How Do Consumers Finance Increased Retirement Savings?

Taha Choukhmane Christopher Palmer

MIT Sloan & NBER

Fall 2024

Motivation

- Governments are heavily invested in promoting contributions to retirement plans.
 - Forced savings program: e.g., Australia's superannuation plans
 - Financial incentives: e.g., most OECD countries offer tax advantage for ret. savings
 - Non-financial instruments: e.g., auto-enrollment required for new 401(k) starting 2025

Motivation

- Governments are heavily invested in promoting contributions to retirement plans.
 - Forced savings program: e.g., Australia's superannuation plans
 - Financial incentives: e.g., most OECD countries offer tax advantage for ret. savings
 - Non-financial instruments: e.g., auto-enrollment required for new 401(k) starting 2025
- Yet we have limited understanding of the impact of \uparrow saving **inside** retirement accounts on:
 - net wealth accumulation
 - $\rightarrow\,$ depends on the crowd-out of outside savings and debt

Motivation

- Governments are heavily invested in promoting contributions to retirement plans.
 - Forced savings program: e.g., Australia's superannuation plans
 - Financial incentives: e.g., most OECD countries offer tax advantage for ret. savings
 - Non-financial instruments: e.g., auto-enrollment required for new 401(k) starting 2025
- Yet we have limited understanding of the impact of \uparrow saving **inside** retirement accounts on:
 - net wealth accumulation
 - $\rightarrow\,$ depends on the crowd-out of outside savings and debt
 - aggregate welfare
 - $\rightarrow\,$ little guidance on how to design tax-incentives, income caps, matching formulas

This paper

Q: What is the effect of increasing retirement contributions on **saving, borrowing, consumption & welfare**?

This paper

Q: What is the effect of increasing retirement contributions on **saving**, **borrowing**, **consumption** & **welfare**?

Challenge: need retirement plan data \times comprehensive personal finance data

This paper:

- 1 Introduce new dataset with merged bank and pension account data
- 2 Estimate how UK workers finance increase in minimum contribution rate
- **3** Explore long-run effects via quantitative life-cycle model
- 4 Use sufficient statistics approach to discuss welfare and policy implications

Literature: does retirement saving crowd-out private savings?

1. Effect of Forced Saving

Feldstein '74; Attanasio-Brugiavinni '03; Attanasio-Rohwedder '03

- Some evidence of private saving crowd-out
- Chetty et al. '14: limited crowd-out but may not extrapolate to other programs
 - ↓ take-home pay is zero (↑ employer contrib.) or small (~\$50/year discontinuity in mandated saving)

Literature: does retirement saving crowd-out private savings?

1. Effect of Forced Saving

Feldstein '74; Attanasio-Brugiavinni '03; Attanasio-Rohwedder '03

- Some evidence of private saving crowd-out
- Chetty et al. '14: limited crowd-out but may not extrapolate to other programs
 - ↓ take-home pay is zero (↑ employer contrib.) or small (~\$50/year discontinuity in mandated saving)

2. Effect of Saving Nudges

Madrian Shea '01; Choi et al. '04 '06; Cribb and Emmerson '16

- No effect on unsecured debt from AE in the US (Beshears et al. '21) or text-message savings nudge in Mexico (Medina and Pagel, '23)
- Increase in unsecured debt and mortgages from AE in UK (Beshears et al. '24)

Outline

1 Data and Policy Variation

2 Empirical results

3 Life-cycle Model and Long-run Effects

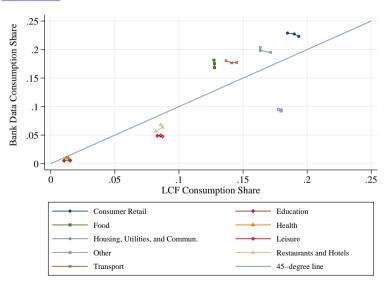
4 Welfare and Targeting

5 Conclusion

New Dataset on Saving, Spending, Borrowing

UK Bank customer data 2012-2019

- Monthly flows:
 - Spending in aggregate categories from checking account and credit cards
 - Employment earnings and other income receipts
- Month-end balances:
 - Checking accounts, savings accounts, credit card balances with this bank
 - Mortgage and non-mortgage debt balances with this bank
- Demographic characteristics (age, gender)


+ merged w/ large UK pension provider data

• Monthly pension contributions + balances

- Data only captures what is observed by our partner bank
 - Affects debt products especially (loans, CCs with other banks)
 - $\circ~$ Restrict to those w/ paycheck deposited in their current account with partner bank
 - Can see outflows and transfers
- Usefully, debit card share of UK card spending is ~80% (UK Finance, '19)

Budget shares line up with representative survey data

Level of spending Housing expdtr

Context: National policy for all UK private sector employees

Variation: min. defaut contribution rate stepped up in April 2018 and April 2019

Effective	Min. total	Min. employer	Employee
date	contribution	contrib.	contrib.
Rollout btw. Oct '12 & April '17	2%	1%	1%

Context: National policy for all UK private sector employees

Variation: min. defaut contribution rate stepped up in April 2018 and April 2019

Effective	Min. total	Min. employer	Employee
date	contribution	contrib.	contrib.
Rollout btw. Oct '12 & April '17	2%	1%	1%
Effective April 2018	5%	2%	3%

Context: National policy for all UK private sector employees

Variation: min. defaut contribution rate stepped up in April 2018 and April 2019

Effective	Min. total	Min. employer	Employee
date	contribution	contrib.	contrib.
Rollout btw. Oct '12 & April '17	2%	1%	1%
Effective April 2018	5%	2%	3%
Effective April 2019	8%	3%	5%

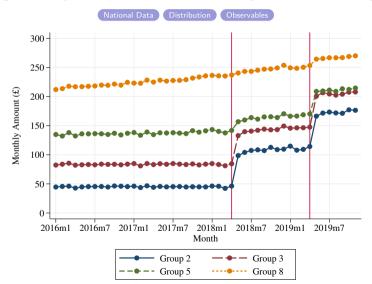
Context: National policy for all UK private sector employees

Variation: min. defaut contribution rate stepped up in April 2018 and April 2019

Effective	Min. total	Min. employer	Employee
date	contribution	contrib.	contrib.
Rollout btw. Oct '12 & April '17	2%	1%	1%
Effective April 2018	5%	2%	3%
Effective April 2019	8%	3%	5%

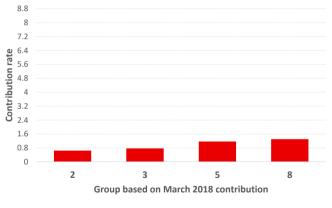
=> Policy should lead to a $\pounds 0.66$ drop in take-home pay per $\pounds 1$ of extra pension contrib.

Policy = change in default + large change in incentives


- Employees and firms can choose to contribute > minimum
- But opting out expensive: lose **all** employer contributions if contribute < min
- Policy increases financial returns to participating from 1% to 3% of salary

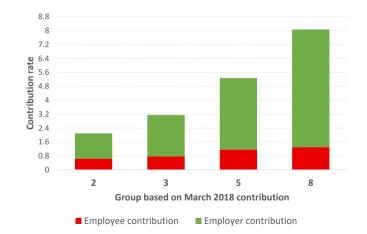
 \Rightarrow Stronger teeth than typical AE nudge:

 \uparrow default option $+\uparrow$ financial incentives


Treated groups' contributions show strong reaction

Average monthly total pension contributions by contribution rate group

Employer contributions determine group assignment


We have data on split between employee/employer contributions for ~20% of participants

Employee contribution

Employer contributions determine group assignment

We have data on split between employee/employer contributions for ~20% of participants

Caveat: employees can affect their employer contributions through a salary sacrifice scheme

Outline

1 Data and Policy Variation

2 Empirical results

3 Life-cycle Model and Long-run Effects

4 Welfare and Targeting

5 Conclusion

Empirical Approach

Two dimensions of comparison:

- 1 Pre- vs post- policy change: control for time-invariant individual characteristics
- 2 Affected vs not affected: control for time trends

Empirical Approach

Two dimensions of comparison:

- 1 Pre- vs post- policy change: control for time-invariant individual characteristics
- **2** Affected vs not affected: control for time trends

Approach 1: Treatment effect from policy using Dynamic Event Study (Sun and Abraham, 2021) relative to AE date E_i

$$Outcome_{it} = \beta \cdot \sum_{\ell} \mu_{\ell} \mathbb{1} \{ t - E_i = \ell \} + \alpha_i + \gamma_t + \varepsilon_{it}$$

Empirical Approach

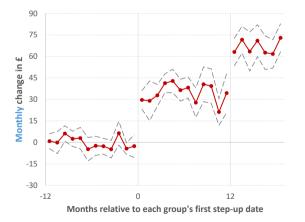
Two dimensions of comparison:

- 1 Pre- vs post- policy change: control for time-invariant individual characteristics
- **2** Affected vs not affected: control for time trends

Approach 1: Treatment effect from policy using Dynamic Event Study (Sun and Abraham, 2021) relative to AE date E_i

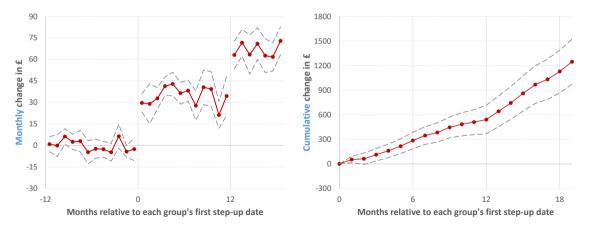
$$Outcome_{it} = \beta \cdot \sum_{\ell} \mu_{\ell} \mathbb{1} \{ t - E_i = \ell \} + \alpha_i + \gamma_t + \varepsilon_{it}$$

Approach 2: Elasticity to changes in contributions using 2SLS


$$Outcome_{it} = \beta \cdot PensionContributions_{it} + \alpha_i + \gamma_t + \varepsilon_{it}$$

$$PensionContributions_{it} = \sum_{s \in \{1,2\}} \sum_{k \in \{2,3,5\}} \pi_{ks} Group_i^k \times Post_t^s + \psi_i + \phi_t + v_{it}$$

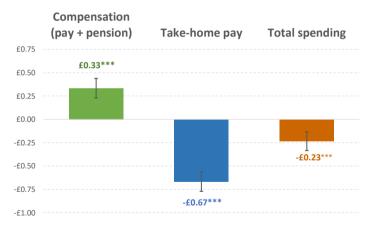
Result I: \downarrow in take-home pay and total spending


Opt out

In April 2018 and 2019: \uparrow employee default by 2% and employer default by 1%

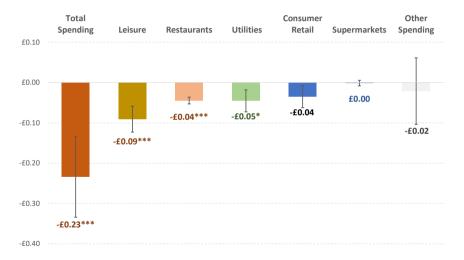
Result I: \downarrow in take-home pay and total spending

In April 2018 and 2019: \uparrow employee default by 2% and employer default by 1%



Result I: \downarrow in take-home pay and total spending

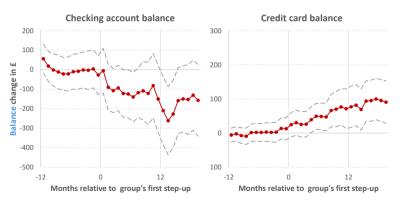
- For every $\pounds 1$ increase in pension contribution:
 - 2/3 come from higher employee contrib. and lower take-home pay Incidence


Event study

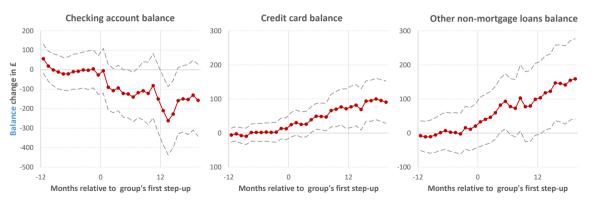
 $\circ~{\sim}1/3$ of this income reduction is financed with reduced spending $\fbox{}$

Result II: larger \downarrow in discretionary spending

Pension contrib \uparrow by £1 \Rightarrow take-home pay \downarrow 67 cts \Rightarrow total spending \downarrow 23 cts


Result III: \downarrow in checking account balances

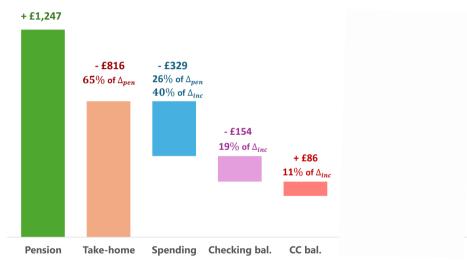
Liquid checking account balances \downarrow

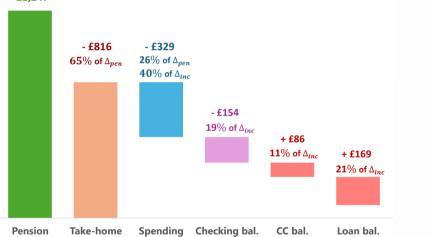

Result III: \downarrow in checking account balances $+ \uparrow$ borrowing

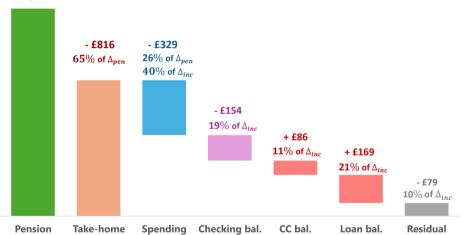
Small \uparrow avg. credit card balance (\neq Beshears et al, 21; Medina and Pagel '22)

Result III: \downarrow in checking account balances + \uparrow borrowing

 \uparrow other borrowing (consistent w/ Beshears et al, 24)






Taking stock: cumulative contributions after 19 months

Taking stock: cumulative contributions after 19 months

+ £1,247

Result IV: Heterogeneity in Spending Responses

Pension \uparrow by £1/month \Rightarrow take-home pay \downarrow 67cts/month

Heterogeneity: \downarrow 49cts for low initial deposits vs \downarrow 13cts for high initial deposits

Outline

1 Data and Policy Variation

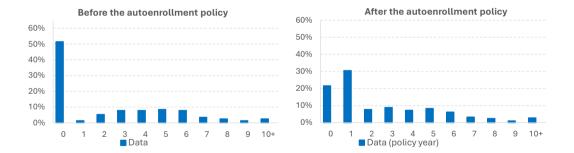
2 Empirical results

3 Life-cycle Model and Long-run Effects

4 Welfare and Targeting

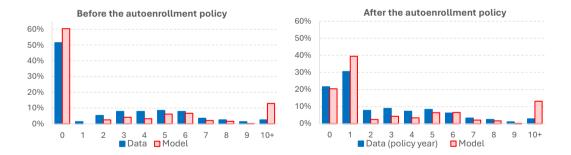
5 Conclusion

Life-cycle Model

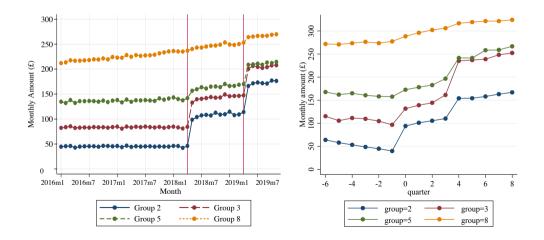

- Simulate policy in quantitative lifecycle model building on Choukhmane (2024)
- Features rich economic environment: Model details
 - **(1)** Assets: realistic retirement account, liquid saving, and unsecured debt
 - 2 Labor market: income and employment risk varies with age and tenure
 - **3** Government: progressive tax and benefit system (Public Pension & UI)
 - 4 Demography: mortality risk, and changing household composition over lifecycle

Life-cycle Model

- Simulate policy in quantitative lifecycle model building on Choukhmane (2024)
- Features rich economic environment: Model details
 - **(1)** Assets: realistic retirement account, liquid saving, and unsecured debt
 - 2 Labor market: income and employment risk varies with age and tenure
 - **3** Government: progressive tax and benefit system (Public Pension & UI)
 - **Operation** Demography: mortality risk, and changing household composition over lifecycle
- + parsimonious specification of preferences:
 - **1** Time preferences: EIS ($\sigma = 0.52$) exponential discounting ($\delta = 0.96$)
 - extension with heterogenous naive present bias (β mean: 0.7; sd: 0.16)
 - **2 Opt-out cost:** switching cost (£ 171) to make an active contribution change


Model Matches Data I

Mandatory Autoenrollement for all U.K. private employees at 1%


Model Matches Data I

Mandatory Autoenrollement for all U.K. private employees at 1%

Model Matches Data II

Average monthly total pension contributions by contribution rate group

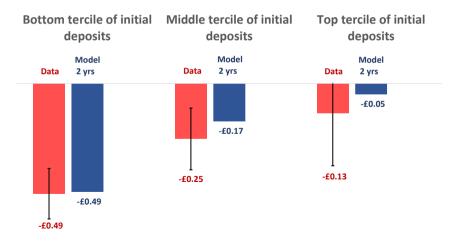
- 1 Compare elasticities estimates using 2SLS to RCT (e.g. groups are endogeneous)
- 2 Examine effect of different assumptions about incidence (e.g. employers cut wages)
- **3** Examine different assumptions about anticipation (e.g., policy announced in 2012)
- 4 Examine long-run dynamics (fade out, savings buffer, etc.)
- **5** Assess welfare effect of changes in retirement policies

- 1 Compare elasticities estimates using 2SLS to RCT (e.g. groups are endogeneous)
- 2 Examine effect of different assumptions about incidence (e.g. employers cut wages)
- **3** Examine different assumptions about anticipation (e.g., policy announced in 2012)
- **4** Examine long-run dynamics (fade out, savings buffer, etc.)
- **5** Assess welfare effect of changes in retirement policies

Model Matches Data III

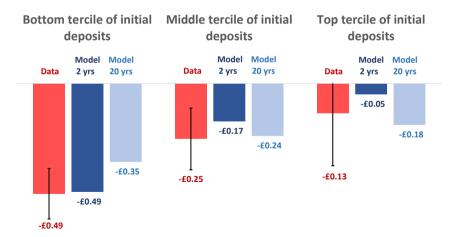
Step-up of employee (employer) default contributions to 3% and 5% (2% and 3%)

calibration w/ exponential discounting PresentBias


Bottom tercile of initial
depositsMiddle tercile of initial
depositsTop tercile of initial
deposits

Model Matches Data III

Step-up of employee (employer) default contributions to 3% and 5% (2% and 3%)


calibration w/ exponential discounting PresentBias

Model Matches Data II + Partial Fade-out

Step-up of employee (employer) default contributions to 3% and 5% (2% and 3%)

calibration w/ exponential discounting PresentBias

Outline

- 1 Data and Policy Variation
- **2** Empirical results
- **3** Life-cycle Model and Long-run Effects
- **4** Welfare and Targeting
- **6** Conclusion

Conceptual framework

- Simple behavioral public finance framework Bernheim, Taubinsky '18; Alcott, Taubsinky '23
- Paternalistc social planner think individuals are too impatient due to either:

Moser and Olea de Souza '19; Beshears et al. '23

- behavioral biases (e.g. present bias) Laibson '97
- o externalities for social safety programs Sleet, Yeltekin '06
- Assume individuals are otherwise unbiased
 - no bias in intra-temporal consumption/portfolio choice! Skip to results

Decision utility vs Normative utility

Individual *i* chooses consumption c_i, retirement contributions ret_i, and liquid savings/borrowing liq_i taking the generosity γ of retirement saving incentives s(·, γ), taxes τ(·), and state variables π_i as given:

$$\max_{c_i, ret_i, liq_i} u(c_i) + \beta_i V_i(ret_i, liq_i, \pi_i)$$

s.t.
$$c_i = y_i - liq_i - ret_i + s(ret_i, \gamma, \pi_i) - \tau_i(\gamma, \pi_i)$$

Decision utility vs Normative utility

• Individual *i* chooses consumption c_i , retirement contributions ret_i , and liquid savings/borrowing liq_i taking the generosity γ of retirement saving incentives $s(\cdot, \gamma)$, taxes $\tau(\cdot)$, and state variables π_i as given:

$$\max_{c_i, ret_i, liq_i} u(c_i) + \beta_i V_i(ret_i, liq_i, \pi_i)$$

s.t.
$$c_i = y_i - liq_i - ret_i + s(ret_i, \gamma, \pi_i) - \tau_i(\gamma, \pi_i)$$

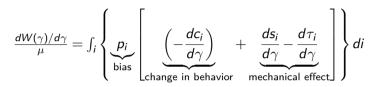
• Social welfare when planner thinks each individual p_i % too impatient $W(\gamma) = \int_i \omega_i [u(c_i(\gamma)) + \beta_i(1+p_i)V_i(ret_i(\gamma), liq_i(\gamma))] di + \mu \int_i (\tau_i(\gamma) - s_i(ret_i(\gamma), \gamma)) di$

where ω_i are welfare weights and μ is marginal value of gov't revenue

A small reform increasing the generosity γ of retirement saving incentives:

$$\frac{dW(\gamma)}{d\gamma} = \int_{i} \omega_{i} \left\{ \underbrace{\frac{dc_{i}}{d\gamma} u'(c_{i})}_{\text{cons. response}} + \beta_{i} (1+p_{i}) \left[\underbrace{\frac{dret_{i}}{d\gamma} V'_{1}}_{\text{retirement sav. response}} + \underbrace{\frac{dliq_{i}}{d\gamma} V'_{2}}_{\text{convelocit liquid sav.}} \right] \right\} di$$

$$+ \mu \int_{i} \left\{ \underbrace{\frac{d\tau_{i} (\gamma)}{d\gamma} - \frac{ds_{i} (\gamma)}{d\gamma}}_{\text{fiscal effect}} \right\} di$$


A small reform increasing the generosity γ of retirement saving incentives:

$$\frac{dW(\gamma)}{d\gamma} = \int_{i} \omega_{i} \left\{ \underbrace{\frac{dc_{i}}{d\gamma} u'(c_{i})}_{\text{cons. response}} + \beta_{i} (1+p_{i}) \left[\underbrace{\frac{dret_{i}}{d\gamma} V'_{1}}_{\text{retirement sav. response}} + \underbrace{\frac{dliq_{i}}{d\gamma} V'_{2}}_{\text{crowd-out liquid sav.}} \right] \right\} di$$

$$+ \mu \int_{i} \left\{ \underbrace{\frac{d\tau_{i} (\gamma)}{d\gamma} - \frac{ds_{i} (\gamma)}{d\gamma}}_{\text{fiscal effect}} \right\} di$$

If FOCs hold then **consumption** response is a **sufficient statistic** for welfare:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ g_{i} p_{i} \left[\underbrace{\left(-\frac{dc_{i}}{d\gamma} \right)}_{\text{cons. response}} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{\text{mechanical effect}} \right] \right\} di + \int_{i} \underbrace{\left(g_{i} - 1 \right) \left[\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma} \right]}_{\text{redistribution effect}} di$$
where $g_{i} = \frac{\omega_{i} u'(c_{i})}{\mu}$ is the marginal social welfare weight on i

Abstracting from redistribution motive $(g_i = 1)$:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ \underbrace{p_{i}}_{\text{bias}} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{\text{change in behavior}} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{\text{mechanical effect}} \right] \right\} di$$

• If the planner is not paternalistic $(p_i = 0)$: no welfare effect

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ \underbrace{p_{i}}_{\text{bias}} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{\text{change in behavior}} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{\text{mechanical effect}} \right] \right\} di$$

- If the planner is not paternalistic $(p_i = 0)$: no welfare effect
- If the planner is paternalistic $(p_i > 0)$:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ \underbrace{p_{i}}_{\text{bias}} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{\text{change in behavior}} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{\text{mechanical effect}} \right] \right\} di$$

- If the planner is not paternalistic $(p_i = 0)$: no welfare effect
- If the planner is paternalistic $(p_i > 0)$:
 - **Homogeneous bias:** target those with larger spending response $cov\left(\frac{dret_i}{d\gamma}, \frac{-dc_i}{dret_i}\right) > 0$

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ \underbrace{p_{i}}_{\text{bias}} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{\text{change in behavior}} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{\text{mechanical effect}} \right] \right\} di$$

- If the planner is not paternalistic $(p_i = 0)$: no welfare effect
- If the planner is paternalistic $(p_i > 0)$:
 - **Homogeneous bias:** target those with larger spending response $cov\left(\frac{dret_i}{d\gamma}, \frac{-dc_i}{dret_i}\right) > 0$
 - Heterogeneous bias: target those with larger bias $cov\left(\frac{dret_i}{d\gamma}, p_i\right) > 0$

• Even if zero crowd-out (
$$rac{dc_i}{d_{ret_i}} = -1$$
), welfare can \downarrow if $cov\left(p_i, rac{ds_i}{d\gamma} - rac{d au_i}{d\gamma}
ight) < 0$

Abstracting from redistribution motive $(g_i = 1)$:

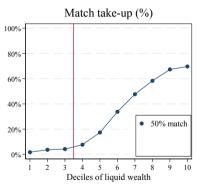
$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ \underbrace{p_{i}}_{\text{bias}} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{\text{change in behavior}} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{\text{mechanical effect}} \right] \right\} di$$

- If the planner is not paternalistic $(p_i = 0)$: no welfare effect
- If the planner is paternalistic $(p_i > 0)$:
 - **Homogeneous bias:** target those with larger spending response $cov\left(\frac{dret_i}{d\gamma}, \frac{-dc_i}{dret_i}\right) > 0$
 - Heterogeneous bias: target those with larger bias $cov\left(\frac{dret_i}{d\gamma}, p_i\right) > 0$

• Even if zero crowd-out
$$(rac{dc_i}{d_{ret_i}}=-1)$$
, welfare can \downarrow if $cov\left(p_i,rac{ds_i}{d\gamma}-rac{d au_i}{d\gamma}
ight)<0$

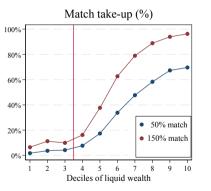
• Even if complete crowd-out $\left(\frac{dc_i}{d_{ret_i}}=0\right)$, policy can \uparrow welfare if $cov\left(p_i, \frac{ds_i}{d\gamma}-\frac{d\tau_i}{d\gamma}\right)>0$

• Average Treatment Effect on retirement saving $E(\Delta ret_i)$, is a poor guide for welfare: what matters are the **covariances** ! Alcott et al., 2023


- Average Treatment Effect on retirement saving $E(\Delta ret_i)$, is a poor guide for welfare: what matters are the **covariances** ! Alcott et al., 2023
- A well-targeted intervention:
 - \land contributions of those who are under-saving for retirement $cov(\Delta ret, bias) > 0$
 - \circ ... and who are more likely to cut spending in response $cov(\Delta ret, -\Delta cons) > 0$

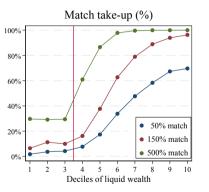
- Average Treatment Effect on retirement saving $E(\Delta ret_i)$, is a poor guide for welfare: what matters are the **covariances** ! Alcott et al., 2023
- A well-targeted intervention:
 - \land contributions of those who are under-saving for retirement $cov(\Delta ret, bias) > 0$
 - \circ ... and who are more likely to cut spending in response *cov* ($\Delta ret, -\Delta cons$) > 0
- A **poorly-targeted** intervention:
 - \nearrow contributions and transfer resources of those not under-saving $cov(\Delta ret, bias) < 0$
 - ... merely shifts savings across accounts w/o spending change $cov(\Delta ret, -\Delta cons) < 0$

- Average Treatment Effect on retirement saving $E(\Delta ret_i)$, is a poor guide for welfare: what matters are the **covariances** ! Alcott et al., 2023
- A well-targeted intervention:
 - \land contributions of those who are under-saving for retirement $cov(\Delta ret, bias) > 0$
 - \circ ... and who are more likely to cut spending in response $cov(\Delta ret, -\Delta cons) > 0$
- A **poorly-targeted** intervention:
 - \nearrow contributions and transfer resources of those not under-saving $cov(\Delta ret, bias) < 0$ • ... merely shifts savings across accounts w/o spending change $cov(\Delta ret, -\Delta cons) < 0$
- We can assess these covariance for alternative policies in the model


Liquidity correlates w/ take-up ...

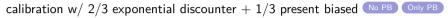
One-time subsidy to \uparrow annual retirement contributions by 1 p.p. calibration w/ 2/3 exponential discounter + 1/3 present biased No PB Only PB

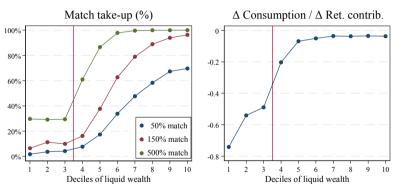
Liquidity correlates w/ take-up ...


One-time subsidy to \uparrow annual retirement contributions by 1 p.p. calibration w/ 2/3 exponential discounter + 1/3 present biased No PB Only PB

- High liquidity = most likely to take-up financial incentives ...

Liquidity correlates w/ take-up ...

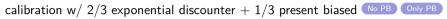

One-time subsidy to \uparrow annual retirement contributions by 1 p.p. calibration w/ 2/3 exponential discounter + 1/3 present biased No PB Only PB



- High liquidity = most likely to take-up financial incentives ...

Liquidity correlates w/ take-up, smaller consumption drop

One-time subsidy to \uparrow annual retirement contributions by 1 p.p.



- High liquidity = most likely to take-up financial incentives ...

- ... have the smallest consumption response $cov(\Delta ret_i, -\Delta cons_i) < 0$

Liquidity correlates w/ take-up, smaller consumption drop & small bias

One-time subsidy to \uparrow annual retirement contributions by 1 p.p.

- High liquidity = most likely to take-up financial incentives ...
- ... have the smallest consumption response $cov(\Delta ret_i, -\Delta cons_i) < 0$
- ... are the least present biased $cov(\Delta ret_i, bias) < 0$

Policy implications

• Tax & match incentives: often poorly targeted:

- Taken up by those with more liquidity (Choukhmane et al, '23) who have ...
- ... smallest spending response $cov(\Delta ret_i, -\Delta cons_i) < 0$
- ... and (likely) less biased $cov(\Delta ret_i, bias_i) < 0$

Policy implications

• Tax & match incentives: often poorly targeted:

- Taken up by those with more liquidity (Choukhmane et al, '23) who have ...
- ... smallest spending response $cov(\Delta ret_i, -\Delta cons_i) < 0$
- ... and (likely) less biased $cov(\Delta ret_i, bias_i) < 0$
- Asset caps: can be desirable even absent a redistributive motive
 - $\circ~$ At the top, liquidity constraints do not bind \Rightarrow small spending response
 - Those with high wealth reveal their (low-bias) type

Policy implications

• Tax & match incentives: often poorly targeted:

- Taken up by those with more liquidity (Choukhmane et al, '23) who have ...
- ... smallest spending response $cov(\Delta ret_i, -\Delta cons_i) < 0$
- ... and (likely) less biased $cov(\Delta ret_i, bias_i) < 0$
- Asset caps: can be desirable even absent a redistributive motive
 - $\circ~$ At the top, liquidity constraints do not bind \Rightarrow small spending response
 - Those with high wealth reveal their (low-bias) type
- Illiquidity: new argument against higher withdrawal penalties:
 - May ↑ savings but worsen targeting (i.e., less desirable for low-liquidity individuals) (Mitchell, Utkus, Yang, '07; Briere, Poterba, Szafraz, '22)

Outline

- 1 Data and Policy Variation
- **2** Empirical results
- **3** Life-cycle Model and Long-run Effects
- **4** Welfare and Targeting
- **5** Conclusion

Conclusion

How do consumers finance increase retirement contributions?

- For every $\pounds 1 \downarrow$ in take-home pay, we see $\pounds 0.40$ reduction in spending
- The rest is financed out of liquid savings & borrowing
- $\bullet\,$ Stronger spending response for those w/ low initial checking account balances

Conclusion

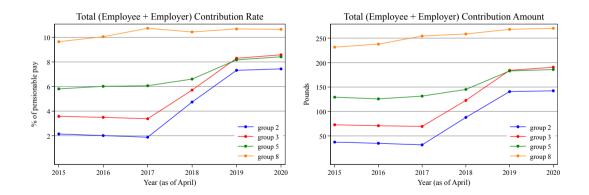
How do consumers finance increase retirement contributions?

- For every $\pounds 1 \downarrow$ in take-home pay, we see $\pounds 0.40$ reduction in spending
- The rest is financed out of liquid savings & borrowing
- $\bullet\,$ Stronger spending response for those w/ low initial checking account balances

What is the welfare effect of an intervention promoting retirement savings?

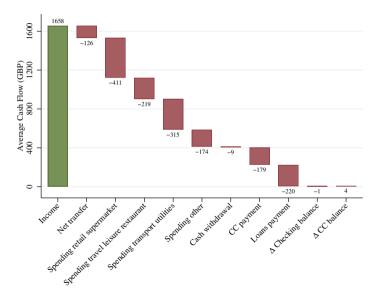
- Covariance between contribution response, spending elasticity, and undersaving bias determines social welfare (≠ Average Treatment Effect)
- Financial incentives (i.e., 1.5% of US GDP every year) often poorly targeted:
 - Taken-up by those least likely to cut spending and be (present-)biased
- Income/asset limits can be efficient (no trade-off btw. equity and efficiency)

Baseline differences across groups


Back

Summary Statistics in March 2018 by Contribution Rate Groups

Contribution Rate Group	2%	3%	5%	8%
Contribution Rate	2.0	3.4	6.0	11.0
	(0.28)	(0.57)	(0.88)	(2.24)
Net Wage Income	2101.1	2478.8	2567.8	2471.6
	(2322.2)	(3089.0)	(3000.6)	(1990.3)
Pension Contribution Amount	41.5	84.9	153.3	270.7
	(46.2)	(110.4)	(181.1)	(218.8)
Total Spending	1248.8	1387.6	1389.2	1447.4
	(1831.0)	(1767.4)	(2083.7)	(2215.6)
Number of Individuals	27,533	21,473	20,889	36,450


Comparison with nationally representative data

Back

Flows in/out of checking accounts - Middle income tercile

Back

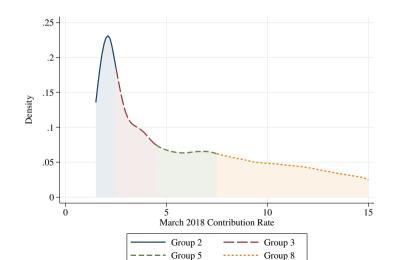
Data: housing expenditures by residential status

Back

Residential status is available for half of the customers in the sample

Residential status

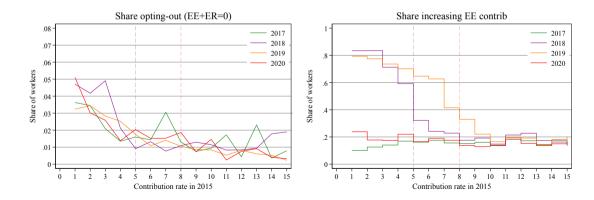
	Residential status				
	UK National avg. for '17 (ONS)	Renter	Mortgage	Own outright	Live with parent
Freq. (%)		29.4%	49.0%	7.2%	14.4%
Avg. Rent expense	£403*	£182	£22	£20	£185
Avg. mortgage	£620**	£56	£471	£108	£68


* Weekly net rent by renter x 4

** Weekly mortgage by mortgage holders x 4

Empirical Strategy: below vs above the new default

Back

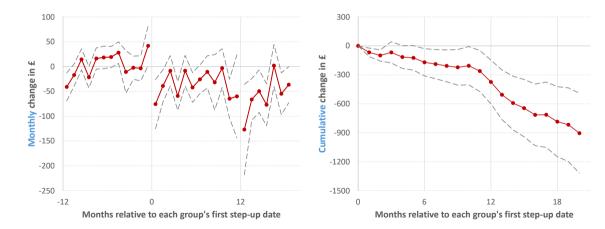

Distribution of March 2018 Total Contribution Rates by Group

Opt-out rate vs. contributrion

Back

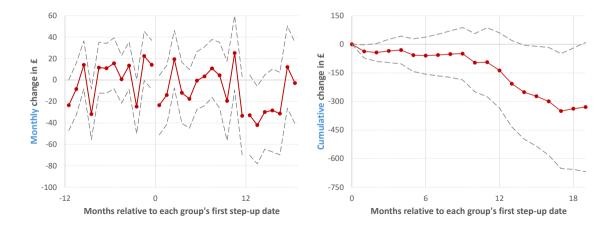
No significant change in opt-out among treated groups (ASHE data)

Result I: \downarrow in take-home pay and total spending

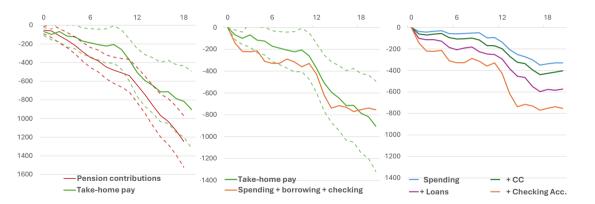

ASHE data from 2012 to 2020: 158,304 worker-year observations

s.e. clustered at the employer level

	Employee	Total paid	Paid overtime	Monthly	Overpay	Incentive
	contrib.	hours	dummy	gross pay	earnings	рау
Total contrib.	0.593***					
	(0.0317)					
Employer contrib.		-0.00858	-0.000845	-0.317	0.488	-0.509
		(0.00646)	(0.000436)	(1.901)	(0.428)	(0.402)
Kleibergen-Paap F-stat	24.2	8.419	8.419	5.242	5.242	5.242
Cragg-Donald F-stat	75.65	26.96	26.96	13.66	13.66	13.66
R2	0.325	-0.0347	-0.0783	-0.0145	-0.0484	-0.0823


Result I: \downarrow in take-home pay and total spending Back

In April 2018 and 2019: \uparrow employee default by 2% and employer default by 1%


Result I: \downarrow in take-home pay and total spending Back

In April 2018 and 2019: \uparrow employee default by 2% and employer default by 1%

Taking stock: dynamic of cumulative effects

Back

Model Environment

Back

- Lifecycle consumption model at quarterly frequency btw ages of 22y and 90y
- Two assets :
 - Retirement asset dc_t with return R^{DC}
 - Liquid asset I_t :
 - $I_t > 0$: liquid wealth with interest rate $R^{liq} < R^{DC}$
 - $I_t < 0$: unsecured debt w/ interest rate $R^{cc} > R^{liq}$
 - Borrowing limit: $I_t \geq \lambda_t \overline{y}$
- 4 employment states:

$$\left[V_t^{\textit{Emp}}, V_t^{\textit{J2J}}, V_t^{\textit{Unemp}}, V_t^{\textit{Ret}}\right]$$

Environment (I): Employment

 $\left[\boldsymbol{V_{t}^{\textit{Emp}}}, \boldsymbol{V_{t}^{J2J}}, \boldsymbol{V_{t}^{\textit{Unemp}}}, \boldsymbol{V_{t}^{\textit{Ret}}}\right]$

- Labor income:
 - Deterministic component: cubic in age a_t
 - Stochastic component: labor productivity θ_t follows an AR(1)
 - Progressive income tax
- Contribute a percentage s_t of income to a DC plan:
 - Contributions are tax-deferred up to a limit
 - Employers contribute according to a formula that varies across jobs

Environment (II): Job-to-job Transitions

 $\left[V_t^{Emp}, \boldsymbol{V}_t^{\boldsymbol{J2J}}, V_t^{Unemp}, V_t^{Ret}\right]$

• With probability $\pi^{J2J}(a, ten, \theta)$ transition to a new job:

- New wage on average higher than in previous job
- Face a new employer contribution formula and new default contribution rate

$$\begin{array}{l} -\frac{1 \text{st period in a job:}}{\bar{d}^e \text{ is exogenous and } = 0 \text{ if Opt-in, } > 0 \text{ if AE} \end{array}$$

- <u>Later periods</u>: $d_t = s_{t-1}$ equals to previous period contribution rate

Environment (III): Unemployment

$$\left[V_t^{Emp}, V_t^{J2J}, \boldsymbol{V}_t^{\boldsymbol{Unemp}}, V_t^{Ret}\right]$$

• With probability $\pi^{EU}(a, ten, \theta)$ transition to unemployment:

- Receive unemployment insurance (= percentage of last wage)
- Early withdrawals from DC wealth are not permitted in the UK
- With probability $\pi^{UE}(a)$ transition back to a employment with on avg. lower wage than last job

Environment (IV): Retirement

$$\left[V_{t}^{Emp}, V_{t}^{J2J}, V_{t}^{Unemp}, V_{t}^{Ret}
ight]$$

- Deterministic retirement at age $A^{ret} = 65y$:
 - Flat State Pension based on UK benefit level post-2016
 - Can access DC wealth subject to income taxation

Agent's Problem

$$V_t^{PB}(X_t) = \max_{s_t, l_{t+1}} u_a(c_t - \mathbb{1}_{(s_t \neq d_t)}k) + \beta ... \delta. (1 - m(a)).\mathbb{E}_t [V_{t+1}(X_{t+1})]$$

- Discount factor δ and (naive) quasi-hyperbolic discount factor $\beta \sim Beta(\alpha_1, \alpha_2)$
- Mortality risk: m(a)
- CES utility with equivalence scale *n_a* (i.e., cons. more valuable when middle age w/ dependents)

$$u_{a}(\cdot) = n_{a} \cdot \frac{\left(\frac{\cdot}{n_{a}}\right)^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}$$

$$\frac{\sigma \quad \delta^{4} \quad \mathbf{k} \quad \| \quad \beta}{0.52 \quad 0.96 \quad \pounds 171 \quad \| \quad \sim beta(5,2)}$$

Calibration

Back

Labor market parameters:

• Earning process: 2-steps Minimum Distance estimator (ASHE)

ρ	$\sigma_{\xi_1}^2$	σ_{ξ}^2	σ_m^2
0.974	0.184	0.0125	0.10

• Labor-market transition: EU, JJ and UE

$$Pr(emp_{t+1}|emp_t) = \sum_{k=0}^{5} \beta_k \cdot a_i^k + \sum_{j=1}^{9} \iota_j \cdot \mathbb{1}_{\left(ten_{i,t}=j\right)} + \varepsilon_{i,t}$$

• Other labor market parameters:

Initial unemp. 22%	J2J premium	4.8%	EU penalty	7.8%
--------------------	-------------	------	------------	------

Calibration

Back

Labor market parameters:

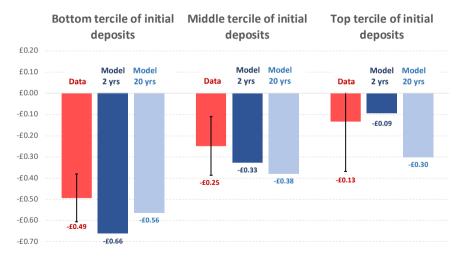
• Earning process: 2-steps Minimum Distance estimator (ASHE)

ρ	$\sigma_{\xi_1}^2$	σ_{ξ}^2	σ_m^2
0.974	0.184	0.0125	0.10

• Labor-market transition: EU, JJ and UE

$$Pr(emp_{t+1}|emp_t) = \sum_{k=0}^{5} \beta_k \cdot a_i^k + \sum_{j=1}^{9} \iota_j \cdot \mathbb{1}_{\left(ten_{i,t}=j\right)} + \varepsilon_{i,t}$$

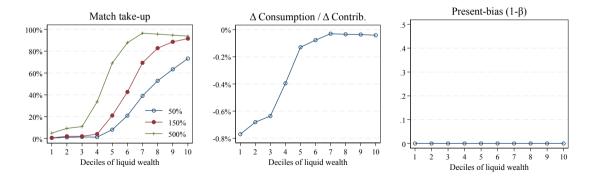
• Other labor market parameters:


Initial unemp.	22%	J2J premium	4.8%	EU penalty	7.8%
----------------	-----	-------------	------	------------	------

Preference parameters:

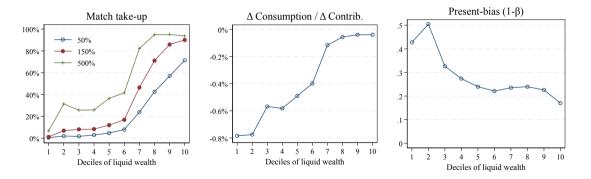
Model Matches Data II + Partial Fade-out

Back


Step-up of employee (employer) default contributions to 3% and 5% (2% and 3%)

Liquidity correlates w/ take-up, smaller consumption drop & small bias

One-time subsidy to \uparrow annual retirement contributions by 1 p.p.


calibration w/ everyone exponential discounter Back

Liquidity correlates w/ take-up, smaller consumption drop & small bias

One-time subsidy to \uparrow annual retirement contributions by 1 p.p.

calibration w/ everyone (heterogeneously) present biased Back

