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Abstract

In benchmark models of productivity and labor market inequality, workers are as-

sumed perfectly substitutable, ignoring potential coworker interdependencies. I

propose a novel and tractable theory in which production takes place in teams and re-

quires many differentiated tasks; workers possess heterogeneous task-specific skills;

and labor markets are frictional. I show analytically that skill specificity (dispersion

in task-specific skills) endogenously generates coworker talent complementarities in

production: talented workers gain disproportionately from talented colleagues. This

promotes the concentration of talent into a few firms with “superstar teams,” though

search frictions prevent perfect sorting. Using German linked employer-employee

panel data, I document industry-level patterns consistent with this mechanism and

calibrate the model. Growing skill specificity since the mid-1980s has amplified

coworker complementarities, explaining a significant share of the observed rise in

between-firm wage inequality. Further, productivity gains from increased specializa-

tion hinge on enhanced matching of coworkers with complementary skills.
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1 Introduction

Many production processes are too complex for any individual to master all required

tasks; hence, most people work in teams. Consider engineers collaborating on a car

engine, which illustrates two general features of production. First, coworkers possess

heterogeneous, task-specific skills: one might excel in materials design, another in elec-

tronics, and they may differ in overall ability. Second, joint output is not merely the sum

of each individual’s separable contributions – there is “team production”: the engineer

stronger in materials can better leverage her expertise when paired with a highly skilled

electronics specialist. Indeed, a classic microeconomic view of the firm conceives of its

central value as organizing the division of labor among heterogeneous workers whose

productivities are inherently intertwined.1

This paper aims to understand how these fundamental features of firm-level produc-

tion – skill heterogeneity and team production – shape macroeconomic outcomes. How

do growing task complexity and skill specialization (Jones, 2009; Deming, 2017) affect

labor market inequality and aggregate productivity? Addressing these questions is chal-

lenging because benchmark macroeconomic models typically abstract from specialized

skills and assume production functions additively separable in labor.2

I propose a parsimonious and tractable theory that links multi-dimensional skill

heterogeneity and team production at the micro level to macroeconomic outcomes.

The core mechanism is intuitive. Skill specificity makes division of labor advantageous

and endogenously generates production complementarities across coworkers’ talents:

the marginal contribution of one employee’s talent to output rises when matched with

other talented workers. In equilibrium, this promotes the concentration of talent into

select workplaces – for instance, top engineers collaborating alongside leading designers

and salespeople – and implies that frictions impeding the matching of coworkers with

complementary skills lower aggregate productivity.

The analysis proceeds in three main steps. First, I build and characterize an equilib-

rium theory of teams, centered on a task-based microfoundation for coworker production

complementarities. Second, I confront this model with German longitudinal matched

1My description of “team production” follows Alchian and Demsetz’s (1972) classic definition. Other
important references include Becker and Murphy (1992), Kremer (1993) and Garicano (2000).

2Important recent advances focus on either coworker interactions through learning (Jarosch et al., 2021;
Herkenhoff et al., 2024), task-based production (e.g. Acemoglu and Restrepo, 2018), or multi-dimensional
skills (Lindenlaub, 2017), as discussed in detail below.
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employer-employee data, testing key mechanisms and calibrating the model to gauge

their relevance. Third, I use the model to show that growing skill specificity since the

mid-1980s has amplified complementarities, leading to an equilibrium featuring some

firms with “superstar teams,” who are jointly very productive and command high average

wages, alongside other firms with less productive, lower-paid employees. This explains

a significant share of the so-called “firming up of inequality,” i.e., the increased role of

firm-level wage inequality (Card et al., 2013; Song et al., 2019). Moreover, the interaction

between labor market frictions and endogenous complementarities limits aggregate

productivity gains from increased specialization.

Theory. The theory has four core features. First, production involves a continuum of

imperfectly substitutable tasks. Second, workers have limited time and possess hetero-

geneous, task-specific skills. Third, production occurs in teams. Ex-ante identical firms

hire multiple workers – similar to Herkenhoff et al. (2024), I mostly study teams of size

two – and assign them tasks to maximize output. Fourth, team assembly involves search

frictions: firms sequentially and randomly encounter unmatched workers, observe their

skills, and decide whether to hire them or continue searching. This generates a trade-off

between team match quality and the opportunity cost of waiting.

The key analytical step is to microfound a tractable, aggregative production function,

characterizing output for any combination of team members’ skills under optimal task as-

signment. Tractability comes from modeling skills as realizations of an individual-specific

Fréchet distribution, following trade models à la Eaton and Kortum (2002) and Lind and

Ramondo (2023). This assumption yields a low-dimensional representation of workers’

joint skill distribution across tasks in terms of three objects: individual talent determines

a worker’s average skill across tasks; an economy-wide skill specificity parameter controls

the dispersion of individual task-specific skills; and a Copula parameter governs the

horizontal distance between any two workers, i.e. how correlated their task-specific skills

are. Under this assumption, and conditional on optimal assignment – which accords with

standard comparative-advantage logic – we can aggregate across the task continuum.

This yields a reduced-form production function that is tractable, talents and horizontal

distance being sufficient statistics for output, and has intuitive properties.

The microfoundation reveals that potential gains from team production increase

with skill specificity, but realizing these gains becomes increasingly sensitive to team

composition. Put succinctly, output is higher when team members are similar in talent

level but diverse in the specific tasks they are best at. Formally, output is a constant-
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elasticity-of-substitution (CES) function of talents, featuring complementarities across

coworkers’ talent levels.3 The strength of complementarities – measured by the CES

elasticity term – endogenously increases with skill specificity, rather than being a “deep”

structural parameter. The intuition? Suppose a worker must perform a larger share of

tasks due to less capable colleagues. Absent skill specificity, this does not matter for

realized productivity. But the more task-specific skills are, the greater the opportunity

cost of handling tasks they are relatively slow at. This productivity loss is larger in absolute

magnitude for more talented workers, whose potential output is greater by definition.

The talent complementarities resulting from skill specificity foster an equilibrium

with talent sorting: the workforce of some firms is composed of highly talented workers,

while other firms mostly employ less talented ones. The reason is that firms who already

have talented employees can always outbid competitors for talented candidates. As some

degree of mismatch is accepted due to search frictions, stronger skill specificity, making

it more profitable to be selective, leads to greater sorting by talent.

Measurement. Next, I confront the theory with administrative matched employer-

employee panel data for Germany. I treat each establishment as one team and exploit the

panel dimension to recover workers’ time-invariant talent types from their wage histories.

As the degree of skill specificity is not directly measurable, I develop a theory-guided

method to indirectly infer this parameter from wage variation induced by coworker

changes over time. A noteworthy aspect of my approach is that the model can be cali-

brated without targeting firm-level dispersion in worker talent or wages. Those instead

serve as yardsticks to gauge the model’s performance.

Given the estimated degree of skill specificity for the years 2010-2017, the calibrated

model matches (untargeted) talent sorting patterns. The model also qualitatively re-

produces quasi-experimental evidence on the heterogeneous wage effects of coworker

deaths (Jäger and Heining, 2022). To test core model mechanisms more directly, I examine

variation across industries. Industries like architecture or the manufacturing of chemi-

cals, which involve more complex tasks – a proxy for skill specificity –, exhibit stronger

coworker talent complementarities and more pronounced talent sorting than industries

where routine tasks dominate, like accommodation services or furniture manufacturing.
3Technically, “coworker talent complementarity” (or supermodularity) refers to a positive cross-partial

derivative of the production function with respect to own talent and coworker talent.
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Applications. Finally, I use the theory to explore the macro implications of growing skill

specificity. This hypothesis has been discussed across fields, supported by suggestive

evidence pointing to an economy-wide shift from routine to complex, cognitive non-

routine tasks (Deming, 2017) – possibly driven by advances in IT – and a growing “burden

of knowledge” that necessitates increasingly narrow individual expertise (Jones, 2009).4

I find that growing skill specificity since the mid-1980s explains a significant share of

the “firming up of inequality” (Card et al., 2013; Song et al., 2019). Structural estimation of

the skill specificity parameter across time shows an increase, consistent with the sugges-

tive evidence. Under my preferred specification, the model predicts a 21 percentage point

increase in the between-establishment share of the log wage variance from 1985-1992

to 2010-2017, close to the empirically observed rise of 24 percentage points. Counter-

factual exercises show that greater skill specificity can account for around 65% of the

model-predicted increase. The same mechanism also helps explain growing firm-level

productivity dispersion (Berlingieri et al., 2017; Autor et al., 2020).

Furthermore, I show how team production interacts with labor market frictions to

shape aggregate productivity in the context of increasing skill specialization. While such

specialization directly boosts productivity, this comes with a catch: as complementarities

are endogenously amplified, productivity becomes more sensitive to coworker mismatch.

I find that less than half of the gains from increased skill specificity may be realized unless

accompanied by enhanced matching of coworkers with complementary skills.

Discussion. Overall, the paper offers a framework that links the organization of work

around teams of workers with heterogeneous, specialized skills to macroeconomic out-

comes. The model is parsimonious, so the quantitative analysis is geared toward illus-

trating the theory’s usefulness rather than offering precise point estimates. I close by

discussing how relaxing several simplifying assumptions would allow addressing further

questions, such as the role of team quality for fast-growing firms (Sterk et al., 2021).

Related literature. An emerging literature studies how coworker interactions shape

macroeconomic outcomes. Notably, Jarosch et al. (2021) and Herkenhoff et al. (2024)

examine coworker learning as a source of human capital accumulation and identify large

aggregate consequences of structural shifts that affect the degree of talent sorting in

teams.5 My paper is complementary as it omits learning spillovers and instead provides

4Bartel et al. (2007, esp. pp. 1755-1756) offer an instructive example, showing how the introduction
of computer numerically controlled (CNC) machines shifted requirements from routine to non-routine,
specialized problem-solving skills. I use worker surveys to document shifts in task composition in Germany.

5Also see Akcigit et al. (2018), Chade and Eeckhout (2020), Boerma et al. (2021), Pearce (2022).
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a richer account of the determinants of team composition. In particular, relative to

Herkenhoff et al. (2024), which the matching block of my model builds on, I make three

contributions. First, I allow skills to be task-specific instead of one-dimensional. Second,

in spite of this added complexity, I provide an analytical microfoundation for a team

production function. This reveals that absent skill specificity there is no gain from team

production in the first place, and the strength of complementarities is endogenous. Third,

I document empirical support for the proposed mechanism and use the model to study

the effect of growing skill specificity on talent sorting and aggregate productivity.

The paper builds on seminal theories of firm production, notably Kremer (1993) and

Garicano (2000).6 While sharing Kremer’s (1993) emphasis on coworker complemen-

tarities, this paper differs in three ways. First, rather than assuming complementarities

to increase mechanically with team size, this paper microfounds a production function

where complementarities increase in skill specificity for fixed team size. Second, it ab-

stracts from increasing returns to team quality, which drives many key results in Kremer

(1993, see discussion on p. 571), thus isolating complementarity effects. Third, introduc-

ing search enables study of changes in sorting patterns, whereas sorting is perfect for any

degree of coworker complementarity in Kremer (1993). In the spirit of Garicano (2000)

and Garicano and Rossi-Hansberg (2006), I explicitly model the organizational problem

underlying a production function. However, while the theory of knowledge hierarchies

focuses on vertical relationships – how better workers enable larger spans of control –

this paper examines “horizontal” complementarities with fixed span of control.

Technically, I use building blocks from the task-assignment literature, notably Ace-

moglu and Restrepo (2018) and Ocampo (2022), and international trade. The key contri-

bution is to show how Eaton and Kortum’s (2002) stochastic formulation of technological

heterogeneity in terms of extreme-value distributions, generalized by Lind and Ramondo

(2023), can be leveraged to aggregate across a continuum of tasks given multi-dimensional

skill heterogeneity.7 This yields a parsimoniously parametrized model bridging task as-

signment with macro models relying on a tractable production function.

The paper also contributes to a theoretical literature on worker-firm dynamics.8 While

6More broadly, the paper relates to studies of firm organization, including Lucas (1978), Sattinger (1993),
Kremer and Maskin (1996), Saint-Paul (2001) and Gabaix and Landier (2008); and, more recently, Porzio
(2017), Adhvaryu et al. (2020), Caliendo et al. (2020), Tian (2021), Adenbaum (2022), Bloesch et al. (2022),
Kohlhepp (2022), Minni (2022), Kuhn et al. (2023) and Bassi et al. (2023).

7Deming’s (2017) study of social skills inspired the analogy to trade, but without offering a tractable
team production function or analyzing coworker complementarities and equilibrium matching.

8Recent advances include Bilal and Lhuillier (2021); Bilal et al. (2022); Elsby and Gottfries (2022); Engbom
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this literature typically assumes a production function additively separable in labor, calls

for richer, “empirically implementable theories of the firm” are common (Hagedorn et al.

(2017, p.33); Lentz and Mortensen (2010, pp. 593, 598)). This paper contributes such

a theory. This theory emphasizes multi-dimensional skills, echoing Lindenlaub (2017),

Lindenlaub and Postel-Vinay (2023), Baley et al. (2022) and Grigsby (2023), but introduces

them into a team production setting. Substantively, my findings provide independent

evidence for the importance of multi-dimensional skills.

Finally, the application to wage inequality connects two lines of research: the long-

standing focus on how changes in work affect skill prices,9 and more recent work that

foregrounds the significant and growing role of firms in explaining wage dispersion.10

However, structural models that explain this latter shift are lacking. This paper contributes

a theory that offers an enriched conception of firm-level production, whereby deepening

skill specificity induces stronger firm-level complementarities, which helps rationalize

the growing importance of between-firm inequality through increased talent sorting.

Outline. Section 2 presents and characterizes the theory, Section 3 confronts it with

data, Section 4 presents applications, and Section 5 concludes. Additional material,

including proofs and derivations, is contained in an Online Appendix appended to this

manuscript.

2 Theoretical model

This section develops the theoretical model. Section 2.1 lays out the environment, Section

2.2 derives and characterizes a tractable, reduced-form team production function, and

Section 2.3 analyzes how teams are formed in equilibrium given this production function.

2.1 Environment

Time is continuous, runs forever, and we consider the economy in steady state.

Demographics. The economy is populated by workers and firms. All agents are infinitely-

lived and have risk-neutral preferences over a single final good discounted at rate 𝜌 ∈
and Moser (2022); Gouin-Bonenfant (2022); Haanwinckel (2023).

9See, e.g., Autor et al. (2003), Spitz-Oener (2006), Atalay et al. (2020), Autor et al. (2022).
10See, e.g., Card et al. (2013), Barth et al. (2016), Helpman et al. (2017), Song et al. (2019), Haltiwanger and

Spletzer (2020), Criscuolo et al. (2021), Håkanson et al. (2021), Engbom et al. (2023).
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(0, 1). There is a unit measure of workers who are either employed or unemployed. Each is

characterized by a continuum of time-invariant, task-specific skills, {𝑧𝑖(𝜏)}𝜏∈[0,1], where

𝑖 indexes workers and 𝜏 indexes tasks. It is convenient to denote, with some abuse of no-

tation, {𝑧𝑖(𝜏)}𝜏∈[0,1] as 𝒛𝑖 . These skills are i.i.d. draws from a worker-specific distribution,

described below. When employed, a worker inelastically supplies a finite amount of time

in exchange for a wage. While unemployed, a worker receives a flow utility that may vary

with skills. There is a fixed unit measure of ex-ante homogeneous firms that are either

idle or actively producing in a match with one or more workers.

Task-based production technology. Production of the final good requires that many

different tasks be carried out. I have a granular notion of tasks in mind. Producing

economics research, for instance, might involve coming up with an idea, writing down a

model, solving it, collecting and analyzing data, writing a paper, hopefully publishing it,

and so on. To produce, an active firm 𝑗 employs a discrete number 𝑛 ∈ {1, 2} of workers

– so a “team” consists of two workers. Workers perform a unit continuum of imperfectly

substitutable tasks, 𝒯 = [0, 1], that are combined into the final good according to

𝑌𝑗 =

( ∫
𝒯
𝑞 𝑗(𝜏)

𝜂−1
𝜂 𝑑𝜏

) 𝜂
𝜂−1
, (1)

where𝑌𝑗 is the quantity of the final good produced by 𝑗, 𝜂 ∈ (0,∞) is the constant task

elasticity of substitution, and 𝑞 𝑗(𝜏) denotes the amount of task 𝜏 used, which is given by

𝑞 𝑗(𝜏) =
𝑛∑
𝑖=1

𝑦𝑖(𝜏). (2)

Here, 𝑦𝑖(𝜏) indicates how much of 𝜏 worker 𝑖 has produced, which depends linearly on

𝑖’s skill at task 𝜏 and the time dedicated by 𝑖 to 𝜏:

𝑦𝑖(𝜏) = 𝑙𝑖(𝜏)𝑧𝑖(𝜏). (3)

Equation (2) captures the idea that division of labor is possible, in that 𝑞 𝑗(𝜏) can be

positive even as 𝑦𝑖(𝜏) = 0 as long as 𝑦𝑘(𝜏) > 0 for 𝑘 ≠ 𝑖.

Labor market matching and information structure. Firms and workers meet through

random search. Specifically, unemployed workers contact firms with a vacant position

(i.e., 𝑛 < 𝑛̄) at an exogenous Poisson rate 𝜆𝑢 . After meeting– but not before – the firm
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and the worker can observe and contract on the task-specific skills. The parties decide

whether to form a match or, instead, to keep on searching. Conditional on a match having

been formed, the wage is determined through generalized Nash bargaining, the worker’s

bargaining power being 𝜔 ∈ [0, 1]. Further details are relegated to Section 2.3.1; for

now it suffices to say that this assumption ensures that the wage will be monotonically

increasing in firm-level final output and all matching decisions are privately efficient. In

an existing match, a worker 𝑖 is separated from their employer at an exogenous Poisson

rate 𝛿𝑖 that potentially varies with skills.

Distribution of task-specific skills. For any individual worker 𝑖, the task-specific draws

{𝑧𝑖(𝜏)}𝜏∈[0,1] are i.i.d realizations of a random variable, 𝑍𝑖 , that is Frechet distributed

with a worker-specific scale parameter 𝑥𝑖 and a common inverse shape parameter 𝜒.

Moreover, considering any arbitrary two workers, the correlation structure across their

skills is governed by a single (Gumbel-Hougaard) copula parameter 𝜉.11

Assumption 1 (Multivariate Fréchet distribution). The distribution of worker-task specific

skills satisfies

Pr [𝑍1(𝜏) ≤ 𝑧1, 𝑍2(𝜏) ≤ 𝑧2] = exp

−
©­«
𝑛=2∑
𝑖=1

((
𝑧𝑖

𝜄𝑥𝑖

)− 1
𝜒

) 1
𝜉 ª®¬

𝜉 ,
where 𝑥𝑖 is a worker-specific scale parameters, 𝜒 ∈ (0,∞) is the common inverse shape

parameter of the marginal Fréchet distributions, 𝜉 ∈ (0, 1] controls dependencies in

draws across workers, 𝜄 := Γ
(
1 + 𝜒(1 − 𝜂)

) 1
1−𝜂 is a worker-invariant scaling term, with Γ

denoting the Gamma function, and it is assumed throughout that 1 + 𝜒(1 − 𝜂) > 0.

Under Assumption 1, a low-dimensional and easily interpretable set of parameters

governs how workers vary in their average task-specific skill (𝑥𝑖 or “talent”); conditional

on that average, the dispersion of skills across different tasks (𝜒 or “skill specificity”); and,

for any two workers, how (dis-)similar they are in what tasks they are relatively skilled

at (𝜉 or “horizontal distance”). To illustrate the role of 𝑥 and 𝜒, Figures 1 (a) and (b)

depict the realizations of 𝑧’s for some 𝑖 across the unit interval, ordering the otherwise

unordered tasks by descending 𝑧.12

11As discussed in the introduction, this parametric assumption mirrors the Eaton and Kortum (2002)
approach in international trade literature, and, in allowing for correlation, Lind and Ramondo (2023).

12A couple of technical remarks: First, throughout the paper it is assumed that 1 + 𝜒(1 − 𝜂) > 0. Beyond
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Figure 1: Illustration of the distribution of worker-task specific skills

Notes. This figure illustrates the properties of the multivariate Fréchet distribution. For this illustration,
𝜂 = 2, so that 𝜄 = (Γ(1 − 𝜒))−1, and hence E [𝑍𝑖] = 𝑥𝑖 for 𝜒 < 1.

Remark 1 (Interpreting 𝑥𝑖 and 𝜒).

• The worker-specific scale term 𝑥𝑖 denotes a worker’s talent, or absolute advantage.

Intuitively, a high-x worker will be more productive at the task they are best in than

a low-x will be at their best task respectively. Formally, 𝐸 [𝑧𝑖(𝜏)] is increasing in 𝑥𝑖 .

For ease of language, I will sometimes refer to a worker 𝑖 by their talent type.

• The parameter 𝜒 controls the degree of skill specificity, which is defined by the degree

of within-worker dispersion in task-specific skills — is a given worker similarly

skilled across all tasks (low 𝜒) or good at some tasks but less so at others (high 𝜒). In

Figure 1(b), for a greater value of 𝜒 𝑖’s skill diminishes more rapidly as we move away

from the task 𝑖 is best at. For 𝜒 → 0 we get closer to one-dimensional worker types.

The description of the supply of skills in the economy is completed as follows.

Assumption 2 (Population distribution). In the population, 𝑥 is distributed according

to a cumulative distribution function Ψ(𝑥). Conditional on 𝑥, workers are uniformly

distributed across a circle with unit circumference; the distance along the circle between

any pair of workers corresponds to their horizontal distance 𝜉.

Regarding part (i) of Assumption 2, instead of 𝑥 ∈ R+, it will frequently be useful to

work with the rank 𝑥̂ = Φ(𝑥), i.e. 𝑥̂ ∈ [0, 1]. Regarding part (ii), the interpretation and

requiring that tasks not be too substitutable, under the maintained assumptions the exact value of 𝜂 will
not influence worker-task assignment or team productivity. Second, the scaling term 𝜄 ensures that varying
𝜒 or 𝜂 does not mechanically change skill levels.
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language implicitly presume that there is a continuum of every talent type. Associated to

it is the following interpretation of 𝜉.

Remark 2 (Interpreting 𝜉). For any two workers 𝑖 and 𝑗, 𝜉 governs the horizontal distance

across them – roughly, the degree of correlation in task-specific skills; strictly, the Kendall

tau distance. If 𝜉 = 1, draws are independent across workers; decreasing 𝜉 means 𝑖 and 𝑗

become more similar in what tasks they are skilled in; and for 𝜉 → 0 relative skill across

any two tasks 𝑧𝑖(𝜏)/𝑧𝑖(𝜏′)
𝑧 𝑗(𝜏)/𝑧 𝑗(𝜏′) → 𝑐 for some constant 𝑐.

Looking ahead, 𝜒 will be treated as a structural parameter throughout, whereas

worker talents {𝑥𝑖}𝑛𝑖=1 and 𝜉 will be endogenous to team formation.

Discussion. The theory has four central features: (i) workers have heterogeneous, multi-

dimensional skills for tasks; (ii) production requires many imperfectly substitutable tasks

to be carried out; (iii) production can involve multiple, but not infinitely many, work-

ers; and (iv) hiring involves search, reflecting an information friction whereby skills are

observable only upon meeting. The parametric structure imposed on (i) through Assump-

tion 1 will be key for tractability, but the economics are more general; and the search

structure (iv) introduces a panel dimension that will be important for measurement.

These features give rise to two sets of trade-offs. First, (i)-(iii) imply there is scope

for gains from the division of labor, but each worker will also have to perform some

tasks other than their best, so intuitively output should be sensitive to a team’s composi-

tion. How much can different combinations of workers produce together – what is the

production function? Second, who ends up working with whom in equilibrium when

team composition matters for productivity but, due to the presence of search (iv), any

productivity gains need to be traded off against the opportunity cost of time.

I analyze these trade-offs in two steps. First, I consider a single firm with an arbitrary

set of workers. Optimal task assignment and Assumption 1 jointly yield an intuitively

interpretable and tractable reduced-form production function that features a CES struc-

ture in coworker talents. The substantive point is that the parameters of that function are

not “deep,” instead the theory delivers testable predictions for how these parameters vary

across sectors and time. Second, with this tractable representation at hand, I solve for the

equilibrium assignment of workers to different firms.

Before moving forward, it is worth laying out important simplifications. First, there is

no ex-ante heterogeneity across firms. All productive knowledge is embodied in workers,

and a firm simply consists of an organized collection of workers; its value is tightly linked
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to their production capacity.13 Second, there is no explicit span-of-control problem, such

as a hierarchy à la Garicano (2000), nor multi-team firms or any agency problems. Third,

tasks are symmetric – none is inherently more valuable or difficult than another – nor

are different skills more or less scarce in the economy. Finally, assuming a maximum

team size of two is restrictive but sufficient to study team production and formation,

and imparts significant tractability. Given Assumption 1, we can summarize the rela-

tionship between any two workers’ high-dimensional skill vectors in terms of a single

parameter 𝜉. Moreover, even with one-dimensional skills, the firm’s state space expands

combinatorically with team size when production features non-separabilities in labor.

2.2 Team production

Consider a single, active firm that employs 𝑛 > 0 workers (so I drop the 𝑗 subscript here).

Treating the skill composition as exogenous, how much final output can be produced?

2.2.1 Organizational problem

The firm solves a “mini-planner problem” by choosing total task usage {𝑞(𝜏)}𝜏∈𝒯 , indi-

vidual task production {{𝑦𝑖(𝜏)}𝜏∈𝒯 }𝑛𝑖=1 and individual time allocation {{𝑙𝑖(𝜏)}𝜏∈𝒯 }𝑛𝑖=1
to maximize total production 𝑌, given {𝒛1, ..., 𝒛𝑛} and subject to equations (1)-(3) as

well as a time constraint for each worker 𝑖:14

1 =

∫
𝒯
𝑙𝑖(𝜏)𝑑𝜏. (4)

Remark 3 (Reduced-form production function). The reduced-form production function

𝑓 is defined as the solution to the problem of optimally assigning tasks,15

𝑓 (·) = max𝑌 (5)

s.t. (1) − (4).
13This is, of course, a stark assumption, but it allows making the point very sharply that observed ex-post

firm heterogeneity can emerge solely due to coworker interdependencies.
14Assuming each worker to be endowed with one unit of time is without loss of generality, even if

technically we are in a continuous-time context, as this simply scales overall output.
15I am deliberately loose in specifying the domain of 𝑓 for now, as Proposition 1 will clarify this point.
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The Lagrangean associated to the firm’s problem is

ℒ(·) = 𝑌 + 𝜆

[( ∫
𝒯
𝑞(𝜏)

𝜂−1
𝜂 𝑑𝜏

) 𝜂
𝜂−1

− 𝑌
]
+

∫
𝒯
𝜆(𝜏)

( 𝑛∑
𝑖=1

𝑦𝑖(𝜏) − 𝑞(𝜏)
)
𝑑𝜏

+
𝑛∑
𝑖=1

{
𝜆𝐿𝑖

(
1 −

∫
𝒯
𝑙𝑖(𝜏)𝑑𝜏

)
+

∫
𝒯
𝜆𝑖(𝜏)

(
𝑧𝑖(𝜏)𝑙𝑖(𝜏) − 𝑦𝑖(𝜏)

)
𝑑𝜏 +

∫
𝒯
𝜆̄𝑖(𝜏)𝑦𝑖(𝜏)𝑑𝜏.

}
,

Here, 𝜆, 𝜆𝐿
𝑖

, 𝜆𝑖(𝜏) and 𝜆(𝜏) denote the shadow values of, respectively, total production,

𝑖’s time, a unit of task 𝜏 produced by 𝑖, and a unit of task 𝜏 used in final good production,

while 𝜆̄𝑖(𝜏) attaches to a non-negativity constraint in task production. Importantly, each

worker’s time is scarce, with multiplier 𝜆𝐿
𝑖

capturing the opportunity cost of 𝑖’s time.

First we derive the demand for task, treating the shadow prices as known. Taking the

first-order condition (FOC) with respect to 𝑞(𝜏), defining𝑄(𝜏) := 𝜆(𝜏)𝑞(𝜏), and standard

CES algebra yields expressions for task demand and the shadow cost index 𝜆:

𝑄(𝜏) =
(
𝜆(𝜏)
𝜆

)1−𝜂
𝜆𝑌, (6)

𝜆 =

( ∫
𝒯
𝜆(𝜏)1−𝜂𝑑𝜏

) 1
1−𝜂
. (7)

Optimal task usage thus depends on task-specific shadow costs, {𝜆(𝜏)}𝜏∈𝒯 , which in

turn depend on how workers are assigned to tasks. The FOC with respect to 𝑦𝑖(𝜏) implies

that 𝜆(𝜏) = 𝜆𝑖(𝜏) if 𝑦𝑖(𝜏) > 0. Since some worker will provide a given task 𝜏, and with

task production featuring constant returns to scale, cost-minimization requires that the

shadow value of a task be equal to the minimum shadow cost of producing it. Combined

with the FOC for 𝑙𝑖(𝜏), this implies

𝜆(𝜏) = min
𝑖=1,...,𝑛

{
𝜆𝐿
𝑖

𝑧𝑖(𝜏)

}
. (8)

According to equation (8), any task 𝜏 will optimally be performed by the worker with

the lowest ratio of the task-invariant shadow cost of their time over their task-specific

skill; and the firm’s shadow cost for that task, 𝜆(𝜏), is equal to that minimum. The optimal

assignment thus features complete division of labor – every worker performs an interval

of tasks, but no strictly positive mass of tasks is performed by more than one worker –
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and satisfies textbook comparative-advantage logic.

A second look at equation (8) clarifies that taking a step further to derive 𝑓 is non-

trivial. Doing so requires knowledge of the entire distribution of the minimum of the

worker-task specific shadow costs. This object itself depends on each worker’s shadow

cost of time, 𝜆𝐿
𝑖

, which in turn is an endogenous function of {𝒛1, ..., 𝒛𝑛}.16

The max-stability property of the Fréchet distribution allows overcoming this chal-

lenge, as shown by Eaton and Kortum (2002) in a trade context. Given Assumption 1 and

exploiting this property, the following result summarizes what share of tasks is performed

by each worker and at what shadow cost the final good can be produced.

Lemma 1. Under the optimal task assignment, assuming 𝜂 > 1 and a symmetric horizon-

tal distance across coworker pairs, 𝜉:

(i) the shadow cost index is

𝜆 =
©­«
𝑛∑
𝑖=1

(
𝑥𝑖

𝜆𝐿
𝑖

) 1
𝜒𝜉 ª®¬

−𝜒𝜉

; (9)

(ii) and the share of tasks for which worker 𝑖 is the least-cost provider is

𝜋𝑖 := P

[
𝜆𝑖(𝜏) = min

𝑘=1,..,𝑛
𝜆𝑘(𝜏)

]
=

(
𝑥𝑖/𝜆𝐿𝑖

) 1
𝜒𝜉

∑𝑛
𝑘=1

(
𝑥𝑘/𝜆𝐿𝑘

) 1
𝜒𝜉

, (10)

which furthermore corresponds to the fraction of the shadow value of all tasks used

in final good production accounted for by 𝑖:

𝜋𝑖 = 𝑄𝑖/𝑄 (11)

where𝑄𝑖 :=
∫
𝒯 𝜆(𝜏)𝑦𝑖(𝜏)𝑑𝜏.

Proof. See Appendix section A.1.2. □

16Observe that the first-order condition for 𝑙𝑖(𝜏) together with time constraint (4) and the condition that
𝜆(𝜏) = 𝜆𝑖(𝜏) if 𝑦𝑖(𝜏) > 0, allow writing 𝜆𝐿

𝑖
=

∫
𝜆(𝜏)𝑧𝑖(𝜏)𝑙𝑖(𝜏)𝑑𝜏. Thus, 𝑖’s shadow cost of labor depends

on which tasks 𝑖 is assigned to and how much of each 𝑖 produces, which in turn depends on 𝑖’s task-specific
skills as well as those of everyone else on the team, per equation (8).
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In summary, the solution of the firm’s mini-planner problem implies that the optimal

assignment exhibits complete division of labor and each worker 𝑖 is assigned the set

of tasks 𝒯𝑖 in which she has a comparative advantage.17 The share of tasks assigned to

worker 𝑖 is given by equation (10), while equation (9) gives the shadow cost of production

when tasks are optimally assigned. In the next section I characterized the reduced-form

production resulting from this assignment, normalizing 𝜆 = 1.

2.2.2 Characterizing the reduced-form production function

We are now in a position to analytically characterize the production function 𝑓 , defined in

equation (5), which summarizes how skills map onto final output𝑌 in reduced form under

the optimal task assignment. To preview the main insights, the more task-specific skills

are, the greater the potential gains from team production. The extent to which these gains

are realized depends on the team’s skill composition in two ways that neatly map onto

’vertical’ (talent) and ’horizontal’ composition. First, coworkers’ talents are complements

in production, so talented workers gain more from more talented colleagues; equivalently,

and other things equals, dispersion in team members’ talent reduces output. Second,

production is greater when coworkers are good at different tasks, i.e. they are horizontally

distant. The core insight, attained by explicitly microfounding 𝑓 , is that the strength of

these team effects is endogenously increasing in skill specificity 𝜒.

The reduced-form production function 𝑓 is obtained by aggregating over both the

task continuum and team members under the optimal assignment.18

Proposition 1 (Reduced-form production function). Team output𝑌 can be written as a

function of members’ talent types, 𝒙, and horizontal distance, 𝜉, given parameter 𝜒:

𝑓 (𝒙 , 𝜉; 𝜒) = 𝑛1+𝜒𝜉
(
1

𝑛

𝑛∑
𝑖=1

(𝑥𝑖)
1

𝜒𝜉+1

)𝜒𝜉+1
. (12)

Proof. See Appendix section A.1.3, which involves Lemma 1 and normalizing 𝜆 = 1. □

Methodologically, 𝑓 is a reduced-form, “aggregate” (firm-level) production function.19

17That is, 𝒯𝑖 =

{
𝜏 ∈ 𝒯 :

(
𝑧𝑖(𝜏)/𝜆𝐿𝑖

)
≥ max𝑘≠𝑖

(
𝑧𝑘(𝜏)/𝜆𝐿𝑘

)}
. Strictly speaking, a tie-breaking rule is

needed for tasks where multiple workers have the same shadow cost. Those tasks have mass zero anyway,
so I retain the weak inequality in the expression for 𝒯𝑖 .

18Output is deterministic dsepite Assumption 1, as we integrated over the task continuum.
19This aggregation result relates to the seminal paper of Houthakker (1955) and, more recently, Acemoglu
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Given parameter 𝜒, talents and horizontal distance, (𝒙 , 𝜉), are sufficient statistics for

output 𝑌, without knowledge of the underlying, micro-level task assignment being re-

quired.20 Inspecting equation (12) implies:21

Corollary 1. Let the inverse elasticity of substitution (“elasticity of complementarity”) be

defined as 𝛾𝑖 𝑗 :=
𝜕 ln( 𝑓𝑗/ 𝑓𝑖)
𝜕 ln(𝑥𝑖/𝑥 𝑗) , for any homothetic production function 𝑓 (𝑥1, ..., 𝑥𝑛; ·), where

𝑓𝑖 = 𝜕 𝑓 /𝜕𝑥𝑖 denotes a partial derivative. For the production function (12), the elasticity of

complementarity is symmetric and identical for all pairs of workers and equal to 𝛾 =
𝜒𝜉

1+𝜒𝜉 .

Turning to an interpretation, in equation (12), output is written as the product of

two terms that carry intuitive interpretations. The first term, and setting 𝜉 = 1 for a

moment, summarizes the potential efficiency gains from team production relative to a

counterfactual in which every worker produces all tasks. It is straightforward to show

that in the latter case,𝑌 = 𝑛 ×
(
1
𝑛

∑𝑛
𝑖=1 𝑥𝑖

)
. That 𝜒 appears in the exponent of the first

term of equation (12) indicates that these potential gains are increasing in skill specificity.

Intuitively, when 𝜒 is low, each worker is similarly productive across tasks, hence little

is gained from the division of labor, in contrast to the case of high 𝜒, when a worker’s

realized productivity varies greatly depending on what tasks they perform. Now allowing

𝜉 to vary makes clear that the realized gains from the division of labor are greater if

coworkers are skilled at different tasks, that is when 𝜉 is high.

The second term has a CES structure, featuring complementarities across coworkers’

talents. One way to interpret these complementarities is to consider output𝑌 and note

that by the power mean inequality, the stronger the degree of talent complementarity, the

greater is the weight on the talent of the least-capable team member(s) in determining𝑌.

Hence, output is greater when coworkers are similar in terms of talent.

Corollary 2. For 𝜒𝜉 > 0, greater dispersion in team members’ talent reduces output, other

things equal. Consider any two elements 𝑥𝑖 and 𝑥 𝑗 of the vector 𝒙 such that 𝑥𝑖 > 𝑥 𝑗 . Let 𝒙′

and Restrepo (2018). In IO, an important related reference is Anderson et al. (1989). In independent work,
Dvorkin and Monge-Naranjo (2019) derive a similar microfounded CES function, though their analysis is
less general by assuming 𝜉 = 1 by construction.

20The elasticity of substitution across tasks, 𝜂, does not show up in equation (12). Technically, as noted by
Eaton and Kortum (2002, Footnote 18), this holds as long as 1+ 𝜒−𝜂𝜒 > 0, in which case 𝜂 only appears in
a constant term that cancels with the scaling term 𝜄. The irrelevance of 𝜂 in that sense is a tight implication
of the Fréchet, and it serves to sharply bring into relief that coworker complementarities do not hinge on
the assumption that tasks combine in a Leontief fashion (e.g., Kremer, 1993).

21The appropriate measure of substitutability in the case of more than two inputs is the Morishima
(1967) elasticity (Blackorby and Russell, 1989). Under the functional form of equation (12), this elasticity is
identical across worker pairs and identical to the Hicks and Allen definitions (Blackorby and Russell, 1981).
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be the vector 𝒙 such that 𝑥𝑖 is replaced with 𝑥𝑖 + 𝜖 and 𝑥 𝑗 with 𝑥 𝑗 − 𝜖, where 𝜖 > 0. Then

𝑓 (𝒙) > 𝑓 (𝒙′).

Proof. For any arbitrarily small but strictly positive value of 𝜖, 𝑓 (𝒙) > 𝑓 (𝒙′) if 𝜕 𝑓 (𝒙′)/𝜕𝜖 <

0. Differentiating yields
𝜕 𝑓 (𝒙′)
𝜕𝜖 = 𝐶

[
−(𝑥 𝑗 − 𝜖)

1
𝜒𝜉+1−1 + (𝑥𝑖 + 𝜖)

1
𝜒𝜉+1−1

]
< 0, where 𝐶 is a

positive constant. Evaluating at 𝜖 = 0 and considering that 𝜒𝜉 > 0 and 𝑥𝑖 > 𝑥 𝑗 implies

𝜕 𝑓 (𝒙′)/𝜕𝜖 < 0. □

An alternative, equally valid interpretation foregrounds coworker productivity spillovers.

Having more talented coworkers boosts anyone’s productivity, but the marginal contribu-

tion of greater worker talent is higher when matched with other high-talent workers, i.e.,

𝑓 is supermodular. The magnitude of this effect is increasing in 𝜒, i.e.,
𝜕3 𝑓 (·)

𝜕𝑥𝑖𝜕𝑥 𝑗𝜕𝜒
> 0 for

any 𝑖 ≠ 𝑗 provided 𝜉 > 0.22

To gain intuition, it is instructive to study how task shares vary as a function of team

members’ talent types, and how this depends on 𝜒.

Corollary 3 (Task shares). The share of tasks produced by worker 𝑖 is equal to

𝜋𝑖 =

(
𝑥

1
1+𝜒𝜉
𝑖

) (
𝑛∑
𝑘=1

(𝑥𝑘)
1

1+𝜒𝜉

)−1
. (13)

Hence: (i) 𝜕𝜋𝑖
𝜕𝑥𝑖

> 0 and 𝜕𝜋𝑖
𝑥𝑘

< 0 for 𝑘 ≠ 𝑖; and (ii) considering two team members 𝑖 and 𝑗,

and supposing that 𝑥𝑖 > 𝑥 𝑗 , it holds that 𝜋𝑖 > 𝜋𝑗 for 𝜒𝜉 < ∞, 𝜋𝑖/𝜋 𝑗 → 𝑥𝑖/𝑥 𝑗 as 𝜒𝜉 → 0,

and 𝜋𝑖/𝜋 𝑗 → 1 as 𝜒𝜉 → ∞.

Proof. Equation (13) follows directly from Lemma 1 given 𝜆 = 1; the remainder is then

immediately implied by differentiation or taking the limit. □

Consider a team of a talented worker, 𝑖, and a less talented coworker, 𝑗. In general,

per equation (13), it is optimal for 𝑖 to perform a greater share of tasks than 𝑗. Else there

would be an inefficiently high amount of those tasks produced in which 𝑖 is most skilled.

If skills are not task-specific, this does not affect 𝑖’s average usage-weighted skill (i.e.∫
𝒯 𝑙𝑖(𝜏)𝑧𝑖(𝜏)𝑑𝜏). But now suppose 𝜒 is positive. Then 𝑧𝑖(𝜏) diminishes as we expand 𝑖’s

22The cross-partial is very intuitively connected to the degree of supermodularity, measuring how much
the marginal productivity of one worker’s talent changes with a change in a coworker’s talent. It is also
directly linked to the elasticity of complementarity, as 𝛾 = ( 𝑓 𝑓𝑖 𝑗)/( 𝑓𝑖 𝑓𝑗) for any 𝑖 ≠ 𝑗, where subscripts
indicate partial derivatives. This observation goes back to Hicks (1932, 241-246).
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task share. This implies, firstly, that a greater share of tasks is performed by 𝑗 when 𝜒 is

larger – this underlies the power mean intuition offered above. And secondly, 𝑖’s realized

average skill is increasing in her coworker’s talent, the absolute magnitude of this effect

being increasing in 𝑥𝑖 . Simply put, it does not matter much in absolute terms which tasks

a low-talent worker performs; but it matters a great deal if the worker could potentially

produce a lot of output.

Discussion. This section showed under the optimal organization of production, cowork-

ers’ realized productivities are inherently interdependent – hence, referring to the classic

definition of Alchian and Demsetz (1972, Section II), I speak of “team production” –

and the importance of this effect is increasing in skill specificity. The theory formalizes

and makes precise the intuitive notion of coworkers being “complementary” or having

“complementary skills,” which will be the case insofar as two workers are specialized in

different tasks but are similar in talent.

Crucially, while the model inherits the tractability of a CES production function, the

theory reveals the CES elasticity parameter to be a reduced-form object, rather than being

“deep” or structural. Both the potential gain from team production and the strength of

complementarities are increasing with the degree of skill specificity 𝜒.

2.3 Team formation

Equipped with reduced-form production function (12), we can now study how the skill

composition of different teams – as summarized by individual talents 𝑥 and coworker

horizontal distance 𝜉 – is determined endogenously in equilibrium.

2.3.1 Further assumptions and notation

Tractability. The technical challenge that arises in the dynamic context, in which a

firm has already filled a slot, is that the decision to hire an unmatched worker should

depend on that person’s task-specific skills and those of the incumbent employee. Both

are assumed to be observable to agents upon meeting, raising the prospect of having to

carry around a very high- (infinite-) dimensional object as a state variable. Proposition 1

resolves this challenge, showing that 𝒙 and 𝜉 are sufficient statistics for the joint produc-

tion value given parameter 𝜒. Hence, even though to the econometrician, workers’ talent

types will be observable but not their task-specific skills (see Section 3), unobserved

match-specific heterogeneity for any two workers is summarized in a single-dimensional

17



object 𝜉. Essentially, 𝜉 is treated as a match-specific shock that is drawn upon meeting

from the offer distribution 𝐻, which given Assumption 2 is continuous uniform. Of

course, the distribution of 𝜉 among realized matches is endogenous to hiring decisions

just as the joint distribution of talents in teams is.

To ensure that the full set of task-specific skills does not turn into a state variable

through objects other than production, the following assumption is also maintained.

Assumption 3. Separation rates and the flow utility from being unemployed are functions

of talent but not the task-specific skills, and are denoted 𝛿(𝑥) and 𝑏(𝑥).

Distributions. Let 𝑑𝑚.1(𝑥) denote the measure of producing matches consisting of

a firm and one worker of talent 𝑥, while 𝑑𝑚.2(𝑥, 𝑥′) is the corresponding measure of

matches with an additional coworker with talent 𝑥′ for any value of 𝜉.23 The population

measure of workers with talent 𝑥, 𝑑𝑤(𝑥) = Ψ′(𝑥), is the sum of those with who are

unemployed, in one-worker matches or in two-worker matches:

𝑑𝑤(𝑥) = 𝑑𝑢(𝑥) + 𝑑𝑚.1(𝑥) +
∫

𝑑𝑚.2(𝑥, 𝑥̃′)𝑑𝑥̃′, (14)

The aggregate unemployment rate is obtained by integrating over 𝑥, i.e., 𝑢 =
∫
𝑑𝑢(𝑥)𝑑𝑥.

Similarly for firms, the total measure of firms with fewer than two employees is 𝑣 =

𝑑 𝑓 .0 +
∫
𝑑𝑚.1(𝑥)𝑑𝑥, where 𝑑 𝑓 .0 is the mass of idle firms, and adding-up requires

𝑑 𝑓 = 𝑑 𝑓 .0 +
∫

𝑑𝑚.1(𝑥)𝑑𝑥 +
1

2

∫ ∫
𝑑𝑚.2(𝑥, 𝑥′)𝑑𝑥𝑑𝑥′. (15)

Dividing by 2 in the last term avoids double-counting, 𝑑𝑚.2(𝑥, 𝑥′) being symmetric.

Joint value and surplus. The joint value of a match between a firm and a worker of

talent 𝑥 is Ω1(𝑥) = 𝑉𝑓 .1(𝑥) +𝑉𝑒.1(𝑥), where𝑉𝑒.1(𝑥) is 𝑥’s value of being employed alone,

whose value is𝑉𝑓 .1(𝑥). The surplus generated by such a match is

𝑆(𝑥) = Ω1(𝑥) −𝑉𝑓 .0 −𝑉𝑢(𝑥), (16)

where𝑉𝑢(𝑥) is the value of unemployment for 𝑥 and𝑉𝑓 .0 is the value of an idle firm.

23For notational simplicity, and with some abuse of language, I use the term “measure” throughout to
refer to these and analogous functions. In the context of the continuous-type model, these should be
interpreted as densities, while in the numerical implementation, which is based on a discretized type space,
they represent point measures or masses.
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The joint value of a firm with a team characterized by (𝑥, 𝑥′, 𝜉) is Ω2(𝑥, 𝑥′, 𝜉) =

𝑉𝑓 .2(𝑥, 𝑥′, 𝜉) + 𝑉𝑒.2(𝑥|𝑥′, 𝜉) + 𝑉𝑒.2(𝑥′|𝑥, 𝜉), with 𝑉𝑒.2(𝑥|𝑥′, 𝜉) denoting the value of 𝑥

being employed together with a coworker of talent 𝑥′ if the horizontal distance between

them is 𝜉. Hence, the surplus generated when a firm that already has employee 𝑥′ hires

an additional worker is

𝑆(𝑥|𝑥′, 𝜉) = Ω2(𝑥, 𝑥′, 𝜉) −Ω1(𝑥′) −𝑉𝑢(𝑥). (17)

This surplus is increasing in the joint value generated by the team and declines with both

sides’ outside values. Note 𝑆(𝑥|𝑥′, 𝜉) is generically not symmetric in 𝑥 and 𝑥′ even if

Ω2(𝑥, 𝑥′, 𝜉) is, because it matters for outside options who is the incumbent employee.

Surplus sharing. Wage bargaining takes the generalized Nash form, concerns the entire

surplus, and the firm treats each employee as marginal, so that their outside option is

unemployment. This protocol ensures that all matching decisions are privately efficient

and can be characterized by parties’ joint surplus (cf. Bilal et al., 2022). Moreover, the

wage is unaffected by the order with which workers join a team.

In particular, the wage 𝑤(𝑥|𝑥′, 𝜉) of a worker of talent 𝑥 employed with a coworker of

talent 𝑥′ who is horizontal distance 𝜉 apart is

(1 − 𝜔)
(
𝑉𝑒.2(𝑥|𝑥′, 𝜉) −𝑉𝑢(𝑥)

)
= 𝜔

(
𝑉𝑒.2(𝑥′|𝑥, 𝜉) +𝑉𝑓 .2(𝑥, 𝑥′, 𝜉) −𝑉𝑒.1(𝑥′) −𝑉𝑓 .1(𝑥′)

)
.

(18)

2.3.2 Equilibrium conditions and definition

One of the equilibrium conditions is that agents solve a set of Hamilton-Jacobi-Bellman

(HJB) equations, which characterize optimal matching decisions and associated values,

taking the distribution of agents over type and employment states as given. Moreover,

the stationary distribution satisfies a system of Kolmogorov-Forward equations (KFEs)

given optimal matching decisions.

These matching decisions are related to surplus values as follows:

ℎ(𝑥) = 1{𝑆(𝑥) > 0}, ℎ(𝑥|𝑥′, 𝜉) = 1{𝑆(𝑥|𝑥′, 𝜉) > 0}. (19)

These functions describe, respectively, whether a match between an unmatched firm

and a type-𝑥 worker will (optimally) be consummated; and whether a firm that already
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employs worker 𝑥′ is willing to hire a worker 𝑥 given shock 𝜉.24 To track the evolution of

the distribution, it is furthermore useful to define conditional matching probabilities,

ℎ(𝑥|𝑥′) = P{𝑆(𝑥|𝑥′, 𝜉) > 0}. (20)

Value functions. The asset value of an idle firm,𝑉𝑓 .0, satisfies

𝜌𝑉𝑓 .0 = (1 − 𝜔)𝜆𝑣.𝑢
∫

𝑑𝑢(𝑥)
𝑢

𝑆(𝑥)+𝑑𝑥, (21)

where for any 𝑟, I let 𝑟+ = max{𝑟, 0} indicate the optimal decision, to ease notation. The

discounted value thus corresponds to the weighted conditional expectation of the firm’s

share of the match surplus generated with an unemployed worker times the uncondi-

tional probability of meeting any unmatched worker.

The value of such an unemployed worker 𝑥 is given by

𝜌𝑉𝑢(𝑥) = 𝑏(𝑥) + 𝜆𝑢𝜔

[
𝑑 𝑓 .0

𝑣
𝑆(𝑥)+ +

∫ ∫
𝑑𝑚.1(𝑥̃′)

𝑣
𝑆(𝑥|𝑥̃′, 𝜉̃)+𝑑𝐻(𝜉̃)𝑑𝑥̃′

]
(22)

Notice that we need to account for the worker’s flow value from being unmatched, 𝑏(𝑥),
and distinguish between the worker meeting an unmatched firm or a one-worker firm.

Turning to matched agents, the joint value of a firm employing a team (𝑥, 𝑥′, 𝜉) is

𝜌Ω2(𝑥, 𝑥′, 𝜉) = 𝑓 (𝑥, 𝑥′, 𝜉) − 𝛿(𝑥)𝑆(𝑥|𝑥′, 𝜉) − 𝛿(𝑥′)𝑆(𝑥′|𝑥, 𝜉), (23)

which contains the flow value of production, accounting for the possibility that either

worker is separated.

Lastly, and importantly, the joint value of a firm with a talent-𝑥 employee satisfies

𝜌Ω1(𝑥) = 𝑓 (𝑥) + 𝛿(𝑥)
[
−Ω1(𝑥) +𝑉𝑢(𝑥) +𝑉𝑓 .0

]
(24)

+ 𝜆𝑣.𝑢

∫ ∫
𝑑𝑢(𝑥̃′)
𝑢

(
−Ω1(𝑥) +𝑉𝑒.2(𝑥|𝑥̃′, 𝜉̃) +𝑉𝑓 .2(𝑥, 𝑥̃′, 𝜉̃)︸                                           ︷︷                                           ︸

(1−𝜔)𝑆(𝑥̃′|𝑥,𝜉̃)

)+
𝑑𝐻(𝜉̃)𝑑𝑥̃′.

The discounted value thus includes the flow value of production. At rate 𝛿(𝑥) the match

24The strict inequality in equation (19) is without loss of generality, as the indifference case occurs for a
measure zero of agents.
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is destroyed. At rate 𝜆𝑣.𝑢 , the firm is contacted by an unmatched worker with talent 𝑥̃′,

they draw a shock 𝜉, and the worker is hired if the sum of values accruing to the firm and

𝑥 from teaming up exceeds their joint value if 𝑥̃′ is not hired, that is, if the joint surplus

from a match is positive.

Online appendix A.2.1 derives the recursions for the surplus values, see specifically

equations (A.5) and (A.6), so that the optimality conditions are fully described in terms of

the values of unmatched agents and surpluses.

Population dynamics. In stationary equilibrium, the inflows and outflows into differ-

ent states balance. The KFEs summarize these flows for each state, with the matching

decisions modulating the flow intensities implied by exogenous meeting rates and the

distributions themselves. As the equations are straightforward but lengthy, they are

collected in Appendix A.2.2. With that, we are in a position to define the equilibrium.

Definition 1. A stationary equilibrium consists of a production function 𝑓 (𝒙 , 𝜉; 𝜒), a

tuple of value functions,
(
𝑉𝑢(𝑥), 𝑉𝑓 .0, 𝑆(𝑥), 𝑆(𝑥|𝑥′, 𝜉)

)
, together with a distribution of

agents across states,
(
𝑑𝑚.1(𝑥), 𝑑𝑚.2(𝑥, 𝑥′)

)
, such that (i) the production function 𝑓 is con-

sistent with optimal task assignment per equation (5), (ii) the value functions satisfy the

HJB equations (21), (22), (A.5) and (A.6) given the distributions; and (iii) the stationary

distributions satisfy the KFEs (A.8)-(A.9) given the policy functions implied by the value

functions following equation (19).

The equilibrium needs to be computed numerically because of a non-trivial equi-

librium interaction: Agents’ expectations and matching decisions must conform with

the distribution to which they give rise, yet as that distribution evolves, so do agents’

expectations over future meeting probabilities and, hence, their optimal actions.

2.3.3 Key trade-off and qualitative properties of equilibrium

I next discuss the key trade-off that shapes team composition and illustrate how, given

this trade-off, shifts in skill specificity 𝜒 affect sorting.

Trade-off. Suppose a firm with an employee of talent 𝑥 meets an unmatched worker

of talent 𝑥′ and their horizontal distance is 𝜉. The matching decision, encapsulated in

the policy function ℎ(𝑥′|𝑥, 𝜉), balances match quality considerations and search costs. If

the hire is made, output 𝑓 (𝑥, 𝑥′, 𝜉) is produced and shared. Else, the firm produces 𝑓 (𝑥),
the unmatched worker receives the flow value 𝑏(𝑥′), and both sides search for another

production partner with whom they can generate a positive surplus.
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Figure 2: Equilibrium matching patterns and comparative statics

Notes. This figure summarizes matching patterns in the stationary equilibrium. Figure 2a visualizes the
conditional matching probabilities defined in equation (20) under an illustrative calibration. Figure plots
moments like coworker sorting for different values of 𝜒.

The production function implies that team formation is more likely between workers

of similar in talent who are horizontally distant. Figure 2a illustrates the matching

probabilities ℎ(𝑥′|𝑥) under an illustrative parametrization, plotting incumbent worker

talent 𝑥 against candidate coworker talent 𝑥′. A low-talent candidate will never be

matched with a high-talent incumbent, even if 𝜉 is high, since the incumbent’s employer

can always find a coworker who is at similar horizontal distance but closer in talent. In

contrast, teams of workers with similar talent levels are readily formed. For intermediate

talent differences, matching occurs only when workers are sufficiently horizontally distant

to offset the productivity loss from talent mismatch.

This is a good place to remark that, since firms are ex-ante homogeneous, in this

model it is completely random which firm ends up with the most productive teams. The

focus lies on systematic sorting patterns given random draws of the first worker.

Coworker sorting statistic. A useful statistic to quantify talent sorting is the correlation

between coworkers’ talent ranks (Lopes de Melo, 2018).25 To derive this statistic from

the equilibrium objects specified above, let 𝑑𝑚.2(𝑥̂ , 𝑥̂′) denote the density of matches

in terms of talent ranks. (I use this notation for simplicity, with the understanding

that appropriate transformations due to the change of variables are applied.) Then the

25I consider the rank correlation for two reasons. First, because I will measure discrete worker types in
the data. Second, this measure avoids confounding changes in assortativeness with shifts in te marginal
distribution of talent (Fagereng et al., 2022).
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equilibrium joint density in teams is 𝜙(𝑥̂ , 𝑥̂′) 𝑑𝑚.2(𝑥̂ ,𝑥̂′)∫ ∫
𝑑𝑚.2(𝑥̂ ,𝑥̂′)𝑑𝑥̂𝑑𝑥′

; the unconditional density

in teams is 𝜙(𝑥̂) =
∫
𝜙(𝑥̂ , 𝑥̂′)𝑑𝑥̂′; and the distribution of coworker types conditional on

type is 𝜙(𝑥̂′|𝑥̂) = 𝜙(𝑥̂ ,𝑥̂′)∫
𝜙(𝑥̂ ,𝑥̂′)𝑑𝑥̂′ , the corresponding CDFs being Φ̂(𝑥̂) and Φ̂(𝑥̂′|𝑥̂). Then

𝜌𝑥𝑥 =

∫ ∫
(𝑥̂ − 𝑥̄)(𝑥̂′ − 𝑥̄)𝑑Φ(𝑥̂′|𝑥̂)𝑑Φ̂(𝑥̂)∫ (

𝑥̂ − 𝑥̄
)2
𝑑Φ̂(𝑥̂)

, (25)

where 𝑥̄ =
∫
𝑥̂𝑑Φ̂(𝑥̂) is the average worker type among those in teams. “Sorting” in this

paper thus exclusively refers to coworker sorting, as opposed to sorting between ex-ante

heterogeneous firms and workers.

Comparative statics for 𝜒. As greater skill specificity amplifies coworker talent comple-

mentarities, and holding fixed search costs, this fosters an equilibrium featuring more

positively assortative coworker matching in equilibrium. Figure 2b demonstrates this

positive relationship between 𝜒 and 𝜌𝑥𝑥 . Succinctly put, under strong skill specificity the

equilibrium features some firms with “superstar teams” composed of the most talented

workers and other firms with “laggard teams” (cf. Andrews et al., 2019; Autor et al., 2020).

3 Model Meets Data

In this section, I bring the model to the data. After introducing the dataset in Section

3.1, Section 3.2 maps key model objects to those data. I next calibrate the structural

parameters and explore its quantitative properties (Section 3.3), and finally validate core

model mechanisms using industry-level variation (Section 3.4).

3.1 Data

The empirical analysis draws on the Sample of Integrated Employer-Employee Data

(SIEED), an administrative matched employer-employee dataset for Germany provided

by the Institute for Employment Research (IAB). The dataset covers the entire workforce

of a 1.5% sample of all establishments in Germany as well as the complete employment

biographies of these workers, including spells in which they are not employed at the

sampled establishments. For each worker, the data include demographic characteristics

(e.g. age, gender, and education) and job information (e.g. employer, wages, occupation,
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and industry). The production unit is the establishment, defined by ownership, indus-

try and location; with that proviso, I use “establishment” and “firm” interchangeably.

This dataset enables the analysis of workers’ employment trajectories, including their

coworker relationships and earnings, over a long period.

To construct the main dataset used in the analysis, I proceed as follows. First, I

convert the spell-level data into an annual panel. Second, I restrict the sample to workers

aged 20–60 who are employed full-time at West German establishments in the non-

financial, non-agricultural private sector, requiring each establishment to have at least

ten worker observations per year. Third, the earnings variable is the residual (daily)

wage, constructed in line with previous studies (Card et al., 2013; Hagedorn et al., 2017)

by controlling for an unrestricted set of year dummies, education-specific age profiles,

and job tenure. Appendix B.1.1 provides further details on the sample construction and

descriptive statistics. The analysis in this section uses the subsample spanning 2010-2017

(3,605,972 person-year observations), unless indicated otherwise, while the analysis of

time-series trends in Section 4 uses the full sample (14,429,61 person-year observations).

3.2 Mapping theory to data

This section describes how theoretical objects are mapped to the data. Specifically, more

elaborate measurement strategies are needed to pin down three objects: worker types;

teams and coworkers; and skill specificity.

3.2.1 Worker talent types

In the theory, a worker’s type 𝑥̂ indexes their time-invariant talent. Empirically, I measure

𝑥̂ by exploiting the panel structure of data and model. As the wage is monotonically

increasing in talent – a standard propery of matching models with individual-level hetero-

geneity in absolute advantage – more talented workers have higher lifetime earnings, even

if in a single cross-section unemployment or poor match quality may imply a lower wage

compared to a less talented worker. I therefore estimate individual fixed effects (FE) from

panel wage regressions, controlling for observable characteristics and time-invariant

employer effects. Details are relegated to Online Appendix B.1.2. Ranking workers by

their FEs and binning them into deciles – aligned with the numerical solution of the

model on a ten-point talent grid – yields 𝑥̂𝑖 for each worker 𝑖. The mapping from these

ordinal rankings to cardinal measures of output and wages is discussed in Section 3.3.1.
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In addition to ranking workers economy-wide, as my baseline, I also consider ranking

workers within occupations as an interesting alternative. Under this approach, the

coworker correlation coefficient 𝜌𝑥𝑥 , for example, captures whether top performers in

each occupation tend to cluster together. Additionally, Online Appendix B.2 examines

robustness to alternative measures of worker productivity, notably years of schooling as a

non-wage metric, and addresses potential concerns about time-variation in talent due to

about human capital accumulation.

3.2.2 Defining teams and coworker(s)

Real-world production units typically have more than two workers, so I construct a

“representative coworker” type for each worker-year observation to map the two-worker

model to the data.26 Concretely, I take 𝑖’s coworkers in year 𝑡 to be given by the set of

employees in the same establishment-year cell, denoted 𝑆−𝑖𝑡 = {𝑘 : 𝑗(𝑘𝑡) = 𝑗(𝑖𝑡), 𝑘 ≠ 𝑖},

𝑗(𝑖𝑡) being the identifier of 𝑖’s period-𝑡 employer. Then 𝑖’s representative coworker in

year 𝑡 is the leave-out mean, 𝑥̂−𝑖𝑡 = 1
|𝑆−𝑖𝑡 |

∑
𝑘∈𝑆−𝑖𝑡 𝑥̂𝑘 .27 Importantly, this step aligns the

theoretical notion of teams with establishments.

This empirical aggregation step is immensely useful but also amounts to a signifi-

cant simplification, so it is worth considering what could go wrong. First, should only

same-occupation employees be treated as coworkers, rather than everyone in the same

establishment?28 The theory suggests otherwise – coworker complementarities arise

from skill differentiation, which is more likely across different occupations contributing

to joint output. Second, the theory strictly speaking implies that lower-talent coworkers

should receive higher weights in aggregation insofar as 𝜒 > 0 (cf. Proposition 1). Taking

an unweighted average is in line with existing studies but ignores these complementari-

ties across an individual’s coworkers. Online Appendix B.2.5) explains why the resulting

bias is minor. Third, ignoring team size variation may seem problematic. However, the

averaging naturally captures that a single coworker change matters less in larger teams.

26This approach is similar to Jarosch et al. (2021) and Herkenhoff et al. (2024), but aggregates worker
types rather than wages.

27By computing an arithmetic average, it is implicitly assumed that the intervals between (ordinal) types
are similar. This is consistent with the calibration of the model in Section 3.3. An alternative would be to
work with cardinal worker types throughout.

28Jarosch et al. (2021) refer to this distinction as “Team Definition 1” vs. “Team Definition 2.”
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3.2.3 Skill specificity: approach & auxiliary regression results

Measuring skill specificity (𝜒) presents the greatest challenge. Direct measurement

would involve detailed individual-level data on task-specific skills, computing the average

dispersion across individuals, but those data do not exist.29 Instead, I exploit the model’s

structure to infer 𝜒 indirectly; then show that the resulting estimate aligns with an

intuitive, albeit ordinal, task-based proxy for skill specificity across industries (Section

3.4) and over time (Section 4.2). In this section, I first present the key theoretical result that

guides measurement, then discuss the empirical implementation, and finally compare

my approach to the alternative of inferring 𝜒 from observed sorting patterns.

A useful identification result. Proposition 1 and Corollary 1 showed that 𝜒 is system-

atically related to 𝜕2 𝑓 (·)/𝜕𝑥𝜕𝑥′. How can we quantify this moment given our data on

worker types and wages? The central insight here is that the production cross-partial is

directly proportional to the wage cross-partial.

Corollary 4 (Measuring the production cross-partial). The cross-partial derivative of the

production function with respect to 𝑥 and 𝑥′, conditional on 𝜉, is proportional to that of

the wage function:

𝜕2 𝑓 (𝑥, 𝑥′, 𝜉)
𝜕𝑥𝜕𝑥′

∝ 𝜕2𝑤(𝑥|𝑥′, 𝜉)
𝜕𝑥𝜕𝑥′

. (26)

To see the reasoning behind this result, note first that can write the wage of 𝑥 employed

alongside 𝑥′ given 𝜉 as (see Appendix A.2.3)

𝑤(𝑥|𝑥′, 𝜉) = 𝜔
(
𝑓 (𝑥, 𝑥′, 𝜉) − 𝑓 (𝑥′)

)
+ (1 − 𝜔)𝜌𝑉𝑢(𝑥) (27)

− 𝜔(1 − 𝜔)𝜆𝑣.𝑢
∫ ∫

𝑑𝑢(𝑥̃′′)
𝑢

𝑆(𝑥̃′′|𝑥′, 𝜉̃)+𝑑𝐻(𝜉̃)𝑑𝑥̃′′.

Equation (26) follows from differentiating with respect to 𝑥 and 𝑥′. Intuitively, the worker

receives an 𝜔-share of the increase in production from being match with a coworker,

but the wage level also reflects outside options. While this complicates identification of

production functions using wage data (Eeckhout and Kircher, 2011; Hagedorn et al., 2017),

the cross-partial derivative is unaffected as the parties’ outside options are separable.

Intuitively, the new hire’s option is foregone regardless of coworker quality, while the firm

29Some datasets such as the NLSY and administrative data for Sweden and Denmark contain skill-specific
test scores, but these are typically limited to broad categories like verbal or technical ability.
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and incumbent’s options are foregone regardless of who is hired.

To empirically operationalize Corollary 4, two more steps are needed. First, as 𝜉 is

unobserved, I construct the average wage of a type-𝑥 worker employed together with

a coworker of talent 𝑥′, integrating over 𝜉, which is denoted by 𝑤̄(𝑥|𝑥′).30 Second, I

construct a first-order approximation of 𝜕𝑤̄(𝑥|𝑥′)
𝜕𝑥𝜕𝑥′ in the data, as discussed next.

Empirical operationalization. To empirically approximate 𝜕𝑤̄(𝑥|𝑥′)
𝜕𝑥𝜕𝑥′ , I estimate the fol-

lowing regression of individual-year level wages using OLS:

𝑤𝑖𝑡

𝑤𝑡
= 𝛽0 +

10∑
𝑑=2

𝛽1𝑑1{𝑥̂𝑖 = 𝑑} +
10∑
𝑑=2

𝛽2𝑑1{𝑥̂−𝑖𝑡 = 𝑑} + 𝛽𝑐(𝑥̂𝑖 × 𝑥̂−𝑖𝑡) (28)

+ 𝜓 𝑗(𝑖 ,𝑡) + 𝜈0(𝑖 ,𝑡)𝑡 + 𝜉𝑆(𝑖 ,𝑡)𝑡 + 𝜖𝑖𝑡

where 1{𝑥̂𝑖 = 𝑑} and 1{𝑥̂−𝑖𝑡 = 𝑑} are dummies for worker and coworker types, respec-

tively, 𝜓 𝑗(𝑖 ,𝑡) denotes employer fixed effects (FE), 𝜈𝑜(𝑖 ,𝑡)𝑡 are occupation-year FEs, 𝜉𝑠(𝑖 ,𝑡)𝑡
are industry-year FEs. I weight each observation by the inverse empirical frequency of the

associated (𝑥̂𝑖 , 𝑥̂−𝑖𝑡) match to ensure equal coverage of the state space. If the true data-

generating process for wages follows equation (28), then 𝛽𝑐 measures the cross-partial

of interest. Specifically, 𝛽𝑐 indicates how much more the wage of an individual 𝑖 rises,

as a percentage of the average wage 𝑤̄𝑡 , with a one-decile increase in coworker talent

compared to an individual 𝑖′ whose rank is one decile lower than that of 𝑖. The greater is

the degree of skill specificity 𝜒, the larger 𝛽𝑐 will be.

Identification comes from variation in coworker quality over time – which in the the-

ory naturally occurs due to search frictions. Variation includes both movers (i.e. changes

in coworker quality for individuals who switch employer) and stayers (i.e. changes in

coworker quality induced by other employees joining or leaving the coworker group).

Moreover, using pre-determined type measures – as opposed to estimating types and

coworker effects jointly – avoids the reflection problem (Manski, 1993), while controlling

non-parametrically for individual types addresses coworker sorting. Additionally, a rich

set of fixed effects absorb unobserved time-invariant employer heterogeneity and shocks

at the occupation-year or industry-year level.31

30This step is not trivial, as the distribution of 𝜉 among matches reflects selection processes (Borovickova
and Shimer, 2024). Specifically, for 𝜒 > 0 the horizontal distance 𝜉 tends to be lower for pairs whose
distance in talent space is high. Importantly, the direction of the implied bias in my estimate of the
production cross-partial, and hence 𝜒, is downward, so overall the results should be interpreted as a lower
bound for the importance of skill specificity and, hence, team production.

31Different from typical peer effects studies (e.g., Cornelissen et al., 2017; Nix, 2020), I focus on the
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Auxiliary regression results. Table 1 reports the estimates of 𝛽𝑐 for the sample period

2010-2017. The point estimate under the baseline specification, which corresponds to

equation (28) and is reported in column (4), is 0.0063 and statistically significant at the

1% level. To provide a sense of magnitude, this implies that the wage increase from a one

decile improvement in the average coworker quality is 3.15% greater, as a percentage of

the average wage, for a worker who is in the top decile compared to one in the fifth decile

(0.0063·(10-5)·1=0.0315).

(1) (2) (3) (4) (5)

Interaction coefficient (𝛽̂𝑐) 0.0067*** 0.0067*** 0.0063*** 0.0063*** 0.0059***
(0.0005) (0.0004) (0.0005) (0.0005) (0.0008)

Employer FEs No No Yes Yes Yes
Industry-year FEs No Yes No Yes Yes
Occupation-year FEs No No Yes Yes Yes
Type ranking Economy Economy Economy Economy Occupation
Obs. (1000s) 3,606 3,606 3,606 3,606 3,606
Adj. 𝑅2 0.788 0.800 0.801 0.813 0.769

Table 1: Auxiliary regression results (2010-2017)

Notes. Regression results based on equation (28), reporting the estimates of the coefficient on the interac-
tion term, 𝛽̂𝑐 . The dependent variable is the (residualized) wage, in levels and divided by the year-specific
average wage. Employer-clustered standard errors are given in parentheses. Observations are weighted by
the inverse employment share of the respective type and (rounded) coworker type cell. Observation count
rounded to 1000s. * p<0.1; ** p<0.05; *** p<0.01.

This finding holds up in a large battery of robustness analyses, some of which are

also reported in Table 1. First, it makes little difference to 𝛽̂𝑐 what combination of

employer/industry/occupation FEs is included. Second, when workers are ranked within

occupation, instead, 𝛽̂𝑐 is only slightly lower, at 0.0059 (column (5)). Third, when I repeat

the exercise of ranking workers and coworkers and estimating equation (28) separately for

each 2-digit industry, the average value of 𝛽̂𝑐 is likewise similar at 0.0061 (see Section 3.4).

Appendix B.2 reports a variety of other robustness checks, e.g. using years of schooling as

a non-wage measure of worker types.

Discussion. The coefficient 𝛽𝑐 serves as the targeted moment disciplining 𝜒 when, in

the next section, I estimate 𝜒 and other model parameters using indirect inference (as

interaction term as opposed to an average treatment effect, following Corollary 4, and I leverage the model’s
structure to separate type measurement from spillover estimation.
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described in the next section); equilibrium moments like the degree of coworker sorting

remain untargeted. An alternative, and in some ways more conventional, approach

would have been to infer 𝜒 by targeting, say, the coworker correlation coefficient 𝜌𝑥𝑥 ,

given the monotone relationship shown in Figure 2b.

The strategy adopted here, facilitated by the identification result in Corollary 4, has

three advantages. First, the model is very parsimonious and omits other mechanisms

that could generate positive coworker sorting, such as preference-based homophily (we

might just enjoy working together with others who are similar in talent) or sorting due

to ex-ante firm heterogeneity. Hence, targeting 𝜌𝑥𝑥 risks attributing “too much” to 𝜒.

Second, my calibration strategy is aimed at answering the original, motivating question

whether team production ’matters’ for macro-level outcomes. In principle, given the

estimated value of 𝛽̂𝑐 and the implied value of 𝜒, the model might generate very little

or a lot of equilibrium dispersion across firms. Third, the approach allows testing the

postulated link between skill specificity and sorting, which is done in Section 3.4.

3.3 Model calibration and quantitative properties

I now turn to the quantitative analysis of the model. I start by describing how structural

parameters are disciplined, then discuss the estimation results.

3.3.1 Methodology

I proceed in four steps. First, I impose some functional form assumptions to reduce the

complexity of the problem. Second, I preset two parameters based on the literature. Third,

I directly infer parameters which the model maps one-to-one to empirical moments.

Fourth, the remaining parameters are jointly estimated using indirect inference.

Functional form assumptions. To reduce the dimensionality of the estimation problem,

I make some simplifying assumptions. In particular, the model features a continuum

of talent types, 𝑥̂, which in the numerical analysis is discretized using ten grid points.

Moreover, the flow value of unemployment is assumed to be proportional to output

produced alone, with proportionality factor 𝑏. I also assume that the separation rate is a

linear function of talent, indexed by parameters 𝛿0 and 𝛿1.

Importantly, the functional form of the production function 𝑓 is directly informed by

the microfoundation, but for the quantitative exploration I introduce a few amendments.

First, Section 3.2.1 estimated worker types 𝑥̂𝑖 , whereas production function (12) took
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cardinal talent 𝑥𝑖 as its input. To flexibly map between ordinal and cardinal objects

I introduce two parameters, 𝑎0 and 𝑎1, into the production function.32 Thus, a firm

with a single worker produces 𝑓 (𝑥̂) = 𝑎0 + 𝑎1𝑥̂. Second, I introduce a size adjustment to

account for the fact that real-world teams have more than two members. This is important

because team size affects how variation in 𝜒 influences the efficiency gains from working

in teams relative to producing alone. Practically, I suppose that what the model treats as

the second hire shows up, in the production function, as the 𝑛̄th hire. Third, according to

Proposition 1, a greater value of 𝜉 raises both productivity and the strength of coworker

talent complementarities; the latter effect (weakly) lowers productivity. In the current

analysis, I omit the latter effect in order to isolate the mechanism that greater horizontal

coworker distance raises output whereas greater vertical (talent) coworker distance lowers

it. Thus, the team production function in the quantitative analysis is:

𝑓 (𝑥̂ , 𝑥̂′, 𝜉) = 2 ×
(
𝑛̄

𝑛̄ − 1

)𝜒𝜉
×

(
𝑎0 + 𝑎1

(1
2
(𝑥̂)

1
𝜒+1 + 1

2
(𝑥̂′)

1
𝜒+1

)𝜒+1)
. (29)

Preset parameters. Regarding preferences and bargaining, I follow Herkenhoff et al.

(2024). The discount rate 𝜌 is set to 0.008, consistent with an annual interest rate of

10%. Such a high rate is common in this type of model. A high discount factor effectively

proxies for concavity in the utility function, which tractability requires us to abstract from.

The bargaining parameter 𝜔 = 0.50 implies equal sharing of surplus.

Directly inferred parameters. I set 𝑛̄ equal to 14, which is the median unweighted

establishment size in the data. The parameters indexing the separation rate function,

𝛿0 and 𝛿1 are estimated offline to match type-specific monthly job losing rates, which I

compute from an auxiliary dataset, as described in Online Appendix C.1.1.

Internally estimated parameters. The remaining five parameters, collected in 𝜓 =

{𝜒, 𝑎0, 𝑎1, 𝑏,𝜆𝑢}, are estimated using standard indirect inference methods by matching

moments. The estimated values of these parameters minimize the objective function

𝒢(𝜓) =
5∑
𝑗=1

(
𝑚̂ 𝑗 − 𝑚 𝑗(𝜓)

1
2 |𝑚̂ 𝑗| + 1

2 |𝑚 𝑗(𝜓)|

)2
,

where 𝑚̂ 𝑗 refers to the empirical moment and 𝑚 𝑗(𝜓) denotes its model counterpart.

32Alternatively, one could directly estimate a mapping between 𝑥̂ and 𝑥.
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Parameter Description Value Source 𝑚 𝑚̂

𝜌 Discount rate 0.008 External
𝜔 Worker barg. weight 0.50 External
𝑛̄ Team size 14 Offline est.
𝛿0 Sep. rate, constant 0.0147 Offline est.
𝛿1 Sep. rate, scale -0.84 Offline est.
𝜒 Skill specificity 1.17 Internal: 𝛽𝑐 0.0063 0.0063
𝑎0 Production, constant 0.26 Internal: normalized wage 1 1
𝑎1 Production, scale 1.49 Internal: Var. log wages 0.23 0.23
𝑏 Unemp. flow utility, scale 0.64 Internal: replacement rate 0.63 0.63
𝜆𝑢 Meeting rate 0.23 Internal: job finding rate 0.16 0.16

Table 2: Model parameters (2010-2017)

Notes. This table lists for each of the parameters the value. For internally estimated parameters, it also
indicates the targeted moment, and moment values in data (𝑚̂) and model (𝑚).

While the elements of 𝜓 are jointly estimated, each is closely informed by one of these

moments, as explained next. Online Appendix Figure C.1 provides an illustration. Most

importantly, 𝛽̂𝑐 directly informs the strength of 𝜒, as discussed in Section 3.2.3. In practice,

I estimate an auxiliary regression analogous to equation (28) on model-generated data. As

the target moment I use 𝛽𝑐 , scaled by the standard deviation of coworker types, denoted

𝜎𝑥′; including the latter takes care of the concern that constructing the representative

coworker variable lowers the variability of coworker talent relative to the model.

The values of 𝑎0 and 𝑎1 are guided, respectively, by the average wage, which is nor-

malized to unity, and the total variance of log wages, which is equal to 0.23. Note that

both parameters raise the average wage but the dispersion of wages is decreasing in 𝑎0

yet increasing in 𝑎1. The parameter 𝑏1 is informed by the ratio at which the flow value of

unemployment replaces the (type-specific) average wage. Based on official administra-

tive replacement rates (post-Hartz reforms of the labor market undertaken in the 2000s)

and recent work by Koenig et al. (2021) that also accounts for non-monetary opportunity

costs of employment, I target a ratio of 0.63. Finally, 𝜆𝑢 targets a monthly job finding rate

of unemployed workers equal to 16.2%, again computed from the LIAB.

3.3.2 Estimated parameters and model properties

Table 2 summarizes the model parameters and evaluates the model fit. The model is

capable of matching the targeted moments perfectly, 𝜓 being exact-identified. I next
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Figure 3: Properties of the production function

Notes. In panel 3a, each cell indicates for every pair (𝑥, 𝑥′), the value of
𝑓 (𝑥,𝑥|𝜉=1)+ 𝑓 (𝑥′ ,𝑥′|𝜉=1)−2 𝑓 (𝑥,𝑥′ ,𝜉=1)

𝑓 (𝑥,𝑥|𝜉=1)+ 𝑓 (𝑥′ ,𝑥′|𝜉=1) .

Panel 3b plots
∫ ∫

𝑓 (𝑥,𝑥′ ,𝜉)
𝑓 (𝑥,𝑥′ ,1) 𝑑𝑥𝑑𝑥

′ as a function of 𝜉.

discuss the properties of the model, the guiding questions being: Given the estimated

value of 𝜒 equal to 1.17, how does output vary with team composition; what are the

implied sorting patterns; and what patterns of firm-level dispersion does this give rise to?

Properties of the estimated production function. Figure 3 illustrates key properties

of the production function. The left panel quantifies coworker talent complementarities.

Each cell value can be interpreted as the productivity gain from reallocating workers

from two talent-mixed teams into two talent-homogeneous teams. Whereas for 𝜒 = 0

this would be zero, given the estimated parameters, for workers at opposite ends of the

talent distribution, output is 23% higher under assortative matching. Tying this back

to the underlying task assignment, when skills are specific, a talented worker’s expands

more slowly as coworker talent falls, hence a larger share of tasks is performed by the

less talented team member. The right panel shows how output varies with horizontal

distance. Averaging over all possible talent combinations, output is 8% lower when 𝜉 = 0

– which corresponds to no division of labor – than when 𝜉 = 1.

Effects of coworker separation by horizontal distance. As a validation exercise, I show

that the model is consistent with and offers a structural interpretation of Jäger and

Heining’s (2022) findings, based on a quasi-experimental research design, regarding the

heterogeneous wage effects from unexpected coworker deaths. A core finding is that

while the average wage effect for remaining workers is positive, this masks substantial
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Figure 4: Effects of coworker separation

Notes. This figure shows the statistic
∫

𝑤(𝑥̂)−𝑤(𝑥̂|𝑥̂′ ,𝜉)
𝑤(𝑥̂|𝑥̂′ ,𝜉) 𝑑Φ̂(𝑥̂ , 𝑥̂′) for 4 differents bins of horizontal distance 𝜉.

heterogeneity. For example, the death of a worker with highly specialized human capital

(proxied by occupation-specific returns to experience) causes the wage of incumbents

in other occupations to decrease by 0.42% in the short-run and 1.99% in the long-run.33

Through the lens of the model, these effects are negative when the separated coworker

had very complementary skills. Figure 4 shows that the percentage change in the re-

maining worker’s wage due to a coworker separation (𝛿) shock becomes more negative

as 𝜉 increases. While the model predicts larger effect sizes than reported by Jäger and

Heining’s (2022) for highly differentiated tasks, it captures the key pattern that separations

reduce wages only when coworkers had complementary specialized skills.

Employment outcomes. Turning to macro-level outcomes, Appendix Figure C.3 show

that in the model – and in line with empirical evidence (e.g. Cairó and Cajner, 2018) –

more talented workers face a lower unemployment risk. This is due to lower separation

rates, not higher finding rates, talented workers being selective in accepting offers.

Labor market sorting and wage dispersion. Importantly, the model successfully re-

produces the empirically observed, but untargeted, sorting patterns. The theoretical

coworker correlation, 𝜌𝑥𝑥 , is strongly positive (0.45), approaching the empirical value

(0.64). Providing a more disaggregated picture, Figure 5 compares predicted and actual

conditional distributions of coworker talent in terms of quantiles (for ease of visualiza-

tion). The model’s predictions (panel 5b) align fairly well with the data (panel 5a). This fit

is notable since only 𝛽̂𝑐 informs sorting in the estimation.

33I thank the authors for sharing these statistics in percentage terms with me.
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Figure 5: Conditional coworker talent type distribution

Notes. For each quantile of the talent distribution, these plots – data on the left, model on the right – show
the employment share of coworker talent types, where those are binned into quantiles, too.

The model-predicted decomposition of wage dispersion into between- and within-

firm components likewise fits the data well, as will be discussed in detail in Section

4.2. Thus, even though firms are assumed to be ex-ante identical, the model endoge-

nously generates large ex-post differences in terms of observables – some firms are more

productive and pay more simply due to the quality of their teams..

3.4 Validation of model mechanisms: industry-level variation

This section reports correlational evidence in support of the core model mechanisms,

exploiting variation across industries and within-industries over time.34

For these analyses, and foreshadowing the analysis of time trends in Section 4.2, I

expand the sample to span 1985-2017 and divide these years into 5 periods indexed by

𝑝 (1985-1992, 1993-1997, 1998-2003, 2004-2009, 2010-2010). Then I measure worker

and coworker types, construct the coworker sorting coefficient 𝜌𝑥𝑥 separately for each

(2-digit) (industry 𝑠, sample period 𝑝) cell, and obtain a point estimate for the interaction

coefficient 𝛽𝑐 by estimating regression (28) within each cell (𝑠, 𝑝).

Task complexity proxy. In addition to structurally estimating 𝜒, I use a task-based proxy

for the degree of skill specificity: the share of tasks that are abstract and non-routine,

henceforth termed “task complexity.”35 Intuitively, a worker is likely to perform similarly

34An earlier version of this paper (Freund, 2023) also reported supportive cross-sectional evidence based
on Portuguese micro data. Also see the results reported in Criscuolo et al. (2024).

35To be clear, this proxy does not map one-to-one to the theoretical task-based setup. Unfortunately,
analytical tractability is lost with two types of tasks, essentially because a mixture of two Fréchets with
different shape parameters is not Fréchet.
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across different routine tasks, since almost definitionally no specific skills are required

(Martellini and Menzio, 2021, p. 340). By contrast complex tasks like investigating,

teaching or coordinating work offer greater scope for productivity variation across tasks,

as they demand cognitive skills that typically require specific training and which cannot

be executed by following pre-specified rules (cf. Autor et al., 2003).36 Thus, the share

of complex tasks involved in production can be viewed as a proxy for the extensive

margin of skill specificity (Deming, 2017). The proxy is useful because we can construct

it, model-free, from data on the task content of production.

Concretely, building on Spitz-Oener (2006), I use multiple waves from the BIBB/IAB

and BIBB/BAuA Employment Surveys to construct an index capturing the share of com-

plex tasks among a worker’s activities. Online Appendix B.1.3 details the survey question,

how I classify tasks, and how the individual level measures are merged into the SIEED-

based main dataset. In brief, the industry-level variation in task complexity in this section

reflects differences in occupational employment shares.

Results. Figure 6a demonstrates that industries with more weight on complex tasks,

such as architectural and engineering activities, exhibit more pronounced talent sorting

than industries where routine tasks dominate, like accommodation services or furniture

manufacturing. Panels 6b and 6c unpack this positive association through the lens of the

theory. They demonstrate that, empirically, greater task complexity – as a proxy for skill

specificity – is associated with a higher value of 𝛽𝑐 , which in turn predicts more positive

assortative matching of coworkers based on talent.37

Finally, we can exploit the industry-level variation to validate the task complexity

proxy for skill specificity. In a first step, I repeat the online estimation of the parameter

vector 𝜓, targeting average within-industry moments for 2010-2017 (see Appendix ??). In

a second step, I estimate industry-specific values of 𝜒, denoted 𝜒𝑠 , by keeping all other

parameters fixed and letting only the targeted moment 𝛽𝑐 vary. In a final step, Figure 6d

illustrates, in form of a scatter plot, that 𝜒𝑠 is positively correlated with the industry-level

task complexity measure.

In summary, industry-level variation strongly corroborates the model’s core mecha-

nisms as well as the use of task complexity as a proxy for skill specificity 𝜒.

36Consistent with this idea, Caplin et al. (2022) find the time needed to reach maximal productivity to be
highest for management roles or knowledge-intensive occupations, which tend to involve complex tasks.

37The two panels are based on within-industry variation, my preferred specification; Appendix B.2.3
shows that the picture looks similar using within-period variation across industries.
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Figure 6: Industry-level evidence

Notes. Panel (a) is a scatter plot; the data are collapsed across periods. Panel (b) and (c) are binned
scatter plots, controlling for industry FEs. Panel (d) shows the estimated value of 𝜒 for each industry,
plotted against task complexity, the estimation being done for 2010-2017 and letting only 𝜒 vary given
industry-specific estimates for 𝛽𝑐 .

4 Applications

I now proceed to show, in two applications, how the theory sheds light on the implications

of a rise in skill specificity on the evolution of wage inequality and what it tells us about

the determinants of aggregate productivity. I conclude with a discussion of the model’s

shortcomings and future research directions.
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4.1 Growing skill specificity

Both applications focus on the implications of deepening skill specificity (𝜒). The idea

that skills have become more specialized over recent decades has been articulated across

multiple strands of research, though thus far it has largely been treated qualitatively.38

I briefly discuss three lines of reasoning in support of the idea of rising skill specificity

and document supportive evidence before turning to a model-based analysis of the

implications of such a shift.

First, Deming (2017) documents an increased return to social skills, which he traces

back to an increase in skill specificity. Deming (2017) argues that this is due to jobs

becoming less routine over time, appealing to the link between task complexity and skill

specificity discussed in Section 3.4. Aligned with this idea, and using the same BIBB Data

as before, Figure 7a depicts an upward trend in the share of complex tasks reported by

individuals, increasing from 0.252 in 1986 to 0.647 in 2018, with an especially pronounced

rise between the 1990s and early 2000s, manifesting across all education groups.

Second, Jones (2009) argues that the “burden of knowledge” – the increasing cost of

reaching the frontier – necessitates increasingly narrow individual expertise. Though

formulated in the context of scientific production, this logic extends to much of knowl-

edge work more broadly (Neffke, 2019). For instance, returning to the example of medical

work introduced in the opening paragraph, Figure 7b shows that the number of distinct

specialty certificates issued by the American Board of Medical Specialties nearly doubled

from 1980 to 2020.

A third reason to believe that skill specificity has increased is the sharp acceleration

in secondary education since the 1980s. According to the Barro and Lee (2013) dataset,

the average years of secondary schooling in the German population aged 25+ increased

from 1.32 years in 1985 to 6.9 years in 2010 after being relatively flat previously (the share

of the population with complete secondary school attainment rose from 12.1% to 56.9%).

Through the lens of my theory, if more education augments task-specific skills randomly,

this rise in schooling translates into more dispersion in task-specific skills. Indeed, under

suitable functional form assumptions, this general reasoning can be shown to imply a

rise in the skill specificity parameter 𝜒.39

38Grigsby (2023) is the primary exception, showing that an increase in skill specificity, which in his model
mutes cross-occupation labor supply spillovers, is important to understand why real wages have shifted
from being countercyclical to mildly procyclical since the 2000s.

39Let 𝑍 be a Fréchet random variable (r.v.) with shape parameter 𝜃 > 0 and scale parameter 𝑥 > 0,
and let {𝐵𝑛}𝑛≥1 be a sequence of independent r.v.’s defined recursively as 𝐵𝑛 = exp (−𝑏𝑛/(𝛼𝜃𝑛−1)) where
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Discussion. Before moving on, it is worth stepping back to address two issues relating

to the measurement and interpretation of trends in skill specificity 𝜒. First, as data

constraints mean we have no direct, cardinal measure of 𝜒, I combine suggestive evidence

with a structural approach to estimating 𝜒. Second, I do not attempt to disentangle

technological shifts in task composition and human capital acquisition decisions as

alternative drivers of rising skill specificity, as I see them as being intricately intertwined.

For example, one potentially important factor is automation, displacing humans in

routine tasks and leaving us to handle the more complex problems (see Acemoglu and

Restrepo (2018) and related work). Solving these complex problems might require paying

a larger fixed learning cost or afford more ample opportunities for learning-by-doing,

which incentivizes the acquisition of specialized skills (Rosen, 1983; Alon, 2018).40

4.2 A model-based explanation for the “firming up” of inequality

Firms are increasingly viewed as playing a central role in the evolution of wage inequality.

An extensive empirical literature documents that, across many advanced economies, a

prominent feature of wage dispersion and its rise since the 1980s is the large and increased

share attributable to between-firm differences in pay. Despite figuring prominently in

academic and policy discussions, what we should infer from this so-called “firming up” of

inequality (Song et al., 2019) for our understanding of the rise in inequality and potential

policy responses depends on the underlying structural drivers. Those remain obscure.

My theory offers a parsimonious explanation for these trends in the firm-level struc-

ture of wage inequality: Growing skill specificity has amplified coworker talent comple-

mentarities, leading to more sorting and, hence, greater firm-level wage inequality.

𝛼 ∈ (0, 1), 𝜃0 = 𝜃, 𝜃𝑛 = 𝜃𝑛−1𝛼 = 𝜃𝛼𝑛 for 𝑛 ≥ 1, {𝑏𝑛}𝑛≥1 are independent r.v.’s such that exp (𝑏𝑛/𝛼) are
i.i.d. positive 𝛼-stable r.v.’s. Assume 𝑍 and {𝐵𝑛} are independent. Define the r.v.’s {𝑍(𝑛)}𝑛≥1 recursively as
𝑍(0) = 𝑍, 𝑍(𝑛) = 𝑍(𝑛−1) × 𝐵𝑛 , 𝑛 ≥ 1. Then for each 𝑛 ≥ 1, 𝑍(𝑛) is a Fréchet r.v. with scale 𝑥 and shape
𝜃𝑛 = 𝜃𝛼𝑛 . This result is a straightforward extension of Theorem 1 in Shanbhag and Sreehari (1977) and
Boehm and Oberfield (2022, Footnote 11). Intuitively, if an individual starts a school year with a certain
distribution of task-specific skills and leaves with a distribution where each task-specific skill is multiplied
by an independent draw from a fat-tailed distribution, with 𝛼 controlling the dispersion in the multiplying
draws, the more years of schooling they have, the more specific their skills will be, 𝜒 being the inverse of
the Fréchet shape parameter. I thank Ezra Oberfield for suggesting this idea.

40The broader point is that “skill” and “technology” are not neatly separable in a task-based setting,
different from theories where education or experience are sufficient statistics for a worker’s human capital.

38



1985 1990 1995 2000 2005 2010 2015

Year

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sh
ar

e 
of

 c
om

pl
ex

 ta
sk

s

High education
Medium education
Low education

(a) Rising task complexity

1960 1970 1980 1990 2000 2010 2020

Year

20

40

60

80

100

120

140

N
um

be
r 

of
 (

su
b-

)s
pe

ci
al

ty
 c

er
tif

ic
at

es

A Hematology

A
 P

ed
ia

tr
ic

 P
ul

m
on

ol
og

y

A
 G

er
ia

tr
ic

 P
sy

ch
ia

tr
y

A
 N

eurodevelop. D
isabilities

A
 C

linical Inform
atics

(b) Deepening medical specialization

Figure 7: Rising economy-wide task complexity & deepening medical specialization

Notes. Panel 7a is based on the BIBB data and depicts the average share of complex, or abstract non-
routine, tasks in individual workers’ set of activities for four points in time and distinguishing between
three education groups. Panel 7b is sourced from the American Board of Medical Specialities. For each
year, it shows the number of unique speciality or sub-speciality certificates that have been approved and
issued at least once by that year and which are are still being issued.

4.2.1 Empirical evolution of labor market inequality in Germany

I start by revisiting evidence on the evolution of wage inequality in the context of Germany

and document an upward trend in coworker talent sorting.

Wage distribution. Wage inequality in Germany has risen substantially since the mid-

1980s, and this increase is primarily accounted for by widening pay gaps between firms.

Figure 8a presents the yearly total variance of log wages (solid line) and decomposes it into

between-employer (dashed) and within-employer (dotted) component. By the law of total

variance, the total variance equals the sum of the two components. It rose from an average

of 0.13 in the interval 1985-1992 to 0.23 during 2010-2017. Of this 0.1 point increase,

around 90% are accounted for by the between-employer component. Put differently, the

share of the total log wage variance due to between-employer differences rose increased

from 33% in 1985-1992 to 57% during 2010-2017. This evidence is consistent with the

results documented by Card et al. (2013) and Song et al. (2019), among others.

Coworker sorting. Furthermore, highly productive workers increasingly cluster in the

same establishments, segregated from other, less productive workers, who cluster in

different workplaces. To establish this point, I construct worker and (representative)

coworker types separately for 5 sample periods. Table 3 reports the period-specific, em-

pirical coworker correlation. Column (1) reveals that coworker sorting has risen from
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(b) Coworker sorting

Figure 8: The evolution of wage inequality and coworker sorting

Notes. The left panel shows the variance of log (residual) wages, decomposed into between-employer (the
person-weighted variance of firm-level average log wages) and within-employer components. The change
in the between-share indicated compares the average over 1985-1992 and 2010-2017. The right panel
plots, for any percentile of the worker type distribution the percentile rank of the average coworker type.
Workers are ranked economy-wide. For visual clarity, types are grouped into 50 cells, then coworker quality
is computed for each cell.

an average of 0.38 during 1985-1992 to 0.64 during 2010-2017 — a 68% increase. Col-

umn (2) displays the correlation coefficient when workers are ranked within occupation,

thus controlling for occupational composition effects. The increase is smaller (+0.16

instead of +0.26), suggesting that the baseline measure partly picks up enhanced seg-

regation along occupational lines, but still very notable – a 50% rise – indicating that

top-performing workers within each occupation are increasingly likely to work together.

Figure 8b visualizes this intensification in sorting as a binscatter plot.

Coworker sorting

Period Within-economy type ranking Within-occupation type ranking

1985-1992 0.38 0.32
1993-1997 0.44 0.37
1998-2003 0.51 0.42
2004-2009 0.58 0.45
2010-2017 0.64 0.48

Table 3: Coworker sorting over time
Notes. This table indicates the correlation coefficient between a worker’s estimated type and that of their
average coworker, computed separately for five sample periods.
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Figure 9: Skill specificity has increased alongside task complexity

Notes. This figure reports the estimated value of skill specificity 𝜒 (shown as 𝜒
𝜒+1 ) alongside the point

estimate for the coefficient 𝛽𝑐 (× 100) estimated from regression (28), separately for five sample periods. In
addition, the circles reproduce the share of complex tasks in workers’ activities from Figure 7a. (The years
of the survey waves and the sample split in the matched employer-employee data do not align perfectly, so
the task measures are placed approximately at the mid-points of the closest sample period.

4.2.2 Model-based analysis

I next use the model to evaluate to what extent a rise in skill specificity can account for

the firming up of inequality.

Calibration. I re-calibrate the model for each of the 4 sample periods prior to 2010-2017,

reaching back to 1985. This is possible thanks to the SIEED’s long coverage.

Concretely, I first estimate equation (28) period-by-period to recover the interaction

coefficient 𝛽𝑐 . I use these moments to discipline 𝜒 when re-estimating the parameter

vector 𝜓 by targeting the same empirical moments as for 2010-2017 but measured for

earlier time periods. Regarding the targeted moments, two further aspects warrant

comments. First, considering the replacement rate, I summarize the multiple dimensions

of the Hartz reforms as a reduction of the monetary replacement rate by around 10%,

similar to Jung et al. (2023). This implies a target equal to 0.69 for the first three intervals,

compared to 0.63 for the latter two. Second, to allow for the possibility of a decline in the

strength of search frictions, as argued e.g. by Martellini and Menzio (2020), I allow the

labor market transition rates to change across sample periods, too.

Turning to estimation results, I find an increase over time in the strength of skill

specificity. Figure 9 displays the evolution of the point estimates for 𝛽𝑐 and the indirectly

inferred value of skills specificity 𝜒 alongside the task complexity proxy. It can be seen
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Figure 10: Evolution of wage inequality and sorting in the model

Notes. In the left panel, the solid lines indicate the model-predicted variance of log wages, decomposed
into between- and within-employer components. The model-generated between-within decomposition is
corrected for a mechanical bias, as described in Appendix C.1.3. The right panel plots the average coworker
talent type (vertical axis) for each worker talent type (horizontal axis), for two separate sample periods.

that the estimates for 𝛽𝑐 , as a reduced-form moment, and hence 𝜒, as the underlying

structural parameter, increase over time and co-move with the task-complexity proxy.41

The full set of parameter estimates is reported in Online Appendix Table C.1. Of note,

the production parameter 𝑎0 has decreased and 𝑎1 has increased over time, which is

consistent with technological change that has made output more sensitive to skill. In

addition, increases over time in both job arrival and job separation rates may reflect the

emergence of online job portals (Bhuller et al., 2023).

Model-implied trends in wage dispersion. The structural model qualitatively replicates

the empirically recorded evolution of between- and within-firm inequality. Figure 10a

depicts the model-implied decomposition of the variance of log wages for each of the

sample periods. In spite of only the total variance of log wages having been targeted, the

model captures almost the entire empirically recorded increase in the between-firm share

(+0.22 vs. 0.24). Furthermore, aligned with the evidence, the increased between-firm

share goes along with more positively assortative matching, as illustrated in Figure 10b

which compare 2010-2017 with 1985-1992. The upward tilt in the mapping between

worker talent and coworker talent echoes the data patterns presented in Figure 8b: High

types increasingly pair up among themselves, as do lower types. A limitation of the model

41The finding that 𝛽𝑐 has increased over item is robust to the same checks discussed in Section 3.2.3.
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Figure 11: Increasing firm-level labor productivity dispersion in the model

Notes. This figure plots the cumulative distribution of labor productivity implied by the calibrated model(s).

is that it understates the degree of coworker sorting in the earlier years.

Beyond wage disparities across workplaces, the model indicates that enhanced talent

sorting also contributed to widening labor productivity gaps between firms. Illustrating

this effect, Figure 11 plots the model-implied cumulative distribution of log labor pro-

ductivity. The distribution for 2010-2017 exhibits more density at both the lower and

the upper end of the distribution compared to 1985-1992. We can infer, therefore, that

increased coworker complementarities also reinforced firm-level productivity dispersion,

consistent with trends discussed in the firm dynamics literature.42

Counterfactual analysis. What portion of the model predicted rise in the between-

firm share of wage inequality can be attributed to stronger skill specificity? The answer

is not obvious since each of the internally estimated parameters changed, potentially

influencing the model implied decomposition. The theory implies, for instance, that a

higher job arrival rate amplifies sorting, as workers can accept offers more selectively.

Additionally, technological change that amplifies the return to talent can mechanically

lead to greater between-firm inequality, even holding the distribution of workers constant,

provided it exhibits positive sorting: It would elevate the relative remuneration of high-

earning individuals, who cluster together.43

42While the SIEED is not suited for examining firm-level productivity, evidence from other countries sug-
gests that rising firm-level wage inequality has indeed been paralleled by a growth in firm-level productivity
dispersion. See, for instance, Decker et al. (2020) and Sorkin and Wallskog (2021).

43Within the AKM-framework, increased return to talent could mechanically magnify both the worker-
firm sorting and the worker segregation components. Song et al. (2019) attribute 9% and 35%, respectively,
of the increase in worker-firm sorting and worker segregation in the U.S. to these effects.
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Δ model Implied % Δ model due to Δ par

Baseline 0.221 –
Cf.: 𝜒 fixed 0.077 65.2%
Cf.: labor mkt. transition rates fixed 0.198 10.6%
Within-occ. ranking 0.176 -
Cf. 𝜒 fixed 0.005 98.0%
Within-industry analysis 0.19 -
Cf. 𝜒 fixed 0.004 98.0%

Table 4: Counterfactuals: explaining the rise in the between-firm share of wage inequality

Notes. This table summarizes the counterfactual (“Cf.”) exercises evaluating changes in the between-firm
share of wage inequality. The second column indicates the change in the between-share from 1985-
1992 to 2010-2017 for the model specified in the first column. The final column is computed as follows,
using the example of “Cf. a:”. Denoting by 𝑚 𝑗 the model-implied between-share, the value is equal to

100 ×
(
1 − 𝑚𝑗 (𝜒𝑝1 ,𝜓𝑝2−1)−𝑚𝑗 (𝜓𝑝1)

𝑚𝑗 (𝜓𝑝2)−𝑚𝑗 (𝜓𝑝1)
)
, where 𝜒𝑝𝑡 is the value of 𝜒 estimated for period 𝑝𝑡, 𝑡 ∈ {1, 2}, and 𝜓

𝑝𝑡

−1
collects all other parameters.

Counterfactual model exercises indicate that the increase in 𝜒 is an important driver

of elevated firm-level wage inequality. To quantify the mechanism, I consider the fol-

lowing counterfactual scenario: What would the between-firm share of the variance

of log wages have been in the 2010s had 𝜒 remained constant at its 1985-1992 level? I

then compute the implied difference in the between-share across the factual and the

counterfactual scenarios. Row 2 in Table 4 summarizes the analysis. Absent a rise in 𝜒,

the model predicts, the between-share would have risen only by 0.077 percentage points

rather than 0.221. Thus, the rise in 𝜒 can account for about 65% of the model-predicted

rise in the between-firm share of wage inequality.

Shifts in the production technology represent a more important factor than changes

in search technology, though both are consequential. For this comparison, I consider a

further counterfactual, imposing that both job arrival and separation rates, 𝜆𝑢 and 𝛿, had

remained at their 1985-1992 levels. This exercise suggests that their joint increase can

explain 10.6% of the model-predicted rise in the between-share.44

Sensitivity analysis. Robustness exercises suggests that the results are robust to two

important points of concern, relating to occupational and industry dynamics. Table 4

44The relatively limited contribution made by declining search frictions is consistent with Kantenga and
Law’s (2016) study. A caveat regarding this exercise is that the transition rates are treated as exogenous in
the structural model, despite being plausibly endogenous to technological change. Intuitively, an increase
in 𝜒, by rendering mismatch more costly, would itself incentivize greater search effort. The increase in
meeting rates is consistent with this mechanism, but examining it further is beyond the scope of this paper.
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summarizes the results from these counterfactual exercises.

One concern is that the measurement underlying the baseline figures is confounded

by outsourcing dynamics or related shifts in the boundary of the firm (e.g. Song et al.,

2019, Section V.B.). To address this possibility, I consider the aforementioned, alternative

approach whereby workers are ranked within-occupation as opposed to economy-wide.

Under this specification, an increasing in sorting, for instance, could not be driven

by greater sorting of high- and low-wage occupations into different establishments. I

estimate the model parameters targeting 𝛽𝑐 estimates obtained under this approach

(see Online Appendix Table C.2). The analysis yields a model-predicted increase in the

between-firm share equal to +0.176, of which the great majority is attributed to increased

skill specificity.

A second worry is that the analysis so far has abstracted from industry-level differences

in the production function (e.g. Haltiwanger and Spletzer, 2020). I therefore repeat

the calibration and counterfactual exercise, but this time targeting the average within-

industry average of the variance of log wages and 𝛽𝑐 estimated at the two-digit industry

level (see Online Appendix Table C.3 for parameter estimates). As summarized in Table

4, under this alternative specification, the rise in skill specificity explains almost the

entirety of the empirically observed rise in the between-firm within-industry share of

wage dispersion.

Person-level inequality and comparison to Kremer (1993). The theory also clarifies

that rising skill specificity, talent complementarities and coworker sorting do not by

themselves exacerbate person-level inequality. This may seem surprising in light of Kre-

mer (1993), which is sometimes understood as saying that amplified complementarities

lead to a convexification of the wage function. However, this prediction hinges on the

assumption that production exhibits increasing returns to team quality (cf. Kremer, 1993,

III). Here I instead consider the constant-returns case, thus isolating the role of com-

plementarities. Nor is it the case that rising coworker sorting by itself leads to higher

person-level inequality. In Kremer (1993) changes in sorting play no role at all – sorting

is always perfect (i.e. 𝜌𝑥𝑥 = 1) – and in this model, increasing talent sorting leads to

a rise in between-firm wage inequality that is offset by a fall in within-firm inequality.

The takeaway from this model is, therefore, that a rise in 𝜒 together with talent-biased

technological change – captured by lower 𝑎0 and higher 𝑎1 – jointly lead to a rise in

person-level inequality driven by heightened firm-level wage dispersion.

Several extensions of the model could introduce channels through which greater

45



coworker sorting amplifies person-level inequality. First, coworker sorting might weaken

the effectiveness of institutions, both formal or informal (Akerlof and Yellen, 1990), that

compress the within-firm pay distribution for heterogeneous workers. Second, greater

sorting may dynamically foster lifetime inequality if coworker learning effects are impor-

tant (Jarosch et al., 2021; Herkenhoff et al., 2024).

4.3 Labor market frictions impede gains from specialization

This section quantitatively shows how the aggregate productivity gains from skill special-

ization hinge on the ’right’ teams being formed.

Quantitative analysis. To clarify the mechanism, I first consider economy parameter-

ized for the 2010s and quantify the output costs of coworker mismatch. Technically, I

calculate the difference in average labor productivity between the equilibrium allocation

and counterfactual scenarios with alternative coworker distributions, holding constant

the marginal distribution of workers in teams 𝜙(𝑥). If sorting were perfectly assorta-

tive and 𝜉 = 1 for every match, output would be 6% greater; keeping the joint talent

distribution 𝜙(𝑥, 𝑥′) at its equilibrium value but setting 𝜉 = 1 raises output by 4.2%.

While this exercise held 𝜒 fixed, the theory’s most distinctive implications concern the

effects of an increase in skill specificity when accounting for both endogenous changes in

production complementarities and labor market frictions. Intuitively, while increased

skill specificity delivers a direct boost to productivity – under the division of labor, disper-

sion is desirable – the reduced-form production function (12) clarified that, at the same

time, it renders output more vulnerable to mismatch.

Figure 12 shows how labor productivity varies with 𝜒 for different labor market alloca-

tions. To construct this figure, all other parameters are held constant at their baseline

values and labor productivity is normalized at the lowest value of 𝜒. The solid line repre-

sents the estimated German economy, the dashed line captures potential productivity

and the dotted gray line represents a very frictional economy. The productivity frontier is

calculated as above (PAM + 𝜉 = 1), while the very frictional economy corresponds to a

scenario where talent sorting is random and 𝜉 = 0.5.

The figure reveals that labor market frictions can severely curtail the realized produc-

tivity benefits from greater skill specialization. In the baseline economy, roughly half of

the potential gains are realized, and this number falls to about a third in the very frictional

economy. The key to understand this result is that as 𝜒 increases, the team’s joint output

becomes increasingly vulnerable to coworker mismatch.
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Figure 12: Productivity gains from growing specialization under alternative matching regimes

Discussion. Economic development tends to involve a trend toward greater skill spe-

cialization. The analysis in this section suggests that in understanding the implications

of this trend, it is important to take into account the endogeneity of coworker comple-

mentarities and their interaction with labor market frictions. This finding aligns well with

– and offers a microfoundation for – the cross-country evidence presented in Bandiera

et al. (2024). Moreover, if labor market frictions limit the gains from specialization, as

suggested by the theory, this may help explain recent findings of limited specialization in

poorer countries (Bassi et al., 2023; Atencio-De-Leon et al., 2024).

4.4 Discussion: shortcomings and directions for future work

The model imposes several simplifying assumptions. I briefly discuss the resulting

shortcomings and highlight avenues for future research.

Firm size. Most conspicuously, firm size was limited to two workers, which precludes

analyzing firm growth patterns. Relaxing this assumption would allow assessing the role

of team quality in explaining large growth rate differences among young firms in particu-

lar (Sterk et al., 2021). In addition, adding ex-ante firm heterogeneity in product quality

and physical capital would facilitate a more comprehensive quantitative assessment of

the relative importance of team quality in explaining firm-level productivity dispersion.

A companion paper (Criscuolo et al., 2024) documents reduced-form empirical evidence

which suggests both avenues are promising.

On-the-job search. The model also did not allow for on-the-job search. To incorporate

this empirically salient feature is feasible, though it requires introducing 𝜉 as an additional
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state variable. It is likely that an enriched model would be better able to capture empirical

sorting patterns, which, as mentioned above, the current model does far from perfectly.45

Within-organization frictions. Enriching the organizational core of the model would

open the door to studying additional implications of skill specialization and team produc-

tion. For instance, the model in its current world abstracted from real-world coordination

frictions, yet empirically some managers and some firms appear to be better in coordi-

nating their workforce than others (Coraggio et al., 2022; Minni, 2022; Kuhn et al., 2023;

Coraggio et al., 2022). An extension of my framework that introduces an explicit manage-

rial role has the potential to capture this important feature of the data and – I conjecture –

would likely show that the return to coordination skill has increased alongside growing

skill specificity.

5 Conclusion

This paper developed a task-based theory of team production and formation – formalizing

the idea of the firm as a “team assembly” – which is both rich enough to be confronted

with micro data and remains sufficiently tractable for quantitative explorations.

The theory delivers four key insights. First, when production involves the division

of labor among workers with specialized skills, coworkers’ productivity is inherently

non-separable. Production features coworker talent complementarities whose strength is

endogenously increasing in the degree of skill specificity. Second, in frictional labor mar-

kets, these complementarities determine the degree of dispersion in talent, productivity

and wages across firms. Third, growing skill specificity since the mid-1980s has amplified

complementarities, which helps explain increased talent sorting and firm-level wage

inequality. Fourth, while greater skill specificity carries potential productivity gains, fric-

tions that impede the matching of coworkers with complementary skills can significantly

limit the realized gains.

I hope that the framework developed in this paper encourages and facilitates further

empirical and theoretical research taking a team-centric approach to firms. Relevant

directions include, among others, the role of managers as coordinators and that of of

teams in explaining heterogeneous firm growth.

45Moreover, introducing both “large firms” and OJS would facilitate assessing structurally and quantita-
tively to what extent reduced-form AKM estimates of “firm pay premia” pick up coworker effects.
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This online appendix contains supplemental material for the paper “Superstar Teams.”

Any references to sections, equations, figures, tables, assumptions, propositions, lemmas

or corollaries that are not preceded by a capital letter refer to the main article.

A Theoretical appendix

A.1 Proofs and derivations for team-production model

Following the introduction of auxiliary definitions and lemmas (Section A.1.1), this sec-

tion provides proofs of Lemma 1 (Section A.1.2) and of Proposition 1 (Section A.1.3). The

first of these exploits that the team production problem is cast so as parallel the structure

of an Eaton and Kortum (2002) style trade model, formulated as a planner problem and

allowing for correlation across producers’ task-specific skills (Lind and Ramondo, 2023).

A.1.1 Auxiliary definitions and lemmas

Definition A.1 (Fréchet distribution). A random variable 𝑍 has a Fréchet distribution

with scale parameter 𝑠 > 0 and shape parameter 𝛼 > 0 if P [𝑍 ≤ 𝑧] = 𝑒−( 𝑧𝑠 )
−𝛼

.

Lemma A.1. Let the random variable 𝑍 be Fréchet-distributed with scale parameter 𝑠

and shape parameter 𝛼 > 1. Then E [𝑍] = 𝑥Γ
(
1 − 1

𝛼

)
, where Γ(𝑟) =

∫ ∞
0
𝑡𝑟−1𝑒−𝑡𝑑𝑡 is the

Gamma function.

Proof.

E [𝑍] =
∫ ∞

0
𝑧
𝜕

𝜕𝑧
P [𝑍 ≤ 𝑧] 𝑑𝑧 =

∫ ∞

0
𝑧

(
𝛼
1

𝑠

(
𝑧

𝑠

)−𝛼−1
𝑒−( 𝑧𝑠 )

−𝛼
)
𝑑𝑧

=

∫ ∞

0
𝑧𝑒−( 𝑧𝑠 )

−𝛼 (
𝛼𝑠𝛼 (𝑧)−𝛼−1

)
𝑑𝑧 = 𝑠

∫ ∞

0
𝑡−1/𝛼𝑒−𝑡𝑑𝑡 = 𝑠Γ(1 − 1

𝛼
).

□
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Definition A.2 (Multivariate Fréchet distribution). A random vector (𝑍1, ..., 𝑍𝑛) has a

multivariate Fréchet distribution with a vector of scale parameters (𝑠1, ..., 𝑠𝑛) ∈ R++,

shape parameter 𝛼 > 0 and correlation parameter 𝜉 ∈ (0, 1], if

P [𝑍1 ≤ 𝑧1, . . . , 𝑍𝑛 ≤ 𝑧𝑛] = exp

−
(
𝑛∑
𝑖=1

(
𝑧𝑖

𝑠𝑖

)− 𝛼
𝜉

)𝜉 .
The term “multivariate Fréchet distribution” is used here to refer to the specific, sym-

metric dependence structure above; in principle a different or more flexible dependence

structure could be considered.

Lemma A.2. Let the random vector (𝑍1, ..., 𝑍𝑛) be distributed multivariate-Fréchet with

scale parameters (𝑠1, ..., 𝑠𝑛), shape parameter 𝛼 and correlation parameter 𝜉. Then for any

𝐵𝑖 > 0, 𝑖 = 1, ..., 𝑛 and 𝛽 > 0, the random variable max𝑖=1,...𝑛 𝐵𝑖𝑍
𝛽
𝑖

is Fréchet distributed

with scale

(∑𝑛
𝑖=1

(
𝑠𝛼
𝑖
𝐵
𝛼/𝛽
𝑖

)1/𝜉)𝜉𝛽/𝛼
and shape 𝛼/𝛽.

Proof.

P

[
max
𝑖=1,...,𝑛

𝐵𝑖𝑍
𝛽
𝑖
≤ 𝑝

]
= P

[
𝑍1 ≤

(
𝑝/𝐵1

)1/𝛽
, ..., 𝑍𝑛 ≤

(
𝑝/𝐵𝑛

)1/𝛽]
= exp

−
©­«
𝑛∑
𝑖=1

( (
𝑝/𝐵𝑖

)1/𝛽
𝑠𝑖

)− 𝛼
𝜉 ª®¬

𝜉
= exp

−
(
𝑛∑
𝑖=1

(
𝑠𝛼𝑖 𝐵

𝛼/𝛽
𝑖

) 1
𝜉

)𝜉
𝑝−𝛼/𝛽

 .
□

A.1.2 Proof of Lemma 1

A.1.2.1 Part (i). Start with the expression for the shadow-price index in equation (7)

and substitute for 𝜆(𝜏) using equation (8):

𝜆 =

[∫ ∞

0
(𝜆(𝜏))1−𝜂 𝑑𝜏

] 1
1−𝜂

=


∫ ∞

0

(
min
𝑖=1,..,𝑛

𝜆𝐿
𝑖

𝑧𝑖(𝜏)

)1−𝜂
𝑑𝜏


1

1−𝜂

=

E
 max
𝑖=1,...,𝑛

(
𝑍𝑖

𝜆𝐿
𝑖

)𝜂−1


1
1−𝜂

Online Appendix - p.2



=


©­«
𝑛∑
𝑖=1

(
𝑥𝑖

𝜆𝐿
𝑖

) 1
𝜒𝜉 ª®¬

−𝜉𝜒(1−𝜂)

𝜄𝜂−1Γ(1 + 𝜒(1 − 𝜂))


1
1−𝜂

=
©­«
𝑛∑
𝑖=1

(
𝑥𝑖

𝜆𝐿
𝑖

) 1
𝜒𝜉 ª®¬

−𝜒𝜉

,

where Γ(·) is the Gamma function, evaluated at the argument 1 + 𝜒(1 − 𝜂) > 0. The

third equality uses that 𝜆𝐿
𝑖

and 𝑧𝑖(𝜏) are strictly positive and that 𝜂 > 1, and the fourth

equality follows from Lemma A.2, used to derive the distribution of the random variable

max𝑖=1,...,𝑛

(
𝑍𝑖/𝜆𝐿𝑖

)𝜂−1
, followed by application of Lemma A.1.

A.1.2.2 Part (ii). We start with the definition of task shares

𝜋𝑖 := P

[
𝜆𝑖(𝜏) = min

𝑘=1,..,𝑛
𝜆𝑘(𝜏)

]
= P

[(
𝑍𝑖/𝜆𝐿𝑖

)
= max

𝑘=1,...,𝑛

(
𝑍𝑘/𝜆𝐿𝑙

)]
To ease notation, let 𝐺(𝑟1, ..., 𝑟𝑛) =

(∑𝑛
𝑖=1 𝑟

1/𝜉
𝑖

) 1
𝜉

so that the distribution defined in

Assumption 1 can be written as exp

(
−𝐺

((
𝑧1
𝜄𝑥1

)−1/𝜒
, ...,

(
𝑧𝑛
𝜄𝑥𝑛

)−1/𝜒))
. Note that since

𝐺(·) is homogeneous of degree one, the partial derivatives𝐺𝑖(·) = 𝜕𝐺(·)/𝜕𝑟𝑖 = 𝑟
1
𝜉−1
𝑖

(∑𝑛
𝑖=1 𝑟

1/𝜉
𝑖

) 1
𝜉−1

are homogeneous of degree 0. Additionally, let 𝑥̃𝑖 = 𝜄𝑥𝑖/𝜆𝐿𝑖 for any 𝑖.

Consider initially the following expression for any 𝑧,

P

[
max
𝑘=1,...,𝑛

𝑍𝑘

𝜆𝐿
𝑘

≤ 𝑧 and
𝑍𝑖

𝜆𝐿
𝑖

= max
𝑘=1,...,𝑛

𝑍𝑘
𝜆𝑘

]
= P

[
𝑍𝑖

𝜆𝐿
𝑖

≤ 𝑧 and
𝑍𝑘
𝜆𝑘

≤ 𝑍𝑖

𝜆𝐿
𝑖

, ∀𝑘 = 1, ..., 𝑛

]
=

∫ 𝑧

0

𝜕

𝜕𝑧𝑖
exp

(
−𝐺

((
𝑧1

𝑥̃1

)− 1
𝜒

, ...,

(
𝑧𝑛

𝑥̃𝑛

)− 1
𝜒

)) ����
𝑧1=𝑡 ,...,𝑧𝑛=𝑡

𝑑𝑡

=

∫ 𝑧

0

1

𝜒
𝑧
− 1

𝜒−1
𝑖

𝑥̃
1
𝜒

1 𝐺𝑖

((
𝑧1

𝑥̃1

)− 1
𝜒

, ...,

(
𝑧𝑛

𝑥̃𝑛

)− 1
𝜒

)
× exp

(
−𝐺

((
𝑧1

𝑥̃1

)− 1
𝜒

, ...,

(
𝑧𝑛

𝑥̃𝑛

)− 1
𝜒

)) ����
𝑧1=𝑡 ,...,𝑧𝑛=𝑡

𝑑𝑡
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=

∫ 𝑧

0

1

𝜒
𝑡−

1
𝜒−1𝑥̃

1
𝜒

𝑖
𝐺𝑖

((
𝑡

𝑥̃1

)− 1
𝜒

, ...,

(
𝑡

𝑥̃𝑛

)− 1
𝜒

)
× exp

(
−𝐺

((
𝑡

𝑥̃1

)− 1
𝜒

, ...,

(
𝑡

𝑥̃𝑛

)− 1
𝜒

))
𝑑𝑡

= 𝑥̃
1
𝜒

𝑖
𝐺𝑖(𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛 )

∫ 𝑧

0

1

𝜒
𝑡−

1
𝜒−1 exp

(
−𝐺

(
𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛

)
𝑡−

1
𝜒

)
𝑑𝑡

=
𝑥̃

1
𝜒

𝑖
𝐺𝑖(𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛 )

𝐺

(
𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛

) ∫ 𝑧

0

1

𝜒
𝑡−

1
𝜒−1𝐺

(
𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛

)
exp

(
−𝐺

(
𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛

)
𝑡−

1
𝜒

)
𝑑𝑡

=
(𝑥𝑖/𝜆𝐿𝑖 )

1
𝜒𝜉∑𝑛

𝑘=1(𝑥𝑘/𝜆𝐿𝑘 )
1
𝜒𝜉

×
[
exp

(
−𝐺

(
𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛

)
𝑡−

1
𝜒

)] 𝑧
0

=
(𝑥𝑖/𝜆𝐿𝑖 )

1
𝜒𝜉∑𝑛

𝑘=1(𝑥𝑘/𝜆𝐿𝑘 )
1
𝜒𝜉

× exp

(
−𝐺

(
𝑥̃

1
𝜒

1 , ..., 𝑥̃
1
𝜒
𝑛

)
𝑧−

1
𝜒

)
,

where line five exploits 𝐺(·) being h.o.d. one and 𝐺𝑖(·) being h.o.d. zero; the last equality

follows because exp(−∞) = 0. Now letting 𝑧 → ∞ yields the desired result.

Note, furthermore, that the max-stability property of the Fréchet distribution ensures

that the conditional distribution of the maximum equals the unconditional distribution

of the maximum. This ensures that𝑄𝑖 = 𝜋𝑖𝑄, so that 𝜋𝑖 also corresponds to fraction of

the shadow value of all tasks used in final good production attributable to 𝑖, analogous to

the reasoning in Eaton and Kortum (2002). □

A.1.3 Proof of Proposition 1

Letting 𝜒̃ = 𝜒𝜉, part (i) of Lemma 1 implies, given the normalization 𝜆 = 1, that

1 =

𝑛∑
𝑖=1

(
𝑥𝑖

𝜆𝐿
𝑖

) 1
𝜒̃

. (A.1)

Substituting this into the expression for 𝜋𝑖 in part (ii) of Lemma 1 yields

𝜋𝑖 = (𝑥𝑖/𝜆𝐿𝑖 )
1
𝜒̃ , (A.2)

which says that the share of tasks performed by 𝑖 is increasing in her talent and decreasing

in the shadow cost of her labor.

Next we derive an expression for 𝜆𝐿
𝑖

as a function of 𝜋𝑖 and𝑌. The FOC for 𝑙𝑖(𝜏) given

Online Appendix - p.4



𝑦𝑖(𝜏) > 0 implies that

𝑙𝑖(𝜏) = (𝜆𝑖(𝜏)𝜆𝐿𝑖 )𝑦𝑖(𝜏).

By integrating over tasks and using the time constraint (4) we find that

𝜆𝐿𝑖 =

∫
𝜆𝑖(𝜏)𝑦𝑖(𝜏)𝑑𝜏.

Since 𝜆(𝜏) = 𝜆𝑖(𝜏) if 𝑦𝑖(𝜏) > 0, and given the definition of𝑄𝑖 , it follows that

𝜆𝐿𝑖 = 𝑄𝑖 ,

which says that the shadow value of worker 𝑖’s time is equal to the shadow value of all

tasks produced by that worker. Combining this𝑄𝑖 = 𝜋𝑖𝑄 (part (ii) of Lemma 1), we find

𝜆𝐿𝑖 = 𝜋𝑖𝑄. (A.3)

Moreover,𝑄 is related to𝑌 as follows. Starting with equation (1), multiply both sides

by 𝜆
1

𝜂−1 , and bring this term inside the integral on the left-hand side. Substituting for

𝜆
1

𝜂−1 on that left-hand side using equation (6), rearranged as

𝜆
1

𝜂−1 =

(
𝑄(𝜏)
𝑌

) 1
𝜂−1 𝜆(𝜏)

𝜆
,

and simplifying algebra yields ∫
𝒯
𝑄(𝜏)𝑑𝜏 = 𝜆𝑌.

As the left-hand side is the definition of 𝑄 and given 𝜆 = 1, it follows that 𝑄 = 𝑌.

Combining this with equation (A.3) we find that

𝜆𝐿𝑖 = 𝜋𝑖𝑌. (A.4)

In a last step, substitute for 𝜋𝑖 in equation (A.4) using equation (A.2). Solving the

resulting expression for 𝜆𝐿
𝑖

, substituting into equation (A.1) and rearranging for𝑌 yields

equation (12). □
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A.2 Matching block

A.2.1 Surplus recursions

Combining the definition of 𝑆(𝑥) with the expression for Ω(𝑥) in equation (24) and the

surplus sharing rules yields(
𝜌 + 𝛿

)
𝑆(𝑥) = 𝑓1(𝑥) − 𝜌

(
𝑉𝑢(𝑥) +𝑉𝑓 .0

)
+ 𝜆𝑣.𝑢(1 − 𝜔)

∫
𝑑𝑢(𝑥̃′)
𝑢

𝑆(𝑥̃′|𝑥, 𝜉̃)+𝑑𝐻(𝜉̃)𝑥̃′.

(A.5)

Similarly, for 𝑆(𝑥|𝑥′, 𝜉), and using the expression for Ω(𝑥, 𝑥′, 𝜉) in equation (23) gives

𝑆(𝑥|𝑥′, 𝜉)
(
𝜌 + 2𝛿

)
= 𝑓2(𝑥, 𝑥′, 𝜉) − 𝜌

(
𝑉𝑢(𝑥) +𝑉𝑢(𝑥′) +𝑉𝑓 .0

)
+ 𝛿𝑆(𝑥) − (𝜌 + 𝛿)𝑆(𝑥′).

(A.6)

A.2.2 Population dynamics

For any type 𝑥, the measure of unemployment satisfies

𝛿(𝑥)
(
𝑑𝑚.1(𝑥) +

∫
𝑑𝑚.2(𝑥, 𝑥̃′)𝑑𝑥̃′

)
= 𝑑𝑢(𝑥)𝜆𝑢

( ∫
𝑑 𝑓 .0

𝑣
ℎ(𝑥, 𝑦̃) +

∫
𝑑𝑚.2(𝑥̃′)

𝑣
ℎ(𝑥|𝑥̃′)𝑑𝑥̃′

)
.

(A.7)

The measure of exogenously separated workers of any type is equal to the measure

of unemployed workers of that type finding new employment at either one-worker or

two-worker firms.

For all 𝑥, the measure of one-worker matches follows

𝑑𝑚.1(𝑥)
(
𝛿(𝑥) + 𝜆𝑣.𝑢

∫
𝑑𝑢(𝑥̃′)
𝑢

ℎ(𝑥̃′|𝑥)𝑑𝑥̃′
)
= 𝑑𝑢(𝑥)𝜆𝑢

𝑑 𝑓 .0

𝑣
ℎ(𝑥) + 𝛿(𝑥)

∫
𝑑𝑚.2(𝑥, 𝑥̃′)𝑑𝑥̃′.

(A.8)

Outflows from this state occur due to exogenous separation or because the one-worker

firm meets and decides to hire a coworker of some type. Inflows occur when an un-

employed worker of type 𝑥 meets and gets hired by an unmatched firm or because a

two-worker firm that has a type 𝑥 as one of its employees loses the coworker.
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Finally, for all (𝑥, 𝑥′),

(𝛿(𝑥) + 𝛿(𝑥′))𝑑𝑚.2(𝑥, 𝑥′) = 𝑑𝑢(𝑥)𝜆𝑢
𝑑𝑚.1(𝑥′)

𝑣
ℎ(𝑥|𝑥′) + 𝑑𝑢(𝑥′)𝜆𝑢

𝑑𝑚.1(𝑥)
𝑣

ℎ(𝑥′|𝑥). (A.9)

The economic intuition parallels the aforementioned reasoning.

A.2.3 Wage function

The value of employment for worker 𝑥 given a coworker of type 𝑥′ and match shock 𝜉 is

𝜌𝑉𝑒.2(𝑥|𝑥′, 𝜉) = 𝑤(𝑥|𝑥′, 𝜉) − 2𝛿𝜔𝑆(𝑥|𝑥′) + 𝛿𝜔𝑆(𝑥).

Combining with the surplus sharing rule (18) yields

𝑤(𝑥|𝑥′, 𝜉) = 𝜌𝑉𝑢(𝑥) + (𝜌 + 2𝛿)𝜔𝑆(𝑥|𝑥′, 𝜉) − 𝛿𝜔𝑆(𝑥) (A.10)

To simplify this expression further, substitute for (𝜌 + 2𝛿)𝑆(𝑥|𝑥′, 𝜉) from equation

(A.6)

𝑤(𝑥|𝑥′, 𝜉) = 𝜌𝑉𝑢(𝑥) + 𝜔

[
𝑓2(𝑥, 𝑥′, 𝜉) − 𝜌

(
𝑉𝑢(𝑥) +𝑉𝑢(𝑥′) +𝑉𝑓 .0

)
+ 𝛿𝑆(𝑥) − (𝜌 + 𝛿)𝑆(𝑥′)

]
− 𝛿𝜔𝑆(𝑥),

= 𝜔 𝑓2(𝑥, 𝑥′, 𝜉) + (1 − 𝜔)𝜌𝑉𝑢(𝑥) − 𝜔𝜌
(
𝑉𝑢(𝑥′) +𝑉𝑓 .0

)
− 𝜔(𝜌 + 𝛿)𝑆(𝑥′),

and then substitute for 𝑆(𝑥′) from equation (A.5) to obtain

𝑤(𝑥|𝑥′, 𝜉) = 𝜔
(
𝑓2(𝑥, 𝑥′, 𝜉) − 𝑓1(𝑥′)

)
(A.11)

+ (1 − 𝜔)𝜌𝑉𝑢(𝑥) − 𝜔(1 − 𝜔)𝜆𝑣.𝑢
∫ ∫

𝑑𝑢(𝑥̃′′)
𝑢

𝑆(𝑥̃′′|𝑥′, 𝜉̃)+𝑑𝐻(𝜉̃)𝑑𝑥̃′′.

B Empirical appendix

B.1 Data sources and construction

B.1.1 SIEED

This section provides further details on the Sample of Integrated Employer-Employee

Data (SIEED 7518) and how I process the data. Access is provided by the Research
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Data Center of the German Federal Employment Agency at the Institute for Employment

Research (IAB). Compared to the more well-known LIAB, the SIEED dispenses with survey

information, but comprises a larger sample and represents a broader period. This is

especially advantageous in the analysis of time-series patterns in Section 4.2. A detailed

description can be found in vom Berge et al. (2020).

The SIEED is based on administrative employer notifications and covers every worker

at a random sample of (“panel”) establishments as well as, crucially, the complete employ-

ment biographies of each of these workers, even when not employed at the establishments

in the sample. To maximize sample coverage, I do not restrict myself to panel establish-

ments, but instead require a minimum number of persons in every establishment-year

cell (see below). Variables available describe characteristics of individuals (e.g. age,

gender, education) and their job as well as employer (e.g. establishment, average daily

wage, occupation, industry). Throughout, I use the KldB-1988 2-digit classification for

occupations and the WZ08 2-digit industry classification, relying on the harmonization

over time provided by the IAB. The employment biographies come in spell format. I

transform the dataset into an annual panel. Where a worker holds multiple jobs in a year,

I define the job with the highest daily wage as the main episode. Nominal values are

deflated using the Consumer Price Index (2015 = 100).

The main dataset is constructed based on the following selection criteria and steps.

(1) I retain observations for individuals between 20-60 with a workplace in former West

Germany (excl. Berlin), employed full-time and subject to social security. Among other

things, spells associated with marginal part-time employment (recorded only from 1999

onwards) are excluded. (2) I drop observations in industries classified as agriculture and

mining, utilities, finance and insurance, households as employers, as well as semi- or

fully public industries such as social security and education (codes 31-9, 35-39, 64-68,

84-85, 87-88, 91, 94, 96-99). (3) I require non-missing observations for identifiers, wages,

industry, occupation, age, tenure, gender and education. (4) I drop singleton person

observations and focus on the largest connected set for each of 5 sample periods (1985-

1992, 1993-1997, 1998-2002, 2003-2009, 2010-2017). (5) Using the resulting sample, I

estimate residual wages and types, as described in detail below, and retain only obser-

vations for which these variables are not missing. (6) The final analysis sample is based

on the additional restrictions that the establishment-year cell contains no fewer than

ten observations; and that the industry cell contains at least 500 person observations

and at least 25 unique employers in any of the years. These restrictions are important for
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analyses with employer and industry fixed effects as well as the industry-level analysis in

Section 3.4.

Turning to wages, the earnings variable is top-coded at the so-called “contribution

assessment limit” (or, in a single German word, “Beitragsbemessungsgrenze”) of the

social security system. To impute right-censored wages, which is done after step (3), I

follow standard practices, notably Card et al. (2013) and Dauth and Eppelsheimer (2020),

by fitting a series of Tobit models to log daily wages, then imputing an uncensored value

for each censored observation using the estimated parameters of these models and a

random draw from the associated (censored) distribution. I fit 16 Tobit models (4 age

groups, 4 education groups), after having restricted the sample per the above. I follow

Card et al. (2013) in the specification of controls by including not only age, firm size, firm

size squared and a dummy for firms with more than ten employees, but also the mean

log wage of co-workers and fraction of co-workers with censored wages. Finally, imputed

wages are limited to 10 times the 99th percentile.

The empirical analyses use residualized wages as an input. To construct those, I pro-

ceed similarly to Card et al. (2013) and Hagedorn et al. (2017). Specifically, in the pooled

sample I regress the (raw) log real daily wage of worker 𝑖 in year 𝑡, 𝑤̃𝑖𝑡 , on a person fixed ef-

fect, 𝛼𝑖 and a time-varying characteristics index, 𝑋𝑖𝑡 that comprises an unrestricted set of

year dummies, quadratic and cubic terms in age interacted with educational attainment

— education itself is deliberately not included as a covariate, as it arguably represents

time-invariant measure of worker quality — and a quadratic in job tenure.B.1 The choice

of covariates is informed by the observation that the theoretical model does not incor-

porate life-cycle factors or on-the-job learning nor aggregate productivity growth. As an

input into the analysis, I then use 𝑤𝑖𝑡 = exp
(
𝑤̃𝑖𝑡 − 𝑋′

𝑖𝑡
𝛽̂
)

.

The final sample (1985-2017) includes 14,429,61 person-year observations for 1,942,406

unique persons, whose average age is 38 years. The mean unweighted establishment size

is 29, the median being 14. The log average real (raw) daily wage in 2010 is 4.65.

B.1.2 Constructing worker types

My baseline measure of worker talent types is based on their position in the economy-

wide lifetime earnings distribution, which I recover from the individual fixed effect (FE)

in a two-way fixed-effects wage regression à la Abowd et al. (1999, “AKM” henceforth). It

B.1As the regression includes person and year fixed effects, I exclude the linear age term in light of the
age-year-cohort identification problem. As in Card et al. (2013), age is normalized around 40.
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bears emphasis that in this paper I am not concerned with the estimation of employer

FEs or an AKM-based variance decomposition, so prominent debates in the literature

about the (structural) interpretation of these terms can be side-stepped. Instead, I simply

adopt this approach as a statistical tool to recover the time-invariant component of

an individual’s earnings ability that conveniently allows controlling for the effects of

unmodelled person-level observable characteristics and employer heterogeneity.

Likewise, estimation concerns that relate to limited mobility bias affecting pertain to

the estimation of employer FEs, and specifically their variance (as well as a the covariance

term) are less relevant for person FEs. Nonetheless, to follow best practices, I initially

cluster similar firms through a weighted k-means problem, similar to Bonhomme et al.

(2019),

min
𝑘(1),...,𝑘(𝐽),𝐻1 ,...,𝐻𝐾

𝐽∑
𝑗=1

𝑛 𝑗

∫
(𝐹̂𝑗(𝑤) − 𝐻𝐾 𝑗 (𝑤))2𝑑𝜇(𝑤), (B.1)

where 𝑘(1), ..., 𝑘(𝐽) constitutes a partition of firms into 𝐾 known classes.B.2

After imputing a cluster to each worker-year observation, I estimate the regression

𝑤̃𝑖𝑡 = 𝛼𝑖 +
𝐾∑
𝑘=1

𝜓𝑘1(𝑗(𝑖 , 𝑡) = 𝑘) + 𝑋′
𝑖𝑡𝛽 + 𝜖𝑖𝑡 (B.2)

where 𝛼𝑖 is the individual fixed effect, 1(𝐽(𝑖 , 𝑡) = 𝑘) are dummies indicating which cluster

𝑘 firm the employer of 𝑖 in period 𝑡, 𝑗(𝑖 , 𝑡) has been assigned to, and 𝑋𝑖𝑡 is the same

vector of time-varying controls as in the preceding section B.1.1.B.3 The estimation is

implemented in Stata using the reghdfe package (Correia, 2017).

I estimate this regression separately for each of the 5 sample periods, then equate

worker 𝑖’s type 𝑥̂𝑖 with their decile rank in the distribution of 𝛼𝑖 . Note that I thus allow for

B.2Here, 𝐹̂𝑗 is the empirical cdf of log-wages in firm 𝑗; 𝑛 𝑗 is the average number of workers of firm 𝑗 over the
sample period; and 𝐻1 , ...., 𝐻𝐾 are generic cdf’s. I use a baseline value of 𝐾 = 20 but have experimented
with 𝐾 = 10 and 𝐾 = 100 as well; the choice makes little practical difference. I use firms’ wage distributions
over the entire sample period on a grid of 20 percentiles for clustering.

B.3While residualizing wages for observables aligns with the model’s exclusion of life-cycle and on-the-job
learning effects, it is not self-evident that worker types should likewise be computed from residualized
wages. It could be argued, for instance, that for the interpretation of the production function it matters, for
example, whether a worker is good,” not whether they are good for their age.” I include controls to maintain
maximum consistency, both internally and with respect to the existing literature. A previous version
(Freund, 2023) reported results when worker types are constructed without controlling for observables;
differences to the baseline were minimal.
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𝛼 𝛼 lag 1 𝛼 lag 2 𝛼 lag 3 𝛼 lag 4

𝛼 1.0000
𝛼 lag 1 0.8717 1.0000
𝛼 lag 2 0.7103 0.8629 1.0000
𝛼 lag 3 0.5774 0.6820 0.8560 1.0000
𝛼 lag 4 0.4550 0.5270 0.6405 0.8624 1.0000

Table B.1: Auto-correlation structure of individual FEs

the possibility of human capital accumulation across but not within sample periods. Table

B.1 reports the auto-correlation structure for period-specific 𝛼𝑖 , indicating a strongly

positive but less than unit correlation.

B.1.3 Task complexity measure

This section briefly summarizes how the task-complexity proxy is constructed. A more

detailed analysis can be found in the unpublished Supplemental Appendix.

I draw on 5 waves of the Employment Surveys (ES) carried out by the German Federal

Institute for Vocational Training (Bundesinstitut fuer Berufsbildung, BIBB; Hall and et al.

(2018)), for the years 1985/86, 1991/92, 2006, 2012, and 2018. The survey asks individual

workers, among other things, a recurring question about the tasks performed at work, e.g.

in 2012: “Please think of your occupational activity as [...]. I will now give you a number

of specific job tasks. Please tell me how often these job tasks occur in your work, whether

they occur often, sometimes or never.” While the exact question and the list of tasks

varies across some of the waves, I follow the BIBB’s guidance (Rohrbach-Schmidt and

Tiemann, 2013) in standardizing the sample basis, selecting tasks that were repeatedly

queried over time; and focus on the share of “complex/abstract” (cognitive non-routine)

tasks compared to other tasks, without having to distinguish between routine-cognitive

or routine-manual tasks, which can be difficult.

Table B.2 summarizes how I classify tasks, which is guided by Spitz-Oener (2006) and

Rohrbach-Schmidt and Tiemann (2013). Next, we can define an index capturing the

importance of complex tasks for worker 𝑖 in period 𝑝, following Antonczyk et al. (2009):

𝑇
complex
𝑖𝑝

=
number of activities performed by 𝑖 in task category “complex” in sample year 𝑝

total number of activities performed by 𝑖 in sample period 𝑝
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Task classification Task name Description

Complex investigating Gathering information, investigating,
documenting

organizing Organizing, making plans, working out
operations, decision making

researching Researching, evaluating, developing,
constructing

programming Working with computers, programming
teaching Teaching, training, educating
consulting Consulting, advising
promoting Promoting, marketing, public relations

Other repairing, buying, ac-
commodating, caring,
cleaning, protecting,
measuring, operat-
ing, manufacturing,
storing, writing, calcu-
lating

Table B.2: Classification of tasks in the BIBB Employment Surveys

Notes. This table summarizes the classification of tasks into two groups: “Complex” and ”Other.”

For example, if worker 𝑖 performs five distinct activities and two of those belong to

the category of complex tasks, then 𝑇complex
𝑖𝑝

= 0.4.

When considering trends over time, I report𝑇complex
𝑖𝑝

at the aggregate level, or disaggre-

gated by three education groups. To merge the task-complexity measure into the SIEED I

use occupational averages, computed using the German Classification of Occupations

1988 (KldB88). To link the KldB88 with waves using the KldB92, I rely on a crosswalk,

which is of high quality as the two classifications are very similar.B.4

B.2 Additional empirical results

B.2.1 Alternative worker type measures

Years of schooling. One concern with the auxiliary regression estimated in Section 3.2.3

is that the dependent variable in regression (28) is the period-𝑡 wage and the independent

variables of interest, own and coworker type, are likewise a function of wages (in all years

B.4I thank Anett Friedrich for sharing the crosswalk.
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Period Coworker sorting Interaction coefficient (𝛽̂𝑐)

1985-1992 0.45 0.007***
1993-1997 0.48 0.005***
1998-2003 0.52 0.008***
2004-2009 0.55 0.009***
2010-2017 0.56 0.010***

Table B.3: Sorting and interaction coefficient: years of schooling

Notes. The entry in the first main column shows the correlation between own and average coworker years
of schooling. The entry in the second main column is the point estimate for the interaction coefficient 𝛽𝑐 in
a version of regression (28) adapted to the use of years-of-schooling as a type measure. Years of schooling
are imputed from completed education following Card et al. (2013). * p<0.1; ** p<0.05; *** p<0.01.

𝑡 belonging to the sample period in question). While this approach is theory-consistent,

with identification coming from variation in wages over time while the regressors are

invariant across years within sample periods, we may still be worried about a confounding

effect. This section shows that the results are robust to using education as a proxy for

worker talent types instead, similar to Nix (2020),

Table B.3 shows the coworker sorting correlation coefficient and the wage regression

interaction coefficient 𝛽𝑐 when using years of schooling a a worker type measure. While

the magnitudes for the latter are not directly comparable to those obtained under the

FE-based type measure, the time trends for both moments align with those reported in

the main text.

Period-invariant worker types. I also considered an alternative where individual FEs

and hence types 𝑥̂𝑖 are constructed that are invariant across sample periods. The implied

time trends in sorting and the reduced-form interaction coefficient 𝛽̂𝑐 are very similar.

B.2.2 Log specification

The main text reports an auxiliary regression with the (normalized) wage level as the

dependent variable, consistent with the theoretical model. This section reports results

for a complementary regression that uses the log wage on the left-hand side:

ln𝑤𝑖𝑡 = 𝛽0 + 𝛽1𝑥̂𝑖 + 𝛽2𝑥̂−𝑖𝑡 + 𝜓 𝑗(𝑖 ,𝑡) + 𝜈0(𝑖 ,𝑡)𝑡 + 𝜉𝑆(𝑖 ,𝑡)𝑡 + 𝜖𝑖𝑡 , (B.3)

where types are treated as continuous variables.
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1985-1992 1993-1997 1998-2003 2004-2009 2010-2017

Type 0.0792*** 0.0776*** 0.0822*** 0.0860*** 0.0829***
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

Coworker Type 0.0019*** 0.0018** 0.0025*** 0.0048*** 0.0052***
(0.0005) (0.0007) (0.0006) (0.0009) (0.0006)

Observations (1000s) 3,233 2,174 2,263 3,153 3,606
Adj. 𝑅2 0.758 0.790 0.804 0.847 0.834

Table B.4: Auxiliary regression results by sample period - log specification

Notes. All regressions include industry-year, occupation-year, and establishment FEs. Employer-clustered
standard errors are given in parentheses. Observations are unweighted and rounded to the nearest
thousand. Significance levels: * p<0.1; ** p<0.05; *** p<0.01.
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Figure B.1: Industry-level evidence: within-period moments

Notes. Binscatter plots controlling for 5 sample-period fixed effects.

Table B.4 reports the coefficient estimates for each of the 5 sample periods. The

coefficient on the coworker type has increased over time.

B.2.3 Industry-level evidence

To complement the binscatter plots in Figures 6b 6c, which are constructed controlling

for industry FEs, Figure B.1 reports the relationship between the task-complexity proxy

for 𝜒 and 𝛽𝑐 and that between 𝛽𝑐 and coworker sorting 𝜌𝑥𝑥 when using cross-industry

within-period variation instead, i.e., controlling for period FEs. This yields the same

positive relationships reported in the main text.
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B.2.4 Moments by establishment size groups

A potential concern with the estimation of 𝛽𝑐 in the main text is that the variation in

coworker quality exploited for identification in regression (28) is not exogenous with

respect to the error term 𝜖𝑖𝑡 . Through the lens of the structural model, this variation

naturally occurs due to search frictions and consequent random variation in what type

of employee a given employer has the opportunity to make an offer to. But it could be

argued that this random variation is “good” for identification purposes only at small

firms, whereas for larger firms idiosyncratic variation averages out when constructing a

representative coworker type (cf. Hoxby, 2000). An additional concern is that assuming

the relevant coworker set to comprise by all other employees in the same establishment-

year cell may be less plausible for larger establishments.

To evaluate these concerns, I compute the coworker correlation measure of sorting

and estimate 𝛽𝑐 separately for 4 different establishment size groups and, to study time

trends, for 5 different sample periods. I perform this exercise both for the full sample

and for the subsample of ‘panel establishments’ for which the SIEED dataset contains

information on the entire workforce. Figure B.2 visualizes the results.

The results from this exercise are reassuring. The estimated magnitude of 𝛽𝑐 for the

subset of smaller establishments – for which the identification strategy may be argued

to be more credible – is of similar magnitude as in the pooled sample and it increases

over time in a comparable fashion. The same goes for the intensity of coworker sorting.

Comparing across establishment size groups, there is no evident sign of a bias, in that the

magnitude of the estimates for complementarity and sorting do not vary systematically

with establishment size. Indeed, the joint rise in 𝛽𝑐 and sorting is consistently observed

across all specifications.

B.2.5 Non-linear coworker aggregation

As discussed in the main text, to construct a representative coworker type I compute, for

each person-year observation, the unweighted arithmetic mean of all coworkers’ types,

i.e. 𝑥̂−𝑖𝑡 =
(

1
|𝑆−𝑖𝑡 |

∑
𝑘∈𝑆−𝑖𝑡 𝑥̂𝑘

)
. This approach ignores a non-linearity in the aggregation

across coworkers that is implied by the reduced-form production function (12), i.e., we

ought to aggregate using a power mean that assigns disproportionate weight to low-type

coworkers insofar as 𝜒 and hence talent complementarities are large.

However, the bias from ignoring this non-linearity is small for the following reason.
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Figure B.2: Coworker complementarity and sorting estimates by establishment size

Notes. This figure indicates empirical estimates of the coworker correlation (panels (b) and (d)) and 𝛽𝑐
(panels (a) and (c)) when estimated separately for 5 sample periods and for 4 different establishment size
groups. “Coworker complementarity” corresponds to the point estimate of the coefficient on the interaction
term, 𝛽̂𝑐 , in regression (28). In panels (a) and (b), the estimation sample comprises all establishments,
whereas panels (c) and (d) are based on the subsample of ‘panel establishments’ for which the SIEED
dataset contains information on all employees. The underlying worker types are estimated from a pooled
sample across all establishment size groups, as in the remainder of the paper.
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Define the correctly aggregated average coworker by 𝑥̃−𝑖𝑡 =
(

1
|𝑆−𝑖𝑡 |(𝑥̂𝑘)

1−𝛾) 1
1−𝛾 , where 𝛾

is the reduced-form elasticity of complementarity defined in Corollary 1. Then taking a

second-order Taylor approximation around 𝑥̂−𝑖𝑡 shows that 𝑥̃−𝑖𝑡 − 𝑥̂−𝑖𝑡 ≈ −1
2𝛾

𝜎2𝑥
𝑥̂−𝑖𝑡

, where

𝜎̂2𝑥′ is the variance of coworker types. This shows that the unweighted average is upward

biased in proportion to the product of 𝛾 and the dispersion among coworkers (within a

match). The reason the bias is small is that precisely when 𝛾 is high, positive assortative

matching based on talent means that dispersion in coworker talent is low.

C Quantitative appendix

C.1 Methodology

C.1.1 Labor market transition rates from the LIAB

This section describes how the empirical labor market transition rates that discipline the

job arrival and destruction rates in the quantitative model are computed. As a data source,

I supplement the SIEED with the Linked Employer Employee Data longitudinal model

(LIAB LM7519), which contains information also on non-employment spells, unlike the

SIEED. I proceed in four main steps. First, I convert the spell-level data into a monthly

panel. Second, I restrict the sample to approximate the selection criteria used in the

other empirical analysis but without being limited to employed persons, i.e., I select

individuals aged 20-60 who only ever worked for establishments in West Germany. Third,

in the construction of transition rates I largely follow Jarosch (2023). Employment refers

to full-time employment subject to Social Security. The job finding rate is computed as

the rate at which currently non-employed workers who are receiving unemployment

insurance (UI) transition into employment. For the job destruction rate, I compute

the frequency with which a worker is employed in one month but not in the month

thereafter. Note that here I do not condition on receiving UI after separation, as the

model does not distinguish between unemployment and non-employment. I instead

define the job finding rate based on unemployment to employment transitions, since the

model does assume search effort conditional on non-employment. Finally, for job-to-job

transitions I compute the rate at which currently employed workers are employed at

another establishment the following month. In step four, I compute averages of these

different transition rates across months and for different sample periods.
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Figure C.1: Validation of identification method: moment against parameter

Notes. This figure plots the targeted moment against the relevant parameter, holding constant all other
parameters.

C.1.2 Validation of identification approach

To support the argument laid out in the main text that each element of the parameter

vector 𝜓 is closely linked to a particular moment, Figure C.1 plots the relevant moment

against the respective parameter. As required for local identification, the relationships

are monotonic and exhibit significant amount of variation.

C.1.3 Between-share adjustment procedure

This section describes an adjustment method I propose and adopt to correct the model-

implied between-within firm variance decomposition for a statistical bias.

The challenge is as follows. Since in the structural model the team size is two, the level

of the between-share will be upward biased for any degree of coworker sorting less than

unity, i.e. 𝜌𝑥𝑥 < 1. Underlying this is a mechanical statistical effect, i.e. the law of large

numbers does not apply within production units. For example, even when 𝜌𝑥𝑥 = 0 there

will be between-firm average wage differences solely due to chance, which would not be
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(b) Between-share of type var.

Figure C.2: Graphical illustration of the adjustment method

Notes. This figure illustrates how the coworker correlation coefficient (left panel) and the between-firm
share of the variance of types (right panel) vary with the correlation parameter in the Gaussian copula.
The different lines represent different “team sizes,” that is, varying lengths 𝑛 of the vector 𝑋. Workers are
binned into ten deciles. The results are based on one million draws.

the case with large firms. Note that this bias is larger when the coworker correlation is

lower: for 𝜌𝑥𝑥 = 1, all dispersion is across and none within units, regardless of team size.

Figure C.2 illustrates these ideas graphically; its construction is described below.

The adjustment method I propose is based on a statistical model that can flexi-

bly accommodate different degrees of coworker sorting as well as team sizes. Con-

sider a random vector 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛)′ whose distribution is described by a

Gaussian copula over the unit hypercube [0, 1]𝑛 , with an 𝑛 × 𝑛 correlation matrix

Σ(𝜌𝑐), which contains ones on the diagonal, while the off-diagonal elements are all

equal to a parameter 𝜌𝑐 . Formally, the Gaussian copula with parameter matrix Σ(𝜌𝑐)
is 𝐶Gauss

Σ
(𝑥) = Φ𝑅(Φ−1(𝑥1), . . . ,Φ−1(𝑥𝑛)), where Φ−1 is the inverse cdf of a standard

normal and Φ𝑅 is the joint cdf of a multivariate normal distribution with mean vector

zero and covariance matrix equal to Σ(𝜌𝑐). In our context, 𝑛 may be interpreted as

the average team size. Each vector of observations drawn from the distributions of 𝑋,

𝑥 𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝑛𝑗)′, describes the types of workers in that team, indexed by 𝑗.

In this setup, we can derive an analytical formula for the population between-team

share of the variance of types as a function of 𝑛 and 𝜌𝑐 . As the marginals of the Gaussian

copula are simply continuous uniforms defined over [0, 1], the variance of the union

of all draws is just 1
12 . Furthermore, the mean of the elements of 𝑋 is itself a random

variable, 𝑋̄, so for some realization 𝑥 𝑗 , we can define 𝑥̄ 𝑗 =
1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 𝑗 . Since the elements
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of 𝑋 all have the same variance and we specified their correlation profile, the variance of

𝑋̄ will be 1
𝑛2

(
𝑛
12 + 𝑛(𝑛 − 1)(𝜌𝑐12)

)
. Taking the ratio, we find that the between share, as a

function of 𝜌𝑐 and 𝑛, is equal to 𝜎2
𝑥,between-share(𝜌𝑐 , 𝑚) = 1

𝑚

(
1 + (𝑚 − 1)𝜌𝑐

)
. Denoting by

the empirical average size be 𝑛̂, the adjusted results for the between-share are therefore

obtained by subtracting the following correction factor: correction-factor = 1
2

(
1 + 𝜌𝑐

)
−

1
𝑛̂

(
1 + (𝑛̂ − 1)𝜌𝑐

)
. I set 𝑛̂ = 15 and for 𝜌𝑐 I use the average coworker correlation value in

the period-1 sample.C.1

Finally, I briefly discuss two potential concerns with this approach. One is that 𝑟ℎ𝑜𝑐

is not the same measure as the coworker correlation, 𝜌𝑥𝑥 . To compare the two measures,

suppose we draw 𝑀 samples (i.e., distinct teams) from 𝑋, so that the total number of

observations is 𝑀 × 𝑛. Each individual observation is indexed by 𝑖 = 1, . . . , 𝑀 × 𝑛,

and the sample to which 𝑖 belongs is 𝑗(𝑖). Then we can define the leave-out-mean

𝑥̄−𝑖 , 𝑗 = 1
𝑛−1

∑
𝑘≠𝑖 𝑥𝑘,𝑗(𝑖). As in the main analysis, the coworker correlation is 𝜌𝑥𝑥 =

corr(𝑥𝑖 , 𝑥̄−𝑖), where the 𝑗 indexed is suppressed to emphasize that we are considering a

worker-weighted statistic. Figure C.2 confirms that 𝜌𝑥𝑥 and 𝜌𝑐𝑐 track each other quite

closely, even though for larger values of 𝑛 and intermediate values of 𝜌𝑐 we find that 𝜌𝑥𝑥 >

𝜌𝑐𝑐 . The second concern is that the adjustment approach concerns the between-unit

share of the variance of types, as opposed to that of wages. However, given a distribution

of workers across production units derived from the statistical model, we can impute

wages based on the wage function derived from the structural model, and then repeat the

variance decomposition for wages. Simulations confirm that the two adjustment factors

obtained when looking at types and wages, respectively, are very similar to one another.

Overall, the proposed adjustment approach therefore accomplishes the desired goal.

C.2 Additional figures and tables

C.1Basing the correction on the earlier sample yields a bigger downward adjustment, which avoids over-
stating the degree of between-firm inequality that the model can generate without assuming ex-ante firm
heterogeneity. Note also that the exact value of 𝑛̂ does not matter much, since for reasonable values of 𝑛̂
the implied correction factors are very close to each other. The magnitude of the bias rapidly diminishes as
𝑛̂ grows, as is evident from the above formula.)
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Figure C.3: Labor market finding and unemployment rates by worker talent type

Notes. This figure shows unemployment and job finding rates by talent type in the estimated model.

Parameter Description ’85-’92 ’93-’97 ’98-’03 ’04-’09 ’10-’17

𝛿0 Sep. rate, constant 0.014 0.016 0.017 0.019 0.015
𝛿1 Sep. rate, scale -0.981 -1.009 -1.014 -0.941 -0.841
𝜒 Skill specificity 0.264 0.387 0.671 0.744 1.175
𝑎0 Production, constant 0.456 0.451 0.365 0.308 0.259
𝑎1 Production, scale 1.242 1.251 1.409 1.557 1.589
𝑏 Unemp. flow utility, scale 0.674 0.671 0.676 0.617 0.637
𝜆𝑢 Meeting rate 0.155 0.112 0.119 0.145 0.228

Table C.1: Estimated parameters – baseline

Notes. This table summarizes the parameters estimated under the baseline specification for each of the 5
sample periods.
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Parameter Description ’85-’92 ’93-’97 ’98-’03 ’04-’09 ’10-’17

𝛿0 Sep. rate, constant 0.014 0.015 0.016 0.017 0.013
𝛿1 Sep. rate, scale -0.946 -0.956 -0.936 -0.834 -0.682
𝜒 Skill specificity 0.140 0.240 0.335 0.461 0.561
𝑎0 Production, constant 0.447 0.445 0.386 0.328 0.274
𝑎1 Production, scale 1.255 1.266 1.416 1.570 1.634
𝑏 Unemp. flow utility, scale 0.678 0.673 0.671 0.612 0.621
𝜆𝑢 Meeting rate 0.152 0.110 0.109 0.134 0.206

Table C.2: Estimated parameters – within-occupation ranking of worker types

Notes. This table summarizes the parameters estimated for each of the 5 sample periods when workers are
ranked within two-digit occupations.

Parameter Description ’85-’92 ’93-’97 ’98-’03 ’04-’09 ’10-’17

𝛿0 Sep. rate, constant 0.014 0.016 0.017 0.019 0.015
𝛿1 Sep. rate, scale -0.981 -1.009 -1.014 -0.941 -0.841
𝜒 Skill specificity 0.204 0.303 0.434 0.468 0.830
𝑎0 Production, constant 0.484 0.488 0.441 0.419 0.371
𝑎1 Production, scale 1.172 1.165 1.270 1.340 1.370
𝑏 Unemp. flow utility, scale 0.675 0.671 0.670 0.610 0.625
𝜆𝑢 Meeting rate 0.152 0.110 0.111 0.133 0.211

Table C.3: Estimated parameters – within-industry analysis

Notes. This table summarizes the parameters estimated for each of the 5 sample periods when the targeted
variance of wages and 𝛽𝑐 are constructed as the averages across two-digit industries.
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