denotes the posterior probability of project success (i.e. θ = 1), conditional on the hard signal
realizations and the soft signal:

µhAhB (s) = P
(

θ = 1| hA, hB, s
)

=
P
(
θ = 1, hA, hB, s ∈ ds

)
P (hA, hB, s ∈ ds)

. (12)

And, under the multiplicative structure in Eq. (3), project success θ = 1 implies that θh = θs = 1,
which allows us to derive the joint probability of P

(
θ = 1, hA, hB, s ∈ ds

)
as

phAhB (s) µhAhB (s) = P (θ = 1)︸ ︷︷ ︸
q

·P
(
hA |θh = 1

)
· P
(
hB |θh = 1

)
· ϕ (s| θs = 1)︸ ︷︷ ︸

ϕ1(s)

. (13)

This result points to conditional independence when success, i.e., all signals, including hard and
soft, are independent conditional on project success θ = 1. We will come back to this later when
we derive the equilibrium.

Bank A’s Strategy

Consider Bank A when it observes a positive hard signal hA = H and a soft signal s. If Bank A

chooses to exit the lending market by quoting r = ∞, its expected profits are given by πA (r = ∞, s) =
0. If Bank A participates in the lending market by offering r ∈ [r, r], its expected profits are

πA (r, s) ≡ pHH(s)︸ ︷︷ ︸
hA=hB=H,s

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHH(s) (1 + r) − 1] + pHL(s)︸ ︷︷ ︸
hA=H,hB=L,s

[µHL(s) (1 + r) − 1] , (14)
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where the first term takes into account the expected payoff conditional on winning the borrower
when Bank B participates and the second term accounts for the likelihood that Bank B receives
a negative hard signal (as Bank A cannot observe Bank B’s hard signal hB). With probability
pHH(s), both banks get favorable hard signals, and Bank A with offer r wins with probability[
1 − F B(r)

]
, whereas with probability pHL Bank B withdraws and Bank A faces no competition

for the borrower. Since Bank B randomizes its strategy upon hB = H, from Bank A’s perspective
winning the price competition is not informative about the borrower’s quality. But, whether Bank
B participates in the loan market or not affects Bank A’s expected quality of the borrower; this
economic force is captured by µHH(s) and µHL(s) given in (12).

Given the profit function defined above, Bank A’s optimal interest rate offering is rA (s) ≡
arg maxr∈R πA (r, s). As shown in Blickle, He, Huang, and Parlatore (2024), Bank A’s equilibrium
pricing strategy rA(s) is decreasing in s, hits the interest rate cap r when the soft signal worsens,
and in general will jump to ∞ for sufficiently low s. Formally, ŝ ≡ sup

{
s| rA (s) = r

}
; that is to

say, ŝ is the highest realization of the soft signal such that Bank A quotes r.15 And, we define
x ≤ ŝ as the threshold such that πA (r, x) = 0; that is to say, Bank A rejects the borrower for all
s < x so that x ≡ sup

{
s| rA (s) = ∞

}
. Note that x = ŝ could occur along the equilibrium path.

We therefore can define the inverse function (correspondence) of rA (s) to be

sA(r) ≡


rA(−1)(r), when r ∈ [r, r),

[x, ŝ), when r = r,

[0, x), when r = ∞.

(15)

And, it is easy to see that rA (s) = r for s ∈ [x, ŝ), and rA (s) = ∞ for s ∈ [0, x). We take the
convention that rA(x) = r when ŝ coincides with x.

Bank B’s Strategy

For the non-specialized lender B a standard winner’s curse ensues because the outcome of com-
petition against the specialized Bank A is informative about θs. More specifically, besides the
possibility of the competitor’s unfavorable hard information faced by Bank A, the non-specialized
lender B who wins the price competition also infers that rA (s) > rB, which implies s < sA

(
rB
)
.

Taking these unfavorable inferences into account, Bank B’s lending profits when quoting r are

πB (r) ≡
∫ sA(r)

0
pHH(t)︸ ︷︷ ︸

hA=hB=H,t

[µHH (t) (r + 1) − 1] dt + pLH︸︷︷︸
hA=L,hB=H

[µLH (r + 1) − 1] . (16)

15Throughout the paper we adopt the convention that sup {∅} = inf {[0, 1]} = 0.
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The first term in Eq. (16) accounts for the event in which Bank A competes and the second term
considers the case in which Bank A receives a negative hard signal and does not participate. Note
that Bank B infers the project’s quality based on the event of “winning the borrower”—this occurs
when Bank A receives an unfavorable soft signal realization t < sA(r). Importantly, since the span
of hard and soft information can overlap, the updating is not only about the soft fundamental θs

(as in Blickle, He, Huang, and Parlatore (2024)), but also about the hard fundamental θh.
Therefore, Bank B’s strategy F B(·) maximizes its expected payoff

max
F B(·)

∫
R

πB (r) dF B (r) . (17)

With mixed strategies, profit-maximizing Bank B is indifferent between any action on its support.

2.2 Credit Market Equilibrium

We characterize the credit market equilibrium in the proposition below.

Proposition 1. (Credit Market Equilibrium) In the credit market equilibrium, Bank A follows
a pure strategy as in Definition 1. In this unique equilibrium, lenders reject borrowers upon a
negative hard signal realization hj = L for j ∈ {A, B}. Otherwise (i.e., when hj = H), their
strategies are characterized as follows:

1. Bank A with soft signal s offers

rA (s) =


min

{
πB+

∫ s

0 pHH(t)dt+pLH∫ s

0 pHH(t)·µHH(t)dt+pLHµLH

− 1, r

}
, for s ∈ [x, 1]

∞, for s ∈ [0, x) .
(18)

The equation pins down r = rA (1), For s ∈ (ŝ, 1] where ŝ = sup sA(r), rA(·) is strictly
decreasing with its inverse function sA(·) = rA(−1)(·).

2. Bank B makes an offer with cumulative probability given by (1{X} = 1 if X holds)

F B (r) =


1 −

∫ sA(r)
0 tϕ(t)dt

qs
, for r ∈ [r, r) ,

1 − 1{πB=0} ·
∫ ŝ

0 tϕ(t)dt

qs
, for r = r.

(19)

When πB = 0, F B (r) = F B (r−) ≤ 1 is the probability that Bank B makes the offer (and
with probability 1

qs

∫ ŝ
0 tϕ (t) dt it withdraws by quoting rB = ∞); when πB > 0, F B (r) = 1

and there is a point mass of 1
qs

∫ ŝ
0 tϕ (t) dt at r.
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3. The equilibrium Bank B’s profit is given by

πB =
[
π̂B
(
r; sA (r) = sbe

A

)]+
, (20)

where sbe
A satisfies π̂A

(
r, sbe

A ; F B (r) =
∫ 1

sbe
A

sϕ(s)dt
qs

ds
)

= 0 with auxiliary functions π̂B(·; ·) and
π̂A (·, ·; ·) defined in Appendix.

Similar to Milgrom and Weber (1982), it is relatively easy to solve for Bank A’s equilibrium
strategy by invoking Bank B’s indifference condition, which says that Bank B makes the same
profit πB across all rates on the support [r, r]. Plugging in r = rA(s) in Bank B’s profit in (16),
we have

πB (r) =
[∫ s

0
pHH(t)µHH (t) + pLH(t)µLH

]
︸ ︷︷ ︸

borrowers who repay

(
1 + rA(s)

)
−
(∫ s

0
pHH(t)dt + pLH

)
︸ ︷︷ ︸

lending amount

. (21)

Solving for rA(s) yields (18) in Proposition 1 which further takes into account of necessary trunca-
tion on interest rate cap r.

Although the derivation of Bank B’s equilibrium strategy is more involved, conceptually it
is quite simple: B’s equilibrium strategy needs to support rA (·) in (18) to be Bank A’s optimal
strategy. Specifically, as shown below, (22) gives Bank A’s first-order condition (FOC) that balances
the lower probability of winning against a higher payoff from served borrowers, and this holds for
sA(r) so that r is optimal at this signal:

F B′ (r) pHH(sA(r))
[
µHH(sA(r)) (1 + r) − 1

]︸ ︷︷ ︸
A’s marginal borrowers

=
[
1 − F B (r)

]
pHH(sA(r))µHH(sA(r)) + pHL(sA(r))µHL(sA(r))︸ ︷︷ ︸

A’s existing borrowers

.

(22)

On the other hand, to maximize (16), Bank B’ FOC is

[
−sA′ (r)

]
· pHH

(
sA(r)

) [
µHH

(
sA (r)

)
(1 + r) − 1

]
︸ ︷︷ ︸

B’s marginal borrowers

=
∫ sA(r)

0
pHH (t) µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s existing borrowers

. (23)

Similarly, when Bank B marginally cuts its quote, it gets (−sA′ (r))dr additional borrowers of
quality µHH(sA (r)) given competition (which occurs with probability pHH(sA(r))), and this is
exactly offset by the marginal lower payoff from Bank B’s existing borrowers.

Two key further steps allow us to derive F B(r) based on (22)-(23). First, note that both lenders
are competing on the same marginal borrower (type), i.e., pHH(sA(r))

[
µHH

(
sA(r)

)
(1 + r) − 1

]
;

so we can cancel this term. Second, conditional independence when success, i.e., all signals are
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independent conditional on project success θ = 1,16 implies that

pHL

(
sA(r)

)
µHL

(
sA(r)

)
= 1 − α

α
pHH

(
sA(r)

)
µHH

(
sA(r)

)
, (24)

so the second term on right hand side of (22) only depends on the event of
{

hA = hB = H, s = sA(r)
}

.
Applying these two steps, we obtain

F B′ (r)
[∫ sA(r)

0
pHH (t) µHH (t) dt + pLHµLH

]
= −sA′ (r)

[ 1
α

− F B (r)
]

pHH

(
sA(r)

)
µHH

(
sA(r)

)
,

which can be simplified further to17

d

dr

equals a constant︷ ︸︸ ︷[ 1
α − F B(r)∫ sA(r)

0 pHH (t) µHH (t) dt + pLHµLH

]
= 0. (25)

Therefore the term inside the bracket of (25) has to be independent of r, allowing us to derive
Bank B’s equilibrium strategy (19) in Proposition 1 after imposing proper boundary conditions.

Finally, the equilibrium characterization point 3) in Proposition 1 highlights a key difference
between the two types of equilibrium: one with πB = 0—we call it the zero-weak equilibrium—and
the other with πB > 0 so that only Bank B places a positive mass on the interest rate cap r—we call
it the positive-weak equilibrium as the weak bank earns positive profits. In the zero-(positive-)weak
equilibrium, only Bank A (Bank B) places a positive mass on the interest rate cap r. This captures
the competition at the interest rate cap r, exactly reflecting point c) in Lemma 1—otherwise,
lenders will undercut each other at this point. We will soon show that, as information span η

increases (due to the hardening of soft information), the non-specialized lender benefits more and
a positive-weak equilibrium is more likely to arise.

3 Credit Market Competition Equilibrium

Our model is designed to understand how changes in different aspects of information technology
affect the equilibrium in the credit market, highlighting the differences between hardening soft

16Formally, because of the multiplicative structure in (2), we have

P
(

hA, hB , s ∈ ds
∣∣ θ = 1

)
= P

(
hA, hB , s ∈ ds

∣∣ θh = θs = 1
)

= P
(

hA
∣∣ θh = 1

)
· P
(

hB
∣∣ θh = 1

)
· P (s ∈ ds| θs = 1) .

Relating to (13), it implies that pHL(s)µHL(s)
pHH (s)µHH (s) = P(hB=L|θ=1 )

P(hB=H|θ=1 ) = 1−α
α

, i.e., (24). Intuitively, conditional on success
(θ = 1), for Bank A seeing signal s does not affect the likelihood ratio of its opponent to receive H or L hard signals.
This is not true conditional on project failure.

17Based on the intuition that two asymmetrically informed lenders are competing on the same marginal borrower
and conditional independence when success (which are the two key steps mentioned above), Blickle, He, Huang, and
Parlatore (2024) offer a detailed explanation on why this key ODE (25) holds in equilibrium.
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information (an increase in the span of hard information) and shifts in other characteristics of
information technology, such as the precision of signals. In this section, we first illustrate how
the information span η affects the equilibrium strategies and profits of both lenders using several
numerical examples. We then contrast how bank profits respond to an increase in the span of hard
information and to an increase in its precision, and offer an explanation of these differences by
exploring the distinct effects of two technology parameters on the inference problem of Bank B

about its opponent’s information advantage. Finally, we focus on the implications that an increase
in the span of the hard signal has on the allocation of credit and welfare.

3.1 Information Span and Equilibrium Illustration

Figure 2 illustrates how the credit market equilibrium responds to changes in the span of hard
information η. For ease of exposition, we assume that Bank A’s soft signal s is obtained from
observing a noisy version of θs, i.e., θs + ϵ, so that

s = E [θs|θs + ϵ] . (26)

Here, ϵ ∼ N (0, 1/τ) indicates white noise, with the precision parameter τ capturing the signal-to-
noise ratio of Bank A’s soft information technology.

The top two panels in Figure 2 plot both lenders’ pricing strategies conditional on making an
offer, with Panel A plotting Bank A’s rA(s) as a function of s and Panel B the density F B′ (r) as a
function of r for Bank B. We plot equilibrium pricing strategies for two levels of information span
η: the baseline η0 = 0, and a higher η+ = 0.05. As suggested by Proposition 1, we will show that a
positive-(zero-) weak equilibrium arises when η is relatively high (low); and this is why we use the
subscript “+” for the larger η.

Overall, consistent with the premise that hardening soft information levels the playing field for
the non-specialized lender in our model, Bank B with a greater η becomes more aggressive as its
distribution of offered rates shifts downward (panel B), resulting in a lower equilibrium lower bound
r+ < r0. We observe that the entire curve rA(s)—which decreases in s as the specialized Bank
A with a more favorable soft signal bids more aggressively——shifts downward in response to the
more aggressive bidding by Bank B.

Panel C plots the two soft signal cut-offs for the specialized Bank A, i.e., ŝ at which it starts
quoting r and x at which it starts rejecting the borrower. For a sufficiently large η, ŝ and x coincide
reflecting a zero probability mass on the interest rate cap r. Finally, Panel D plots the expected
profits—E(πA) and πB—for two lenders; when η increases, the non-specialized lender becomes
relatively stronger, leading to a strictly positive πB as shown in Panel D.

To piece all panels together, consider the competition at the interest rate r. As shown in Panel
A-B, for a low information span η0 = 0 so that πB = 0 in equilibrium, Bank A has a point mass at
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Figure 2: Equilibrium strategies and profits for information span η. Panel A depicts rA(s) as a
function of s and Panel B plots F B′(r) as a function of r; strategies for η+ = 0.05 are depicted in red with
markers while strategies with η0 = 0 are depicted in blue. Panel C depicts Bank A’s thresholds ŝ = sup sA(r)
and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a function of η. Priors
qh, qs

s and information span η satisfy qh = q/qs · (1 − η) and qs
s = qs/(1 − η). Parameters: r = 0.36, q = 0.72,

qs = 0.9, α = 0.7, and τ = 1.

r (corresponding to s ∈ (x, ŝ) as in Panel C) but Bank B does not, while for a high η+ = 0.05 so
that πB > 0, the opposite holds. Intuitively, thanks to the big data technology that hardens soft
information, a sufficiently large η leads to a positive-weak equilibrium where the non-specialized
Bank B places a point mass on r, enjoying some “local monopoly power” as it is the only lender
when Bank A rejects the borrower upon s < ŝ = x. Importantly, this is still profitable for Bank
B: for a sufficiently large η, the non-specialized Bank B faces a relatively minor winner’s curse due
to the opponent’s soft signals (see later discussion in this section). In contrast, for a smaller span
η, we are in a zero-weak equilibrium, where the specialized Bank A places a point mass on this
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Figure 3: Expected lender profits. Panel A and Panel B show expected lender profits as a function
of the span of hard information η under different primitive settings. The solid lines correspond to Bank A
while the dashed lines correspond to Bank B. Priors qh, qs

s and information span η satisfy qh = q/qs · (1 − η)
and qs

s = qs/(1 − η). Parameters: Panel A, r̄ = 0.36, q = 0.72, qs = 0.9, αu = αd = α = 0.7, τ = 1; Panel
B, r̄ = 0.33, q = 0.72, qs = 0.9, αu = αd = α = 0.6, τ = 0.1.

interest rate (when s ∈ (x, ŝ), as shown in Panel C) while the non-specialized Bank B withdraws.
Last but not least, it is important to recognize that Bank A’s profits can also increase with

the information span η in the range of positive-weak equilibrium parameters. Figure 3 shows such
an example in which Bank A’s expected profits increase with η (Panel B) and contrasts it with
the case in which the opposite holds (Panel A, which we copy from Panel D in Figure 2). This
example highlights the same technological improvement for the specialized and non-specialized
banks. Comparing the parameters that lead to these two cases, E(πA) is more likely to increase
with η when the precision of hard information is low. When the precision of the hard signal α

is relatively low, the credit market is less competitive as lenders bid less aggressively due to the
high uncertainty in screening. When the precision of the soft signal τ is relatively low, Bank A,
who initially has an imprecise soft signal about the soft fundamental θs, benefits more because
hardening of the soft information also helps to learn about θs. Hence, Bank A’s profits increase
as technological improvement dominates the intensified competition from Bank B. Our welfare
analysis later in Section 3.3 show that in this scenario likely every agent in the entire economy
enjoys a higher surplus (hence a Pareto improvement).

3.2 Bank Profits: Information Span vs. Information Precision

A key advantage of our model is that it allows us to distinguish between different aspects of
information technology. In this section, we first explain how the span of hard information, i.e., η,
affects the Type I and Type II errors faced by each bank—especially from the perspective of the
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relatively weak Bank B. We then show that in general the information span η improves Bank B’s
equilibrium profit, and compare this to that of changes in the precision of hard signals (α). Finally,
we illustrate that in credit market competition, (hard) information span η differs from (hard)
information precision α because they have drastically different implications given asymmetrically
informed competitors.

Span of Hard Information

The information span η determines the extent of overlap between the hard and soft fundamentals,
which determines the correlation between hard and soft signals. When η = 0, zero overlap between
hard and soft fundamentals implies independence between hard and soft signals, while hard and
soft fundamentals (and the signals about them) become correlated when η > 0. For illustration,
we consider the effect of η on the belief of weak Bank B’ by focusing on two particular events.

Two positive hard signals. We start with the event {H, H, s}, where two lenders receive
positive hard signals, (potentially) competing against each other, and Bank A receives a soft signal
s. The probability of this event is

pHH (s) = qα2ϕ1 (s)︸ ︷︷ ︸
θ=1

+
(
1 − qh

h

)
(1 − α)2 ϕ (s)︸ ︷︷ ︸
θh

h
=0

+ qh
h︸︷︷︸

θh
h

=1

(1 − qh
s

)
︸ ︷︷ ︸

θh
s =0

(1 − α)2 +
(
qh

s − qs

)
︸ ︷︷ ︸
θh

s =1,θs
s=0

α2

ϕ0 (s) .

(27)

The first term captures the probability of the event {H, H, s} when the project is good (θ = 1;
this necessarily implies that θh

h = θh
s = θs

s = 1), which occurs with probability q. This event is
independent of the information span η as hard and soft signals are conditionally independent when
the project is good (see footnote 16). The remaining two terms refer to the cases in which the
project is bad (θ = 0), which can occur when one of the states θh

h, θh
s , or θs

s takes a value of zero.
The second term captures the events with θh

h = 0 and is independent of the span η. This is
because, given the multiplicative structure, θh

h = 0 already determines that the hard fundamental
state is θh = 0, and broader hard signals that assess more characteristics do not add information
content. Note that while the likelihood of HH when θ = 1 or θh

h = 0 (i.e., the first or second
term in (27)) is independent of η, both terms depend on the precision of the hard signal because α

determines the conditional probability of receiving a hard signal H.
The third term in Eq. (27) captures the novelty of our modeling, i.e., how the hardening of

soft information affects the likelihood that the two banks compete in the credit market. Given
θh

h = 1, this term includes two scenarios: i) when θh
s = 0, both the hard fundamental and the soft

fundamental fail θh = θs = 0, so HH occurs with probability (1 − α)2 and the soft signal density is
ϕ0(s); and ii) when θh

s = 1 but θs
s = 0, the hard fundamental succeeds θh = 1 (so HH occurs with
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probability α2) but the soft fundamental fails (the soft signal density is ϕ0(s)).
Using η = 1 − qh

s and simplifying terms, we can rewrite the joint probability of {H, H, s} as:

pHH (s) = qα2ϕ1 (s) +
(
1 − qh

h

)
(1 − α)2 ϕ (s) +

[
(1 − qs) α2 − η (2α − 1)

]
︸ ︷︷ ︸

↓ in η as α> 1
2

qh
hϕ0 (s) . (28)

The last term in Eq. (28) delivers the key message that a broader information span reduces the
probability of the competition scenario HH when soft fundamentals are unsuccessful θs = 0. Before
soft information hardens, i.e., when η = 0, the state θs is partially discernible only through the soft
signal s. Technological advances that harden soft information, i.e., increases in η, allow lenders to
learn about θs from hard signals. When competing in the credit market, an increase in η affects
how lenders update their beliefs, especially for the non-specialized lender B who does not observe a
direct signal of s but understands that competition occurs in the event of HH. As the overlapping
state θh

s generates a positive correlation between soft and hard signals, two positive hard signal
realizations (the event of competition under HH) lead Bank B to update its beliefs about the
opponent lender’s soft signal distribution upward when soft information is hardened.

To further illustrate this point, we compute ϕ (s |HH ), i.e., the conditional density of s given
HH, i.e., the event where lenders compete. To make the point clearer, we set qh

h = 1 so that q = qs

(so hard signals only reflect the overlapping state θh
s ), and the resulting conditional density of the

soft signal s is

ϕ (s |HH ) =
qsα2ϕ1 (s) +

[(
1 − qh

s

)
(1 − α)2 +

(
qh

s − qs

)
α2
]

ϕ0 (s)

(1 − qh
s ) (1 − α)2 + qh

s α2

= ϕ0 (s) +

↑ in η as α> 1
2︷ ︸︸ ︷

α2

α2 − (2α − 1) η
· qs [ϕ1 (s) − ϕ0 (s)] . (29)

Without hardening soft information (η → 0) as in Blickle, He, Huang, and Parlatore (2024),
independent hard and soft signals imply that

ϕ (s |HH ) = (1 − qs) ϕ0 (s) + qsϕ1 (s) = ϕ (s) . (30)

When hard information broadens, ϕ (s |HH ) puts more weight on the favorable distribution ϕ1(s),
as suggested by the higher coefficient α2

α2−(2α−1)η in (29). Put differently, given the monotone
likelihood ratio property, we know ϕ1 (s) − ϕ0 (s) > 0 for relatively high soft signals. Hence, the
conditional density ϕ (s |HH ) increases with η for high values of s implying that a favorable soft
signal is more likely to arise (upon HH) when the span of hard information is broader. In contrast,
for relatively low soft signals with ϕ1 (s)−ϕ0 (s) < 0, the opposite occurs, so the conditional density
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ϕ (s|HH) decreases with η. (This MLRP property will be used formally in the next section.)
To summarize, that ϕ (s |HH ) increases in η implies that a larger information span reduces the

winner’s curse for Bank B from Bank A’s private soft signal, suggesting the former to benefit more
from technological advancements that harden soft information. We will come back to this point
later in this section when we compare information span η to information precision α.

Opposite hard signals. What if two lenders receive opposite hard signals, i.e., when one
bank’s hard signal is positive while the opponent lender’s signal is negative? As illustrated in the
lenders’ profits πA in (14) and πB in (16), these events represent the critical economic force behind
the “Winner’s Curse” in models with hard signals only (Broecker, 1990; He, Huang, and Zhou,
2023).18 Going through steps similar to (27), one can calculate the probabilities for these events as

pHL (s) = pLH (s) = α (1 − α) ϕ (s) . (31)

Integrating over s, we have that the probability of opposite hard signals is pHL = pLH = α(1 − α),
which depends only on the signal precision α, but not the information span η.

The effect of α is natural: when α increases, hard signals become more precise, hA and hB

become more correlated, and opposite hard signals hA ̸= hB are less likely to arise. The observation
that the information span η does not enter (31) relies on the symmetry of the hard information
technology (i.e., same Type I and II errors). Intuitively, this symmetry implies that independent
of the realization of θh

s , the probability of hA ̸= hB is always α (1 − α). Because no information
about the fundamental is revealed from the disagreement events HL or LH, the distribution of the
soft signal conditional on opposite hard signals remains the unconditional one:

ϕ (s |HL) = ϕ (s |LH ) = ϕ (s) . (32)

This property facilitates our analytical proof and sharpens our core economic mechanism.

Information Span and Bank Profits

We now formally show that an enlarged information span—i.e., a greater η—levels the playing
field by benefiting the non-specialized Bank B relatively more than the specialized Bank A. The
following proposition states our result.

Proposition 2. (Hardening Soft Information on Equilibrium Profits)

1. The equilibrium profits of the non-specialized lender πB are increasing in η.
18In our model, as in Blickle, He, Huang, and Parlatore (2024), the non-specialized lender B faces a winner’s curse

even in the event of HH because of the soft signal received by the specialized lender only.
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2. In the region of positive-weak equilibrium, the impact of η on Bank B’s profits dominates that
on Bank A’s profits:

dπB

dη
>

d

dη
E
[
πA
]

. (33)

Part 1) in Proposition 2 suggests that there exists a cutoff η̂ so that when η > η̂ the credit
market features a positive-weak equilibrium with πB > 0. When the information span is limited
(η < η̂), Bank A maintains a substantial information advantage and enjoys local monopoly power
(bidding r when s ∈ (x, ŝ)). In this range, when η increases, Bank B’s equilibrium profits stay at
zero as heightened competition exactly offsets the gains from technology. Once η rises above the
threshold η̂, Bank A’s information advantage shrinks to the extent that it loses the local monopoly
power and becomes the break-even lender when receiving a sufficiently low signal. In this case, for
Bank B, the technological advancement dominates the increase in competition and starts making
positive profits.

Part 2) Proposition 2 concerns the differential effect of η on two lenders’ profits. To better
connect with the key economic intuition illustrated by ϕ (s |HH ) in (29), we provide a key proof
step here. In Appendix A.3, we show that it is sufficient to study the profit wedge between Bank
B and Bank A conditional on s ∈ [ŝ, 1]:

∆π(s; η) ≡ πB
(
rA (s)

)
·

d[1−F B(rA(s))]
ds

= sϕ(s)
qs︷ ︸︸ ︷

ϕ1 (s) − πA
(
rA (s) , s

)
(34)

= −
[
ϕ1 (s)

∫ s

0
pHH (t) dt − pHH (s)

∫ s

0
ϕ1 (t) dt

]
− [ϕ1 (s) pLH − pHL (s)] . (35)

In (34) we have multiplied Bank B’s profit πB (evaluated at rA(s)) by the density of its equilibrium
offer in Eq. (19); this way, it is comparable to Bank A’s profit (14) which incorporates the density
of s. The gist of Eq. (35) is that the profit differential depends on η only through the banks’ lending
amounts (which enter profits negatively and are related to Type II errors); in the Appendix A.3,
we show lending revenues of both lenders are equal, because under profit maximization, a lender’s
existing revenue equals the value of the marginal borrower for whom it is competing, and lenders
compete for the same marginal borrower in equilibrium.

As explained after Eq. (31), η does not affect the probability of lenders receiving opposite
hard signals, captured by the second term in parentheses in Eq. (35). Therefore, we focus on the
first term that captures the event of both lenders receiving positive hard signals and (potentially)
competing for the borrower. Using pHH (t) = ϕ (t|HH) pHH and ϕ (t|HH) in (29), we derive that

pHH (s)
∫ s

0
ϕ1 (t) dt − ϕ1 (s)

∫ s

0
pHH (t) dt = K (η) ·

∫ s

0
ϕ0 (s) ϕ0 (t)

[
ϕ1 (t)
ϕ0 (t)

− ϕ1 (s)
ϕ0 (s)

]
dt︸ ︷︷ ︸

independent of η, negative because of MLRP

. (36)
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Appendix A.3 shows that K(η) ≡ pHH(η) ·
[
1 − α2qs

α2−(2α−1)η

]
; it captures Type II errors and can be

decomposed into the hard signal part—pHH(η) where we emphasize its dependence on η, and the
remaining soft signal part—ϕ (s|HH)’s loading on unfavorable ϕ0(s) given in Eq. (29). Intuitively,
a broader hard information span (higher η) reduces Type II errors. Specifically, both terms in
K(η) decrease in η because lenders screen out more lemons in the competition case—a smaller
pHH , and competition itself suggests the Bank A’s soft signal is more likely to be associated with
good fundamentals—ϕ (s|HH) puts less weight on ϕ0(s). Finally, the second term in Eq. (36) is
independent of η and negative thanks to MLRP of ϕ1(·) with respect to ϕ0(·). This term suggests
that, the non-specialized Bank B who is subject to the winner’s curse due to the opponent’s soft
signal, benefits more from Type II error reduction. Therefore, (35) increases with η and Bank B

benefits more from hardening soft information.

Information Precision and Bank Profits

The economic implications of changes in information precision in our model are drastically different
from those coming from changes in the span of hard information. Two parameters capture the
information precision, one being the hard signal precision α and the other the soft signal precision
τ . It is quite transparent that an increase in the soft signal precision τ gives a greater advantage
to the specialized lender, opposite to the effect of a greater η which levels the playing field for the
non-specialized lender.

The effect of a hard signal precision α is a bit more involved and in general non-monotone.
To understand the non-monotonicity, it is useful to consider two extreme cases. In an auction
setting with asymmetric bidders, the uninformed bidder makes zero profit (Milgrom and Weber,
1982). When α = 0.5 so that the hard signal is completely uninformative,19 the model is identical to
Milgrom and Weber (1982) where the uninformed lender B ignores the realization of hB, randomizes
its bids, and makes zero profit in equilibrium. On the other extreme case α = 1, hard information
becomes a public signal and we are back to Milgrom and Weber (1982) again upon the realization
hA = hB = H and updated prior, and Bank B still makes zero profits. In general, for intermediate
values of α ∈ (0, 1), a positive-weak equilibrium (with πB > 0) could arise.

This non-monotonicity with respect to α is qualitatively different from the monotonicity with
respect to η shown in Proposition 2. The following proposition provides a formal counterpart to
Proposition 2 in the vicinity of α = 1. We focus on this extreme case not only because it is more
analytically tractable but more importantly because our analysis rests on the assumption that hard
signals are decisive (Assumption 1).

Proposition 3. (Hard Signal Precision on Bank Profits.) When α → 1, we have
19Although this limiting case violates Assumption 1 which requires hard signals to be sufficiently strong, we have

a well-defined equilibrium in this case where both lenders ignore the hard signals.
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Figure 4: Equilibrium strategies and profits for hard signal precision α. Panel A depicts rA(s)
as a function of s and Panel B plots F B′(r) as a function of r; strategies for α+ = 0.8 are depicted in red
with markers while strategies with α0 = 0.9 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a
function of α. Parameters: r = 0.36, q = 0.72, qs = 0.9, η = 0.02, and τ = 1.

1. The equilibrium profit of non-specialized lender πB → 0, i.e., a zero-weak equilibrium arise.

2. Suppose that qh > 0.5. In the vicinity of α → 1, the impact of α on Bank A’s profit dominates
that on Bank B’s profit:

d

dα
E
[
πA
]

>
dπB

dα
= 0. (37)

In the above proposition, part 1) naturally follows from Milgrom and Weber (1982) given the
discussion above. Part 2) makes a further theoretical point: in the vicinity of α = 1, an increase
in hard signal precision helps Bank A gain more profits. To see this, consider the profit wedge as
in Eq. (35). Suppose that the hard fundamental prior is relatively high and qh > 0.5, which is
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empirically relevant.20 When α increases so hard signals become more precise, lenders are more
likely to compete (hA = hB = H) than disagree and not compete (hA ̸= hB). This tilting towards
competition effectively increases the winner’s curse that Bank B suffers from due to Bank A’s soft
signal. Hence, Bank A benefits more from increases in hard signal precision and its equilibrium
profit improves.

Figure 4 displays the same variables as Figure 2, plotting the comparative statics on the precision
of the hard signal α. First, Panels A and B illustrate the lenders’ equilibrium pricing strategies,
showing that lenders set more aggressive rates (lower rates) for α+ < α0. When α increases from
α+ = 0.8 to α0 = 0.9, both lenders are competing more fiercely by quoting lower interest rates, so
the equilibrium turns from positive-weak to a zero-weak (this is why we call the larger α as α0).
However, as illustrated in Panel D, the non-specialized lender B’s profits πB are non-monotone in
α. This aligns with the discussion preceding Proposition 3 that πB = 0 at the two limiting cases,
α = 1

2 or 1. In Panel C, the cutoff strategies of Bank A generally decrease as α increases; this
reflects the standard learning effect—Bank A, receiving a more accurate positive signal, withdraws
at a weaker soft signal. Notably, ŝ and x coincide for mid-values of α, which is consistent with the
non-monotonicity of πB.

Span vs. Precision: How do They Affect Lenders’ Beliefs?

The information technology in any information economics model translates signals into posterior
distributions of unobservables, as these serve as sufficient statistics of any signals received by the
agents. In our setting of credit market competition, besides learning about the fundamentals (vari-
ous θ’s) from their own signals, each lender—especially the relatively weaker, non-specialized Bank
B—is also concerned with its stronger opponent’s superior information regarding the fundamentals.
Importantly, this shapes the Winner’s Curse and hence the equilibrium bidding strategies. Because
the information span η and the information precision α affect each lender’s signals and their cor-
relations differently, these two information technology parameters drive each lender’s beliefs about
fundamentals and their corresponding distributions in drastically different ways.

To highlight the winner’s curse, our discussion primarily focuses on the perspective of the non-
specialized Bank B who has received hB = H and therefore consider bidding for the loan. We first
consider the “disagreement” event in which Bank A receives a negative hard signal and therefore
withdraws from competition. Conditional on hB = H, the probability of this event, which we
denote by P (LH| hB = H), is

P
(
LH|hB = H

)
= α (1 − α)

qhα + (1 − qh) (1 − α)
= 1

qh
h (1 − η) (2α−1)

α(1−α) + 1
α

. (38)

20This parameter is empirically relevant because, in the data, the non-performing loan rate—which is about 5% as
documented in Blickle, He, Huang, and Parlatore (2024)—is quite low.
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The top two panels of Figure 5 plot (38) as functions of η and α, respectively.
Importantly, the symmetric structure of hard information implies that Bank B’s belief about

the project quality, conditional on {LH}, remains at its prior E[θ] = q, independent of either η or
α. However, these two technology parameters have opposite economic effects on the likelihood of
competition that Bank B faces when receiving hB = H. As shown in Panel IB

η , Bank B knows that
as η increases, it becomes more likely that Bank A receives a negative hard signal and withdraws.
This comparative static result can be shown formally.21 Intuitively, when η increases so that
hard signals cover more fundamentals, the multiplicative structure implies a lower probability of
a positive signal, so lenders are less likely to compete. Taking into account that a higher η in
equilibrium leads Bank B more profitable (Proposition 2), this effect potentially helps Bank B in
the credit market.

The economic effects of changes in precision α are different. As screening becomes more precise
about the underlying state, lenders’ hard signals become more unconditionally correlated, and
they are less likely to disagree. This force leads Bank B, when receiving hB = H, to know that
competition from Bank A is more likely, which contrasts with the comparative statics in Panel IB

η .22

Now consider the “agreement” event in which Bank A competes after receiving hA = H, along
with a soft signal s. For Bank B, what is the implied fundamental when taking into account
the opponent’s potential information? We study these beliefs about two fundamental states: i)
the overall fundamental θ, which determines the ultimate loan repayment probability; and ii) the
“always soft” fundamental θs

s, which only Bank A can assess with a soft signal. Speficically, in
these events, the posterior mean of θz (i.e., either θ or θs

s) conditional on
{

hA = hB = H, s
}

, can
be calculated as (with detailed expressions given in Appendix A.5).

z(HHs) ≡ E
[
θ = 1| hA = hB = H, s

]
=

P
(
θ = 1, hA = hB = H, s

)
pHH (s)

, (39)

zs
s(HHs) ≡ E

[
θs

s = 1| hA = hB = H, s
]

=
P
(
θs

s = 1, hA = hB = H, s
)

pHH (s)
. (40)

For illustration, we plot z(HHs) in (39) as a function of s for various levels of η and α in
Panels IIA

η and IIA
α , respectively. These posterior means of project quality are observed by Bank

A depending on the soft signal s it receives (and taking into account of Bank B’s hard signal
conditional on competing). Not surprisingly, z(HHs) increases with the soft signal s. We emphasize
that both technology parameters improve Bank A’s learning, in that fixing any signal s, the larger
the η or α, the higher the posterior quality of the project.

21It is easy to show that P(hB = H) = qhα+(1−qh)(1−α) increases in qh (so it decreases with η) as α > 0.5. Because
we have shown in (31) that the probability of disagreement events is independent of η, it implies P

(
LH|hB = H

)
increases with η.

22Formally, we need a relatively high prior quality (qh > 1
2 ) so that lenders are more likely to receive H when α

increases. Combining this with a lower chance of disagreement implies that P
(
LH|hB = H

)
decreases with α.
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Figure 5: Conditional probability and density of posterior means of fundamentals. Panel IB
η and

IB
α depict P

(
LH|hB = H

)
as functions of η and α, for three different levels of α and η respectively. Panel

IIA
η and IIA

α depict posteriors z as functions of s. Panel IIIB
η and IIIB

α depict the density of posterior z,
and Panel IVB

η and IVB
α depict the density of posterior zs

s . For all panels, different levels of α’s and η’s are
plotted: η = 0.03 (α = 0.65) in blue solid line, η = 0.05 (α = 0.75) in purple dotted line, and η = 0.07
(α = 0.85) in rose-red dash line. Baseline parameters: α = 0.75, η = 0.05, τ = 1, qh

h = 0.9, and qs = 0.9.
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We further calculate the distribution of z and zs
s conditional on hB = H (see Appendix A.5).

Essentially, we are asking, from the perspective of Bank B, what is the distribution of fundamentals
given hB = H if taking into account the opponent’s information? In Figure 5, Panel IIIB

η and IIIB
α

plots the density of z when varying η and α, respectively. Similarly, Panels IVB
η and IVB

α plot the
corresponding densities for zs

s when we vary η and α.
The comparative statics with respect to the two technology parameters are quite transparent for

z’s distribution. Both types of technology advancement improve the assessment of project quality
θ. It is clear from Panel IIIB

α that z conditional on
{

hA = hB = H, s
}

increases as the hard signal
precision α increases, and a similar pattern is observed in Panel IIIB

η when η increases, reflecting
better screening as hard information becomes broader.

Turning to the posterior mean of θs
s (i.e., zs

s) from the perspective of Bank B, the effects of
two technology parameters differ significantly. When the span of hard information η increases, we
observe a distributional shift from low beliefs to high beliefs about the “always soft” fundamental
θs

s, for Bank B with hB = H. Intuitively, the residual uncertainty that stems from the “always soft”
fundamental θs

s shrinks. Consistent with discussion around Eq. (29), this suggests that from the
perspective of non-specialized Bank B, the private information of its opponent A is more likely to
be favorable when η increases, suggesting a weakened winner’s curse from the residual uncertainty
about “always soft” fundamental θs

s.
In contrast, when the signal precision α increases, the competition event HH is more likely for

Bank B who receives hB = H. This explains the larger probability mass of zs
s in Panel IVB

α as α

increases.23 Bank B who suffers from the winner’s curse from the “always soft” fundamental θs
s

is particularly concerned about the left-tail events of zs
s , which become more likely for a larger α.

This is opposite to the pro-competitive implications of an increase in the information span η.

3.3 Credit Allocation and Welfare

We now analyze how information span affects the allocation of credit and welfare. After presenting
some comparative static results on aggregate markers of credit market health as a function of η we
formally prove that welfare always improves when information span on hard signals increase.

Comparative statics of information span on credit market outcomes. We focus on three
aggregate markers of credit market health: loan approval rate, non-performance rate, and proba-
bility of funding for high- and low-quality borrowers. We also investigate the expected NPV of a
funded project as a measure of total welfare in the banking sector.

Three effects govern Figure 6 which plot the comparative statics of equilibrium outcomes as a
function of the span of hard information η. First of all, a higher η represents a better screening
technology. Second, an increase in η decreases the probability of getting a positive hard signal as

23It is important to note that θs
s itself does not change when α varies.
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there are more fundamental states covered by the hard signal and any one of them failing makes
the loan quality low. Finally, a larger η alleviates the winner’s curse faced by the non-specialized
lender, leading to more aggressive bidding in equilibrium.

Panel A depicts the expected loan approval rates for two lenders. For Bank A who receive both
hard and soft signals, a higher η implies a better screening overall, and therefore it lends more often
given a relatively high prior of borrower quality (q = 0.72) in our numerical example. For Bank B,
the effect of an increase in η on its approval rate (dashed line) depends on whether it makes zero
or positive profits in equilibrium. In a zero-weak equilibrium, the reduction in the winner’s curse
for Bank B increases the likelihood of Bank B competing for the borrower after receiving hB = H,
pushing the approval rate upwards. In a positive-weak equilibrium, Bank B always participates
and the effect of a lower winner’s curse is dampened. In Panel A, the effect of η on the winner’s
curse for Bank B dominates for values of η < 0.03 (zero-weak) while the opposite holds for η > 0.03
(positive-weak). The jump in Bank B’s loan approval rate when switching from a zero-weak to
a positive-weak equilibrium mirrors the jump in Bank B’s participation upon receiving hB = H,
which goes from being less than one when πB = 0 to being one when πB > 0.

Panel B shows the non-performing rates of loans made by Bank A (solid line) and Bank B

(dashed line), which decrease in the information span for both lenders (within one equilibrium
type). A higher η improves the screening technology (reduces Type II errors) and increases the
average loan quality. The jump in Bank B’s non-performing rate follows from the jump in Bank B’s
participation when the equilibrium switches from zero-weak to positive-weak (and starts quoting
r in point mass); this explains all the jumps in Figure 6. Consequently, Bank B’s incremental
borrowers are of relatively low quality because it only wins competition when the opponent receives
low soft signals s < ŝ.

Panel C plots the probability of good (solid line) and bad (dashed line) borrowers receiving
funding in equilibrium. As a higher η represents a better screening technology, one would expect
the probability of funding good loans to rise while that of bad loans to fall. This is indeed the
case in Panel C when the equilibrium is in the positive-weak regime for η > 0.03. In a zero-weak
equilibrium, the effect of lowering winner’s curse leads Bank B more likely to compete, and hence
its higher probability extending loans to good and bad borrowers. This effect dominates and the
probability of bad loans being funded increases with η for η < 0.03.

Information span and credit market welfare. We can formally prove that welfare increases
with the span of hard information.

Proposition 4. Total welfare, which is measured as expected net present value (NPV) of funded
projects, strictly increases in information span η.

Panel D shows aggregate welfare measured as the expected NPV of a funded project, as well as
the surplus to each agent in this sector. In the zero weak equilibrium, the welfare effect of lender

34



Figure 6: Credit allocation and welfare. Panel A and Panel B show the expected loan approval and
non-performing rates, respectively. The solid lines correspond to Bank A while the dashed lines correspond
to Bank B. Panel C depicts the probability of getting funded for a high-quality borrower (solid line) and
a low-quality borrower (dashed line). Panel D illustrates aggregate welfare (solid line), borrower surplus
(dashed line), and lender profits. All variables are depicted as a function of the span of hard information η.
Priors qh, qs

s and information span η satisfy qh = q/qs · (1 − η) and qs
s = qs/(1 − η). Parameters: r̄ = 0.36,

q = 0.72, qs = 0.9, τ = 1 (top two panels) and αu = αd = α = 0.7 (bottom two panels).

participation is zero, so the total welfare increases due to improved screening. To see this, as a
lender adjusts its participation upon H in response to a broader span of hard information, the
marginal borrower may gain or lose credit access. As a result, the impact on the marginal borrower
is exactly the same as that from the planner’s perspective. This means that the welfare effect of
lender participation is exactly equal to the lender’s profits on its marginal borrower, which is zero
given the lender’s optimality condition. In the positive weak equilibrium, however, the welfare
effect of lender participation is no longer zero, as there is a gap between the marginal borrower’s
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value to Bank A and to aggregate welfare. Specifically, in the case of competition (HH), Bank A

earns profits by winning this marginal borrower from Bank B, but this is a transfer between lenders
leaving total welfare unchanged. Nevertheless, we are able to show that the benefit of improved
screening dominates and total welfare increases even in the regime of a positive-weak equilibrium.

Note in Panel D welfare is continuous in η when we switch from a zero-weak to a positive-weak
equilibrium. At the knife-edge parameter of equilibrium type switching, both Bank B and the
borrower make zero profits.24 Hence, despite a jump in quantity, these additional loans are zero
NPV projects on average, implying that total welfare increases continuously as η widens.

Moving on to surplus of each agent, recall that as lender screening becomes more efficient and
competition intensifies, good-type borrowers are more likely to be funded (Panel C) and receive
lower rates. (We normalize the surplus of bad-type borrowers to zero).25 When η < η̂ = 0.03, the
equilibrium is zero-weak and Bank A’s expected profits decrease according to Proposition 2. In
this case, the improvement in total welfare all accrues to borrowers, and there is additional transfer
from banks to borrowers. When η ≥ 0.03, the equilibrium is positive-weak and Bank B also enjoys
a higher surplus from an increase in the information span η.

Finally, recall that in Panel D of Figure 6, all welfare goes up except the specialized Bank A in
the range of positive-weak equilibrium. Is it possible that an increase in information span leads to a
Pareto improvement for all agents in this sector? The answer is yes. As shown in Panel B of Figure
3 in Section 3.1, Bank A’s profits could also increase in information span. Highlighting the feature
that we directly model technology improvement, both the specialized and nonspecialized lenders
enjoy the same technology improvement, especially when signal precisions before hardening soft
information are low. In sum, broader hard information, which is an important form of information
technology improvement in the recent decade, could lead to a Pareto improvement of all sectors
and everyone enjoys a higher surplus.

4 Model Extensions and Discussions

This section considers several model extensions. First, the open banking initiative (He, Huang,
and Zhou, 2023) implies that lenders’ hard signals are likely to become more and more correlated;
our model can be easily adapted to incorporate this aspect of change in information technology.
Second, so far we have adopted one particular hard information technology as illustrated in Figure
1. As robustness, we explicitly model the signal on hardened soft fundamental θh

s (potentially
generated by Big Data technology) and show that both the equilibrium characterization and the

24The discrete jump of loans is made with an interest rate of r, so that borrowers receive no surplus from these
loans. Recall we rule out non-pledgeable income of borrowers; otherwise, there will be an upward jump in total
welfare which includes the borrower’s non-pledgeable income.

25See He, Huang, and Zhou (2023) for an analysis that includes the welfare of both good and bad types of borrowers
in the context of open banking regulation.
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Figure 7: Equilibrium strategies and profits for hard signal correlation ρh. Panel A depicts rA(s)
as a function of s and Panel B plots F B′(r) as a function of r; strategies for ρh+ = 0.6 are depicted in
red with markers while strategies with ρh0 = 0 are depicted in blue. Panel C depicts Bank A’s thresholds
ŝ = sup sA(r) and x = sup sA(∞), and Panel D depicts the expected profits for two lenders, both as a
function of ρh. Parameters: r = 0.45, qh = 0.8, qs = 0.9, η = 0, α = 0.7, and τ = 1.

key economic takeaways are robust to this alternative modeling of the hard information technology.

4.1 Correlated Hard Signals

Another widely acknowledged aspect of information technology advancement is that lenders’ hard
information signals become more correlated. For example, the open banking initiative enables
sharing financial data with potential lenders under customer consent (He, Huang, and Zhou, 2023;
Babina, Buchak, De Marco, Foulis, Gornall, Mazzola, and Yu, forthcoming), making lenders’ as-
sessments to be more alike. We extend our model to capture this effect, and show that making
signals more “public” differs from hardened soft information in affecting credit market equilibrium.
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We modify the hard information technology as follows. Suppose that with probability ρh ∈ [0, 1]
lenders receive the same binary signal realization hc ∈ {H, L}, while with probability (1 − ρh)
each lender receives an independent binary hard signal. We solve the model extension (detailed
derivations are available in Appendix A.6) and plot the key comparative statics in Figure 7 with
respect to the correlation ρh ∈ [0, 1] of hard signals across two lenders. We observe in the bottom
two panels on Figure 7 that a larger ρh leads to a zero-weak equilibrium more likely to occur. In the
extreme case in which ρh = 1, the hard signal becomes a public signal, and Bank B who becomes
effectively uninformed ends up with zero profit (Milgrom and Weber, 1982, as discussed in Section
3.2). From this perspective, it is interesting to observe that the economic implications of ρh, which
is more about data sharing, are qualitatively similar to that of changes in signal precision studied
in Section 3.2 but opposite to information span highlighted in this paper.

4.2 Signals on Hardened Soft Fundamental θh
s

Information technology corresponds to mappings from some fundamental states to signals, and
as usual, there are potentially important modeling choices in specifying the details of the (hard)
information technology. As illustrated in the top panel of Figure 1, we have adopted a technology
that takes the entire hard fundamental θh as input and produces a binary signal as output. Does
our core mechanism depend on this modeling choice?

More specifically, given our hard fundamental θh = θh
s θs

s, another natural way to model “harden-
ing soft information” is to keep the original hard and soft signals the same but introduce additional
signals of the hardened soft fundamental θh

s . Denote by hj
s ∈ {H, L} the lender j’s binary signal of

θs
h, which we call hardened soft signal. For tractability, we assume that they are also decisive just

as in Section 1.4, so that both lenders reject the borrower if hj
s = L.

We can generally allow for any correlation ρh
s between two hardened soft signals, as modeled in

Section 4.1. For illustration purposes, however, we assume that ρh
s = 1; essentially, the hardened

soft signal becomes public. (Appendix A.7 provides a full analysis for any general ρh
s ∈ (0, 1).) More

specifically, we assume hA
s = hB

s = hc
s where hc

s takes a value of H (L) with probability αs ∈ (1
2 , 1)

conditional on θh
s = 1 (θh

s = 0). In practice, the signals generated by Big Data technology are
indeed increasingly correlated across users, and this assumption captures this trend in its stark
form. In fact, in the limiting case αs → 1, hj

s which reveals θh
s perfectly will be the same across

two lenders for any ρh
s .

That hA
s = hB

s = hc
s is public, together with the assumption that hj

s’s are decisive, simplifies the
analysis greatly. Conceptually, because lenders understand that they compete only when hc

s = H

which is informative about the hardened soft fundamentals θh
s , this changes the effective distribution

of soft signal s to ϕ (s|hc
s = H). This in turn affects the credit market equilibrium outcome.

Similar to Section 2.1, we introduce pHHH (s) ≡ P
(
hA = H, hB = H, hc

s = H, s ∈ ds
)

as the
joint probability of all three hard signals (hA, hB, hc

s) being H and the soft signal s falling in the

38



interval (s, s + ds); we can define analogously pHLH (s), and finally pLHH the joint probability of{
hA = L, hB = hc

s = H
}

. We define µHHH(s) and µLHH analogously. Then, Bank B’s lending
profits when quoting r and hB = hB

s = H, is similar to (16):

πB (r) =
∫ sA(r)

0
pHHH(t)︸ ︷︷ ︸

hA=hB=hc
s=H,t

[µHHH (t) (r + 1) − 1] dt + pLHH︸ ︷︷ ︸
hA=L,hB=hc

s=H

[µLHH (r + 1) − 1] . (41)

And, Bank A’s profit when quoting r and
{

hA = H, hc
s = H, s

}
is similar to (14):

πA (r, s) = pHHH(s)︸ ︷︷ ︸
hA=hB=hc

s=H,s

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHHH(s) (1 + r) − 1] + pHLH(s)︸ ︷︷ ︸
hA=hc

s=H,hB=L,s

[µHLH(s) (1 + r) − 1] .

(42)

Appendix A.7 shows that the above profits are isomorphic (up to a constant) to those in Blickle,
He, Huang, and Parlatore (2024) with independent fundamentals (and signals), once we replace
the relevant distributions—say θs = 1 or s—to be those conditional on hc

s = H. This allows us to
fully characterize the credit market equilibrium under the alternative modeling.

The alternative modeling of hardened soft signal delivers quite similar economics as in our
baseline. In Section 3.1 we have illustrated that the key mechanism of hardening soft information
is to help the non-specialized lender alleviate the winner’s curse against Bank A’s unfavorable soft
signal. Under the alternative modeling, one can calculate the distribution of soft signal conditional
on positive realization of hc

s, i.e.,

ϕ (s|hc
s = H) = ϕ0 (s) +

↑ in η as αs> 1
2︷ ︸︸ ︷

αs

αs − (2αs − 1) η
·qs [ϕ1 (s) − ϕ0 (s)] . (43)

Comparing it to ϕ
(
s
∣∣∣hA = hB = H

)
in (29), the only difference arises from the perfectly correlated

hardened soft signal hc
s introduced here, versus the conditionally independent hA, hB in our baseline

model (if we further set θh
h = 1). Essentially, observing a positive (public) hardened soft signal

helps both lenders update the belief about s upward, and this effect is stronger for non-specialized
lender who was particularly concerned about the winner’s curse caused by Bank A’s soft signal s.
This economic insight is robust even if the hardened soft signal is independent; see a full analysis
in Appendix A.7.
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5 Concluding Remarks

One of the main roles of banks in the economy is producing information to allocate credit. In
this paper, we show that the nature of the banks’ information technology affects the credit market
equilibrium and the degree of competition among banks. More specifically, we explore how the
recent trend in Big Data technology that transforms qualitative or subjective assessments into
quantifiable and objective metrics, known as hardening soft information, affects credit market
outcomes in the presence of specialized lenders.

It is important to note that a priori, the significant advance in information technology should
benefit all lenders, including specialized and established banks, as well as non-specialized lenders
and new fintech challengers; in fact, large banks might front-run in their IT investment in the past
decade (He, Jiang, Xu, and Yin, 2023). However, the fast-growing empirical literature on fintechs
(see, e.g. Berg, Fuster, and Puri, 2022) seems to suggest that the new technology has helped
relatively weaker (fintech) lenders catch up, intensifying the credit market competition.

We build a novel model with asymmetric lenders but symmetric technology improvement to
study information span, and its implications on credit market competition. Our model highlights
the crucial difference between information span, which captures the “breadth” of information, and
the precision of information, which captures its “quality.” This distinction is crucial in under-
standing the changing landscape in the credit market due to technological advances related to data
gathering and processing that lead to the hardening of soft information. Our theory clarifies that
it is enlarging the information span, not the mere improvement of precision, that can deliver the
desired empirical pattern in a robust way; in fact, the former tends to reinforce the position of
specialized lender while the latter “levels the playing field.”
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A Technical Appendices

A.1 Credit Competition Equilibrium

Proof of Lemma 1

Proof. Note that the property of no gap implies common support [r, r], because if a bank’s interest
rate offering has a larger lower bound or a smaller upper bound interest rate than its competitor’s,
this is one example of gaps in the first bank’s support.

To show that the distributions have no gap, suppose that, say, the support of F B has a gap
(r1, r2) ⊂ [r, r].26 Then F A should have no weight in this interval either, as any rA (s) ∈ (r1, r2)
will lead to the same demand for Bank A and so a higher r will be more profitable. At least one
lender does not have a mass point at r1 (it is impossible that both distributions have a mass point

26The same argument follows if the support of F A has a gap in the conjectured equilibrium, and then for Bank
B, any quotes within the gap lead to the same demand of the same posterior quality of customers, where Bank B
updates its belief from Bank A’s strategy.
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at r1), under which its competitor has a profitable deviation by revising r1 to r ∈ (r1, r2) instead.
Contradiction.

Regarding point mass, suppose that one distribution, say F B has a mass point at r̃ ∈ [r, r).
Then Bank A would not quote any rA (s) ∈ [r̃, r̃ + ϵ] and it would strictly prefer quoting rA = r̃ − ϵ

instead. In other words, the support of F A must have a gap in the interval [r̃, r̃ + ϵ]. This contradicts
the property of no gaps which we have shown. Finally, it is impossible that both distributions have
a mass point at r.

A.2 Proof of Proposition 1

Proof. This part proves that Bank A’s equilibrium interest rate quoting strategy as a function of
soft signal rA (s) is always decreasing; this implies that the FOC that helps us derive Bank A’s
strategy also ensures the global optimality.

Write Bank A’s value ΠA (r, s) as a function of its interest rate quote and soft signal, in the
event of hA = H and s. (We use π to denote the equilibrium profit but Π for any strategy.) Recall
that Bank A solves the following problem:

max
r

ΠA (r, s) = pHH (s)︸ ︷︷ ︸
hA=H,hB=H,s

[
1 − F B (r)

]
︸ ︷︷ ︸

A wins

[µHH (s) (1 + r) − 1] + pHL (s)︸ ︷︷ ︸
hA=H,hB=L,s

[µHL (s) (1 + r) − 1]

(44)
with the following FOC:

0 = ΠA
r (r (s) , s)

= pHH (s)
[
−dF B (r)

dr

]
︸ ︷︷ ︸

lost customer

[µHH (s) (1 + r) − 1]︸ ︷︷ ︸
customer return

+ pHH (s)
[
1 − F B (r)

]
︸ ︷︷ ︸

customer

µHH (s)︸ ︷︷ ︸
MB of customer

+pHL (s) µHL (s) .

(45)

One useful observation is that on the support, it must hold that µHH (s) (1 + r)−1 > 0; otherwise,
µHL (s) (1 + r) − 1 < µHH (s) (1 + r) − 1 ≤ 0, implying that Bank A’s profit is negative (so it will
exit).

Lemma 2. Consider s1, s2 in the interior domain with corresponding interest rate quote r1 and
r2. The marginal value of quoting r2 for type s = s1, i.e. ΠA

r (r2, s1), has the same sign as s2 − s1.
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Proof. Evaluating the FOC of type s1 but quoting r2:

ΠA
r (r2, s1) =pHH (s1)

[
−dF B (r2)

dr

]
[µHH (s1) (1 + r2) − 1]

+ pHH (s1)
[
1 − F B (r2)

]
µHH (s1) + pHL (s1) µHL (s1) . (46)

FOC at type s2 yields

0 = ΠA
r (r2, s2) =pHH (s2)

[
−dF B (r2)

dr

]
[µHH (s2) (1 + r2) − 1]

+ pHH (s2)
[
1 − F B (r2)

]
µHH (s2) + pHL (s2) µHL (s2) ,

or
dF B (r2)

dr
=

pHH (s2)
[
1 − F B (r2)

]
µHH (s2) + pHL (s2) µHL (s2)

pHH (s2) [µHH (s2) (1 + r2) − 1]
. (47)

Plugging in this term to (46), ΠA
r (r2, s1) becomes

ΠA
r (r2, s1) =

[
ϕ1 (s1) − pHH (s1)

pHH (s2)
· µHH (s1) (1 + r2) − 1

µHH (s2) (1 + r2) − 1
· ϕ1 (s2)

] {
pHHµHH

[
1 − F B (r2)

]
+ pHLµHL

}
= pHH (s1) ϕ1 (s2) − ϕ1 (s1) pHH (s2)

pHH (s2) [µHH (s2) (1 + r2) − 1]

{
pHHµHH

[
1 − F B (r2)

]
+ pHLµHL

}
, (48)

where phAhB ≡ P
(
hA, hB

)
, µhAhB ≡ P

(
θ = 1

∣∣∣hA, hB
)

are defined in Section 2.1 and ϕ1 (s) ≡
ϕ (s |θs = 1) = sϕ(s)

qs
is the conditional density of soft signal (also ϕ0 (s) ≡ ϕ (s |θs = 0) = (1−s)ϕ(s)

qs
).

Hence, the sign of ΠA
r (r2, s1) depends on pHH (s1) ϕ1 (s2) − pHH (s2) ϕ1 (s1) because the denomi-

nator is positive as we noted right after Eq. (45).
Last, we argue that the sign of pHH (s1) ϕ1 (s2)−pHH (s2) ϕ1 (s1) depends on s2 −s1. Note that

the event HH correlates with the soft signal s only via θh
s which affects θs, we have

pHH (s) = P (θs = 1, HH) ϕ1 (s) + P (θs = 0, HH) ϕ0 (s) ,

i.e., two positive hard signals HH are no longer informative about the soft signal s once we condition
on the soft state θs. Using this observation,

pHH (s1) ϕ1 (s2) − pHH (s2) ϕ1 (s1) = P (θs = 0, HH) ϕ0 (s1) ϕ0 (s2)
[

ϕ1 (s2)
ϕ0 (s2)

− ϕ1 (s1)
ϕ0 (s1)

]
, (49)

which shares the same sign as s2 − s1.

Lemma 2 has three implications. First, as long as rA (·) is (strictly) increasing in some segment,
then Bank A would like to deviate in this segment. To see this, suppose that r1 > r2 when s1 > s2
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for s1, s2 arbitrarily close. Because Lemma 1 has shown that Bank A’s strategy is smooth, r2 is
arbitrarily close to r1. Then ΠA

r (r2, s1) < 0, implying that the value is convex and the Bank A at
s1 (who in equilibrium is supposed to quote r1) would like to deviate further.

Second, the monotonicity implied by Lemma 2 helps us show that Bank A uses a pure strategy.
To see this, for any s1 > s2 that induce interior quotes r1, r2 ∈ [r, r), however close, in equilibrium
we must have sup rA(s1) < inf rA(s2) by monotonicity. Combining this with Part 3 of Lemma 1,
i.e., the induced distribution F A(·) is atomless except for at r and has no gaps, we know that Bank
A must adopt a pure strategy in the interior of [r, r), or for s ≤ ŝ. Finally, the following argument
shows pure strategy for s < ŝ: i) randomize over s = 0 is a zero-measure set; and ii) on s > ŝ

Bank A can either quote r or ∞, which, generically, gives different values (and hence rules out
randomization).

Third, if rA (·) is decreasing globally over S, then the FOC is sufficient to ensure global opti-
mality. Consider a type s1 who would like to deviate to ř > r1; then

ΠA (ř, s1) − ΠA (r1, s1) =
∫ ř

r1
V A

r (r, s1) dr.

Given the monotonicity of r (s), we can find the corresponding type s (r) for r ∈ [r1, ř]. From
Lemma 2 we know that

ΠA
r (r, s1) ∝ ϕ1 (s (r))

ϕ0 (s (r))
− ϕ1 (s1)

ϕ0 (s1)

which is negative given s (r) < s1. Therefore the deviation gain is negative. Similarly, we can show
a negative deviation gain for any ř < r1.

Next we show that rA (·) is single-peaked over the space of S = [0, 1].

Lemma 3. Given any exogenous πB ≥ 0, rA (·) single-peaked over S = [0, 1] with a maximum
point.

Proof. When r ∈ [r, r), the derivative of rA (s) with respect to s is

drA (s)
ds

=

pHHϕ (s)


M1(s)<0,andM ′

1(s)<0︷ ︸︸ ︷∫ s

0
pHH (t) [µHH (t) − µHH (s)] dt +

M2(s)?0, butM ′
2(s)<0︷ ︸︸ ︷

pLHµLH −
(
πB + pLH

)
µHH (s)


(
∫ s

0 pHH (t) · µHH (t) dt + pLHµLH)2 .

As µHH (t) < µHH (s) for t ∈ [0, s), the first term in the bracket M1 (s) < 0, and

M ′
1 (s) = −∂µHH (s)

∂s

∫ s

0
pHH (t) dt < 0.

For M2 (s) = pLHµLH −
(
πB + pLH

)
µHH (s), it has an ambiguous sign, but is decreasing in s.
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This implies that M1 (s) + M2 (s) decreases with s. It is easy to verify that M1(0) + M2(0) > 0 and
M1(1)+M2(1) < 0. Therefore rA(s) first increases and then decreases, therefore single-peaked.

Suppose that the peak point is s̃; then Bank A should simply charge r (s) = r̃ for s < s̃ for
better profit. This is the standard “ironing” technique and we therefore define the following ironed
strategy formally (here, we also take care of the capping r ≤ r):

rA
ironed (s) ≡ sup

t∈[s,1]
min

(
rA (t) , r

)
.

By definition rA
ironed (s) is monotone decreasing.

We now argue that in equilibrium, πB and r adjust so that rA (·) is always monotonely decreasing
over [x, 1]. (Since we define rA (s) = ∞ for s < x, monotonicity over the entire signal space [0, 1]
immediately follows.) There are two subcases to consider.

1. Suppose that r̃ = r. In this case, rA (s) = πB+
∫ s

0 pHH(t)dt+pLH∫ s

0 pHH(t)·µHH(t)dt+pLHµLH

−1 used in Lemma 2 and
3 does not apply to s < s̃ because the equation is defined only over the left-closed-right-open
interval [r, r) . Instead, rA (s) in this region is determined by Bank A’s optimality condition:
as rA does not affect the competition from Bank B (which equals F B (r−)), Bank A simply
sets the maximum possible rate rA (r) = r unless it becomes unprofitable (for s < x). (This
is our zero-weak equilibrium with πB = 0, and there is no “ironing” in this case.)

2. Suppose that r̃ < r; then bank A quotes r̃ for all s < ŝ. But this is not an equilibrium—Bank
A now leaves a gap in the interval [r̃, r], contradicting with point 3) in Lemma 1 (there, we
rule out gaps in equilibrium). Intuitively, Bank B always would like to raise its quotes inside
[r̃, r] to r; there is no “ironing” in this case. (This is our positive-weak equilibrium with
πB > 0.)

Therefore, we have shown that Bank A uses a pure strategy rA (s) that decreases in s. Bank A’s
equilibrium strategy Eq. (18) is then derived from Bank B’s indifference condition.

Equilibrium strategy F B In this part, we derive equilibrium strategy taking πB and ŝ as given.
Bank A’s equilibrium strategy Eq. (18) in s ∈ [ŝ, 1] maximizes its profit and so satisfies the

following first order condition (FOC):

pHH (s)
(

−dF B (r)
dr

)
[µHH (s) (r + 1) − 1] +

{
pHH (s)

[
1 − F B (r)

]
µHH (s) + pHL (s) µHL (s)

}
= 0.

(50)

Bank B’s equilibrium quotes r ∈ [r, r) maximizes its expected profits and satisfy the following
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FOC:

(
−sA′ (r)

)
pHH

(
sA (r)

)
︸ ︷︷ ︸

B’s additional borrowers

[µHH (s) (r + 1) − 1] =
∫ sA(r)

0
pHH (t) µHH (t) dt + pLHµLH︸ ︷︷ ︸

B’s existing borrowers

.

Plug this condition into Bank A’s optimality condition (50), and we have

(
−dF B (r)

dr

) ∫ sA(r)
0 pHH (t) µHH (t) dt + pLHµLH

−sA′ (r)
+ pHH(s)

[
1 − F B (r)

]
µHH(s) + pHL(s)µHL(s) = 0,

which could be rearranged as

− d

ds

{
1 − F B (r)∫ s

0 pHH (t) µHH (t) dt + pLHµLH

}
= −

d
ds {

∫ s
0 pHL(t)µHL(t)dt}

[
∫ s

0 pHH (t) µHH (t) dt + pLHµLH ]2
.

Using the conditional independence of signals, the right-hand-side of the above equation is

−
d
ds {

∫ s
0 pHL(t)µHL(t)dt}

[
∫ s

0 pHH (t) µHH (t) dt + pLHµLH ]2
= −

d
ds

{∫ s
0

pHL(t)µHL(t)
pHH(t)µHH(t)pHH (t) µHH (t) dt

}
[
∫ s

0 pHH (t) µHH (t) dt + pLHµLH ]2

= 1 − α

α

d

ds

{
1∫ s

0 pHH (t) µHH (t) dt + pLHµLH

}
.

Hence, Bank B’s equilibrium strategy satisfies the following key ordinary differential equation,

d

ds

[ 1−α
α + 1 − F B (r)∫ s

0 pHH (t) µHH (t) dt + pLHµLH

]
= 0, (51)

so there exists a constant C so that

pHHµHH

[
1 − F B (r)

]
+ pHLµHL∫ s

0 pHH (t) µHH (t) dt + pLHµLH

= C.

Using the boundary condition F B (r) = 0, we solve for the constant

C = pHHµHH + pHLµHL

pHHµHH + pLHµLH

= 1.

Therefore, for r ∈ [r, r), we have

F B (r) = 1 −
∫ s(r)

0 tϕ (t) dt

qs
,
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and if πB > 0 (πB = 0), we have F B (r) = 1 (F B (r) = 1 −
∫ ŝ

0 tϕ(t)dt

qs
).

πB and boundary condition ŝ We define the following auxilary functions

π̂B
(
r; sA (r) = š

)
=
∫ š

0
pHH (t) [µHH (t) (r + 1) − 1] dt + pLH [µLH (r + 1) − 1] , (52)

which is Bank B’s profits when assuming that quoting rB = r wins Bank A of type s ∈ [0, š] in
competition (HH). We define sbe

B as the threshold where Bank B’s auxilary profits break even,

π̂B
(
r; sA (r) = sbe

B

)
= 0. (53)

In addition, we define the following auxilary profit function for Bank A,

π̂A
(

r, š; F B (r) =
∫ 1

š

sϕ (s)
qs

ds

)
=pHH (š)

∫ š

0

sϕ (s)
qs

ds︸ ︷︷ ︸
=1−F B(r)

[µHH (š) (1 + r) − 1] + pHL (š) [µHL (š) (1 + r) − 1] , (54)

which assumes that Bank A receiving soft signal š wins with probability
∫ š

0
sϕ(s)

qs
ds when quoting

r. We define sbe
A as the threshold where Bank A’s auxilary profits break even,

π̂A

(
r, sbe

A ; F B (r) =
∫ 1

sbe
A

sϕ (s)
qs

ds

)
= 0. (55)

First, we argue that equilibrium ŝ ≡ arg sups

{
s : rA (s) ≥ r

}
either equals sbe

A or sbe
B . To see

this, if πB = 0, we have ŝ = sbe
B by construction. If πB > 0, then Bank B always makes an offer

upon H, i.e., F B (r) = 1. We also know that F B (r−) = 1 −
∫ sA(r)=ŝ+

0 tϕ(t)dt

qs
< 1, because Bank A

must reject the borrower when s realizes as close to 0 and ŝ > 0. Hence, F B (r) has a point mass at
r. It follows that F A (r) is open at r: ŝ = x and πA

(
rA (ŝ) |ŝ

)
= 0, which is exactly the definition

of sbe
A and so ŝ = sbe

A .
Now we prove the claim in this lemma. In the first case of sbe

B < sbe
A , we have ŝ ≤ sbe

A and

thus Bank A’s probability of winning when quoting rA = r is at most
∫ sbe

A
0 tϕ(t)dt

qs
≥
∫ ŝ

0 tϕ(t)dt

qs
=

1−F B (r−). The definition of sbe
A says that Bank A upon sbe

A breaks even when quoting rA
(
sbe

A

)
= r

and facing this most favorable winning probability
∫ sbe

A
0 tϕ(t)dt

qs
. Then upon a worse soft signal

sbe
B < sbe

A , Bank A must reject the borrower because offering r leads to losses, which rules out
ŝ = sbe

B . According to our earlier observation of ŝ = sbe
B or sbe

A , we have ŝ = sbe
A and πB > 0 in this
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case, where πB is the same as Eq. (52).
In the second case of sbe

B ≥ sbe
A , we have ŝ ≤ sbe

B . When Bank B quotes rB = r, the marginal
type that Bank B wins over is at most sbe

B . The definition of sbe
B says that Bank B breaks even when

quoting rB = r and facing this most favorable winning probability at marginal type sbe
B . Then if the

competition from A were more aggressive, say the marginal type quoting rA = r is sbe
A ≤ sbe

B , Bank
B would make a loss when quoting r, so ŝ = sbe

A cannot support an equilibrium. Hence, in this
case, ŝ = sbe

B and πB = 0. From the definition of sbe
A , Bank A’s equilibrium break-even condition

0 = πA (r|x), and the fact that sbe
B ≥ sbe

A in this case, we have

0 =
∫ sbe

A
0 pHH (s) ds

qs

[
µHH

(
sbe

A

)
(1 + r) − 1

]
+ pHL

[
µHL

(
sbe

A

)
(1 + r) − 1

]
=
∫ sbe

B
0 pHH (s) ds

qs
[µHH (x) (1 + r) − 1] + pHL [µHL (x) (1 + r) − 1]

≥pHH
∫ sbe

A
0 tϕ (t) dt

qs
[µHH (x) (1 + r) − 1] + pHL [µHL (x) (1 + r) − 1] .

Hence, x ≤ sbe
A ≤ sbe

B = ŝ.

A.3 Proof of Proposition 2

Lemma 4. The break-even soft signals sbe
A and sbe

B defined in Eq. (55) and (53) satisfy

∂sbe
A

∂η
< 0,

∂sbe
B

∂η
< 0.

Proof. The definition of sbe
A or π̂A

(
r, sA

be;
∫ sA

be
0 tϕ(t)dt

qs

)
= 0 corresponds to an implicit function of η

and sA
be,

π̂A (η, s) ≡ pHH (s)
∫ s

0 tϕ (t) dt

qs
[µHH (s) (1 + r) − 1] + pHL (s) [µHL (s) (1 + r) − 1]

=
∫ s

0 tϕ (t) dt

qs︸ ︷︷ ︸
soft info, indept of η

pHH (s) µHH (s)︸ ︷︷ ︸
Type 1, indept of η

(1 + r) − pHH (s)︸ ︷︷ ︸
decrease in η

+ pHL (s) µHL (s)︸ ︷︷ ︸
Type 1, indept of η

(1 + r) − pHL (s) .

We first analyze the key terms’ monotonicity in η. Note that the joint events of signal realizations
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and good project (Type 1 error) is independent of η,

pHH (s) µHH (s) = qα2 · sϕ (s)
qs

,

pHL (s) µHL (s) = qα (1 − α) · sϕ (s)
qs

.

In addition, pHH (s) decreases with η as shown in Eq. (28). The remaining term pHL (s) is
independent of η as shown in Eq. (31).

Taken together,
∂π̂A (η, s)

∂η
> 0;

Combining with the fact that ∂π̂A(η,s)
∂s > 0, the implicit function theorem shows

∂sbe
A (η)
∂η

< 0.

Part 2. The definition of sbe
B corresponds to an implicit function

0 = π̂B (η, s) =
∫ s

0
pHH (t) [µHH (t) (r + 1) − 1] dt + pLH [µLH (r + 1) − 1] .

Similar as in the previous argument, Type I mistakes are constant in the span η due to the
multiplicative-characteristic setting:∫ s

0
pHH (t) µHH (t) dt = qα2Φ (s| θs = 1) = qα2 ·

∫ s
0 tϕ (t) dt

qs
,

pLHµLH = qα (1 − α) .

In addition, the probability of disagreement in hard signals is also independent of η as αA = αB,

pLH = α (1 − α) .

The probability that Bank B wins in competition
∫ s

0 pHH (t) dt decreases with η.
Taken together, we have ∂π̂B(η,s)

∂η > 0. Combining with ∂π̂B(η,s)
∂s > 0, the implicit function

theorem implies that
∂sbe

B (η)
∂η

< 0.

Proof of Proposition 2
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Proof. The two lenders’ expected profits in equilibrium can be written as:

E[πA] =
∫ 1

0
πA
(
rA (s) , s

)
ds =

∫ ŝ

0

[
πA (r, s)

]+
ds︸ ︷︷ ︸

non-competing case

+
∫ 1

ŝ
πA
(
rA (s) , s

)
ds︸ ︷︷ ︸

compete against Bank B

, (56)

πB =
∫ r

r
πBdF B (r) = πB ·

[
1 − F B(r−)

]
︸ ︷︷ ︸

non-competing case

+
∫ r

r
πB (r)︸ ︷︷ ︸

constant πB

ϕ1
(
sA(r)

) (
−sA′ (r)

)
dr

︸ ︷︷ ︸
compete against Bank A

. (57)

Note, (56) takes πA
(
rA (s) , s

)
in (14) as given which includes the density ϕ(s) already, and (57)

uses the expression of equilibrium F B (r) in (19). The second term in both equations represents
profits when lenders engage in direct competition by offering interest rates r ∈ [r, r). Since ds =[
−sA′ (r)

]
dr, we should compare the integrand πB

(
rA (s)

)
ϕ1(s) against πA

(
rA (s) , s

)
, where the

adjustment of ϕ1(s) for πB reflects Bank B’s equilibrium probability density (i.e., F B′ (r) = sϕ(s)
qs

=
ϕ1(s)) when compared against Bank A with realization s.

We study the following object for s ∈ [ŝ, 1]:

∆π (s; η) ≡ πB
(
rA (s)

)
ϕ1(s) − πA

(
rA (s) , s

)
. (58)

We aim to show that for every s, we have d∆π(s;η)
dη > 0, i.e., the impact of η on density-adjusted πB

always dominates that of πA.
First, we make the key observation that, in equilibrium, both lenders make the same revenue

but face different costs (i.e., the probability of lending). Specifically, we have

πA
(
rA (s) , s

)
=
{[

1 − F B
(
rA(s)

)]
pHH (s) µHH (s) + pHL (s) µHL (s)

}
︸ ︷︷ ︸

borrowers who repay

(
1 + rA (s)

)

−
{

pHH (s)
[
1 − F B

(
rA(s)

)]
+ pHL (s)

}
︸ ︷︷ ︸

lending amount

, (59)

πB
(
rA (s)

)
ϕ1(s) =ϕ1(s)

[∫ s

0
pHH (t) µHH (t) dt + pLHµLH

]
︸ ︷︷ ︸

borrowers who repay

(
1 + rA (s)

)
− ϕ1(s)

[∫ s

0
pHH (t) dt + pLH

]
︸ ︷︷ ︸

lending amount

.

(60)

Using Bank B’s equilibrium strategy F B
(
rA(s)

)
=
∫ 1

s
tϕ(t)dt

qs
=
∫ 1

s ϕ1(t)dt and the property of
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conditional independence, both lenders make the same revenue in competition (when HH realizes)∫ s

0
ϕ1(t)dt︸ ︷︷ ︸

A wins

· pHH (s) µHH (s)︸ ︷︷ ︸
A’s good borrower

= ϕ1(s)︸ ︷︷ ︸
measure adjustment

∫ s

0︸︷︷︸
B wins

pHH (t) µHH (t)︸ ︷︷ ︸
B’s good borrower

dt = pHHµHHϕ1(s)
∫ s

0
ϕ1(t)dt.

In addition, because lenders have the same technology to process hard information, they also make
the same revenue when the other bank rejects the borrower upon L,

pHL (s) µHL (s)︸ ︷︷ ︸
A’s good borrower

= pHLµHLϕ1(s) = ϕ1(s)pLHµLH︸ ︷︷ ︸
B’s good borrower

,

where the first equality follows from conditional independence and the second one is from the
symmetric hard information technology.

Therefore, ∆π (s; η) defined in Eq. (58) becomes

∆π(s; η) = pHH (s)
∫ s

0
ϕ1 (t) dt − ϕ1 (s)

∫ s

0
pHH (t) dt + [pHL (s) − ϕ1 (s) pLH ] .

The bracketed term about the lending costs in disagreement events is a constant in η. We rearrange
the remaining terms about the lending costs in the competition event HH,

pHH (s)
∫ s

0
ϕ1 (t) dt − ϕ1 (s)

∫ s

0
pHH (t) dt = pHH

∫ s

0
[ϕ (s|HH) ϕ1 (t) − ϕ (t|HH) ϕ1 (s)] dt

= pHH

∫ s

0

{
ϕ0 (s) + α2qs

α2 − (2α − 1) η
[ϕ1 (s) − ϕ0 (s)]

}
ϕ1 (t) dt

− pHH

∫ s

0

{
ϕ0 (t) + α2qs

α2 − (2α − 1) η
[ϕ1 (t) − ϕ0 (t)]

}
ϕ1 (s) dt

= pHH

(
1 − α2qs

α2 − (2α − 1) η

)∫ s

0
ϕ0 (s) ϕ0 (t)

[
ϕ1 (t)
ϕ0 (t)

− ϕ1 (s)
ϕ0 (s)

]
dt

= K(η)
∫ s

0
ϕ0 (s) ϕ0 (t)

[
ϕ1 (t)
ϕ0 (t)

− ϕ1 (s)
ϕ0 (s)

]
dt

where K(η) ≡ pHH

(
1 − α2qs

α2−(2α−1)η

)
decreases in η as both pHH and 1 − α2qs

α2−(2α−1)η decrease in
η, and ϕ1(s)

ϕ0(s) − ϕ1(t)
ϕ0(t) is negative due to MLRP and s > t. Therefore, for each s ∈ [ŝ, 1], ∆π (s; η)

increases in information span η.
We now show the first part of the Proposition holds. We aim to argue that η weakly increases

Bank B’s profits
dπB

dη
≥ 0.

In addition, the inequality is strict if and only if πB > 0, so there exists a threshold information
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span above which equilibrium is positive weak. When πB = 0, from

dπA (r (s) , s)
dη

< 0 =
d
[
πB (r (s)) sϕ(s)

qs

]
dη

, where s ∈ [ŝ, 1]

When πB > 0, ŝ = sA
be. From Lemma 4, for any η1 < η2,

ŝ (η1) = sA
be (η1) > sA

be (η2) = ŝ (η2) .

Then when η = η2, Bank A breaks even upon soft signal ŝ (η2) and makes profits upon a better
soft signal ŝ (η1), i.e.,

πA
(
rA (ŝ (η1)) , ŝ (η1) ; η2

)
> 0 = πA

(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
.

This is to say, conditional on soft signal type ŝ (η1) for Bank A, broader information span from
η1 to η2 increases its profits. This implies that Bank B should benefit more from broader hard
information,

ŝ (η1) ϕ (ŝ (η1))
qs

[
πB (ŝ (η1) ; η2) − πB (ŝ (η1) ; η1)

]
> πA (r (ŝ (η1)) , ŝ (η1) ; η2)−πA

(
rA (ŝ (η1)) , ŝ (η1) ; η1

)
> 0.

As Bank B makes a constant profit,

πB (η2) > πB (η1) .

This holds for any η1 < η2 when the resulting equilibrium is positive weak, so

dπB (η)
dη

> 0 (= 0)

if πB (η) > 0 (= 0) .

For the second part of the proposition, in a positive-weak equilibrium the first non-competing
term in (56) is zero for Bank A, it follows that dπB/dη > dE

[
π̃A
]

/dη, which is our desired claim.27

Note, as we can show that the dominance holds point-wisely, it is stronger than the statement on
expectation in point 2) in Proposition 2.

27The total effect of dπB/dη should also take into account the first non-competing term for Bank B; but point 1)
in Proposition 2 shows that this term is positive.
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A.4 Proof of Proposition 3

Proof. First, we argue that Bank A benefits more when s ∈ [ŝ, 1], i.e. ∂∆π(s;α)
∂α

∣∣∣
α→1

> 0 in the
vicinity of α = 1. To see this,

∂∆π (s; α)
∂α

=
∫ s

0

[
sϕ (s)

qs

∂pHH (t)
∂α

− ∂pHH (s)
∂α

tϕ (t)
qs

]
dt +

[
∂pLH

∂α

sϕ (s)
qs

− ∂pHL (s)
∂α

]
.

Recall that

pHH (s) =

(1 − qh
h

)
︸ ︷︷ ︸

θh
h

=0

ϕ (s) + qh
h

(
1 − qh

s

)
︸ ︷︷ ︸

θh
h

=1,θh
s =0

ϕ0 (s)

 (1 − α)2 +

qh
hqh

s (1 − qs
s)︸ ︷︷ ︸

θh
h

=θh
s =1,θs

s=0

ϕ0 (s) + q︸︷︷︸
θ=1

ϕ1 (s)

α2,

and then

∂pHH (s)
∂α

= −2 (1 − α)
[(

1 − qh
h

)
ϕ (s) + qh

h

(
1 − qh

s

)
ϕ0 (s)

]
+ 2α

[
qh

hqh
s (1 − qs

s) ϕ0 (s) + qϕ1 (s)
]

.

Hence, when α → 1, we have

sϕ (s)
qs

∂pHH (t)
∂α

− ∂pHH (s)
∂α

tϕ (t)
qs

→ 2αqh
hqh

s (1 − qs
s) (ϕ1 (s) ϕ0 (t) − ϕ0 (s) ϕ1 (t)) .

In addition,
∂pLH

∂α

sϕ (s)
qs

− ∂pHL (s)
∂α

= (1 − 2α)
[

sϕ (s)
qs

− ϕ (s)
]

.

Using these terms, we have

∂∆π (s; α)
∂α

∣∣∣∣
α→1

= 2qh
hqh

s (1 − qs
s)

qs (1 − qs)
ϕ (s)

∫ s

0
(s − t) ϕ (t) dt −

[
sϕ (s)

qs
− ϕ (s)

]
.

Under the primitive condition of 2qh
hqh

s (1−qs
s)

1−qs
> 1,

∂∆π (s; α)
∂α

∣∣∣∣
α→1

>

∫ 1

ŝ
ϕ (s)

[ 1
qs

∫ s

0
(s − t) ϕ (t) dt −

(
s

qs
− 1

)]
ds.

For the integrand, note that when s = 1,

1
qs

∫ s

0
(s − t) ϕ (t) dt −

(
s

qs
− 1

)∣∣∣∣
s=1

= 1
qs

(1 − qs) −
( 1

qs
− 1

)
= 0;
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addition, the integrand decreases in s,

∂
[

1
qs

∫ s
0 (s − t) ϕ (t) dt −

(
s
qs

− 1
)]

∂s
= 1

qs
[Φ (s) − 1] < 0,

so it is positive when s ∈ [ŝ, 1).
Therefore, we have shown the first part that when s ∈ [ŝ, 1], ∂∆π(s;α)ds

∂α

∣∣∣
α→1

> 0. Because the
equilibrium is zero-weak and α has no effect on Bank B’s equilibrium profits, we have

∂π (s; α)
∂α

∣∣∣∣
α→1

> 0.

In addition, similar as in Lemma 4, we have dŝ
dα < 0. Hence, if dx

dα < 0, Bank A’s expected
equilibrium profits

∫ 1
x πAds increases in α.

In a zero-weak equilibrium, we have ŝ = sbe
B . For Bank A, the break-even threshold x satisfies

0 = πA (r, x) = pHH (x)
∫ sB

be
0 tϕ (t) dt

qs
[µHH (x) (1 + r) − 1] + pHL (x) [µHL (x) (1 + r) − 1] .

Define the Implicit function F (α, x) ≡ πA (r, x) = 0. We calculate

∂F

∂α
= dπA (r, x)

dα
= ∂πA (r, x)

∂α
+ ∂sB

be

∂α

∂πA (r, x)
∂sB

be

.

When α → 1, we can solve for x and sbe
B . The threshold sbe

B is defined from

0 = π̂B
(
r; sB

be

)
=
∫ sB

be

0
pHH (t) [µHH (t) (r + 1) − 1] dt +pLH [µLH (r + 1) − 1]︸ ︷︷ ︸

→0 when α→1

,

Hence,
∫ sB

be
0 tϕ(t)dt∫ sB

be
0 ϕ(t)dt

= 1
1+r , and similarly, x (α → 1) = 1

1+r . It follows that

∂πA (r, x)
∂sB

be

=
sB

beϕ
(
sB

be

)
qs

pHH (x) [µHH (x) (1 + r) − 1]

→
sB

beϕ
(
sB

be

)
qs

pHH (x) [x (1 + r) − 1] → 0.
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Hence, at x (α) where Bank A breaks even, the only effect of α is via the direct change in technology,

∂F

∂α
= ∂πA (r, x)

∂α
+ ∂sB

be

∂α

∂πA (r, x)
∂sB

be︸ ︷︷ ︸
→0

→ ∂πA (r, x)
∂α

.

Note that

∂πA (r, x)
∂α

=
∫ sB

be
0 tϕ (t) dt

qs
ϕ (x) {2qhαx (1 + r) + 2 (1 − qh − qh)}︸ ︷︷ ︸

→0

− (2α − 1) ϕ (x)

q0
hx (1 + r) − 1︸ ︷︷ ︸

−

 > 0.

For Bank A, α has no effect in the case of competition upon HH, because the profit conditional
on winning is close to zero. Instead, α reduces the winner’s curse to Bank A with signal x—the
case where competitor Bank B receives hB = L.

Taken together, we have ∂F
∂α > 0. Combined with ∂F

∂x = ∂πA(r,x)
∂x > 0, implicit function theorem

implies dx
dα < 0.

A.5 Derivation of Lenders’ Beliefs about Fundamentals

We first replicate Eq. (28) here which will be used repeatedly below,

pHH(s) = qα2ϕ1 (s) +
(
1 − qh

h

)
(1 − α)2 ϕ (s) +

[
(1 − qs) α2 − η (2α − 1)

]
qh

hϕ0 (s) .

The posterior mean of θ conditional on
{

hA = hB = H, s
}

, can be calculated as

z (HHs) ≡ E
[
θ = 1| hA = hB = H, s

]
=

P
(
θ = 1, hA = hB = H, s

)
pHH (s)

= qα2ϕ1 (s)
pHH(s)

.

Denote z(HHs) = g(s) as z as the function of s and g(·) is monotone due to MLRP. The density
of z(HHs) is then

Pr
(
z ∈ (z, z + dz) , hA = H

∣∣∣hB = H
)

= Pr
(
g−1 (z) ∈

(
g−1 (g (s)) , g−1 (g (s) + dρ)

)
, hA = H

∣∣∣hB = H
)

= Pr
(
s ∈

(
s, s + g−1′ · dz

)
, hA = H

∣∣∣hB = H
)

= pHH

(
g−1 (z)

)
P (hB = H)

1
g′ (g−1 (z))

dz, (61)

where
pHH (s)

P (hB = H)
= pHH(s)

qhα + (1 − qh) (1 − α)
. (62)
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Similarly, The posterior mean of θs
s conditional on

{
hA = hB = H, s

}
, can be calculated as

zs
s (HHs) ≡ E

[
θs

s = 1| hA = hB = H, s
]

=
P
(
θs

s = 1, hA = hB = H, s
)

pHH (s)

=

[
qh

hα2 +
(
1 − qh

h

)
(1 − α)2

]
· qh

s qs
sϕ1 (s) + qs

s

(
1 − qh

s

)
(1 − α)2 ϕ0 (s)

pHH(s)
.

The density of zs
s(HHs) is

pHH

(
gs

s
−1 (z)

)
P (hB = H)

1
gs

s
′ (gs

s
−1 (z))

dz

where gs
s(s) = zs

s(HHs) is a monotone function of s.

A.6 Derivation of Correlated Hard Signals

Another aspect of information technology advancement is that the lenders’ hard information signals
become more correlated. Formally, with probability ρh, lenders receive the same signal realization
hc ∈ {H, L} and

P (hc = H |θh = 1) = P (hc = L |θh = 0) = α;

with probability 1 − ρh, each receives an independent hard signal according to Eq. (4).
With more correlated hard signals or a higher ρh, lenders are more likely to agree on the

customer quality and so more likely to compete (the event of HH). In terms of inference, the
posterior upon disagreement (that comes from the uncorrelated part of the assessment) is still the
prior qh.28 Taken together, competition becomes fiercer, because lenders are more likely to compete
but not more concerned about the winner’s curse.

28Upon competition (HH), lenders are less sure about a good quality borrower, i.e., µHH (ρh) decreases in ρh.
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A.7 Signal on Hardened Soft Fundamental

Perfectly correlated hardened soft signal. First, given the hardened soft signal hc
s = H, the

conditional density of soft signal s is

ϕ (s| hc
s = H) =

1
dsP (hc

s = H, s ∈ ds)
P (hc

s = H)

=qs
hqs

sαsϕ1 (s) + qs
h (1 − qs

s) αsϕ0 (s) + (1 − qs
h) qs

s (1 − αs) ϕ0 (s) + (1 − qs
h) (1 − qs

s) (1 − αs) ϕ0 (s)
qs

hαs +
(
1 − qs

h

)
(1 − αs)

= qs
hqs

sαs

qs
hαs +

(
1 − qs

h

)
(1 − αs)

[ϕ1 (s) − ϕ0 (s)] + ϕ0 (s)

= ϕ0 (s) +

↑ in η as αs> 1
2︷ ︸︸ ︷

αs

αs − (2αs − 1) η
·qs [ϕ1 (s) − ϕ0 (s)] .

Note that when additionally conditioning on the good soft fundamental state θs = 1, the hardened
soft signal hc

s and soft signal s are independent so that

ϕ (s| hc
s = H, θs = 1) = ϕ (s| θs = 1) = ϕ1 (s) .

Hence, hc
s = H reveals information about s only through reducing type II errors.

Due to the independence between the original hard signals hA, hB and hardened soft hc
s ,

soft signal s, we introduce notations to separate the events of signal realizations. Let p̂hAhB ≡
P
(
hA, hB

)
denote probability of the hard signal realizations, and µ̂hAhB ≡ P

(
θh

h = 1
∣∣∣hA, hB

)
denote the posterior probability of successful θh

h conditional on original hard signals. Let phc
s

(t) ≡
P (hc

s, s ∈ ds) denote the joint density of hardened soft signal hc
s and soft signal s, and µhc

s
≡

(θs = 1 |hc
s, s ∈ ds) denote the posterior probability of successful θs given hc

s and s. Let µhc
s

≡
(θs = 1 |hc

s ) denote the posterior probability of successful θs given hc
s. Then lender’s payoff function

could be rewritten as

πA (r, s)

=pHHH(s)
[
1 − F B (r)

]
[µHHH(s) (1 + r) − 1] + pHLH(s) [µHLH(s) (1 + r) − 1]

=p̂HHpH (s)
[
1 − F B (r)

]
[µ̂HHµH (s) (1 + r) − 1] + p̂HLpH (s) [µ̂HLµH (s) (r + 1) − 1]

∝p̂HH

[
1 − F B (r)

]
[µ̂HHµHϕ1 (s) (1 + r) − ϕ (s| hc

s = H)] + p̂HL [µ̂HLµHϕ1 (s) (r + 1) − ϕ (s| hc
s = H)] ,

where the “proportional to” in the last equation omits a constant P (hc
s = H). Compared with

the benchmark setting where hard and soft signals are independent, adding the hardening soft
signal plays two roles. First, hc

s = H improves screening, and lenders are more likely to have good
borrowers, as seen by the term µHϕ1 (s) in the above equation versus qsϕ1 (s) in the benchmark.
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Second, hc
s = H updates the distribution of the soft signal, as seen by ϕ (s| hc

s = H) versus ϕ (s) in
the benchmark; note that conditional on a good project, hc

s = H is independent and uninformative
about the soft signal, so under both settings its density is ϕ1 (s) conditional on repayment.

Similarly, for Bank B,

πB (r) ≡
∫ sA(r)

0
pHHH(t) [µHHH (t) (r + 1) − 1] dt + pLHH [µLHH (r + 1) − 1] .

= p̂HH

∫ sA(r)

0
pH (t) [µ̂HHµH (t) (r + 1) − 1] dt + p̂LHpH [µ̂LHµH (r + 1) − 1]

∝ p̂HH

∫ sA(r)

0
[µ̂HHµHϕ1 (s) (r + 1) − ϕ (s| hc

s = H)] dt + p̂LH [µ̂LHµH (r + 1) − 1] .

A.8 Proof of Proposition 4

Proof. Recall that rj = ∞ means lender j ∈ {A, B} does not make an offer, and then min
{

rA, rB
}

<

∞ means that the borrower is funded. Let W denote the total welfare,

W ≡ P
(
θ = 1, min

{
rA, rB

}
< ∞

)
r − P

(
θ = 0, min

{
rA, rB

}
< ∞

)
, (63)

where funding a good borrower generates r in net social gain while funding a bad borrower costs
1 dollar. A borrower is funded when at least one lender is making an offer (rB < ∞ or s ≥ x)
in the event of HH and when Bank A (B) makes an offer in the event of HL (LH). Recall that
phAhB ≡ P

(
hA, hB

)
, phAhB (s) ds ≡ P

(
hA, hB, s ∈ ds

)
, and µhAhB ≡ P

(
θ = 1

∣∣∣hA, hB
)
, µhAhB ≡

P
(
θ = 1

∣∣∣hA, hB, s
)
, and then

P
(
θ = 1, min

{
rA, rB

}
< ∞

)
= pHHµHH −

∫ x

0
[pHH (t) µHH (t)] dt ·

(
1 − F B (r)

)
︸ ︷︷ ︸

HH

+
∫ 1

x
pHL (t) µHL (t) dt︸ ︷︷ ︸

HL

+ pLHµLHF B (r)︸ ︷︷ ︸
LH

,

P
(
θ = 0, min

{
rA, rB

}
< ∞

)
= pHH [1 − µHH ] −

∫ x

0
{pHH (t) [1 − µHH (t)]} dt ·

(
1 − F B (r)

)
︸ ︷︷ ︸

HH

+
∫ 1

x
pHL (t) [1 − µHL (t)] dt︸ ︷︷ ︸

HL

+ pLH [1 − µLH ] F B (r)︸ ︷︷ ︸
LH

.

When the information span η changes, there are two types of effects. The first is improvement in
screening as η affects the conditional distribution of hard signals. The second is the indirect effects

as η affects lender participation upon H—x (η) for Bank A and F B (r) = 1 − 1πB=0 ·
∫ ŝ(η)

0 tϕ(t)dt

qs
for
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Bank B are both functions of η.

Zero weak equilibrium In the zero weak equilibrium, we show that the indirect effects of lender
participation are zero. To see this, regarding Bank A’s participation x,

∂W

∂x
=
{

− [pHH (x) µHH (x)] dt
(
1 − F B (r)

)
− pHL (x) µHL (x)

}
r

+ pHH (x) [1 − µHH (x)]
(
1 − F B (r)

)
+ pHL (x) [1 − µHL (x)]

= −
{

pHH (x)
(
1 − F B (r)

)
[µHH (x) (1 + r) − 1] + pHL (x) [µHL (x) (1 + r) − 1]

}
= −πA (r, x) = 0.

When x increases, the social marginal borrower who lost credit access is exactly Bank A’s marginal
borrower where it breaks even at r upon signal x, so x’s effects on welfare is zero. Similarly,
regarding Bank B’s participation,

∂W

∂F B (r)
=
{∫ x

0
[pHH (t) µHH (t)] dt + pLHµLH

}
r −

∫ x

0
{pHH (t) [1 − µHH (t)]} dt − pLH (1 − µLH)

=
∫ x

0
pHH (t) [µHH (t) (r + 1) − 1] dt + pLH [µLH (r + 1) − 1]

= πB (r) = 0,

i.e., the marginal borrower who gains credit access is Bank B’s marginal borrower when it quotes
r and breaks even, so F B (r)’s effects on total welfare is also zero.

Then as information span increases, total welfare is affected through screening technology only.
Specifically, the Type II errors in the event of HH are reduced,

∂W

∂η
= −∂pHH (η)

∂η

[
1 −

∫ ŝ

0
ϕ1 (t) dt ·

∫ x

0
ϕ0 (t) dt

]
︸ ︷︷ ︸

screening

+ ∂W

∂x

∂x

∂η
+ ∂W

∂F B (r)
∂F B (r)

∂η︸ ︷︷ ︸
=0

= −∂qh

∂η
·
[
α2 − (1 − α)2

] [
1 −

∫ ŝ

0
ϕ1 (t) dt ·

∫ x

0
ϕ0 (t) dt

]
> 0,

where ϕ1 (s) ≡ sϕ(s)
qs

and ϕ0 (s) ≡ (1−s)ϕ(s)
1−qs

are the conditional densities of s. To see this, Type I
errors do not change due to the multiplicative structure: conditional on θ = 1, the distributions of
hard signals are irrelevant of η. In addition, because of the symmetric hard signal precision, the
disagreement events HL and LH do not have information content and are irrelevant of η either.

Positive weak equilibrium. In the positive weak equilibrium, Bank B always makes an offer
upon H. The effect from Bank A’s participation is no longer zero because there is a gap between
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the marginal borrower x’s value to Bank A and the social gain. Specifically, in competition (HH),
as x increases, there is transfer between the lenders as Bank B wins this marginal borrower but
total welfare does not change.

First, we calculate the total welfare. In this case,

P
(
θ = 1, min

{
rA, rB

}
< ∞

)
= qα︸︷︷︸

θ=1,hB=H

+q α (1 − α)︸ ︷︷ ︸
HL

[
1 −

∫ x

0
ϕ1 (t) dt

]
︸ ︷︷ ︸

s≥x|θs=1

,

P
(
θ = 0, min

{
rA, rB

}
< ∞

)
= (1 − qh) (1 − α)2 + qh · (1 − qs

s) α2︸ ︷︷ ︸
HH

+ (1 − q) α (1 − α)︸ ︷︷ ︸
LH

+ (1 − α) α

{(
1 − qh

h

)
qs ·

[
1 −

∫ x

0
ϕ1 (t) dt

]
+ (1 − qs)

[
1 −

∫ x

0
ϕ0 (t) dt

]}
︸ ︷︷ ︸

HL

.

Take derivative w.r.t. η,

∂W

∂η
= −q′

h (η)
[
α2 − (1 − α)2

]
− (1 − α) α · ∂x

∂η
·
{[

qr −
(
1 − qh

h

)
qs

]
ϕ1 (x) − (1 − qs) ϕ0 (x)

}
= qh

h ·
[
α2 − (1 − α)2

]
− (1 − α) α · ∂x

∂η
·
{[

qh
h (r + 1) − 1

]
xϕ (x) − (1 − x) ϕ (x)

}

= qh
h ·
[
α2 − (1 − α)2

]
︸ ︷︷ ︸

screening

−

−︷︸︸︷
∂x

∂η
· (1 − α) αϕ (x) ·

−︷ ︸︸ ︷[
qh

h · x · (r + 1) − 1
]

︸ ︷︷ ︸
A’s participation

(64)

We argue that the effect of A’s participation is negative. To see this, we have shown ∂sbe
A

∂η < 0 in
Lemma 4; as x = ŝ = sbe

A in the positive weak equilibrium, we have ∂x
∂η < 0. In addition, Bank A’s

break even condition upon x is

0 = πA (r, x) = pHH (x)
[
1 − F B (r−)] [µHH (x) (1 + r) − 1] + pHL (x) [µHL (x) (1 + r) − 1]

= pHH (x)
∫ x

0
ϕ1 (t) dt [µHH (x) (1 + r) − 1] + α (1 − α) ϕ (x)

[
qh

hx (1 + r) − 1
]

. (65)

As µHH (x) > qh
hx from belief updating, qh

hx (1 + r) − 1 < 0 < µHH (x) (1 + r) − 1 must hold for
Bank A to break even.
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We use the implicit function theorem to solve for ∂x
∂η . Define πA (η, x) = 0 from Eq. (65), and

∂πA (η, x)
∂η

= −∂pHH (x)
∂x

·
∫ x

0
ϕ1 (t) dt = qh

h

[
α2 − (1 − α)2

]
ϕ0 (x) ·

∫ x

0
ϕ1 (t) dt > 0,

∂πA (η, x)
∂x

= pHH (x) ϕ1 (x) [µHH (x) (1 + r) − 1]︸ ︷︷ ︸
+

+
∫ x

0
ϕ1 (t) dt · ∂ {pHH (x) [µHH (x) (1 + r) − 1]}

∂x
+ α (1 − α) ·

∂
{

ϕ (x)
[
qh

hx (1 + r) − 1
]}

∂x︸ ︷︷ ︸
+

> 0.

This gives us a lower bound of ∂x
∂η ,

0 >
∂x

∂η
= −

∂πA(η,x)
∂η

∂πA(η,x)
∂x

> −
qh

h

[
α2 − (1 − α)2

]
ϕ0 (x) ·

∫ x
0 ϕ1 (t) dt

pHH (x) ϕ1 (x) [µHH (x) (1 + r) − 1]
.

Use this inequality in Eq. (64), we have

∂W

∂η
= qh

h

[
α2 − (1 − α)2

]
− ∂x

∂η
(1 − α) αϕ (x)

−︷ ︸︸ ︷[
qh

hx (r + 1) − 1
]

> qh
h

[
α2 − (1 − α)2

]
+

qh
h

[
α2 − (1 − α)2

]
ϕ0 (x)

∫ x
0 ϕ1 (t) dt

pHH (x) ϕ1 (x) [µHH (x) (1 + r) − 1]
(1 − α) αϕ (x)

[
qh

hx (r + 1) − 1
]

= qh
h

[
α2 − (1 − α)2

]
+

qh
h

[
α2 − (1 − α)2

]
ϕ0 (x)

∫ x
0 ϕ1 (t) dt

pHH (x) ϕ1 (x) [µHH (x) (1 + r) − 1]

{
−pHH (x)

∫ x

0
ϕ1 (t) dt [µHH (x) (1 + r) − 1]

}
= qh

h

[
α2 − (1 − α)2

] [
1 − ϕ0 (x) (

∫ x
0 ϕ1 (t) dt)2

ϕ1 (x)

]
,

where the second last equation holds from Bank A’s break even condition at x in Eq. (65). The
second bracketed term in the last equation equals

1 − ϕ0 (x) · (
∫ x

0 ϕ1 (t) dt)2

ϕ1 (x)
= 1 − (1 − x) (

∫ x
0 tϕ (t) dt)2

qs (1 − qs) x
.

From the Cauchy Schwartz inequality,

qs (1 − qs) =
∫ 1

0
tϕ (t) dt

∫ 1

0
(1 − t) ϕ (t) dt ≥

(∫ 1

0

√
t (1 − t)ϕ (t) dt

)2
,
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so

1 − ϕ0 (x) · (
∫ x

0 ϕ1 (t) dt)2

ϕ1 (x)
≥ 1 − 1 − x

x
·
( ∫ x

0 tϕ (t) dt∫ 1
0
√

t (1 − t)ϕ (t) dt

)2

= 1 −
(√

1 − x

x

∫ x
0 tϕ (t) dt∫ 1

0
√

t (1 − t)ϕ (t) dt

)2

= 1 −
( ∫ x

0
√

t ·
√

t − txϕ (t) dt∫ 1
0

√
t ·

√
x − txϕ (t) dt

)2

≥ 0,

where the last inequality follows because x ≤ 1 and t ≤ x. Therefore, total welfare strictly increases
in the case of positive weak equilibrium as well.
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