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Abstract

We propose a novel measure that allows us to study memory associations in financial markets over

the course of several decades. Using our measure, we construct memory-based beliefs and show

that they can explain return expectations from surveys as well as higher-moment beliefs implied by

stock options and the VIX. We also show that memory associations drive trading decisions of indi-

vidual investors: when investors are more likely to recall a past positive (negative) trading experience

with a stock, they are more (less) likely to repurchase that stock. Our measure builds on two well-

established regularities of associative recall: similarity and interference. For each point in time, it

captures the probability that a representative investor recalls past episodes of a stock. Without any

further assumptions, our measure generates signature patterns of cued recall, such as the recency

effect and the recall of past crises during extreme episodes. We validate our measure using actual

recall patterns extracted from transcripts of corporate events, like earnings calls, and show that our

measure predicts which historical periods are mentioned during these events. Overall, our results

show that theories of human memory can be broadly applied in financial markets.
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1 Introduction
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Figure 1. This figure displays the recall probability that our measure assigns to the past 60 quarters (= 15 years) for each quarter

from 1966 to 2021. The x-axis indicates the quarter in which recall occurs, while the y-axis indicates the probability weight assigned

to past quarters. A darker shade of red indicates a higher probability weight.

In recent years, economic theorists have argued that incorporating aspects of human memory into

economic models may be useful in explaining a variety of empirical phenomena, including experience

effects à la Malmendier and Nagel (2011), belief over- and underreaction, and return extrapolation (Bordalo

et al. (2020); Bordalo et al. (2023); Wachter and Kahana (2023)).

Several studies aimed at testing these models have established links between memory and investor

beliefs, investor behavior, and asset prices. These studies employ a range of different techniques, including
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experimental methods (Enke et al. (2024); Gödker et al. (2024); Graeber et al. (2024)), survey-based

approaches (Andre et al. (2022); Jiang et al. (2023)), and the use of unique empirical settings (Charles

(2022); Charles (2024)).

In this paper, we build on the links established in these studies, but take a more comprehensive view of

memory in financial markets. We estimate the memory associations that a representative investor would have

if experimentally well-established regularities in recall also operate in the field. By making this assumption,

our approach allows us to study memory at a much larger scale (in the cross-section of listed stocks) and

for much longer time periods (multiple decades) than prior studies. We find that our estimated memory

associations (i) match actual recall patterns extracted from transcripts of corporate events, (ii) explain return

expectations from investor surveys as well as higher moment beliefs implied by stock options and the VIX,

and (iii) drive trading behavior of individual investors. Overall, our results suggest that theories of human

memory can be broadly applied to financial markets.

In estimating these memory associations, we are guided by a simple conceptual framework that builds

on Kahana (2012), Bordalo et al. (2020), and Bordalo et al. (2023). To build intuition for our approach,

consider an investor who evaluates a stock at the height of the Covid-19 Pandemic. This evaluation of

the stock, in the context of a global pandemic, serves as a cue that leads the investor to recall similar past

experiences (e.g., the 2008 Financial Crisis). We represent each period as a high-dimensional vector that

comprises the stock’s features in that period, such as its price, return, trading volume, profitability, capital

structure, etc., as well as broader features of the economic environment, like GDP growth and the inflation

rate. We then calculate the cosine similarity of the current period’s vector (= the cue) with historical vectors

(= past experiences). We assume that, all other things equal, the investor is more likely to recall past periods

for which the historical vector is more similar to the current vector. This captures the force of similarity, a

well-established regularity in associative recall (Kahana (2012)).

It is possible that many historical vectors are similar to the current period’s vector. These historical

periods all compete for retrieval, making it less likely that the investor recalls any particular historical period.

Thus we assume that, all other things equal, the investor is less likely to recall a particular historical period

if many historical vectors are similar to the current period’s vector. This captures the force of interference,
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another well-established regularity in associative recall (Kahana (2012)).

By combining the forces of similarity and interference, our measure yields the probability that a

representative investor recalls a particular historical period when cued with the current period’s vector. We

make two simplifying assumptions when calculating this probability. First, we calculate similarity and

interference stock-by-stock, effectively assuming that investors narrowly frame each stock. This assumption

is supported by previous work showing that investors’ thinking is quite “local” (Barberis (2013)). Second,

we use a rolling look-back window over the past 15 years for each stock. Thus, for each stock in each month,

our measure yields a distribution of the recall probability over the previous 180 months.

Figure 1 above gives a visual representation of the recall probabilities generated by our measure for

each quarter from 1966-2021. The x-axis indicates the quarter in which the hypothetical recall occurs, while

the y-axis indicates the probability weight that our measure puts on past quarters (averaged across stocks).

These probability distributions display signature patterns of cued recall. In particular, they display a strong

recency effect, where recent months receive a higher weight than distant months. These results highlight

that memory is one way to microfound the recency effect discussed in prior studies (Barberis et al. (2015);

Cassella and Gulen (2018); Jin and Sui (2022); Nagel and Xu (2022)). In our framework, we do not impose

any direct assumptions related to recency. Rather, the principles of similarity and interference naturally

generate the recency effect.

In addition to generating a strong recency effect, our measure also places high probability weights on

past crises if recall occurs during turbulent economic times. For instance, if recall occurs during the 2020

COVID-19 Pandemic, our measure assigns a high recall probability to the 2008 Financial Crisis. These

spikes in the recall probability of past crises are a key distinguishing feature of our measure and cannot be

captured by approaches that focus only on recency or extrapolation (e.g., Barberis et al. (2015); Cassella and

Gulen (2018); Jin and Sui (2022); Nagel and Xu (2022)).

A third distinguishing feature of our approach is that it generates recall probabilities specific to each stock,

allowing both the strength of the recency effect and the spikes in recalling past crises to vary across different

stocks. We show that this cross-sectional variation in recall probabilities helps explain the heterogeneous

extrapolation patterns across stocks documented by Da et al. (2021). In further tests, which we discuss in
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more detail below, we show that this cross-sectional variation is also useful in explaining investors’ beliefs

and trading decisions at the stock-level.

Before applying our measure to these settings, we first validate it by demonstrating that it generates

recall patterns that closely align with actual recall patterns observed in financial markets. We collect

transcripts of corporate events, such as earnings calls, and extract the historical periods mentioned during

these events. Our measure strongly predicts which historical periods are mentioned and outperforms a simple

extrapolation model. For example, the 2008 Financial Crisis is heavily discussed during corporate events

occurring in the COVID-19 pandemic. A simple extrapolation model, where the weights on past periods

decay exponentially, does not predict these recall patterns, but our measure does. More generally, when we

control for extrapolative recall in our tests, our measure continues to predict actual recall while the coefficient

on the extrapolation model is insignificant (though positive). These results provide strong evidence that our

measure accurately and comprehensively captures the stock-level memory associations of participants in

financial markets. Having validated our measure, we proceed to apply it to two different financial market

settings.

In our first setting, we show that memory-based return expectations explain return expectations elicited

from investor surveys. We construct memory-based return expectations for the aggregate market in each

month by weighting historical monthly returns of the S&P 500 Index with the recall probabilities assigned

to these past months by our measure. We find that memory-based return expectations are strongly correlated

(corr = 0.67; rank corr = 0.68) with return expectations from the Gallup investor survey (Greenwood and

Shleifer (2014)). In regression tests, we estimate that a one standard deviation increase in the memory-based

return expectation (corresponding to a 3.9 percentage point higher annualized return) is associated with a

14.5 percentage point increase in the number of investors who are bullish about the stock market over the

next 12 months.

One potential concern with this result is that our memory-based measure might just be a proxy for

recent returns, which are known to predict survey expectations (Greenwood and Shleifer (2014)). To directly

address this concern, we decompose the memory-based return expectation into expectations from recent

memory (most recent 12 months) and distant memory (more than 12 months in the past), and show that both
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components independently predict survey expectations. We find similar results when we use a five-year cutoff

to distinguish between recent and distant memory. Importantly, expectations from distant memory continue

to predict survey expectations when we directly benchmark our measure against an extrapolative model,

either by controlling for cumulative returns over the past 12 months or by controlling for an exponentially-

weighted average of returns over the past five years. These results show that our measure captures more than

a simple model of extrapolation.

In a direct test of the key distinguishing feature of our measure, we find that expectations from distant

memory have the most explanatory power during recessions. Recessions are exactly the periods in which

distant memory captures memories of past crises, such as the 2000 Tech Bubble and the 2008 Financial Crisis.

Since recall of past crises is elevated during recessions, these results show how the principle of similarity

– the underlying driver of our measure – allows our measure to draw on distant experiences precisely when

the current economic environment resembles these distant experiences.

Our tests linking memory-based and survey-based return expectations are limited to time-series varia-

tion, since survey expectations are typically elicited for the stock market as a whole, but not for individual

stocks. Thus, these tests do not harness the full power of our measure, since they ignore the rich cross-

sectional variation generated by our measure. Indeed, our measure yields a full recall probability distribution

for each stock-month, allowing us to construct memory-based perceived volatility for each stock in each

month. We define memory-based volatility as the standard deviation of monthly returns over the past 180

months, where each historical return is weighted with its associated recall probability. We then link the

resulting memory-based volatility for each stock with implied volatility from stock options. We find that

memory-based volatility derived from our measure can explain cross-sectional variation in implied volatil-

ity, establishing a link between memory and higher-moment beliefs in financial markets. The explanatory

power of memory-based volatility survives even when we control for a large set of alternative predictors of

option-implied volatility.

In our second setting, we show that the memory associations captured by our measure can explain

trading behavior of individual investors. These tests allow us to validate our measure in a different setting,

and to test the role of memory not only in the cross-section of stocks, but also in the cross-section of investors.
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In our tests, we revisit previously documented evidence that investors are more likely to repurchase a stock

if they previously sold the stock for a gain (Strahilevitz et al. (2011)). We hypothesize that memory strongly

modulates this effect. In particular, we test whether investors are more likely to repurchase a stock that they

previously sold for a gain if the probability of recalling the month in which that gain was realized is higher.

We find strong evidence in support of this hypothesis. For the same realized gain (loss), investors are more

(less) likely to repurchase the stock if the probability of recalling the month in which the gain (loss) was

realized is higher.

In terms of magnitude, for a realized gain of 6.90% (sample average), an increase in the recall probability

from 0 to 10% translates to an increase in the repurchase probability of 0.11 percentage points, which is

about 22% of the unconditional probability of a repurchase (0.5%). This estimate comes from our preferred

specification, which includes extremely tight fixed effects. In particular, we include stock-by-month fixed

effects, which control for stock-level information revealed in the current month that might be driving

repurchasing behavior across all investors. We also include account-by-month-by-liquidation-month fixed

effects. These fixed effects not only control for characteristics of the investor in the current month that

might be driving the propensity to repurchase, such as investor wealth or sophistication, but also rule out

the possibility that we are merely picking up a horizon effect, where investors simply repurchase recently-

liquidated stocks. These fixed effects also fully soak up (potentially investor-specific) extrapolative beliefs.

In further tests, we use each investor’s history of portfolio holdings to estimate investor-specific memory

associations. Using these investor-specific memory associations in the above tests increases the strength and

precision of the estimated effects. We also show that an increase in investor-specific similarity increases

the probability of repurchase, while an increase in investor-specific interference decreases the probability of

repurchase. Finally, we show that strongly-encoded memories have a larger effect on future repurchasing

decisions. We proxy for the encoding strength of a memory using the attention that the investor devoted to

the portfolio in the month in which a past gain or loss was realized. Summarizing, our results show that

memory is an important mechanism that can explain how past experiences affect future trading decisions

(Kaustia and Knüpfer (2008); Choi et al. (2009); Strahilevitz et al. (2011)).

Overall, we provide strong evidence that theories of human memory can be broadly applied in financial
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markets. As such, our paper contributes to a growing literature arguing that theories of human memory

may have broad applications in financial markets (Gilboa and Schmeidler (1995); Mullainathan (2002);

Hirshleifer and Welch (2002); Gennaioli and Shleifer (2010); Bordalo et al. (2020); Bodoh-Creed (2020);

Da Silveira et al. (2020); Nagel and Xu (2022); Bordalo et al. (2023); Wachter and Kahana (2023); Voigt

(2023); Bordalo et al. (2024)). Compared to previous empirical work in this literature, our approach allows

us to study memory at a much larger scale than prior studies (Charles (2022); Goetzmann et al. (2022);

Colonnelli et al. (2023); Jiang et al. (2023); Enke et al. (2024); Gödker et al. (2024); Graeber et al. (2024);

Charles (2024)). In a related paper, Chen and Huang (2023) use a machine learning approach to back out

underlying memory associations from analyst forecasts. In contrast, we build on established regularities of

associative recall to construct memory-based beliefs.

Our paper also contributes to the literature on beliefs in asset pricing (Greenwood and Shleifer (2014);

Barberis et al. (2015); Giglio et al. (2021); Da et al. (2021); Brunnermeier et al. (2021); Adam and Nagel

(2023)). We show that memory can explain return expectations from surveys as well as higher moments

implied by stock options. Finally, our paper relates to the large literature on investor behavior (for an

overview, see Barber and Odean (2013)). We show that memory associations drive the trading behavior of

individual investors.

2 Conceptual Framework

This section presents a conceptual framework that guides our empirical approach. The framework

builds on Bordalo et al. (2020) and Bordalo et al. (2023). We begin by introducing our first assumption: the

forces of associative memory govern the recall of past experiences. We then derive memory-based beliefs, by

introducing our second assumption: investors sample past experiences from memory when forming beliefs.

2.1 Cued Recall

Consider a representative investor who actively gathers experiences and stores them in the memory

database E. We assume that there are H > 1 experiences in the memory database. An experience e
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fundamentally captures the historical episodes to which the investor has been exposed. Consequently, it can

be represented by M > 1 features. For instance, an experience of a stock consists of stock-level features, such

as the return of the stock during the experience, as well as of broader, contextual features of the economic

state, such as the macroeconomic environment during the experience.

Suppose the investor faces a question Q about stock l.1 The question brings to mind both current

features of stock l as well as broader features of the current economic state (the context). Together, the

stock-level and contextual features comprise the cue κt, which triggers the recall of past experiences. We

formalize the nature of this recall in our first assumption:

Assumption 1. The probability that the investor recalls experience e when faced with cue κt is given by:

r(e, κt) =
S(e, κt)∑

e′∈E S(e′, κt)
, (1)

where S is a symmetric function.

The numerator in the above expression captures the force of similarity: the investor is more likely to

recall experience e if it is more similar to the cue κt. The denominator in the above expression captures the

force of interference: the investor cannot fully control the recall process and all experiences e ∈ E compete

for retrieval. Thus, if there are many experiences that are similar to the cue, the probability of recalling the

focal experience e is lower.

2.2 Memory-Based Beliefs

Suppose now that Q is a probabilistic question, such as “What is the expected return of stock l?”. This

question requires the investor to construct an underlying distribution of returns, which leads to our second

assumption:

Assumption 2. When evaluating a probabilistic question Q, the investor samples past experiences e from the

memory database E and assigns a sampling-based probability to each retrieved experience.

1We intentionally keep the nature of the question abstract here, since this section focuses on the mechanics of cued recall. In the next

section, when we discuss memory-based beliefs, we consider more specific questions.
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This sampling from memory yields a subjective probability measure. Using the sampling-based

probability and the historical return of each experience, the investor calculates the expected return of stock l.

We now discuss several implications that follow from our assumptions. First, our assumption that

associative memory governs the recall of past experiences implies that when estimating the expected return

of stock l, the investor places a higher probability weight on historical returns from experiences that are more

similar to the cue. This assumption also implies that if there are many experiences that are similar to the

cue, the probability weight placed on the historical return from experience e is lower.

Second, the cue and the memory database jointly determine the subjective probability distribution

derived from memory. For the same set of experiences in memory, different cues generally result in different

probability distributions, and consequently different expected returns.

Third, different databases E result in different probability distributions, which in turn lead to different

expected returns. Interference plays a pivotal role for this result. To see this, consider two extreme cases.

For the first case, assume that all experiences in E are identical to the cue. In this scenario, memory retrieval

is essentially frequency-based, and the recall probability r(e, κt) is equal to 1
H . For the second case, assume

that e is identical to the cue, while all other experiences in E have the lowest similarity level with the cue.

In this alternative scenario, the recall probability r(e, κt) is (very close to) one. Notice that the similarity

between e and κt is the same across the two cases, showing that interference from other memories is driving

the difference in the recall probability across the two cases. In sum, subjective probability distributions

derived from memory vary with the cue and with the exact composition of the memory database.

3 An Empirical Measure of Memory Associations in Financial Markets

In this section, we apply the insights from the conceptual framework to construct an empirical measure

of memory associations in financial markets. In our setting, experiences e and cues κt are vectors in M

dimensions. We calculate the similarity between an experience e and a cue κt, S(e, κt), using the cosine
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similarity measure:2

S(e, κt) = 0.5× e · κt
∥e∥ · ∥κt∥

+ 0.5 (2)

Here, e · κt represents the dot product of vectors e and κt, ∥e∥ represents the magnitude (length) of vector

e, and ∥κt∥ represents the magnitude (length) of vector κt. The cosine similarity value ranges from -1 to 1.

A value closer to 1 indicates a higher similarity between the vectors, a value closer to -1 indicates a lower

similarity. We normalize the cosine similarity into the range [0, 1] by scaling it with a factor of 0.5 and then

shifting it by 0.5. For the normalized measure, the similarity is equal to 1 if an experience e is identical to

the cue. Conversely, the similarity value is 0 if e is the opposite of κt.3

As in our conceptual framework, the vectors e and κt consist of stock- and firm-level features as well

as broader, contextual features of the economic state. While the potential list of features is near endless, we

focus on features to which investors are likely paying attention, and which are therefore plausibly encoded

in memory.4 These features can be sorted into three groups: (i) stock-level variables, (ii) firm-level financial

ratios, and (iii) broad macroeconomic variables.

At the stock-level, we include stock returns, stock prices, dollar volume, and trading volume. At the

firm-level, we follow Van Binsbergen et al. (2023) and focus on a large set of financial variables, such as

the book-to-market ratio and the dividend yield. At the macro-level, we consider consumption growth, GDP

growth, growth of industrial production, the unemployment rate, and the inflation rate. These variables can

affect firms’ earnings and are thus potentially relevant to investors. All variables are at the monthly level.

It is worth noting that the above variables exhibit variation at different scales, which can lead to undesired

weighting effects when using the cosine similarity method. To see this, consider the following example with

only two features (M = 2): volatility and dollar trading volume. Suppose that currently both volatility and

2The cosine similarity of two vectors, A and B, is calculated by taking the dot product of the vectors and dividing it by the product

of their magnitudes: A·B
∥A∥·∥B∥

3Due to the normalization, two randomly chosen vectors have an expected similarity of 0.5. While at first blush this may appear

high, this is not an issue for our empirical approach. The reason is that when we apply equation (1) to construct our measure of the

recall probability, r(e, κt), it is relative similarity that matters, not absolute similarity.

4In Section 4.3, we analyze which types of features are most important for our results.
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dollar trading volume are equal to 1, i.e., κt = (1, 1). Suppose further that the standard deviation of volatility

is 1, while the standard deviation of dollar trading volume is 100. Now, consider two distinct experiences,

e1 = (2, 1) and e2 = (1, 101), which both differ from the cue κt by one standard deviation in only one

feature. Their similarity levels with the cue κt should be identical, but the cosine similarity method yields

S(e2, κt) = 0.714, which is significantly lower than (e1, κt) = 0.949. This difference is due to the fact that

the similarity measure is overly sensitive to dollar trading volume because dollar trading volume fluctuates

with a larger magnitude. We address this issue by normalizing each variable to have a mean of zero and a

standard deviation of one.

Using the normalized variables, we calculate similarity over a rolling 15-year window.5 We make

one important simplification: we calculate similarity stock-by-stock. This approach assumes that investors

narrowly frame each stock, an assumption that is supported by previous work showing that investors’ thinking

is quite “local” (Barberis (2013)). We make the assumption of narrow framing at the stock-level throughout

the paper.

Finally, we use the estimated similarity to construct an empirical measure of the recall probability

r(e, κt) by applying equation (1). The resulting measure captures the probability that a representative

investor recalls experience e when cued with κt. This recall probability represents the relative frequency

with which experience e comes to the investor’s mind when faced with cue κt. Therefore, this recall

probability can also be interpreted as a measure of endogenous attention driven by memory retrieval.

3.1 Data

Our sample consists of U.S. firms listed on the NYSE, Amex, and Nasdaq that have been listed for

at least 15 years.6 We source stock-level variables from CRSP and firm-level variables from the Financial

Ratios Suite offered by Wharton Research Data Services. The macroeconomic variables are obtained from

5The 15-year horizon enables us to have a long enough look-back window when we analyze the recall of past crises during the

Covid-19 pandemic.

6In Figure A1 in the Appendix, we focus on even longer memories by constructing our measure for firms that have been listed for at

least 50 years.
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the real-time dataset provided by the Federal Reserve Bank of Philadelphia. Our monthly sample starts in

January 1966, as the firm-level variables are only available after 1951 and we require a rolling window of 15

years. Our sample ends in December 2021. Detailed variable descriptions are presented in Table A1 in the

Appendix.

We normalize each variable stock-by-stock, using data from the past 15 years to calculate the mean and

standard deviation. Specifically, we subtract the mean from each data point and then divide it by the standard

deviation. If firm-level variables are missing, we follow Van Binsbergen et al. (2023) and fill them with the

monthly industry-level median of the firm’s Fama-French 49 industry. After filling, approximately 3% of

our observations still have at least one variable with missing data. The majority of these missing values are

due to missing trading volume. We set these values to zero when calculating the cosine similarity.

4 Validation of the Measure

The goal of this section is to validate our empirical measure by showing that it naturally generates

signature patterns of cued recall. We also show that actual recall data, extracted from transcripts of earnings

conference calls, mirrors the patterns generated by our measure.7

4.1 Recency

We first analyze the distribution of the recall probability implied by our measure and show that it

displays a strong recency effect. To construct this distribution, we proceed in three steps. In the first step, we

apply equation (2) to calculate for each stock-month the relative similarity between the cue κt (comprising

the current stock-month’s features) and each experience e (comprising each historical stock-month’s features)

over the past 180 months. In the second step, we apply equation (1) to calculate for each stock-month the

probability that a representative investor recalls a historical stock-month from the previous 15 years. Finally,

in the third step, we average the recall probability across stocks for each month to arrive at an average recall

7In Appendix B, we provide further evidence, showing that our measure generates patterns typically observed in subjective beliefs

data (Da et al. (2021)).
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probability for each month over the past 15 years.8

We present this average recall probability for years 1967 to 2021 in Figure 1. For ease of reading, the

recall probability in this figure is aggregated to the quarterly level. The x-axis represents the quarter in which

the cued recall occurs, while the y-axis represents the probability weights on past quarters. A darker shade

of red indicates a higher probability weight.

The figure displays a striking recency effect: the probability weight on recent quarters is much larger

than the probability weight on distant quarters, as evidenced by the dark red area near the lower diagonal

line. The recency effect is considered a fundamental law of memory (Kahana (2012)) and its role has

also been studied in the finance literature (Malmendier and Nagel (2011); Greenwood and Shleifer (2014);

Barberis et al. (2015); Nagel and Xu (2022); Jin and Sui (2022)). However, previous studies often resort

to ad-hoc configurations to generate a recency effect. For example, Barberis et al. (2015) and Jin and Sui

(2022) directly assume that investors use exponentially-decaying weights. Similarly, Nagel and Xu (2022)

generate the recency effect by assuming that investors use a constant-gain learning rule. In contrast to these

studies, we do not impose any direct assumptions related to recency. Instead, the principles of similarity and

interference naturally generate the recency effect.

4.2 Recall of Extreme Episodes

The recency effect is a strong regularity of recall, but there are important empirical exceptions to it.

For instance, Malmendier and Nagel (2011) show that disastrous experiences, like the Great Depression, can

have long-lasting effects on financial risk-taking and return expectations. In a more direct test of the memory

channel, Jiang et al. (2023) show that distant dramatic events are more likely to be recalled when investors

are cued with drastic economic dynamics. Thus, an empirical approach that only focuses on recency (e.g.,

by imposing exponentially-decaying weights) misses these important recall patterns.

Here, we show that our measure naturally generates high recall probabilities for past crises if recall

occurs during extreme episodes. In Figure 1, we highlight three dramatic episodes during which recall

8When calculating this average, we only include stocks for which we have data on the previous 180 months, to ensure that we have a

valid recall probability for each of the previous 180 months.
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occurs: the 2020 Covid-19 Pandemic, the 2008 Financial Crisis, and the 1979 Oil Crisis. For each of

these episodes, our measure assigns high recall probabilities to past dramatic episodes. For instance, during

the 2020 Covid-19 Pandemic, our measure assigns a high recall probability to the 2008 Financial Crisis.

Similarly, during the 2008 Financial Crisis, the Tech Bubble Burst receives a high weight. Finally, during

the 1979 Oil Crisis, past experiences of the 1973 Oil Crisis are weighted more heavily.9

These high probability weights on distant but similar events are a key distinguishing feature of our

measure, one that a model of simple extrapolation would miss. To make this point visually salient, in Figure

2, we show the recall probabilities implied by the extrapolative model of Greenwood and Shleifer (2014),

using the average decay parameter λ = 0.56 from their study. As Figure 2 shows, this model generates

a strong recency effect with a fast decay, but it cannot generate the high recall probabilities on past crises

generated by our measure.

In Figures 3 and 4, we dive into the dynamics of recall generated by our measure, by providing

snapshots of recall probabilities immediately before and then during a dramatic event. The x-axis in these

figures indicates the number of months between the cueing month and the recalled month, while the y-axis

indicates the recall probability assigned to a historical month by our measure.

Take Figure 3 as an example. This figure illustrates the dynamics of memory retrieval before and during

the 2008 Financial Crisis. The upper panel shows (in red) the recall probability if recall occurs in June 2007,

just before the outbreak of the crisis. Memory recall gradually decays, consistent with the average recall

probability in our sample (displayed in green). In contrast, the lower panel shows that if recall occurs in

December 2008, in the middle of the Financial Crisis, our measure assigns a larger weight to the months

around the 2001 Tech Bubble Burst.

The patterns in in Figure 4 are perhaps even more striking. In this figure, we present memory recall just

before and then during the 2020 Covid-19 Pandemic. In the upper panel, we show that if recall occurs in

December 2019, immediately before the outbreak of the pandemic, the recall probability gradually decays,

9In Figure A1 in the Appendix, we recreate Figure 1 using firms that existed for at least 50 years. Focusing on these firms allows us

to extend the look-back window from 15 to 50 years. The resulting figure shows that past crises–going all the way back to the 1973

Oil Crisis–receive high weights if recall occurs during the 2008 Financial Crisis or the 2020 Covid-19 Crisis.
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aligning with the average recall probability in our sample. In the lower panel, we show that six months

later, when the Covid-19 Pandemic is in full swing, the probability weights on the 2008 Financial Crisis are

dramatically higher.

Our measure naturally generates these recall patterns through the principles of similarity and interfer-

ence. Intuitively, as a dramatic event like the 2020 Covid-19 Pandemic unfolds, our rich set of stock-level,

firm-level, and macroeconomic features accurately captures the economic state of the period and, through

the principle of similarity, places a higher probability weight on past periods with similar features. Further,

since crises occur relatively infrequently, these experiences are subject to less interference during recall,

which also leads to a higher probability weight.

4.3 Which Features are Driving the Recall Patterns?

Our baseline measure comprises three types of features: (i) stock-level variables, (ii) firm-level financial

ratios, and (iii) broad macroeconomic variables. Here, we analyze which features are driving the recall

patterns discussed in the previous two sections. To do so, we create three different flavors of our measure,

where each flavor is constructed using only data from one type of feature. We then redo Figure 1 for each

flavor.

The first flavor is constructed using only stock-level variables, specifically, monthly stock returns, stock

prices, dollar volume, and trading volume. Figure A2 in the Appendix shows that this flavor displays a strong

recency effect but that the strength of the recency effect fluctuates over time. For instance, the recency effect

was very strong in the early 1980s and early 2000s. Figure A2 also hints at recall of extreme periods, but

overall, this pattern is much less pronounced for this flavor.

The second flavor is constructed using only firm-level financial ratios, such as the book-to-market ratio

and the dividend yield. As Figure A3 in the Appendix shows, this flavor also produces a strong recency

effect, but one that is much more stable over time. Further, the recall of extreme periods is very salient for

this flavor.

The third flavor is constructed using only broad macroeconomic variables, specifically, consumption

growth, GDP growth, growth of industrial production, the unemployment rate, and the inflation rate. Figure
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A4 in the Appendix shows that this flavor produces a certain degree of recency, but that many distant episodes

also receive high weights. The weights on these distant periods somewhat mask the high weights that past

crises receive during extreme periods.

Another visually striking feature of Figure A4 is that it displays a checkered pattern, especially for recent

decades. One interpretation of this pattern is that the economy moves through two types of macroeconomic

states, which are picked up by our measure. For instance, during the 2008 Financial Crisis, economic

growth was low and unemployment was high, while in the boom period that followed, growth was high and

unemployment was low. These changes in the economic state might plausibly create the checkered pattern.

In contrast, there is no checkered pattern for the other two flavors. A possible explanation is that there are

many more combinations of stock-level and firm-level features – many more states – which result in smoother

patterns.10

Overall, the signature patterns of cued recall appear for all three flavors. The recency effect is more

pronounced for stock-level and firm-level features, while the recall of extreme periods is more pronounced for

firm-level and broad macroeconomic features. In our tests going forward, we focus on our baseline measure

that combines all features.

4.4 Actual Recall Patterns Extracted from Transcripts of Corporate Events

Perhaps the most direct way of validating our measure is to show that it generates recall patterns

that directly match actual recall patterns observed in financial markets. Therefore, to further validate our

measure, we show that it generates recall patterns that closely align with actual recall patterns observed

during corporate events, like earnings calls. We measure actual recall in these events by extracting which

past episodes are mentioned during the event.

We collect transcripts of corporate events from Refinitiv StreetEvents for January 2001 to December

2021. These transcripts are verbatim representations of Earnings Calls, M&A Calls, Sales Calls, Analyst

10It is also worth mentioning that for the flavors using stock-level and firm-level features, the recall probability for each month is

averaged across many firms, which may also lead to smoother patterns. In contrast, the macroeconomic features are the same for all

firms in a given month.
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Meetings as well as Corporate Conference Presentations. Q&A sessions of these calls are also included in

the transcripts. In Section A in the Appendix, we describe in detail how we construct the sample and how

we process the data to extract past episodes mentioned during each event.

To get a feel for the extracted recall patterns, we begin by aggregating the data to the monthly level.

This aggregation allows us to calculate the relative frequency with which different historical months are

mentioned across all events taking place in a given month. As a concrete example, assume that 1,000 firms

each had one event (e.g., an earnings call) in January 2015. Further assume that in 200 of these calls, July

2014 was mentioned at least once. In this case, we would assign a 20% recall probability to July 2014 if

recall occurs in January 2015.11

Figure 5 shows a heatmap of the extracted recall probabilities. To ease the comparison with Figure

1, we aggregate the recall probabilities to the quarterly level. The x-axis represents the quarter in which

corporate events take place, while the y-axis represents the relative frequency with which past quarters are

mentioned during these events. A darker shade of red indicates a higher probability weight. The figure

displays a very strong recency effect: the past 8-10 quarters are recalled with a very high probability. There is

also strong recall of past crises during extreme episodes. For example, during the 2020 Covid-19 Pandemic,

the 2008 Financial Crisis receives a very high weight. Similarly, during the 2008 Financial Crisis, the 2001

Tech Bubble Burst receives a high weight. Both of these patterns mirror the recall patterns generated by our

measure (see Figure 1).

Visually, the strong overlap between recall patterns implied by our measure (displayed in Figure 1) and

the recall patterns extracted from corporate events (displayed in Figure 5) is apparent. We can also quantify

it: the correlation between the two is 0.88 (rank correlation is 0.79). This strong correlation shows that our

measure does a good job at capturing actual recall patterns, at least for the aggregate market.

In a further step, we show that our measure also captures actual recall patterns for individual firms. Our

tests are simple. For a corporate event of stock l in month t, we ask if our measure can predict whether a

past month was mentioned during the event. We construct a dummy that is equal to one if during a corporate

11If a firm has multiple events in a month, we consider a historical month as being recalled if it was mentioned during at least one of

the events.
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event of stock l in month t the past month t − h was mentioned, where h ∈ {1, 2, 3, . . . , 180}. We regress

this dummy on our measure r(e, κt), which is the probability that a representative investor recalls a past

experience e when cued in month t, where past experiences correspond to past months t − h. Thus, our

regression is at the stock-by-current-month-by-past-month level. Accordingly, we cluster standard errors by

stock, current month, and past month.

We present summary statistics for the sample in Table 1 and results from estimating the above regression

in Table 2. We find that our measure strongly predicts actual recall. In all columns, we include quarter fixed

effects to account for seasonality. In column (1), we also include stock-by-past-month fixed effects, which

capture the possibility that some past stock-months are more/less likely to be recalled. Such effects could

be due to stock-specific shocks that occurred in the past month and that impacted the encoding of a memory

trace for all market participants.

The coefficient on r(e, κt) in column (1) implies that a one percentage point (pp) increase in the

probability of recalling month t − h translates into a 67 pp increase in the probability that month t − h

is mentioned during a corporate event in month t. At first blush, this effect size may seem unreasonably

large. However, it is important to realize that while our measure captures a probability distribution for which

the sum of all probabilities must be equal to one, there is no restriction on how many past months can be

mentioned during a corporate event. Thus, this result simply says that if, according to our measure, the recall

probability for a past month is reasonably high, this month will almost surely be mentioned at some point

during the corporate event. Consistent with this intuition, the deep red lower-left diagonal Figure 5 shows

that recent months have a very high probability of being mentioned. This result is intuitive: communicating

recent firm performance is an important part of corporate events like earnings calls.

Given the strong degree of recency in the extracted recall patterns shown in Figure 5, some readers may

wonder whether a simple model of extrapolation or recency performs just as well as our measure. Therefore,

in column (2), we replace our measure with the probability weights generated by the exponentially-decaying

weighting approach of Greenwood and Shleifer (2014), using their estimated decay parameter λ of 0.56.12

While the coefficient on these exponentially-decaying weights is large and positive, it is not significant.

12This decay parameter is the average across a range of different investor surveys.
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In column (3), we include both our measure as well as the exponentially-decaying weights as explanatory

variables and find that the coefficient on our measure remains virtually unchanged, both in magnitude and

significance. In column (4), we further augment the regression with stock-by-current-month fixed effects,

which capture stock-specific shocks in the current month that affect the likelihood of recalling (any) past

month. Including these fixed effects does not change the results.

One potential concern with the results in columns (1) through (4) is that they may pick up a spurious

correlation. Specifically, one may worry that managers almost always talk about recent firm performance,

and that this just happens to coincide with the strong degree of recency in our measure. The fact that

an exponentially-decaying model performs worse than our measure should already alleviate some of these

worries. Nevertheless, in the following tests, we show that the overlap between our measure and extracted

recall is not only due to the recency effect. Specifically, we focus on recall of historical months that are at

least five years in the past. Visually, once can think of this as slicing off the deep red lower-left diagonal in

Figure 5.13

In columns (5) through (8), we re-estimate the specifications from the first four columns for these

distant months. The coefficient estimates on r(e, κt) are much lower, but still highly significant. In terms of

magnitude, these estimates imply that a one percentage point (pp) increase in the recall probability translates

to a 3-4 pp increase in the probability that the distant month is mentioned during a corporate event in month

t. These lower magnitudes are due to the fact that managers are much less likely to discuss the distant past.

The results in columns (6) through (8) also show that the coefficients on the exponentially-decaying weights

are zero, indicating that a model based purely on exponential decay does a poor job at predicting recall of

the distant past. Overall, the takeaways from Table 2 are that recency is an important reason for the strong

overlap between our measure and extracted recall patterns, that our measure outperforms a simple model of

13As an alternative approach to addressing the concern that managers are prone to mentioning recent firm performance, we distinguish

actual recall patterns for different types of participants in the corporate event. The transcript of each event identifies the speaker

of each sentence, such as an analyst or a manager, during an earnings call. This distinction allows us to analyze recall patterns

separately for different types of speakers. In Tables A2 and A3 in the Appendix, we focus on analysts and managers, respectively,

and show that the effects are very similar across these two types of speakers. Beyond helping to address the aforementioned concern,

these tables show that our measure can explain the recall patterns of different types of market participants.
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exponential decay, and that our measure also predicts extracted recall of the distant past.

5 Memory and Beliefs

In this section, we use our measure to construct memory-based return expectations for the aggregate

stock market. We then link these memory-based return expectations with survey-based return expectations.

We also construct memory-based perceived volatility and link it with return volatility implied by stock

options.

5.1 Constructing Memory-Based Return Expectations

We begin by describing how we use the measure introduced in Section 3 to construct memory-based

return expectations for the aggregate stock market. For each stock-month, our measure yields the probability

of recalling each of the past 180 months. That is, for each stock in each month, our measure yields a distinct

recall probability distribution over the past 180 months. To arrive at an aggregate recall probability distribu-

tion in each month, we take the equally-weighted average of the stock-level recall probability distributions

in each month. We then use the resulting aggregate recall probability distribution in each month, along with

historical monthly returns of the S&P 500 Index, to construct the memory-based return expectation for the

aggregate market in each month. Intuitively, we are weighting each historical return with its associated recall

probability. More formally, we can express the memory-based probability distribution of monthly returns as:

FS(ret) =

∑
ret=rete,where e∈E S(e, κt)∑

e′∈E S(e′, κt)
. (3)

Here, FS(ret) represents the memory-based probability for a return with a value of ret, and rete denotes

the specific value of the return in experience e. We think of each past month as an experience. This

formulation can accommodate scenarios in which multiple experiences (i.e., multiple past months) contain

the same return. If the historical returns in all experiences are distinct from one another, the memory-based

probability for a historical return in experience e is simply the recall probability r(e, κt). However, if returns

in multiple experiences are identical to each other, then the memory-based probability for that particular

return is the sum of the recall probabilities across the corresponding experiences. Using these memory-based
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probabilities, we construct the subjective monthly return expectation as follows:

ES(ret) =
∑
ret

FS(ret)× ret. (4)

5.2 Linking Memory-Based and Survey-Based Return Expectations

We next test whether the memory-based return expectations constructed using our measure can explain

actual investor expectations from surveys. The survey expectations in our tests are from the Gallup investor

survey, as it provides a large sample size and follows a consistent methodology (Greenwood and Shleifer

(2014)). The Gallup survey does not ask investors for the percentage return they expect to earn in the market,

but rather asks investors whether they are bullish or bearish about the market over the next 12 months. We

follow Greenwood and Shleifer (2014) and define survey expectations as the percentage point difference

in bullish and bearish investors. We source data from Greenwood and Shleifer (2014) for the period from

October 1996 to December 2011, and extend the sample period to May 2020 with data sourced directly from

Gallup.14

Figure 6 gives a visual impression of the relationship between memory-based and survey-based return

expectations. The dashed blue line shows survey-based expectations in month t + 1.15 The solid black

line shows annualized memory-based return expectations as of the end of month t constructed using our

measure. Clearly, the two time series comove heavily, especially from 2002 onward. The correlation between

the two time series is 0.67 (the rank correlation is 0.68). Overall, the figure suggests that memory-based

and survey-based return expectations are tightly linked. To establish this relationship more rigorously, we

estimate the following regression:

Survey Expectationst+1 = a+ bMemory-Based Expectationt + cXt + ej,t,

14The Gallup survey elicited survey expectations every three months from 1996-1998, then switched to monthly elicitations, and

reverted back to elicitations every three months from 2011 onward. As in Greenwood and Shleifer (2014), some months are missing

in the period from 1998-2011.

15We use survey expectations from month t + 1, since survey responses are typically collected throughout a month. This approach

ensures that all the information used to construct memory-based expectations at the end of month t is available to survey respondents

throughout the month t+ 1.
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where Memory-Based Expectationt is the annualized memory-based return expectation as of the end of

month t, and Survey Expectationst+1 are annual return expectations in month t+1 from the Gallup investor

survey. Xt is a set of control variables that captures factors which potentially influence investors’ belief

formation, including the price level (proxied for by Log(P/D)), the risk-free rate, earnings growth, and

the unemployment rate. This set of controls follows Greenwood and Shleifer (2014). We show summary

statistics of the sample in Panel A of Table 3, and present regression results in Table 4.

In column (1) of Table 4, we estimate the above regression and find that memory-based return expecta-

tions significantly predict survey-based return expectations with a positive sign. In terms of magnitude, the

coefficient implies that a one standard deviation increase in memory-based return expectations (correspond-

ing to a 3.9 percentage point higher annualized return) is associated with a 14.5 percentage point increase in

the number of investors who are bullish about the stock market over the next 12 months.

One potential concern with this result is that our memory-based measure might just be a proxy for recent

returns, which are known to predict survey expectations (Greenwood and Shleifer (2014)). To address this

concern, in column (2), we decompose the memory-based return expectation into a component capturing

only expectations from recent memory (defined as the most recent 12 months) and expectations from distant

memory (defined as more than 12 months in the past). The sum of these two components equals our baseline

memory-based expectation from column (1). We find that both components independently explain survey

expectations. In terms of magnitude, a one standard deviation increase in expectations from recent (distant)

memory is associated with a 12.2 (8.2) percentage point increase in the number of investors who are bullish

about the stock market over the next 12 months. This result highlights that both recent and distant memory

help explain survey expectations.

In column (3), we further augment this regression with the cumulative return over the past 12 months,

since Greenwood and Shleifer (2014) show that recent returns are an important determinant of investors’

return expectations. This control variable is heavily correlated with our variable capturing expectations from

recent memory, and it washes out the coefficient on expectations from recent memory. However, expectations

from distant memory continue to explain survey expectations.

In column (4), we directly benchmark our measure against a simple model of extrapolation by controlling
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for the exponentially-weighted average of returns over the past 5 years. To construct this exponentially-

weighted return, we first calculate quarterly returns by compounding 3-month returns on a monthly basis.

We then use the weighting approach of Greenwood and Shleifer (2014) and their estimated quarterly λ of

0.77 to calculate an exponentially-weighted average return over the past five years. The λ of 0.77 from

Greenwood and Shleifer (2014) is estimated using the Gallup investor survey, which is the same survey

data that we use in our tests. Thus, if the concern is that our measure is just a fancy way to generate

extrapolation, controlling for this exponentially-weighted average return is arguably a high bar to clear for

our measure. As the results in column (4) show, expectations from distant memories continue to explain

investors’ expectations, highlighting that our measure captures more than a simple model of extrapolation. In

columns (5) to (7), we replicate the regressions from columns (2) to (4), using a five year cutoff to distinguish

between recent and distant memory. Our results remain very similar.

Finally, in column (8) we ask whether expectations from distant memory are particularly useful in

explaining survey expectations during bad times. These tests are motivated by the results presented in 4.2,

which show that our measure generates high recall probabilities for distant crises if recall occurs during

turbulent economic times. We implement this test by interacting expectations from recent and from distant

memory with a dummy variable that is equal to one during NBER recessions. Indeed, expectations from

distant memory have more explanatory power, and expectations from recent memory have less, during

recessions. This is intuitive, as distant memories include, e.g., memories of the 2008 Financial Crisis for

survey expectations that are elicited during the 2020 Covid Pandemic, and memories of the Tech Bubble

Burst for survey expectations that are elicited during the 2008 Financial Crisis.

Overall, the results in Table 4 show that memory-based expectations predict survey expectations well.

Importantly, the results show that memory-based expectations capture more than mere extrapolation of past

returns. The principle of similarity, which is the underlying driver of our measure, allows our measure

to draw on distant experiences precisely when the current economic environment resembles these distant

experiences.
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5.3 Memory-Based Perceived Volatility

The tests in the previous section focus on the time series relationship between memory-based and

survey-based return expectations. This focus on the time series is due to the fact that surveys expectations

are typically not elicited for each stock individually, but rather for the stock market as a whole. However,

narrowly focusing on the time series masks a key strength of our measure: its rich cross-sectional variation.

Indeed, our measure yields a full recall probability distribution for each stock-month. In this section, we

leverage this variation by constructing memory-based perceived volatility for each stock in each month, and

link it with option-implied volatility.

We define memory-based volatility as the standard deviation of monthly returns over the past 180

months, where each historical return is weighted with its associated recall probability. We then link the

resulting memory-based volatility for each stock with implied volatility from stock options.16 We calculate

implied volatility for each stock in each month using data from OptionMetrics, following the methodology

described in An et al. (2014). We provide summary statistics of option-implied and memory-based volatility

in Panel B of Table 3.

In our tests, we regress option-implied volatility in month t+1 on memory-based volatility in month t.

The results in column (1) of Table 5 imply that a one standard deviation increase in memory-based volatility

is associated with an increase in option-implied volatility of 0.13 units, which corresponds to about 59%

of the standard deviation of option-implied volatility. In column (2), we control for perceived volatility

from an exponentially-decaying model using the decay parameter λ = 0.56 from Greenwood and Shleifer

(2014).17 We construct exponential-decay-based volatility as the standard deviation of monthly returns

over past months, where each historical return is weighted with exponentially-decaying weights. While

16We focus on implied volatility in our cross-sectional tests for two reasons. First, implied volatility is readily available at the

stock-level, as it can be easily extracted from stock options. In contrast, return expectations at the stock-level are much harder to

come by. Second, by focusing on implied volatility, we can test whether memory-based beliefs from our measure also explain

higher-moment beliefs.

17We use λ = 0.56, since this value is the average across a range of different surveys in Greenwood and Shleifer (2014). Our results

are similar if we use λ = 0.77, which is the value of λ that is calibrated to the Gallup survey data.
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the coefficient on memory-based volatility in column (2) shrinks by about 40% compared to column (1), it

remains statistically significant and economically meaningful, emphasizing that our measure captures more

than mere extrapolation of recent volatility.

In column (3), we augment the regression with stock and month fixed effects. These fixed effects leave

the effect of memory-based volatility largely unchanged. In column (4) we further control for lagged implied

volatility, as implied volatility is known to be persistent. The coefficient on memory-based volatility shrinks

substantially once we control for lagged implied volatility, highlighting the importance of this control, but

memory-based volatility continues to predict option-implied volatility.18 Finally, in column (5), we add a host

of control variables that capture firm fundamentals and which are know to predict returns in the cross-section,

namely (i) a firm’s size, which we measure as the logarithm of a firm’s market capitalization (in million $),

(ii) idiosyncratic volatility in %, which we construct following Ang et al. (2006), (iii) asset growth, which

we construct as the book asset growth rate (= current book assets – lagged book assets)/lagged book assets),

(iv) operating profit following Fama and French (2006), and (v) the logarithm of the book-to-market ratio,

where the book-to-market ratio is constructed following Fama and French (1992). In terms of magnitude,

the estimate in column (5) implies that a one-standard-deviation increase in memory-based volatility is

associated with an increase in option-implied volatility of 0.016 units, which corresponds to about 7% of the

standard deviation of option-implied volatility.

Summarizing, our results in this section show that memory-based volatility derived from our measure

can explain cross-sectional variation in implied volatility, establishing a link between memory and higher-

order beliefs in financial markets.19 The explanatory power of memory-based volatility survives even when

we control for a large set of alternative predictors of option-implied volatility. From a methodological

perspective, the tests in this section also highlight how our measure can be used to easily construct higher-

moment beliefs for a range of financial and economic variables.

18In Table A5 in the Appendix, we use an alternative approach to handle the persistence in option-implied volatility. We estimate

Fama-MacBeth regressions, which only exploit cross-sectional variation, and find similar results.

19In Appendix C, we construct memory-based volatility for the aggregate market and show that it can explain variation in the Volatility

Index (VIX) over time.
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6 Memory and Individual Trading Decisions

In this section, we use our measure to revisit previously documented evidence that past trading ex-

periences affect investors’ future repurchasing decisions (Kaustia and Knüpfer (2008); Choi et al. (2009);

Strahilevitz et al. (2011)). We show that the probability of recalling a past trading experience strongly

modulates the likelihood of repurchasing a stock. Our tests in this section establish that memory and trading

are linked, validating our measure in a different setting than our previous tests. Further, as we discuss in more

detail below, the trading setting allows us to construct memory associations for each investor individually,

thus allowing us to test the role of memory not only in the cross-section of stocks, but also in the cross-section

of investors.

6.1 Memory Retrieval and Repurchasing Decisions

Consider an investor who debates the question “Should I repurchase stock l?”. Strahilevitz et al. (2011)

find that the answer to this question depends on how well stock l previously performed for the investor. In

particular, if the stock was previously sold for a gain, the investor is more likely to repurchase the stock.

We propose that memory plays a key role in modulating this effect. Specifically, we argue that when an

investor debates the above question, it brings to mind current stock-level and contextual features, which cue

the recall of past experiences. We therefore propose that past trading experiences do affect the likelihood

of repurchase, but that the probability of recalling a past trading experience strongly modulates this effect.

Crucially, this implies that identical past realized returns differentially affect the probability of repurchase,

depending on how likely it is that they are recalled by the investor.

We test these ideas using data from a large US discount brokerage. These are the same data as in Barber

and Odean (2000). The data include the holdings and trades of approximately 78,000 households between

January 1991 and November 1996. We retain only common stocks, drop trades with negative commissions,

and match the data to CRSP for information on stock prices. Since our measure of memory associations

is constructed monthly, we match this frequency and aggregate each investor’s holdings and trades to the

monthly level. This means that we pool all trades (buys, sells, liquidations, and repurchases) that the investor
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executes in a given month. Since we are interested in analyzing investors’ repurchasing decisions, our sample

consists of all stocks that an investor can repurchase in a given month. These are stocks that an investor once

held and subsequently liquidated, but that the investor has not (yet) repurchased since the latest liquidation.

Once an investor repurchases a stock, we exclude that stock from the sample going forward, until the investor

potentially liquidates the position again. For each position of stock l in account i, we use the past trading

history to calculate the weighted average purchase price (WAPP). When an investor fully liquidates a position

in a month, we use the WAPP and the average transacted price in the liquidation month to calculate the

realized return Reti,l (winsorized at the 1st and 99th percentiles). We only consider positions for which we

know all historical purchase prices, so that we can accurately calculate the WAPP. To this end, we exclude

positions that investors held in the first month of the position files, since we do not know at which price the

investor acquired these positions.

In our tests, we examine whether the probability that investor i repurchases stock l in month t is

modulated by (i) the past realized return, (ii) the probability that the investor recalls the stock-month in which

that return was realized, and (iii) the interaction between the two. Specifically, we estimate the following

regression:

Buyi,l,t = a Reti,l + b r(e, κt) + c Reti,l × r(e, κt) + Controls + FEs + ϵi,l,t (5)

The dependent variable in this regression is a dummy variable, Buyi,l,t, which is equal to one if investor i

repurchases stock l in month t. The variable Reti,l is the previously realized return of stock l for investor

i. Finally, the variable r(e, κt) is the probability that a representative investor recalls the stock-month in

which the past return of stock l was realized. This recall probability is constructed using the measure that

we introduced in Section 3. Importantly, this recall probability does not vary across investors, since it is

the probability that a representative investor recalls the stock-month in which investor i realized the return

Reti,l.20 Standard errors in this regression are clustered by account, liquidation month, and current month.

The coefficients in the above regression have intuitive interpretations. Coefficient a captures the effect

20In Sections 6.2 and 6.3 below, we implement tests in which we estimate memory associations for each investor individually. This

allows us to construct recall probabilities that are unique to each investor. Our results are very similar, suggesting that, on average,

the recall probability of a representative investor does a good job at capturing memory associations of individual investors.
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of past realized returns on the probability of repurchase if the recall probability implied by our measure is

zero. Coefficient b captures the effect of the recall probability on the likelihood of repurchase if the past

realized return is zero. Finally, coefficient c captures the additional effect of the recall probability on the

likelihood of repurchase for a given (non-zero) past realized return.

Across specifications, we include different sets of fixed effects, which we discuss in more detail below.

We also control for the return of stock l between the liquidation month and the end of month t − 1, since

Strahilevitz et al. (2011) show that this return, which the investor could have hypothetically realized had she

not sold the stock, affects the probability of repurchase. Moreover, following Ben-David and Hirshleifer

(2012), we control for the logarithm of the initial purchase price (WAPP), the square root of the number of

days between initial purchase and liquidation, and the stock volatility calculated using daily returns over the

250 days preceding the initial purchase.

Before showing the results from estimating equation (5), we briefly discuss the summary statistics of our

sample, presented in Table 6. On average, there are about 6 stocks (median 4) that an investor can repurchase

in a given month.21 These are stocks that the investor previously held and subsequently liquidated. Investors

realized an average gain of 6.90% when liquidating previously-held positions. The unconditional probability

of repurchasing a previously-held stock is low at only 0.5%, but as we show next, the probability of recalling

previous gains and losses strongly affects the likelihood of repurchase.

Table 7 presents our regression results. We first replicate the finding of Strahilevitz et al. (2011) using

a simple linear probability model.22 We regress the repurchase dummy Buyi,l,t on the past realized return,

Reti,l and the above control variables. We also include account-month and stock-month fixed effects. The

first set of fixed effects controls for characteristics of investor i in month t that might be driving the propensity

to repurchase, such as investor wealth or sophistication. The second set of fixed effects controls for stock-level

information revealed in month t that might be driving repurchasing behavior across all investors.

In column (1), the coefficient on past realized returns is positive and significant. In terms of magnitude,

this coefficient implies that a realized return of 6.90% (the average in our sample) increases the likelihood

21For comparison, investors hold about 3 stocks on average (median 1) in their portfolio in a given month.

22Strahilevitz et al. (2011) use both ratio analysis and a hazard model to document their finding.
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of repurchase by 0.02 percentage points (pp). This effect, while statistically significant, is minuscule even

compared to the relatively low unconditional probability of repurchase in our sample of 0.5%. However, as

we show in the remaining columns of Table 7, this average effect masks strong heterogeneity with respect to

the recall probability.

In column (2), we augment the regression with the recall probability, r(e, κt), and its interaction with

the past realized return, Reti,l. The coefficients on the recall probability as well as on the interaction term

are positive, economically meaningful, and highly significant. Consider first the coefficient on the recall

probability. This coefficient implies that a 10% probability of recalling the month in which the investor

liquidated the stock is associated with a 2.49 pp increase in the likelihood of repurchasing the stock (for a

past realized return of zero). This effect size is roughly five times the unconditional probability of repurchase.

Further, the coefficient on the interaction term implies that for the same recall probability of 10%, if the

investor previously realized a return of 6.90%, the repurchase probability increases by an additional 0.14

pp. Compared to the unconditional probability of repurchase (0.5%), this additional effect represents about

a 28% increase.

In column (3), we further tighten up the regression by including account-by-month-by-liquidation-

month fixed effects. These fixed effects rule out that we are merely picking up a horizon effect, where

investors simply repurchase recently-liquidated stocks. These fixed effects also fully soak up (potentially

investor-specific) extrapolative beliefs. Intuitively, including these fixed effects allows us to compare an

investor’s repurchasing decisions for stocks that were previously liquidated in the same month. While these

stocks have been out of the investor’s portfolio for the same amount of time, they generally differ in their

previously realized returns, Reti,l, as well as in their similarity with the cue κt, resulting in different recall

probabilities, r(e, κt).

Notice first that in column (3) the direct effect of the recall probability on the likelihood of repurchase

becomes much weaker. This is intuitive: the strongest characteristic of the recall probability is the recency

effect (see Figure 1), which is soaked up by the fixed effects. Importantly, however, the coefficient on the

interaction term between past realized returns and the recall probability remains strong and significant. The

robustness of this coefficient highlights the key result of this table, namely that the probability of recalling a
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past realized return strongly modulates the likelihood of repurchase.

6.2 The Role of Similarity and Interference

So far, we approximate the memory associations of individual investors with the memory associations

of a representative investor. We now turn to estimating memory associations for each investor individually.

This allows for a more granular test of memory effects at the investor-level.

When estimating memory associations at the investor-level, we assume that a stock enters an investor’s

memory database Ei when the investor i first acquires the stock (the “entering month”). We also retain the

assumption of narrow framing at the stock-level. We use equation (2) to calculate similarity Si(e, κt), which

is the cosine similarity between the vector of features from the current stock-month and the vector of features

from the stock-month in which the investor realized the return Reti,l. We also construct interference as

Ii(e, κt) =
∑

e′∈Ei
Si(e

′, κt), that is, the sum of all Si(e
′, κt) across months in which stock l is in investor

i’s memory database Ei, starting with the entering month and ending with month t− 1.

Intuitively, the ratio of Si(e, κt) and Ii(e, κt) yields ri(e, κt), which is the probability that investor i

recalls the stock-month in which Reti,l was realized when cued with κt. This investor-level recall probability

can be interpreted analogously to the recall probability of a representative investor, which we use in previous

tests. The key difference is that the investor-level recall probability is based on the memory database Ei,

which is unique to investor i.

In column (1) of Table 8, we begin by replicating column (2) of Table 7 using investor-specific recall

probabilities. We find that the coefficient on the interaction term is about half as large compared to column

(2) of Table 7. At first glance, this might suggest that the effect is weaker when using investor-specific

recall probabilities rather than the recall probability of a representative investor, which we have used in our

tests so far. However, it is important to note that the mean and standard deviation of investor-specific recall

probabilities are about four times larger than those of the representative investor, as shown in Table 6. This

difference in scale indicates that the effect size is not necessarily weaker, but rather reflects the increased

variability in investor-specific recall probabilities.

The difference in scale is intuitive: the memory database of a given individual investor is sparser than
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that of the representative investor, since we assume that a stock enters an individual investor’s memory

database when the investor first acquires the stock. Thus, if we compare the effect size for a one standard

deviation increase, the magnitude is about double when using investor-specific memory associations instead

of memory associations of a representative investor. Further, this effect is estimated with more precision,

since the t-statistic is larger even though the coefficient is smaller.

In column (2), we addSi(e, κt) and Ii(e, κt) as separate regressors, and interact each with the previously

realized return, Reti,l. Including similarity and interference separately as independent variables allows for a

targeted test of associative memory theory. Specifically, since these two forces have opposing effects on the

recall probability – similarity increases recall, while interference reduces recall – the interaction of Reti,l

with similarity should have a positive coefficient and the interaction of Reti,l with interference should have

a negative coefficient. This is precisely what we find. In terms of magnitude, for a previously realized return

of 6.90%, a one standard deviation increase of similarity (one std. dev. = 0.193) implies a 0.01 pp increase

in the probability of repurchase. Conversely, a one standard deviation decrease in interference (one std. dev.

= 10.301) implies a 0.014 pp decrease in the probability of repurchase.

In columns (3) and (4) of Table 8, we further augment the regressions from columns (1) and (2) with

account-by-month-by-liquidation-month fixed effects. Including these very tight fixed effects does not change

the coefficients on the interaction terms. Overall, the results in Tables 7 and 8 show that the probability of

recalling past experiences strongly modulates the effect that these experiences have on future repurchasing

decisions.

6.3 The Role of Encoding Strength

In this next set of tests, we examine whether the encoding strength of an experience matters for the

effects documented in Tables 7 and 8. We hypothesize that, conditional on all else being equal, a strongly

encoded experience is more likely to be recalled than a weakly encoded one.

To estimate the encoding strength of a past trading experience, we use the attention that the investor

devoted to her portfolio in the month of the experience. We proxy for this attention using the total number of

transactions that the investor executed in the month of the experience. Specifically, we construct a dummy
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variable that is equal to one if the investor executed at least two transactions in the month of the experience,

and zero otherwise.23

In our tests, we augment equation (5) with a triple interaction term between the attention dummy, the

past realized return, Reti,l, and the investor-level recall probability, ri(e, κt). If the intensity of encoding

matters, the coefficient on this triple interaction term should be positive. Intuitively, a positive coefficient on

the triple interaction implies that experiences that were encoded in months with high attention are more likely

to be recalled, and therefore have a stronger effect on the likelihood of repurchase. Notably, the direction

of this effect depends on the sign of the previously realized return: a positive realized return increases the

likelihood of repurchase, while a negative realized return decreases it.

Table 9 presents the results. In both columns, we find that the coefficient on the triple interaction

term is positive and significant. Consider the estimates in column (1), which includes account-month and

stock-month fixed effects. The coefficient on the triple interaction term implies that for a realized return

of 6.90% and a recall probability of 10%, the likelihood of repurchase is about 0.035 pp higher if the past

return was realized in a month in which the investor paid a lot of attention to her portfolio. In column (2), in

which we include extremely tight account-by-month-by-liquidation-month fixed effects, the effect size is, if

anything, somewhat stronger. Overall, the results in this table show that even for past experiences that have

identical realized returns and that are equally likely to be recalled, those that are encoded more strongly are

more likely to be recalled, resulting in a higher likelihood of repurchase.

7 Conclusion

Models of human memory have the potential to microfound a wide range of empirical phenomena

in financial markets, from long-lasting experience effects to short-term return extrapolation. While recent

surveys and experimental studies support many predictions of these models, they often prioritize internal

validity at the expense of external validity. Our study contributes to this literature by examining memory at

scale using data from the field.

23The median number of transactions per month is one.
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We base our empirical approach on two well-established regularities of associative recall – similarity

and interference – that have been robustly documented in the experimental laboratory. We estimate memory

associations that a representative investor would have if these regularities also operate in the field. We then

show that the resulting memory associations predict (i) actual recall patterns extracted from transcripts of

corporate events, (ii) return expectations from investor surveys, (iii) higher moment beliefs implied by the

VIX, and (iv) trading decisions of individual investors. Our results provide strong evidence that models of

human memory can be broadly applied in financial markets.

On the methodological front, we provide a straightforward, theory-based approach for retro-actively

constructing memory-based beliefs for a wide range of economic and financial variables. For instance,

using the recall probability distributions generated by our measure, it is possible to construct memory-based

expectations of macro-variables such GDP growth or the inflation rate, as well as firm-level variables such

as earnings or cash flow growth. Being able to construct memory-based expectations of different variables

may be particularly valuable when survey data are not available. A further advantage of our approach is that

it is very flexible. By extending or reducing the set of features used to calculate similarity and interference,

our measure can be tailored to different applications. Thus, our approach may help researchers study the role

of memory in other domains of financial markets and in the economy more generally.
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Figure 1: Recall Probabilities from our Measure

This figure displays the recall probability that our measure assigns to the past 60 quarters (= 15 years)
for each quarter from 1966 to 2021. The x-axis indicates the quarter in which recall occurs, while the
y-axis indicates the probability weight assigned to past quarters. A darker shade of red indicates a higher
probability weight. We highlight three episodes with exceptionally high probability weights: the recall of
the 1973 Oil Crisis during the 1979 Oil Crisis, the recall of the Tech Bubble Burst during the 2008 Financial
Crisis, and the recall of the 2008 Financial Crisis during the 2020 Covid-19 Pandemic. This figure is also
repeated at the beginning of the manuscript. 36
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Figure 2: Recall Probabilities from a Simple Model of Exponential Decay

This figure displays the recall probability that a simple model of exponential decay assigns to the past 60
quarters (= 15 years) for each quarter from 1966 to 2021. The probability weight assigned to the j-lagged
quarter is given by:

ωj =
λj

Σ59
k=0λ

k
,

where λ = 0.56 following Greenwood and Shleifer (2014).
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Figure 3: Recall Probabilities from our Measure: Before and During the 2008 Financial Crisis

This figure displays recall probabilities implied by our measure immediately before and during the 2008
Financial Crisis. The x-axis shows the number of months between the cueing month and the recalled month,
while the y-axis represents the recall probability assigned to a historical month by our measure. In the upper
panel, we present recall probabilities of past months if recall occurs in June 2007 (in red), which is a date
that is immediately before the outbreak of the 2008 Financial Crisis. In the lower panel, we present recall
probabilities of past months if recall occurs in December 2008 (in red), which is a date that is during the
2008 Financial Crisis. In both panels, we also display the average recall probabilities of past months in green.
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Figure 4: Recall Probabilities from our Measure: Before and During the Covid-19 Pandemic

This figure displays recall probabilities implied by our measure immediately before and during the 2008
Financial Crisis. The x-axis shows the number of months between the cueing month and the recalled month,
while the y-axis represents the recall probability assigned to a historical month by our measure. In the upper
panel, we present recall probabilities of past months if recall occurs in December 2019 (in red), which is a
date that is immediately before the outbreak of the 2020 Covid-19 Pandemic. In the lower panel, we present
recall probabilities of past months if recall occurs in June 2020 (in red), which is a date that is during the
2020 Covid-19 Pandemic. In both panels, we also display the average recall probabilities of past months in
green.
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Figure 5: Actual Recall Patterns Extracted from Transcripts of Corporate Events

This figure displays the probability that a previous quarter is mentioned during a corporate event. The
sample includes corporate events taking place between 2001 and 2021. The x-axis represents the quarter in
which the corporate event occurs, while the y-axis represents the probability with which each of the past 60
quarters (= 15 years) is mentioned during the event. A darker shade of red indicates a higher probability
weight, and we require the darkest color to be capped at a probability of 0.3.
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Figure 6: Memory-Based Survey-Based Return Expectations

This figure plots memory-based return expectations (as of the end of month t) and survey-based return
expectations (elicited over the course of month t+ 1). Survey-based return expectations are the percentage
point difference in bullish and bearish investors from the Gallup investor survey. We source survey data
from Greenwood and Shleifer (2014) for the period from October 1996 to December 2011, and extend the
sample period to May 2020 with data sourced directly from Gallup. Memory-based return expectations are
annualized return expectations of the S&P 500 index derived from our measure.
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Table 1: Summary Statistics for Tests of Actual Recall Patterns Extracted from Corporate Events
This table presents summary statistics for the sample used in the tests displayed in Table 2. The sample covers
corporate events taking place between January 2001 and December 2021. Actual Recall is an indicator that
equals one if, during a firm’s corporate event in month t, any participant mentions the historical month t−h

at least once, and zero otherwise. We focus on the previous 180 months, i.e., h ∈ {1, 2, 3, . . . , 180}. The
recall probability r(e, κt) captures the probability that month t − h is recalled by a representative investor
in month t. Exponential weight is the probability weight on month t − h derived from a simple model of
exponential decay following Greenwood and Shleifer (2014) using λ = 0.56. Size is the logarithm of a firm’s
market capitalization (in million $). Turnover is the monthly dollar trading volume over market capitalization
at the end of the month. The firm’s book-to-market ratio (BM) is constructed following Fama and French
(1992), using book equity from (at least) six months ago and market capitalization from the most recent
December. Ivol is idiosyncratic volatility (in %) from CAPM regressions and is constructed following Ang
et al. (2006), using daily data from the past month. Price is the firm’s stock price (in $) at the end of the month.

N Mean Median Std.Dev P25 P75 Min Max
Actual Recall 15,237,765 0.163 0.000 0.369 0.000 0.000 0.000 1.000
r(e, κt) 15,237,765 0.006 0.005 0.002 0.004 0.007 0.001 0.014
Exponential Weight 15,237,765 0.024 0.000 0.102 0.000 0.000 0.000 1.000
Size 15,237,765 7.569 7.580 1.986 6.277 8.906 0.591 14.659
Turnover 15,237,765 0.176 0.133 0.148 0.084 0.216 0.001 0.836
BM 15,237,765 0.601 0.505 0.693 0.293 0.791 -26.782 27.284
Ivol 15,237,765 0.018 0.014 0.015 0.009 0.021 0.001 0.655
Price 15,237,765 44.912 29.590 77.195 14.220 52.950 0.054 3440.160
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Table 2: Actual Recall Patterns Extracted from Corporate Events
This table shows that our measure predicts actual recall patterns extracted from transcripts of corporate
events. The dependent variable is an indicator that equals one if, during a firm’s corporate event in
month t, any participant mentions the historical month t − h at least once, and zero otherwise. The recall
probability r(e, κt) captures the probability that month t − h is recalled by a representative investor in
month t. Exponential weight captures the probability weight on month t − h derived from a simple model
of exponential decay following Greenwood and Shleifer (2014) using λ = 0.56. The first four columns
focus on the previous 180 months, i.e., h ∈ {1, 2, 3, . . . , 180}. The last four columns focus on months that
are at least 5 years in the past, i.e., h ∈ {61, 62, 63, . . . , 180}. Columns (1) to (3) and (4) to (6) include
stock-by-past-month fixed effects as well as control variables. The control variables are as of the end of
month t−1, given that recall occurs in month t. Columns (4) and (8) further include stock-by-current-month
fixed effects. These fixed effects soak up the control variables. In all columns, we include quarter fixed
effects. Standard errors are clustered by stock, current month, and past month, and the t-statistics are
reported in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.
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Actual Recall of Month t-h in Month t
(1) (2) (3) (4) (5) (6) (7) (8)

Sample: Past 15 Years At Least 5 Years in the Past

r(e, κt) 66.909∗∗∗ 65.052∗∗∗ 67.267∗∗∗ 2.952∗∗∗ 2.908∗∗∗ 3.860∗∗∗

(41.47) (35.30) (35.89) (7.67) (7.52) (8.86)
Exponential Weight 448.540 301.707 294.847 0.000 0.000 0.000

(1.58) (1.52) (1.52) (1.52) (1.50) (1.52)
Size 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(6.63) (7.87) (6.59) (4.25) (4.19) (4.24)
Turnover 0.002 0.005 0.002 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.46) (1.05) (0.48) (3.06) (3.14) (3.06)
BM 0.001 0.001 0.001 -0.000 -0.000 -0.000

(1.15) (0.91) (1.12) (-0.41) (-0.45) (-0.41)
Ivol -0.081∗∗ -0.131∗∗∗ -0.082∗∗ -0.049∗ -0.049∗ -0.049∗

(-2.23) (-3.58) (-2.26) (-1.66) (-1.67) (-1.66)
Price 0.000∗ -0.000 0.000∗ 0.000 0.000 0.000

(1.91) (-1.26) (1.87) (0.63) (0.39) (0.63)

Adjusted R-Squared 0.405 0.361 0.408 0.457 0.083 0.083 0.084 0.212
N 15,237,765 15,237,765 15,237,765 15,262,267 10,152,541 10,152,541 10,152,541 10,168,898
Stock x current month FE NO NO NO YES NO NO NO YES
Stock x past month FE YES YES YES YES YES YES YES YES
Quarter FE YES YES YES YES YES YES YES YES
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Table 3: Summary Statistics for Tests of Memory-Based Beliefs
This table presents summary statistics for the samples used in the tests displayed in Tables 4 and 5. Panel
A displays summary statistics for the sample used in Table 4. The sample period for these tests ranges
from October 1996 to May 2020. We source Gallup Survey Expectations from Greenwood and Shleifer
(2014) until December 2011, and extend the sample until May 2020 with data sourced directly from Gallup.
Gallup Survey Expectations are defined as the percentage point difference in bullish and bearish investors
from the Gallup investor survey. Memory-Based Expectation is the annualized return expectation for the
S&P 500 index derived from our measure. We decompose the memory-based expectation into expectations
from recent and distant memory, where recent refers either to the most recent 12 months or the most recent
five years, and distant refers either to more than 12 months or more than five years in the past. The sum
of recent and distant expectations equals the baseline memory-based expectation. The cumulative return
over the previous 12 months, the exponentially-weighted past return, the logarithm of the price-dividend
ratio (Log(P/D)), the risk-free rate, the earnings growth rate, and the unemployment rate are constructed
following Greenwood and Shleifer (2014). US Rec is a dummy variable that is equal to one during NBER
recessions. Panel B displays summary statistics for the sample used in Table 5. The sample period for these
tests ranges from January 1996 to December 2021. Option-implied volatility is constructed following An
et al. (2014). Memory-based volatility is the standard deviation of monthly returns over the past 180 months,
where each historical return is weighted with its associated recall probability. Exponential-decay-based
volatility is the standard deviation of monthly returns over past months, where each historical return is
weighted with exponentially-decaying weights, using the decay parameter λ = 0.56 from Greenwood and
Shleifer (2014). Size is the logarithm of a firm’s market capitalization (in million $), idiosyncratic volatility
(in %) is constructed following Ang et al. (2006), asset growth is the book asset growth rate (= current book
assets – lagged book assets)/lagged book assets), operating profit is constructed following Fama and French
(2006), and the book-to-market ratio is constructed following Fama and French (1992).
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Panel A: Return Expectations

N Mean Median Std.Dev P25 P75 Min Max
Gallup Survey Expectations 171 18.079 18.303 20.636 7.000 34.000 -45.000 57.000
Memory-Based Expectation 171 0.091 0.085 0.039 0.063 0.105 0.001 0.174
Exp from Recent Mem (<=12
months)

171 0.005 0.011 0.021 -0.007 0.019 -0.065 0.048

Exp from Distant Mem (>12
months)

171 0.086 0.076 0.033 0.066 0.117 0.021 0.150

Exp from Recent Mem (<=5 years) 171 0.033 0.030 0.038 -0.000 0.060 -0.055 0.110
Exp from Distant Mem (>5 years) 171 0.058 0.063 0.026 0.045 0.076 -0.018 0.092
Cumulative Return (Past 12 Months) 171 0.066 0.109 0.178 -0.035 0.185 -0.425 0.409
Exponentially-Weighted Past Return 171 0.019 0.026 0.034 0.007 0.039 -0.097 0.077
US Rec 171 0.123 0.000 0.329 0.000 0.000 0.000 1.000
Log(P/D) 171 4.059 4.041 0.235 3.941 4.202 3.324 4.502
Risk-free Rate 171 1.005 1.007 0.019 0.994 1.016 0.950 1.101
Earnings Growth 171 0.042 0.134 0.330 -0.055 0.195 -0.886 0.767
Unemployment 171 5.455 5.000 1.576 4.400 5.800 3.500 14.700

Panel B: Volatility Perceptions

N Mean Median Std.Dev P25 P75 Min Max
Option-Implied Volatility 410,569 0.454 0.402 0.221 0.299 0.553 0.100 1.473
Memory-Based Volatility 410,569 0.480 0.437 0.209 0.328 0.584 0.159 1.447
Exponential-Decay-Based Volatility 410,569 0.357 0.291 0.248 0.194 0.440 0.022 1.609
Size 410,569 7.537 7.342 1.566 6.385 8.473 3.704 14.813
Idiosyncratic Volatility (3F) 410,569 0.020 0.016 0.014 0.011 0.025 0.000 1.383
Asset Growth 410,569 0.216 0.078 0.901 -0.004 0.221 -0.937 233.36
Operating Profit 410,569 0.255 0.254 5.082 0.144 0.381 -553.75 268.35
log(Book-to-Market Ratio) 410,569 -0.976 -0.903 0.851 -1.431 -0.432 -9.872 3.175
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Table 4: Memory-Based and Survey-Based Return Expectations of the S&P 500 Index
This table shows that memory-based return expectations explain survey-based return expectations. In all
columns, the dependent variable is the difference in the percentage of bullish and bearish investors from
the Gallup investor survey (elicited over the course of month t + 1). In column (1), the main independent
variable is the memory-based return expectation of the S&P 500 Index derived from our measure (as of
the end of month t). In column (2), we decompose this memory-based expectation into expectations from
recent memory (most recent 12 months) and expectations from distant memory (more than 12 months in
the past). The sum of these two variables equals our baseline memory-based expectation from column (1).
In column (3), we add the cumulative return over the past 12 month as an additional control, following
Greenwood and Shleifer (2014). In column (4), we control for the exponentially-weighted average return
over the past five years. To construct this exponentially-weighted return, we first calculate quarterly returns
by compounding 3-month returns on a monthly basis. We then use the weighting approach of Greenwood
and Shleifer (2014) and their estimated quarterly λ of 0.77 to calculate an exponentially-weighted average
return over the past five years. Columns (5) - (7) mirror columns (2) - (4), except that the cutoff between
recent and distant memory is five years instead of 12 months. In column (8), we interact expectations from
recent and distant memory with a dummy variable equal to one during NBER recessions. All columns
include the same control variables as Panel B of Table 3 in Greenwood and Shleifer (2014). The sample
period ranges from October 1996 to May 2020. t-statistics, in parentheses, are Newey-West adjusted with
twelve lags. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Gallup Survey Expectations
(1) (2) (3) (4) (5) (6) (7) (8)

Memory-Based Expectation 371.970∗∗∗

(4.97)

Exp from Recent Mem (<=12 months) 581.296∗∗∗ -87.026 -43.262
(7.33) (-0.69) (-0.36)

Exp from Distant Mem (>12 months) 249.131∗∗∗ 203.420∗∗∗ 168.358∗∗

(3.76) (3.84) (2.55)

Exp from Recent Mem (<=5 years) 382.190∗∗∗ 114.281 34.740 19.974
(5.23) (1.57) (0.42) (0.20)

Exp from Distant Mem (>5 years) 333.652∗∗∗ 244.758∗∗∗ 220.195∗∗∗ 178.967∗∗∗

(3.90) (3.76) (3.29) (2.69)

Exp from Recent Mem (<=5 years) X US Rec -294.003∗∗∗

(-3.57)

Exp from Distant Mem (>5 years) X US Rec 817.134∗∗∗

(3.22)

Cumulative Return (Past 12 Months) 84.441∗∗∗ 70.444∗∗∗ 17.069
(5.20) (5.10) (1.20)

Exponentially-Weighted Past Return 368.441∗∗∗ 389.757∗∗∗ 331.594∗∗∗

(5.39) (6.60) (4.13)

Log(P/D) -8.713 3.333 11.488 9.409 -8.046 15.132 16.026 23.272∗

(-0.54) (0.25) (1.00) (0.71) (-0.50) (1.46) (1.52) (1.70)

Risk-free Rate -189.556∗∗∗ -169.016∗∗∗ -116.927∗∗ -110.157∗∗ -189.184∗∗∗ -114.985∗∗ -93.143∗ -61.654
(-3.38) (-2.86) (-2.53) (-2.35) (-3.37) (-2.37) (-1.94) (-1.32)

Earnings Growth 19.826∗∗∗ 5.441 -0.344 8.646 20.440∗∗∗ -9.144 -4.041 -4.852
(3.00) (0.76) (-0.05) (1.10) (2.89) (-1.13) (-0.59) (-0.58)

Unemployment 0.543 0.369 -0.131 -0.242 0.704 -0.578 -1.018 -0.935
(0.47) (0.31) (-0.12) (-0.19) (0.59) (-0.53) (-0.79) (-0.57)

Adjusted R-Squared 0.553 0.594 0.640 0.650 0.554 0.648 0.673 0.707
N 171 171 171 171 171 171 171 171
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Table 5: Memory-Based Volatility and Option-Implied Volatility
This table shows that memory-based volatility explains option-implied volatility in the cross-section of
stocks. In all columns, the dependent variable is option-implied volatility in month t + 1, constructed
following An et al. (2014). All independent variables are as of month t. Memory-based volatility is the
standard deviation of monthly returns over the past 180 months, where each historical return is weighted
with its associated recall probability. Similarly, exponential-decay-based volatility is the standard deviation
of monthly returns over past months, where each historical return is weighted with exponentially-decaying
weights, using the decay parameter λ = 0.56 from Greenwood and Shleifer (2014). In column (1),
we only include memory-based volatility as an independent variable. In column (2), we control for
exponential-decay-based volatility. In column (3), we add stock and month fixed effects. In column (4) we
control for lagged option-implied volatility, and in column (5) we control for size, idiosyncratic volatility
(following Ang et al. (2006)), asset growth, operating profit (following Fama and French (2006)), and the
logarithm of the book-to-market ratio (following Fama and French (1992)). We multiply all coefficients by
100. Standard errors are clustered by stock and month, and the t-statistics are reported in parentheses. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Option-Implied Volatility

(1) (2) (3) (4) (5)

Memory-Based Volatility 61.706∗∗∗ 37.351∗∗∗ 34.761∗∗∗ 11.169∗∗∗ 7.626∗∗∗

(38.94) (25.22) (21.57) (14.73) (10.90)
Exponential-Decay-Based Volatility 33.089∗∗∗ 15.222∗∗∗ 4.866∗∗∗ 4.442∗∗∗

(24.93) (26.70) (17.46) (17.32)
Option-Implied Volatility (lagged) 63.153∗∗∗ 57.800∗∗∗

(69.59) (59.85)
Size -2.231∗∗∗

(-15.00)
Idiosyncratic Volatility (3F) 102.611∗∗∗

(20.19)
Asset Growth 0.175∗∗∗

(2.85)
Operating Profit -0.006

(-1.25)
log(Book-to-Market Ratio) -0.306∗∗∗

(-4.06)

Adjusted R-Squared 0.342 0.427 0.710 0.819 0.824
N 410,569 410,569 410,569 410,569 410,569
Month FE NO NO YES YES YES
Stock FE NO NO YES YES YES
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Table 6: Summary Statistics for Tests of Memory-Based Trading Decisions
This table presents summary statistics for the samples used in the tests displayed in Tables 7, 8, and 9. The
data in these tests are the same as in Barber and Odean (2000) and the sample period ranges from January
1991 to November 1996. Number of Stocks for Repurchase is the number of distinct stocks that the investor
once owned but does not own in month t. Number of Stocks in Portfolio is the number of distinct stocks
that the investor owns in month t. These two variables are at the account-month level. Repurchase Dummy
(Buy) is a dummy variable that is equal to one if the investor repurchases a previously-held stock in month t.
Ret is the return that the investor realized when liquidating a previously-held position. The recall probability
r(e, κt) is the probability that a representative investor in month t recalls the month in which the investor
liquidated a previously-held position. In contrast, the recall probability ri(e, κt) is investor-specific and
estimated for each investor individually using the investor’s historical holdings. Return between Sell and
Repurchase is the return that a stock realized between the previous liquidation and a (potential) repurchase.
The logarithm of the initial purchase price (ln(WAPP)), the square root of the number of days between initial
purchase and liquidation (

√
Time Owned), and the volatility calculated using daily returns over the 250 days

preceding the initial purchase (Return Volatility) are constructed following Ben-David and Hirshleifer (2012).
N Mean Median Std.Dev P25 P75 Min Max

Number of Stocks for Repurchase 1,096,908 5.840 4.000 7.902 2.000 6.000 1.000 440.000
Number of Stocks in Portfolio 1,096,908 2.744 1.000 5.673 0.000 4.000 0.000 645.000
Repurchase Dummy (Buy) 6,413,970 0.005 0.000 0.070 0.000 0.000 0.000 1.000
Ret 6,413,970 0.069 0.050 0.321 -0.102 0.196 -0.706 1.429
r(e, κt) 6,126,108 0.013 0.010 0.012 0.008 0.013 0.001 0.582
ri(e, κt) 6,116,040 0.046 0.030 0.045 0.020 0.053 0.003 0.687
Return between Sell and Repurchase 6,413,970 0.323 0.093 1.084 -0.134 0.483 -0.999 138.342
ln(WAPP) 6,413,970 2.389 2.464 1.184 1.764 3.029 -3.814 15.023
√

Time Owned 6,413,970 2.388 2.000 1.239 1.414 3.162 1.000 8.185
Return Volatility 6,413,970 0.140 0.123 0.098 0.082 0.171 0.012 6.953
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Table 7: Memory Retrieval and Repurchasing Decisions
This table shows that the probability of recalling a past trading experience strongly modulates the likelihood
of repurchasing a stock. The dependent variable in all columns is a dummy that is equal to one if the investor
repurchases a previously-held stock. The main independent variables are (i) the return that the investor
realized when liquidating a previously-held position, (ii) the probability that a representative investor in
month t recalls the month in which the investor liquidated a previously-held position, and (iii) the interaction
of (i) and (ii). All columns include a set of control variables as well as stock-by-current-month fixed effects.
Columns (1) and (2) further include account-by-current-month fixed effects, and column (3) includes account-
by-liquidation-month-by-current-month fixed effects instead. All coefficients are multiplied by 100. Standard
errors are clustered by account, liquidation month, and current month, and the t-statistics are reported in
parentheses. *, **, and ***, indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Repurchase Dummy (Buy)
(1) (2) (3)

Ret 0.342∗∗∗ -0.006 0.018
(8.93) (-0.18) (0.37)

r(e, κt) 24.872∗∗∗ 5.208∗∗∗

(21.16) (2.85)
r(e, κt) x Ret 20.210∗∗∗ 16.327∗∗∗

(10.77) (6.42)
Return between Sell and Repurchase -0.145∗∗∗ -0.098∗∗∗ -0.093∗∗∗

(-7.41) (-6.14) (-5.16)
ln(WAPP) 0.259∗∗∗ 0.152∗∗∗ 0.103∗∗

(7.51) (5.53) (2.60)
√

Time Owned 0.010 -0.004 -0.009
(1.55) (-0.72) (-0.97)

Return Volatility -0.563∗∗∗ -0.331∗∗∗ 0.020
(-4.68) (-3.36) (0.13)

Adjusted R-Squared 0.036 0.027 0.038
N 6,413,970 6,126,108 2,842,767
Stock x Current Month FE YES YES YES
Account x Current Month FE YES YES NO
Account x Past Month x Current Month FE NO NO YES
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Table 8: The Role of Similarity and Interference
This table shows the separate effect of investor-specific recall probabilities, similarity, and interference on the
likelihood of repurchasing a stock. The dependent variable in all columns is a dummy that is equal to one if
the investor repurchases a previously-held stock. The main independent variables in columns (1) and (3) are
(i) the return that the investor realized when liquidating a previously-held position, (ii) the probability that
the investor in month t recalls the month in which the previously-held position was liquidated, and (iii) the
interaction of (i) and (ii). Columns (2) and (4) break out the investor-specific recall probability separately by
similarity and interference. All columns include a set of control variables as well as stock-by-current-month
fixed effects. Columns (1) and (2) further include account-by-current-month fixed effects, and columns (3)
and (4) include account-by-liquidation-month-by-current-month fixed effects instead. All coefficients are
multiplied by 100. Standard errors are clustered by account, liquidation month, and current month, and the
t-statistics are reported in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% level, respectively.
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Repurchase Dummy (Buy)
(1) (2) (3) (4)

Ret -0.173∗∗∗ 0.188∗∗∗ -0.144∗∗∗ 0.242∗∗

(-5.77) (3.18) (-3.20) (2.62)
ri(e, κt) 3.676∗∗∗ -5.305∗∗∗

(18.44) (-8.14)
ri(e, κt) x Ret 10.593∗∗∗ 8.824∗∗∗

(14.29) (7.38)
Similarity 1.296∗∗∗ -0.067

(17.04) (-1.14)
Interference 0.008∗∗∗ 0.038∗∗∗

(5.32) (11.46)
Similarity x Ret 0.768∗∗∗ 0.629∗∗∗

(9.70) (5.52)
Interference x Ret -0.019∗∗∗ -0.019∗∗∗

(-11.13) (-6.79)
Return between Sell and Repurchase -0.101∗∗∗ -0.076∗∗∗ -0.101∗∗∗ -0.091∗∗∗

(-6.32) (-5.60) (-5.42) (-5.05)
ln(WAPP) 0.088∗∗∗ 0.108∗∗∗ 0.080∗∗ 0.094∗∗

(3.64) (4.36) (2.16) (2.51)
√

Time Owned 0.031∗∗∗ -0.041∗∗∗ -0.067∗∗∗ -0.126∗∗∗

(6.57) (-6.13) (-5.32) (-8.45)
Return Volatility -0.278∗∗∗ -0.151 0.088 0.040

(-2.84) (-1.57) (0.53) (0.25)

Adjusted R-Squared 0.027 0.027 0.037 0.037
N 6,116,040 6,116,040 2,836,957 2,836,957
Stock x Current Month FE YES YES YES YES
Account x Current Month FE YES YES NO NO
Account x Past Month x Current Month FE NO NO YES YES
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Table 9: The Role of Encoding Strength

This table shows that the strength with which a trading experience is encoded affects the probability
of recalling the experience, and ultimately the likelihood of repurchasing the associated stock. Columns
(1) and (2) augment columns (1) and (3) of Table 8, respectively, with an additional interaction with the
dummy variable Attention. This dummy is equal to one if the investor executed at least two transactions in
the month of the experience, and zero otherwise. All coefficients are multiplied by 100. Standard errors are
clustered by account, liquidation month, and current month, and the t-statistics are reported in parentheses.
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Repurchase Dummy (Buy)
(1) (2)

Attention x ri(e, κt) x Ret 5.109∗∗∗ 5.517∗∗∗

(4.33) (3.27)
ri(e, κt) x Ret 8.093∗∗∗ 5.472∗∗∗

(12.43) (5.02)
Attention x ri(e, κt) 0.299 -3.139∗∗∗

(1.00) (-3.00)
Attention x Ret -0.047 -0.012

(-1.05) (-0.17)
Attention -0.014

(-1.17)
Ret -0.134∗∗∗ -0.103∗∗

(-5.14) (-2.08)
ri(e, κt) 3.544∗∗∗ -3.323∗∗∗

(14.28) (-4.23)
Return between Sell and Repurchase -0.100∗∗∗ -0.100∗∗∗

(-6.30) (-5.39)
ln(WAPP) 0.091∗∗∗ 0.085∗∗

(3.75) (2.28)
√

Time Owned 0.031∗∗∗ -0.063∗∗∗

(6.55) (-5.12)
Return Volatility -0.279∗∗∗ 0.103

(-2.86) (0.62)

Adjusted R-Squared 0.027 0.038
N 6,116,040 2,836,957
Stock x Current Month FE YES YES
Account x Current Month FE YES NO
Account x Past Month x Current Month FE NO YES

56



APPENDIX

A Construction of the Corporate Event Sample

In this section, we describe how we construct the sample that we use in our tests in Section 4.4 of the

paper. We collect transcripts of corporate events from Refinitiv StreetEvents for January 2001 to December

2021. The set of corporate events covered by these transcripts includes Earnings Calls, M&A Calls, Sales

Calls, Analyst Meetings as well as Corporate Conference Presentations. Q&A sessions of these calls are

also included in the transcripts. Each transcript of an event provides a verbatim representation of what

was spoken and by whom during the event, along with metadata that allows us to match the company to

the Compustat database. This metadata includes the ticker symbol header, company name, event title, and

date of the event. We match company names in the transcripts to the corresponding ‘GVKEY’ (the unique

Compustat identifier) following Li et al. (2021). We also match the sample to CRSP and retain only stocks

with a share code of 10 or 11 and an exchange code of 1, 2, or 3.

We parse the text of each transcript and segment it into sentences. For each sentence, we identify the

dates mentioned in it using sutime, a Python wrapper for Stanford CoreNLP’s SUTime Java library.24 sutime

allows us to identify date formats in both absolute and relative forms. Absolute date formats are phrases that

directly represent a specific date, such as “2011-03-31” or “2011-Q3”. When dealing with absolute dates,

sutime can interpret date strings in various formats; it recognizes that strings like “2011-03-31” and “March

31, 2011” are equivalent. In contrast, relative date formats involve phrases that indirectly convey a date, such

as “two weeks ago”. For instance, if a conference call occurs on December 31, 2011, and the phrase “two

weeks ago” is mentioned, sutime codes the corresponding date as December 17, 2011. sutime labels both

absolute and relative date formats as belonging to the category date.

There are other forms of date-related terms that sutime can detect. For instance, in a sentence containing

the phrase “century long commitment”, sutime would classify the term “century long” as belonging to the

category duration. We disregard sentences with terms falling into this category. In our sample, we focus

only on dates from sentences with phrases that are grouped into the date category.

24Link: https://pypi.org/project/sutime/
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The identified dates mainly fall into three different frequencies: days (e.g., 2011-03-31), quarters (e.g.,

2011-Q3), and years (e.g., 2011). To ensure consistency with the monthly frequency of our measure of

memory associations, we aggregate dates to the monthly level. Specifically, we assume that when referring

to a date of lower frequency, all corresponding months within that date are included. For instance, if

a conference participant mentions the year 2011, we treat it as if every month in 2011 was mentioned.

Moreover, since our focus is on memory recall, we only focus on dates that occurred before the date of the

corporate event, and ignore references to the future.

B Variation in the Speed of Memory Decay

Our goal in this section is to show that our measure can generate patterns that are typically observed

in subjective beliefs data. Specifically, our measure generates recall patterns that are largely consistent with

empirical patterns on return extrapolation documented in Da et al. (2021). In this study, the authors show

that investors extrapolate from past returns, placing higher weights on recent returns compared to distant

returns. Moreover, these extrapolative weights decay faster for small firms and value stocks. Here, we show

that our measure generates variation in the speed of memory decay in the cross-section of stocks that is very

consistent with the findings in Da et al. (2021).

To construct our measure of decay speed, we first calculate the recall probability of the most recent

month if recall occurs in the current month. Then, we calculate the recall probability of the same (most

recent) month assuming that recall occurs one year from now. We construct the decay speed as the ratio of

the two recall probabilities, with the first recall probability in the numerator and the second recall probability

in the denominator. A higher ratio indicates a faster decay speed.

We show how decay speed varies along four firm-level characteristics, which are each measured as of

the end of each month: the logarithm of a firm’s market capitalization (in million $), the book-to-market ratio

following Fama and French (1992), the idiosyncratic volatility (in %) from CAPM regressions following

Ang et al. (2006), and the stock price (in $). At the end of each month, we sort stocks into deciles based on

these characteristics and calculate both the equal-weighted and value-weighted average of decay speed.

Table A4 presents our findings. The first row of Panel A shows that, when weighting stocks equally
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in each portfolio, the decay speed of the smallest firms is 10.7% (= 1.34/1.21 - 1) faster than that of the

largest firms. We find differences of a similar magnitude when we compare stocks in the extreme deciles of

idiosyncratic volatility and stock price, as shown in the third and fourth rows, with memory decaying faster

for volatile and low-priced stocks. We also find that decay speed is lower for growth stocks, but the magnitude

of this effect is smaller. Panel B shows similar results when we value-weight stocks in each portfolio.

Overall, the consistency between our findings and those of Da et al. (2021) suggests a strong link

between memory and return extrapolation. We view the results of these tests as suggestive evidence that

our measure is linked with subjective beliefs data from the field. In section 5.2 of the paper, we empirically

establish the connection between memory-based and survey-based return expectations.

C Linking Memory-Based Perceived Volatility and the VIX

In this section, we use our measure to construct memory-based perceived volatility for the aggregate

market and link it to the actual perceived volatility captured by the Volatility Index (VIX). Since our measure

yields a full probability distribution of monthly returns for each stock, we can use these distributions to

construct a measure of memory-based return variance for each stock in each month. Using the resulting

stock-level variances, we construct monthly memory-based variance at the market-level as follows:

VarS(Retm) =
L∑
l=1

ω2
l VarS(Retl)︸ ︷︷ ︸

sum of variances

+
∑
l ̸=k

ωlωkCovS(Retl,Retk)︸ ︷︷ ︸
sum of covariances

, (A1)

where ωl is the weight of stock l, which is simply its value-weight in the S&P 500 index, and VarS(Retl) is the

memory-based monthly return variance of stock l, constructed from the memory-based return distribution of

stock l as of the end of month t. Further, CovS(Retl,Retk) is the memory-based perceived return covariance

between stocks l and k. As discussed in Section 3, we adopt the concept of narrow framing at the stock-level

throughout the paper, and therefore assume that investors perceive CovS(Retl,Retk) to be zero. Finally, the

perceived monthly volatility at the market-level is simply the square root of VarS(Retm). We annualize this

volatility by multiplying it with the square root of twelve.

To connect this memory-based perceived volatility with actual perceived volatility, we need a proxy
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for the latter. We use the VIX. This is a natural choice, as the VIX is designed to capture the market’s

annualized expectation of volatility over the next 30 days. We download the VIX from the website of the

Federal Reserve Bank of St. Louis, calculate the average of daily VIX over the course of each month, and

normalize it by dividing it by 100. We provide summary statistics of the VIX and memory-based volatility

in Panel B of Table A6.

We begin by visualizing the relationship between memory-based volatility and the VIX in Figure A5.

The dashed blue line represents the average daily VIX over the course of month t+ 1, while the solid black

line represents memory-based perceived volatility as of the end of month t. The two time series track each

other well, with the VIX being more volatile over the sample period. The correlation between the two time

series is 0.37 (the rank correlation is 0.50).

Next, we regress the VIX (from month t + 1) on memory-based perceived volatility (as of the end of

month t) and present the results in Table A7. Column (1) shows that memory-based volatility predicts the VIX

significantly with a positive sign. In terms of magnitude, a one standard deviation increase in memory-based

volatility is associated with an increase in the VIX of 0.026 units, which corresponds to about 35% of the

standard deviation of the VIX. In column (2), we add the same control variables as in column (1) of Table 4.

Adding these controls approximately doubles the magnitude of the coefficient, implying that a one standard

deviation increase in memory-based volatility is associated with an increase in the VIX by about 65% of

its standard deviation. In column (3), we also control for the realized volatility over the past 12 months, to

account for the possibility that investors extrapolate from past volatility in the same way that they do from

past returns. While the coefficient on memory-based volatility loses some of its statistical significance, the

economic magnitude of the effect remains very similar to the estimate from column (1). Overall, our results

in Table A7 show that memory can not only explain return expectations, but also higher-moment beliefs,

such as volatility perceptions.
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Figure A1: Recall Probabilities from our Measure: Going Back 50 Years

This figure displays the probability weights on the past 200 quarters (= 50 years) implied by our measure for
each quarter from 2001 to 2021. The x-axis indicates the quarter in which recall occurs, while the y-axis
indicates the recall probability that our measure assigns to past quarters. A darker shade of red indicates
a higher probability weight. We highlight several episodes with exceptionally high probability weights
during the 2020 Covid-19 Pandemic and the 2008 Financial Crisis: the 1973 Oil Crisis, the 1979 Oil Cri-
sis, the Recession of 1981-82, the Recession of 1990-91, the Tech Bubble Burst, and the 2008 Financial Crisis.
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Figure A2: Recall Probabilities from our Measure: Only Stock-Level Features

This figure replicates Figure 1 using only stock-level features (see Table A1 for details on these features).
The x-axis indicates the quarter in which recall occurs, while the y-axis indicates the probability weight
that our measure assigns to past quarters. A darker shade of red indicates a higher probability weight. We
highlight three episodes with exceptionally high probability weights: the recall of the 1973 Oil Crisis during
the 1979 Oil Crisis, the recall of the Tech Bubble Burst during the 2008 Financial Crisis, and the recall of
the 2008 Financial Crisis during the 2020 Covid-19 Pandemic.
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Figure A3: Recall Probabilities from our Measure: Only Firm-Level Financial Ratios

This figure replicates Figure 1 using only firm-level financial ratios (see Table A1 for details on these
features). The x-axis indicates the quarter in which recall occurs, while the y-axis indicates the probability
weight that our measure assigns to past quarters. A darker shade of red indicates a higher probability weight.
We highlight three episodes with exceptionally high probability weights: the recall of the 1973 Oil Crisis
during the 1979 Oil Crisis, the recall of the Tech Bubble Burst during the 2008 Financial Crisis, and the
recall of the 2008 Financial Crisis during the 2020 Covid-19 Pandemic.

63



19
67

-Q
4

19
69

-Q
4

19
71

-Q
4

19
73

-Q
4

19
75

-Q
4

19
77

-Q
4

19
79

-Q
4

19
81

-Q
4

19
83

-Q
4

19
85

-Q
4

19
87

-Q
4

19
89

-Q
4

19
91

-Q
4

19
93

-Q
4

19
95

-Q
4

19
97

-Q
4

19
99

-Q
4

20
01

-Q
4

20
03

-Q
4

20
05

-Q
4

20
07

-Q
4

20
09

-Q
4

20
11

-Q
4

20
13

-Q
4

20
15

-Q
4

20
17

-Q
4

20
19

-Q
4

20
21

-Q
4

Quarter

1951-Q4
1953-Q4
1955-Q4
1957-Q4
1959-Q4
1961-Q4
1963-Q4
1965-Q4
1967-Q4
1969-Q4
1971-Q4
1973-Q4
1975-Q4
1977-Q4
1979-Q4
1981-Q4
1983-Q4
1985-Q4
1987-Q4
1989-Q4
1991-Q4
1993-Q4
1995-Q4
1997-Q4
1999-Q4
2001-Q4
2003-Q4
2005-Q4
2007-Q4
2009-Q4
2011-Q4
2013-Q4
2015-Q4
2017-Q4
2019-Q4
2021-Q4

Pa
st 

Qu
ar

te
r

Tech Bubble Burst

Financial Crisis

1973 Oil Crisis

0.002

0.004

0.006

0.008

0.010

0.012

Figure A4: Recall Probabilities from our Measure: Only Broad Macroeconomic Features

This figure replicates Figure 1 using only broad macroeconomic variables (see Table A1 for details
on these features). The x-axis indicates the quarter in which recall occurs, while the y-axis indicates
the probability weight that our measure assigns to past quarters. A darker shade of red indicates a
higher probability weight. We highlight several episodes with exceptionally high probability weights:
the recall of the 1973 Oil Crisis during the 1979 Oil Crisis, the recall of the Tech Bubble Burst dur-
ing the 2008 Financial Crisis, and the recall of the 2008 Financial Crisis during the 2020 Covid-19 Pandemic.
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Figure A5: Memory-Based Volatility Perceptions and the VIX

This figure plots memory-based perceived volatility (as of the end of month t) and the average daily VIX
over the course of month t+1. VIX is divided by 100. Memory-Based Volatility is the annualized perceived
volatility of the S&P 500 index derived from our measure.
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Table A1: Set of Features

Part 1. Macroeconomic variables

con g Log Difference of Consumption in Goods and
Services

IPT g Log Difference of Industrial Production Index

GDP g Log Difference of Real GDP unemployment Unemployment Rate
INFLATION Inflation Rate

Part 2. Stock-level variables

return Monthly Stock Return PRICE Stock Price
DOLLARVOL Dollar Volume VOL Trading Volume

Part 3. Firm-level variables
Accrual Accruals/Average Assets adv sale Advertising Expenses/Sales
aftret eq After-tax Return on Average Common Equity aftret equity After-tax Return on Total Stockholders Equity
aftret invcapx After-tax Return on Invested Capital at turn Asset turnover
bm Book/Market capei Shillers Cyclically Adjusted P/E ratio
capital ratio Capitalization Ratio cash debt Cash Flow/Total Debt
cash lt Cash Balance/Total Liabilities cash ratio Cash Ratio
cfm Cash Flow Margin curr debt Current Liabilities/Total Liabilities
curr ratio Current Ratio debt asset Total Debt/Total Assets
debt at Total Debt/Total Assets debt capital Total Debt/Capital
debt ebitda Total Debt/EBITDA debt invcap Long-term Debt/Invested Capital
divyield Dividend Yield dltt be Long-term Debt/Book Equity
dpr Dividend Payout Ratio efftax Effective Tax Rate
equity invcap Common Equity/Invested Capital evm Enterprise Value Multiple
fcf ocf Free Cash Flow/Operating Cash Flow gpm Gross Profit Margin
GProf Gross Profit/Total Assets int debt Interest/Average Long-term Debt
int totdebt Interest/Average Total Debt intcov After-tax Interest Coverage
intcov ratio Interest Coverage Ratio inv turn Inventory Turnover
invt act Inventory/Current Assets lt ppent Total Liabilities/Total Tangible Assets
npm Net Profit Margin ocf lct Operating CF/Current Liabilities
opmad Operating Profit Margin After Depreciation opmbd Operating Profit Margin Before Depreciation
pay turn Payables Turnover pcf Price/Cash flow
pe exi P/E (Diluted, Excl. EI) pe inc P/E (Diluted, Incl. EI)
PEG trailing Trailing P/E to Growth ratio pretret earnat Pre-tax Return on Total Earning Assets
pretret noa Pre-tax return on Net Operating Assets profit lct Profit Before Depreciation/Current Liabilities
ps Price/Sales ptb Price/Book
ptpm Pre-tax Profit Margin quick ratio Quick Ratio (Acid Test)
rd sale Research and Development/Sales rect act Receivables/Current Assets
rect turn Receivables Turnover roa Return on Assets
roce Return on Capital Employed roe Return on Equity
sale equity Sales/Stockholders Equity sale invcap Sales/Invested Capital
sale nwc Sales/Working Capital short debt Short-Term Debt/Total Debt
totdebt invcap Total Debt/Invested Capital
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Table A2: Analysts’ Recall Patterns from Corporate Events
This replicates Table 2 using only recall patterns extracted from sentences spoken by analysts during
corporate events. The dependent variable is an indicator that equals one if, during a firm’s corporate event
in month t, an analyst mentions the historical month t − h at least once, and zero otherwise. The recall
probability r(e, κt) captures the probability that month t − h is recalled by a representative investor in
month t. The first two columns focus on the previous 180 months, i.e., h ∈ {1, 2, 3, . . . , 180}. The last
two columns focus on months that are at least 5 years in the past, i.e., h ∈ {61, 62, 63, . . . , 180}. Columns
(1) and (3) include stock-by-past-month fixed effects as well as control variables. Columns (2) and (4)
further include stock-by-current-month fixed effects. These fixed effects soak up the control variables. In all
columns, we include quarter fixed effects. Standard errors are clustered by stock, current month, and past
month, and the t-statistics are reported in parentheses. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

Actual Recall of Month t-h in Month t
(1) (2) (3) (4)

Sample: Past 15 Years At Least 5 Years in the Past

r(e, κt) 45.878∗∗∗ 46.997∗∗∗ 0.743∗∗∗ 0.883∗∗∗

(32.22) (32.76) (5.15) (5.26)
Size 0.006∗∗∗ 0.001∗∗

(5.49) (2.26)
Turnover 0.016∗∗∗ 0.006∗∗∗

(4.55) (4.56)
BM 0.001 -0.000∗∗

(1.46) (-2.48)
Ivol -0.090∗∗∗ -0.021∗∗

(-3.59) (-2.45)
Price -0.000∗ -0.000

(-1.85) (-1.09)

Adjusted R-Squared 0.275 0.319 0.011 0.147
N 15,237,765 15,237,765 10,152,541 10,152,541
Stock x Current Month FE NO YES NO YES
Stock x Past Month FE YES YES YES YES
Quarter FE YES YES YES YES
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Table A3: Managers’ Recall Patterns from Corporate Events
This replicates Table 2 using only recall patterns extracted from sentences spoken by managers during
corporate events. The dependent variable is an indicator that equals one if, during a firm’s corporate event
in month t, a manager mentions the historical month t − h at least once, and zero otherwise. The recall
probability r(e, κt) captures the probability that month t − h is recalled by a representative investor in
month t. The first two columns focus on the previous 180 months, i.e., h ∈ {1, 2, 3, . . . , 180}. The last
two columns focus on months that are at least 5 years in the past, i.e., h ∈ {61, 62, 63, . . . , 180}. Columns
(1) and (3) include stock-by-past-month fixed effects as well as control variables. Columns (2) and (4)
further include stock-by-current-month fixed effects. These fixed effects soak up the control variables. In all
columns, we include quarter fixed effects. Standard errors are clustered by stock, current month, and past
month, and the t-statistics are reported in parentheses. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

Actual Recall of Month t-h in Month t
(1) (2) (3) (4)

Sample: Past 15 Years At Least 5 Years in the Past

r(e, κt) 65.330∗∗∗ 67.385∗∗∗ 2.505∗∗∗ 3.428∗∗∗

(39.89) (40.64) (7.15) (8.71)
Size 0.012∗∗∗ 0.004∗∗∗

(6.98) (4.52)
Turnover 0.006 0.009∗∗

(1.24) (2.46)
BM 0.001 -0.000

(0.88) (-0.81)
Ivol -0.112∗∗∗ -0.038

(-2.88) (-1.37)
Price 0.000 0.000

(1.60) (0.54)

Adjusted R-Squared 0.397 0.448 0.081 0.208
N 15,237,765 15,237,765 10,152,541 10,152,541
Stock x Current Month FE NO YES NO YES
Stock x Past Month FE YES YES YES YES
Quarter FE YES YES YES YES
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Table A4: Cross-Sectional Variation in the Speed of Memory Decay
This table presents the relation between stock-level characteristics and the speed of memory decay. The
speed of memory decay speed is defined as the recall probability of the most recent month if recall occurs
in the current month divided by the recall probability of the same (most recent) month assuming that recall
occurs one year from now. A higher ratio indicates a faster memory decay speed. The table shows how
decay speed varies along four firm-level characteristics, which are each measured as of the end of each
month: the logarithm of a firm’s market capitalization (in million $), the book-to-market ratio following
Fama and French (1992), the idiosyncratic volatility (in %) from CAPM regressions following Ang et al.
(2006), and the stock price (in $). The sample runs from January 1966 to December 2021. The t-statistics
for tests that the difference between the highest and lowest decile is equal to zero are displayed in parentheses.

Panel A: Equal-Weighted Memory Decay Speed

Model Low P2 P3 P4 P5 P6 P7 P8 P9 High High-Low

Size 1.34 1.31 1.30 1.28 1.27 1.25 1.24 1.24 1.23 1.21 –0.13
(–29.33)

BM 1.26 1.25 1.25 1.26 1.27 1.26 1.27 1.27 1.28 1.30 0.04
(8.56)

Ivol 1.22 1.23 1.23 1.24 1.25 1.27 1.28 1.30 1.32 1.34 0.12
(29.37)

Price 1.34 1.32 1.29 1.27 1.26 1.25 1.24 1.24 1.23 1.22 –0.12
(–21.17)

Panel B: Value-Weighted Memory Decay Speed

Model Low P2 P3 P4 P5 P6 P7 P8 P9 High High-Low

Size 1.33 1.31 1.30 1.28 1.26 1.25 1.24 1.24 1.23 1.19 –0.14
(–32.72)

BM 1.19 1.20 1.22 1.22 1.22 1.22 1.23 1.23 1.23 1.27 0.09
(9.55)

Ivol 1.18 1.20 1.21 1.22 1.22 1.23 1.25 1.26 1.28 1.29 0.11
(20.33)

Price 1.32 1.29 1.27 1.25 1.23 1.23 1.22 1.22 1.21 1.19 –0.13
(–18.20)
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Table A5: Memory-Based Volatility and Option-Implied Volatility: Fama-MacBeth Regressions
This table shows that memory-based volatility explains option-implied volatility in the cross-section of
stocks. In all columns, the dependent variable is option-implied volatility in month t + 1, constructed
following An et al. (2014). All independent variables are as of month t. Memory-based volatility is the
standard deviation of monthly returns over the past 180 months, where each historical return is weighted
with its associated recall probability. Similarly, exponential-decay-based volatility is the standard deviation
of monthly returns over past months, where each historical return is weighted with exponentially-decaying
weights, using the decay parameter λ = 0.56 from Greenwood and Shleifer (2014). In all columns, we run
Fama-MacBeth regressions. In column (1), we only include memory-based volatility as an independent
variable. In column (2), we control for exponential-decay-based volatility. In column (3), we control for
lagged option-implied volatility, and in column (4) we control for size, idiosyncratic volatility (following
Ang et al. (2006)), asset growth, operating profit (following Fama and French (2006)), and the logarithm of
the book-to-market ratio (following Fama and French (1992)). We multiply all coefficients by 100. Standard
errors are Newey-West adjusted with twelve lags, and the t-statistics are reported in parentheses. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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Option-Implied Volatility

(1) (2) (3) (4)

Memory-Based Volatility 61.703∗∗∗ 46.227∗∗∗ 11.681∗∗∗ 8.876∗∗∗

(20.87) (15.59) (13.60) (12.80)
Exponential-Decay-Based Volatility 24.550∗∗∗ 5.872∗∗∗ 4.473∗∗∗

(13.67) (7.66) (8.31)
Option-Implied Volatility (lagged) 74.352∗∗∗ 68.346∗∗∗

(56.11) (43.48)
Size -0.969∗∗∗

(-11.68)
Idiosyncratic Volatility (3F) 110.009∗∗∗

(11.89)
Asset Growth 0.154∗∗∗

(2.85)
Operating Profit -0.086∗∗∗

(-3.60)
log(Book-to-Market Ratio) -0.090

(-1.53)

Adjusted R-Squared 0.427 0.479 0.747 0.758
N 410,569 410,569 410,569 410,569
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Table A6: Summary Statistics for Table A7
This table presents summary statistics for the sample used in Table A7. The sample period for these
tests ranges from January 1990 to December 2021. VIX is the average daily Volatility Index over the
course of a month. We normalize VIX by dividing it by 100. Memory-Based Volatility is the annualized
perceived volatility of the S&P 500 index derived from our measure. The logarithm of the price-dividend
ratio (Log(P/D)), the risk-free rate, the earnings growth rate, and the unemployment rate are constructed
following Greenwood and Shleifer (2014). Realized Volatility is the the annualized realized volatility of
monthly S&P 500 index returns over the past 12 months.

N Mean Median Std.Dev P25 P75 Min Max
VIX Index 396 0.197 0.178 0.076 0.141 0.234 0.101 0.627
Memory-Based Volatility 396 0.026 0.025 0.005 0.022 0.030 0.019 0.041
Log(P/D) 396 3.933 3.946 0.271 3.825 4.086 3.248 4.502
Risk-free Rate 396 1.004 1.005 0.018 0.993 1.016 0.948 1.101
Earnings Growth 396 0.221 0.116 1.014 -0.060 0.202 -0.886 7.935
Unemployment 396 5.827 5.500 1.730 4.600 6.700 3.500 14.700
Realized Volatility (Past 12 Months) 396 0.135 0.136 0.054 0.087 0.172 0.039 0.300
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Table A7: Memory-Based Volatility Perceptions of the S&P 500 Index
This table shows that memory-based perceived volatility predicts the VIX. In all columns, the dependent
variable is the average daily VIX over the course of month t + 1. The main independent variable is
memory-based perceived volatility of the S&P 500 Index derived from our measure (as of the end of month
t). Columns (2) and (3) add control variables. The sample period ranges from January 1990 to December
2021. t-statistics, in parentheses, are Newey-West adjusted with twelve lags. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively.

VIX
(1) (2) (3)

Memory-Based Volatility 5.284∗∗∗ 9.884∗∗∗ 5.502∗

(5.19) (3.11) (1.72)

Realized Volatility (Past 12 Months) 0.541∗∗∗

(3.54)

Log(P/D) -0.113 -0.075
(-1.44) (-1.08)

Risk-free Rate 0.875∗∗∗ 0.810∗∗∗

(3.00) (2.69)

Earnings Growth -0.004 -0.000
(-0.58) (-0.07)

Unemployment -0.001 -0.004
(-0.17) (-1.15)

Adjusted R-Squared 0.136 0.245 0.327
N 396 396 396
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