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Abstract 
 

 
 
We address the joint hypothesis problem in cross-sectional asset pricing by using measured 
analyst expectations of earnings growth. We construct a firm-level measure of Expectations 
Based Returns (EBRs) that uses analyst forecast errors and revisions and shuts down any cross-
sectional differences in required returns. We obtain three results. First, variation in EBRs 
accounts for a large chunk of cross-sectional return spreads in value, investment, size, and 
momentum factors. Second, time variation in these spreads is predictable, and proxied by 
predictable time variation in EBRs. This result holds even controlling for scaled price variables, 
which may capture time varying required return differentials. Third, firm characteristics 
typically viewed as capturing risk predict disappointment of expectations (and of EBRs). 
Overall, return spreads typically attributed to exotic risk factors are explained by predictable 
movements in non-rational expectations of firms’ earnings growth.   
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1. Introduction. 

The textbook version of the efficient market hypothesis (EMH) holds that the realized 

return on a generic security such as a stock 𝑖 can be written as: 

𝑟#$ = 𝑟# + ∆𝐸#$, 

where 𝑟# is the required return, which increases in the stock’s riskiness, and ∆𝐸#$ embeds news 

and revisions of rational expectations of dividends. Because under the EMH news and revisions 

are unpredictable (∆𝐸#$ = 0 on average over time), return predictability is tied to	𝑟#. A stock 

earns a higher average return than another if it is riskier. But what determines risk?  

In the capital asset pricing model (CAPM, Sharpe 1964), risk increases with a stock’s 

exposure to market movements.  Starting in the 1970s, evidence on return predictability not 

tied to such exposure challenged the CAPM, casting doubt on the underlying EMH (Basu 1977, 

1983; Rosenberg et al. 1985; Banz 1981).  However, as pointed out by Fama (1970) and Fama 

and French (1993), this evidence is not necessarily a rejection of the EMH, but possibly of the 

CAPM model of risk. This came to be known as the joint hypothesis problem: without 

observing expectations or risk, any test of market efficiency is also a test of a model of risk. 

One solution to this puzzle, which has powered research in cross-sectional asset pricing 

for the past 30 years, is to keep rational expectations and view 𝑟# as capturing exposure to 

additional “risk factors” (Fama and French 1993, 2015).  It has proved challenging, however, 

to link these factors to tangible risks such as bankruptcy and distress (La Porta et al 1997).  A 

second solution, pursued in behavioural finance, is to relax rational expectations, generating 

systematic return differentials via belief extrapolation, over- and underreaction, or other biases 

in the expectations term ∆𝐸#$ (e.g., Lakonishok et al 1994, Barberis et al. 1998, Hong and Stein 

1999, Jegadeesh and Titman 2011, Daniel and Hirshleifer 2015, Barberis et al 2015, Kozak et 

al. 2018, van Binsbergen et al 2023). Even in this approach, returns are not matched to 

measured expectations. The joint hypothesis problem remains.  



 3 

To make progress, we use measured expectations of the future earnings growth of US 

listed firms, an empirical proxy for ∆𝐸#$. This allows us to assess the rationality of expectations 

and their ability to account for returns, testing the departures from the EMH directly. In recent 

years, the use of surveys of analyst and investor expectations has become common (La Porta 

1996, Greenwood and Shleifer 2014, Giglio and Kelly 2018, Bordalo, Gennaioli, La Porta, and 

Shleifer BGLS 2019, 2024, de la O and Myers 2021, 2024, Nagel Xu 2022, Jiang et al 2022, 

Bianchi et al.  2024).  Here we ask: can cross-sectional return spreads typically attributed to 

risk factors come from expectations?  We show that, to a large extent, the answer is yes. 

In Section 2, we use the Campbell-Shiller decomposition and measured expectations to 

construct firm level expectations-based returns (EBRs), the proxy for ∆𝐸#$. EBRs attribute all 

cross-sectional return variation to observed belief errors and revisions, while shutting down 

any cross sectional and time series variation in required returns. We show that variation in 

EBRs quantitatively explains most of the contemporaneous returns of the long-short book-to-

market and size portfolios (HML and SMB, Fama and French 1993). The residual spread after 

accounting for expectations is close to zero and insignificant. HML and SMB are puzzles of 

expectations, with little room left for risk.  

We then extend the analysis to the other standard factors, investment and profitability 

(making up the Fama French 2015 five factor model), as well as momentum (Jegadeesh and 

Titman 1993). Here as well, after accounting for variation in EBRs there is little left to explain, 

except for profitability, where we face the challenge of attrition of low profitability firms with 

negative earnings. These results hold for short horizons typical of cross-sectional analyses 

(Fama and French 1993, 2015) but also longer horizons common to reversal anomalies (De 

Bondt and Thaler 1985). They also hold controlling for aggregate market optimism, showing 

that EBRs capture systematic cross-sectional variation that affects cross sectional spreads. 
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The explanatory power of EBRs for cross-sectional spreads suggests that market 

inefficiency is at play: average spreads materialize because the realized earnings growth of 

stocks in the portfolio’s short arm systematically disappoints compared to that of stocks in its 

long arm.  This is in line with growing evidence of systematic overreaction of long-term 

earnings growth forecasts, LTGs (BGLS 2024). Consistent with this mechanism, we show that 

realized spreads have large and significant loadings on forecast errors, again to an extent that 

leaves little room for risk to explain observed average return differentials. 

One challenge to this interpretation is the measurement of expectations: if analysts 

mechanically extract expectations from prices, risk-driven price movements may be 

erroneously interpreted as informative about future earnings growth. BGLS (2024) already 

found strong evidence against this possibility at the aggregate and firm levels.  Here we perform 

new tests in our cross-sectional setting. In particular, we first ask whether future cross-sectional 

spreads and EBRs are predictable using current portfolio-level expectations and scaled price 

variables. Because the latter capture both market expectations and required returns, in an 

efficient market they should be the key source of predictability, even if expectations are 

mechanically inferred from prices and capture shocks to required returns. 

We find that expectations predict future return spreads in the direction consistent with 

the non-rational mechanism: spreads are predictably high after periods when analysts are very 

optimistic about the portfolio’s short arm and they are predictably low (including negative) 

otherwise. Crucially, expectations completely dwarf price-ratio-based predictability. This 

finding is contrary to the inference from prices hypothesis and suggests that cross-sectional 

spreads arise from to non-rationality of expectations, with little room left for risk. 

To further characterize the non-rational expectations mechanism, we next show that 

future firm level EBRs are predictable from firm characteristics such as the book to market 

ratio, size, investment, profitability and momentum. Rather than proxies for risk factors, these 
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characteristics proxy for non-rational beliefs, predicting belief disappointment and downward 

forecast revisions. Market inefficiency links characteristics to predictable returns. 

Our results have significant implications for the risk-based analysis of cross-sectional 

return spreads. They suggest, most importantly, that if documented return patterns reflect 

expectations and not risk, then the corrections for “risk factors” in the computation of abnormal 

returns are inappropriate.  Many empirical findings might have been erroneously discarded 

because they were attributed to compensation for risk and thus deemed unsurprising.  They 

could instead be driven by expectations or other forces.2    

We contribute to a fast-growing program showing that measured expectations allow an 

empirically and theoretically disciplined approach to asset prices. Following La Porta (1996), 

research showed that high LTG predicts low returns due to overreaction to good news (BGLS 

2019).  BGLS (2024) show that forecast errors of aggregate LTG are predictable and account 

for most of the predictability of market level returns; see also Nagel and Xu (2022) and Adam 

and Nagel (2023). The volatility of aggregate LTG can also quantitatively explain Shiller’s 

(1981) excess volatility puzzle (Bordalo et al. 2024). De la O and Myers (2021) show that 

volatility of valuation ratios reflects short term earnings expectations. Overall, non-rational 

measured beliefs unify cross sectional and aggregate return predictability without the need for 

unobserved variation in aggregate and cross sectional required returns. 

BGLS (2024) show that fluctuations in aggregate LTG account for some cross-sectional 

predictability.  Here we use EBRs to develop a systematic analysis of standard cross-sectional 

return spreads.  We show that these can be explained by cross sectional co-movement of 

expectations and forecast errors that goes beyond the market level waves of optimism.3 

                                                
2 Conversely, other work systematically documents patterns of price distortions, or alphas, relative to simple risk 
models (e.g., van Binsbergen and Opp 2019, van Binsbergen et al 2023). Our results suggest that such findings 
may reflect systematic expectation errors. Linking returns to measured expectations is a productive way forward. 
3 Frey (2023) finds that many suggested risk factors predict convergence of earnings growth forecasts between 
the long and short arms of the factor, consistent with our results. 
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Our findings also connect to recent attempts to add new risk factors such as duration 

(Lettau and Wachter 2007, van Binsbergen and Koijen 2017, Gormsen and Lazarus 2023), or 

intertemporal versions of CAPM (Campbell and Vuolteenaho 2004, Campbell et al. 2023). 

These papers do not offer direct measures of risk, nor use data on expectations, and therefore 

cannot rule out these patterns being generated by incorrect beliefs, which often yield pricing 

biases that are horizon-dependent and time varying (Giglio and Kelly 2018, BGLS 2019, 2024).  

Instead, and in line with our results, Engelberg et al (2018) show that cross-sectional returns 

associated with a wide range of risk factors accrue mainly during cash flow news events when 

forecast errors materialize, consistent with growth expectations being predictably surprised. 

Section 2 describes our framework and data.  Section 3 revisits the Fama French three 

factor model and shows that both value and size premia can be explained in terms of 

expectations, with no need for risk premia.  Section 4 extends this analysis to additional factors.  

Section 5 ties the evidence on factor returns directly to predictable corrections of expectations 

errors and shows that in fact characteristics capture biased expectations. Section 6 concludes.      

 

2. Concepts and Methods 

2.1 Risk in Efficient Markets Finance 

Following Campbell and Shiller (1987, 1988), the log return 𝑟#,$/0 obtained from 

holding the stock of a generic firm 𝑖 between 𝑡 and 𝑡 + 1 can be approximated as:  

𝑟#,$/0 = 𝛼4𝑝#,$/0 − 𝑑#,$/08 + 𝑔#,$/0 − 4𝑝#,$ − 𝑑#,$8 + 𝑘,																												(1) 

where 𝑝#,$ is the firm’s log price at 𝑡, 𝑑#,$  is its log dividend, 𝑔#,$/0 = 𝑑#,$/0 − 𝑑#,$ is its dividend 

growth between 𝑡 and 𝑡 + 1, while constants 𝑘 and 𝛼 depend on the mean log price dividend 

ratio.4 By iterating (1) forward and ruling out “bubbles” we obtain the ex-post identity: 

                                                
4  As in Campbell and Mei (1993), we equalize 𝑘 and 𝛼 across firms.  Specifically, we set 𝛼 = =>?

0/=>?
= 	0.9981 

where 𝑝𝑑 = 6.2634 is the average price dividend ratio in the sample. 
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𝑝#,$ − 𝑑#,$ =
𝑘

1 − 𝛼 +G𝛼H𝑔#,$/0/H
HIJ

−G𝛼H𝑟#,$/0/H
HIJ

.																												(2) 

Ex-ante, the equilibrium price 𝑝#,$=  for the stock is obtained by taking the expectation of 

Equation (2) using market beliefs 𝔼L$(. ). If the market requires a constant compensation 𝑟# for 

the firm’s risk, and thus expects 𝑟# as a future return, we obtain: 

𝑝#,$= − 𝑑#,$ =
𝑘 − 𝑟#
1 − 𝛼 +G𝛼H𝔼L$4𝑔#,$/0/H8

HIJ

.																																							(3) 

Plugging the equilibrium price into Equation (1), the realized stock return satisfies:   

𝑟#,$/0 = 𝑟# + M𝑔#,$/0 − 𝔼L$4𝑔#,$/08N +G𝛼H4𝔼L$/0 − 𝔼L$84𝑔#,$/0/H8
HI0

,																(4) 

which is higher if the firm is riskier, 𝑟# is higher, or if good news are received on the firm, either 

as a positive dividend growth surprise (in square brackets), or as an upward revision of 

expectations of future growth (the sum). The sum of the last two terms is what we called ∆𝐸#$. 

Traditional asset pricing builds on efficient markets, the hypothesis that market 

expectations are rational.  This implies that news in Equation (4) cannot be systematically 

positive or negative, so that the average one period return 𝑟#,0 is simply the required return: 

𝑟#,0 = 𝑟#.																																																																							(5) 

With rational expectations, if stock or portfolio 𝑖 earns a higher average return than 𝑗, 

𝑟#,0 > 𝑟R,0, then it must have a higher risk exposure and thus a higher required return, 𝑟# > 𝑟R. 

Research maintaining the rational expectations assumption starts from Equation (5), 

and searches for the model of risk 𝑟# matching the observed average return 𝑟#,0. This has led to 

the creation of “risk factors” often based on firm-level characteristics such as book to market, 

size, investment, and profitability (Fama and French 1993, 2015), but also on their recent 

returns (momentum, Jegadeesh and Titman 1993). The interpretation of these factors as 

capturing genuine sources of investor risk, however, remains problematic. 
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By using measured expectations of future firm level fundamentals, we work with 

Equation (4) without having to assume (5). This allows us to assess how much of the average 

return spreads can be accounted for by measured expectations, and hence what is left for risk 

to explain. We first lay out our strategy, and then describe how we implement it empirically. 

 

2.2 Expectations Based Returns (EBRs)  

The pillar of our approach is the theoretical concept of “Expectations Based Returns” 

or EBR. We define EBR as the part of a firm’s realized stock return that is exclusively due to 

the forecast error and expectation revisions in Equation (4), while deliberately shutting down 

any cross-firm variation in risk, as captured by 𝑟#.  The realized EBR is obtained from Equation 

(4) by replacing the firm-specific required return 𝑟# by the average market return 𝑟: 

EBR#,$/0 = 𝑟 + M𝑔#,$/0 − 𝔼L$4𝑔#,$/08N +G𝛼H4𝔼L$/0 − 𝔼L$84𝑔#,$/0/H8
HI0

,														(6) 

Substituting (6) into (4) we obtain the key equation that decomposes realized return into the 

true excess returns (𝑟# − 𝑟) and the expectations-based return: 

𝑟#,$/0 = (𝑟# − 𝑟) + EBR#,$/0.																																																				(7) 

Suppose we could perfectly measure EBR#,$/0.  A regression of a firm’s realized return 𝑟#,$/0 

on its contemporaneous EBR#,$/0 should then give a unit slope and, crucially, a regression 

constant that offers an unbiased estimate of (𝑟# − 𝑟). Constructing EBRs for the long (𝐿) and 

short (𝑆) factor portfolios would then yield: 

4𝑟Y,$/0 − 𝑟Z,$/08 = (𝑟Y − 𝑟Z) + 4EBRY,$/0 − EBRZ,$/08,																											(8) 

so the constant term now identifies the pure risk-based return spread. A finding that 𝑟Y − 𝑟Z =

0 says that non-rational expectations are enough to account for observed return differences.  If 

instead 𝑟Y − 𝑟Z > 0, the intercept gives us a magnitude of the “needed” cross sectional risk 
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premium.  On the other hand, 𝑟Y − 𝑟Z < 0 means that the standard factor return is entirely due 

to non-rationality: the long arm is safer than the short arm, a theoretical possibility. 

 We use measured expectations of future earnings growth to construct a proxy for 

EBR#,$/0.  We next show how such a proxy is constructed.  Of course, analyst expectations are 

likely to imperfectly proxy for market expectations and hence for EBR#,$/0.  Our strategy takes 

this into account, and proposes a way to adjust for specific forms of measurement error. 

 

2.3 Data and Construction of EBRs 

Expectations data.  We obtain monthly firm level data on analyst forecasts of future 

earnings growth of listed firms from the IBES Unadjusted US Summary Statistics file. We 

focus on the median forecasts of a firm’s earnings per share (𝐸𝑃𝑆#$) and of its long-term 

earnings growth (𝐿𝑇𝐺#$), defined as the “...expected annual increase in operating earnings over 

the company’s next full business cycle. These forecasts refer to a period of between three to 

five years.”  This data is available starting on 3/1976 for 𝐸𝑃𝑆#$  and 12/1981 for 𝐿𝑇𝐺#$. 𝐸𝑃𝑆#$ 

forecasts are for fixed horizons. To work with monthly data, and to fill in any missing forecasts, 

we interpolate 𝐸𝑃𝑆#$ at horizons of 1 to 5 years (in one-month increments). 

We collect median forecast data on dividends for the upcoming fiscal year from IBES, 

and use them to compute the stock’s expected payout ratio. Although IBES began tracking 

dividend forecasts in 1994, the data do not become broadly available until 2002.  Our dataset 

includes expected payout data for approximately 56% of the observations from 2002 to 2023, 

and for 25% of observations across the entire sample. 

Other data. We obtain monthly data on shares outstanding and returns from CRSP, 

from 1981 to 12/2022. We obtain quarterly and annual accounting data from COMPUSTAT 

(also through 12/2022) and data on the risk-free rate (the return of the 90-day t-bill) from CRSP.  
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We define book to market (BM) and investment following Fama and French (2015) and use 

NYSE breakpoints to assign stocks to quintile portfolios of BM and investment.   

To match our data to the method used for computing portfolio returns in Ken French’s 

website, we define the raw monthly expectation-based return EBR#,$,$/0_  of firm 𝑖 between 

months 𝑡 and 𝑡 + 1 as: 

EBR#,$,$/0_ =
𝐷#,$/0 + 𝑃a#,$/0b

𝑃a#,$b
,																																																										(9) 

where, critically, 𝑃a#,$b  is a price index that depends on analyst earnings growth expectations but 

shuts down any variation in required returns, across firms and over time.  We construct this 

index, which we dub “analyst’ price”, based on the Campbell Shiller decomposition and the 

assumption of constant (across firms and over time) returns in Equation (3).  

We set the required return 𝑟 for all firms at the average in-sample realized annual market 

return, 𝑟 = 10.72%. We then write the analyst price 𝑃a#,$b  as the present value of the firm’s 

expected cash flows.  Specifically, for each firm 𝑖 at each time 𝑡 (in months) we set: 

𝑃a#,$b = G
𝔼L$b𝐷𝑃𝑆#,$/0dH
(1 + 𝑟)H

He0,…,g

+
1 + 𝑔
(1 + 𝑟)g

𝔼L$b𝐷𝑃𝑆#,$/hJ
𝑟 − 𝑔 .																																	(10) 

We derive expected dividends per share from expected earnings per share, as follows.  

We proxy expected earnings per share with analyst short term earnings expectations 

𝔼L$b𝐸𝑃𝑆#,$/0dH up to the second fiscal year; starting with the last non-missing positive 𝐸𝑃𝑆 

forecast and up to five years out, analysts expect 𝐸𝑃𝑆#$	to grow at the rate 𝐿𝑇𝐺#$. To translate 

expected earnings into expected dividends, we use the expected payout ratio inferred from 

analysts’ expectations of dividends and earnings.  Specifically, we assume a constant ratio 
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equal to the average expected payout ratio 𝔼
Li
jklZm,inop
𝔼LijqlZm,inop

 in our sample for those firms which paid 

dividends that year, 𝐷𝑃𝑆#,$/0d > 0, which equals 0.41.5 

We do not observe analyst forecasts for very long horizons.  For the terminal value 

which captures cash flows beyond year five, we again assume a terminal payout ratio of 0.41, 

and we set the continuation value of expected cash flow growth 𝑔 to match the average stock 

price across all firms and months in 1981-2022.  Since the required return 𝑟 and growth in the 

very long term 𝑔 are constant and common to all firms, differences in the price index 𝑃a#,$b  across 

firms arise exclusively from differences in expectations. 

The firm level raw EBR is extended to the monthly raw return of a portfolio 𝜋 using an 

equal weighted average, EBRs,$,$/0_ = 0
|s|
∑ EBR#,$,$/0_
#∈s .6 Our results also hold when using 

value weighted portfolios (see Appendix B1).  To compute (log) returns over longer horizons 

𝑡 to 𝑡 + ℎ, we compute firm level monthly raw returns EBR#,$/Rx0,$/R_  for each of the next ℎ 

months and aggregate up to portfolio monthly raw returns. We then rebalance portfolios at the 

end of each month j and compound monthly EBRs to obtain the log return (where for simplicity 

we use the same notation as for EBRs based on market beliefs, Equation (6): 

EBRs,$,$/y = G𝛼Rx0ln	(EBRs,$/Rx0,$/R_ )
y

Re0

 

For example, the one-month log EBR is ln	(EBRs,$,$/0_ ) under the Campbell Shiller 

approximation in (1) takes the form of Equation (6). We obtain EBRs for factor portfolios as 

the difference between the returns of the portfolio’s long and short arms: 

                                                
5 Our results are robust to different specifications of the payout ratio. An alternative specification sets the expected 
payout ratio to zero if the firm did not pay a dividend the previous year.  This has a correlation with our main 
specification of over 97%.  The Appendix shows our results are unchanged with this measure.  
6 IBES surveys analysts in the middle of each month (i.e. the Thursday before the third Friday of every month, 
see IBES Unadjusted US Summary Statistics file). We use CRSP daily file to compute actual returns over the 
same periods as EBRs. Results are similar if we compute actual returns using calendar months, but the correlation 
between one- and three-months EBRs and returns is slightly stronger when using IBES. 
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1. High-Minus-Low book-to-market (HML): EBR of a portfolio that is long value stocks 

(𝜋 = 𝑉, top quintile book-to-market firms) and short growth stocks (𝜋 = 𝐺, bottom 

quintile). Thus, EBR}~Y,$,$/y = EBR�,$,$/y − EBR�,$,$/y. 

2. Small Minus Big Size (SMB): EBR of a portfolio that is long small stocks  (𝜋 = 𝑆, 

bottom quintile market equity) and short big stocks (𝜋 = 𝐵, top quintile). Thus, 

EBRZ~�,$,$/y = EBRZ,$,$/y − EBR�,$,$/y.   

3. Conservative Minus Aggressive Investment (CMA): EBR of a portfolio that is long 

conservative stocks (𝜋 = 𝐶, bottom quintile investment-to-asset ratio) and short 

aggressive ones (𝜋 = 𝐴, top quintile). Thus, EBR�~�,$,$/y = EBR�,$,$/y − EBR�,$,$/y.   

4. Robust Minus Weak Profitability (RMW): EBR of a portfolio that is long robust 

profitability (𝜋 = 𝑅, top quintile operating profitability) and short weak profitability 

stocks (𝜋 = 𝑊,, bottom quintile).Thus, EBR�~�,$,$/y = EBR�,$,$/y − EBR�,$,$/y.   

5. Winners Minus Losers momentum (WML): EBRs of a portfolio that is long winning 

stocks (𝜋 = 𝑊, top quintile returns between periods 𝑡 − 11 and 𝑡 − 1) and short losing 

stocks (𝜋 = 𝐿, bottom quintile). Thus, EBR�~Y,$,$/y = EBR�,$,$/y − EBRY,$,$/y.   

Following this notation, we refer to the generic long-short portfolio as 𝐿𝑀𝑆. Our sample 

consists of monthly firm level observations from 1981 to 2023 for which 𝐿𝑇𝐺$ and 𝐿𝑇𝐺$/y 

exist.7  This requirement restricts our sample from the 2 million observations in the 

CRSP/Compustat database to about 1.3 million observations for ℎ = 1 and 1.1 million for ℎ =

12.  The sample drops firms that tend to be smaller in market cap, but the samples are 

comparable in characteristics such as book to market (0.63 in the full sample, 0.61 in our 

sample), size ($7.2bn vs $7.8bn), investment (0.19 for both), and others, see Appendix B1. As 

                                                
7 We also restrict the sample to firms with data on size and positive book-to-market in June of year t plus standard 
CRSP requirements (i.e. common stock listed on a major US exchange). 
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a robustness check, we dropped the requirement that firms have data on 𝐿𝑇𝐺$/y and computed 

actual returns for the sample of firms for which 𝐿𝑇𝐺$ exists. This sample is very similar to our 

sample in all characteristics.  

 

2.4 Raw Portfolio EBRs and Correlations with Actual Returns 

Table 1 reports the average return of factor portfolios in our sample, the target of our 

exercise, and the average EBRs of the same portfolios.  

Table 1.  Average returns and EBRs of portfolios 
Note: Panel A presents sample means of log portfolio returns over holding horizons ℎ ranging from one month to 
five years, following the methodology outlined on the website of Ken French. Portfolios are formed independently 
based on quintiles. Results are displayed for the following five quintile portfolios: (1) book-to-market, with 
Growth stocks in bottom quintile and Value stocks in the top quintile, (2) investment, Aggressive stocks in the 
bottom quintile and Conservative ones in the top quintile, (3) size, Big stocks in the top quintile and Small ones 
in the bottom quintile, (4) Profitability, Weak profitability in the bottom quintile and Robust profitability in the 
top quintile), and (5) Momentum, Losers stocks in the bottom quintile and Winners stocks in the top quintile.  
Panel B presents sample means of log expectation-based returns (EBRs) returns computed following Equation 10 
in the text for the same groupings of stocks. Portfolio returns and EBRs are equally weighted with monthly 
rebalancing.  The sample period extends from December 1981 to December 2023. 
    

Panel A. Average portfolio returns 
Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 10.3% 15.7% 9.0% 14.9% 11.8% 14.4% 11.3% 13.5% 9.4% 15.4% 
3 Months 10.1% 15.0% 8.7% 14.5% 11.4% 14.3% 11.0% 13.1% 9.2% 14.3% 
1 Year 11.2% 15.3% 9.7% 14.9% 11.9% 15.3% 11.7% 13.4% 12.6% 12.9% 
3 Years 11.7% 15.0% 10.8% 14.1% 12.1% 14.5% 12.5% 13.1% 13.2% 12.4% 
5 Years 11.6% 14.1% 11.0% 13.4% 11.6% 13.8% 12.6% 12.4% 12.8% 12.0% 

 
Panel B. Average portfolio expectation-based returns 

Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 10.8% 13.7% 7.3% 15.5% 11.4% 10.4% 16.0% 9.4% -16.0% 33.1% 
3 Months 9.9% 13.2% 6.5% 15.0% 11.0% 10.0% 15.0% 9.1% -13.4% 30.0% 
1 Year 9.2% 13.7% 6.7% 14.5% 10.2% 11.6% 14.2% 9.3% -0.6% 20.0% 
3 Years 9.4% 13.0% 8.1% 13.1% 10.2% 11.2% 13.2% 9.8% 8.1% 12.7% 
5 Years 9.6% 12.3% 8.8% 12.6% 10.1% 10.8% 13.1% 9.7% 9.2% 11.6% 

 
 

In line with existing work, Panel A shows that portfolios in the long arm exhibit higher 

average returns than those in the short arm, at both long and short horizons. An assessment of 
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the statistical significance of the long-short return spreads (Tables 4 and 8 below) reveals that 

the value and investment spreads are large and significant at all horizons in our sample, with 

annualized spreads between 3 and 5%.  Momentum spreads are large and significant at horizons 

of under a year, with annualized spreads of around 5%. These are key targets of our analysis. 

The size spreads are instead not significant in our sample, which is also in line with the 

literature.  Fama and French (2015) note that the size anomaly has weakened in recent decades 

relative to the earlier period in Fama French (1993). In our sample and period, average 

profitability spreads are not significant either.8 

Panel B shows that EBRs display patterns that are directionally similar to those in Panel 

A for HML, SMB, CMA, and WML. For profitability the average EBR spread is the opposite 

of that in Panel A, a level mismatch which is however compatible with a strong correlation 

over time as we show below. The magnitudes of EBR spreads are also aligned with actual 

return spreads, with the exception of WML where spreads in EBRs are higher than in returns. 

While analyst expectations are an imperfect proxy for market expectations, a point we return 

to below, the broad agreement between Panels A and B suggests that EBRs may help account 

for both cross sectional and time series variation in spreads.  

Indeed, while average return spreads have been the focus of the literature, for EBRs to 

be a good proxy they should also be positively correlated with returns over time. This is 

important in light of recent work exploring time variation in spreads (Gormsen 2021, 

Campbell, Giglio, and Polk 2023). The “perfect proxy” benchmark of Equation (8) implies that 

with a constant required return the correlation coefficient should be one. We compute the 

correlation between 𝐸𝐵𝑅s,$/y and 𝑟s,$/y	for the long and short portfolios of HML, SMB, 

CMA, RMW and WML. We consider horizons ℎ of {1, 3,12,36,60} months, covering the short 

                                                
8 There is also no systematic profitability spread when forming quintile portfolios on the full CRSP / 
COMPUSTAT sample in our sample period of 1981 – 2023. Using double sorts on size and profitability (as in 
Fama French 2015), a profitability spread emerges within big firms. 



 15 

horizons typical of the cross-sectional analysis (Fama and French 1993, 2015) as well as longer 

horizons typical of reversal anomalies (De Bondt and Thaler 1985) and aggregate stock market 

variation.  Table 2 reports the results. 

   

Table 2.  Portfolio level correlations for actual and expectation based returns. 
Note: The table presents pairwise correlations between log returns and expectation-based returns (EBRs) for 
portfolios of stocks formed on book-to-market, investment, size, profitability, and momentum sorts over holding 
horizons ranging from one month to five years.  The sample period is from December 1981 to December 2023.   
 

Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 8% 19% 10% 16% 7% 16% 12% 12% 11% 6% 
3 Months 22% 35% 24% 31% 23% 30% 29% 22% 28% 25% 
1 Year 36% 52% 41% 37% 35% 46% 43% 34% 48% 42% 
3 Years 43% 52% 52% 36% 34% 61% 46% 37% 54% 51% 
5 Years 36% 41% 43% 28% 24% 48% 39% 28% 36% 37% 

 

The correlation coefficients between contemporaneous returns and EBRs are positive 

and large at long horizons. This is also the case for profitability portfolios, whose time variation 

in returns is well captured by EBRs. Correlations are however always less than one, the 

theoretical “perfect proxy” benchmark.  There are three potential reasons for this. First, analyst 

beliefs may depart from market beliefs due to (unobserved) disagreement between the marginal 

investor and the analyst consensus.  Second, analyst beliefs only cover horizons up to 5 years 

out, so EBRs miss longer term variation in market expectations.  Third, the required return in 

Equation (8) may be time varying, yielding a distinct source of return variation not captured 

by earnings growth expectations. This seems unlikely given that both fundamental risk and 

investor preferences toward it arguably vary more at lower frequencies, but correlations 

between returns and EBRs are uniformly and counterfactually higher at these frequencies.9 We 

examine the link between market and analyst expectations in detail in Section 2.5. 

                                                
9 The fact that the correlation is lower than one may also capture other drivers of stock returns such as market 
liquidity or investor demand, especially at high frequencies. 
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Figure 1 offers a visual illustration of the time series correlation between EBRs and 

returns for the five Fama-French long minus short portfolios.   

                            Panel A: value                                                       Panel B: size                    

 
                      Panel C: Investment                                                 Panel D: Profitability 

  
                     Panel E: Momentum 

 
 

Figure 1. Actual and expectation-based return spreads for FF Portfolios 
Note: Panel A plots one-year log returns (black line) and expectations-based returns (EBRs) following 
Equation (10) in the text EBRs (red line) for the portfolio that is long value stocks and short growth stocks 
(HML).  Panel B plots one-year log returns (black line) and EBRs (red line) for the portfolio that is long 
small stocks and short big stocks (SMB).  Panel C plots one-year log returns (black line) and expectations-
based returns (EBRs) for the portfolio that is long conservative stocks and short aggressive stocks (CMA).  
Panel D plots one-year log returns (black line) and EBRs (red line) for the portfolio that is long robust stocks 
and short weak stocks (RMW).  Panel E plots one-year log returns (black line) and EBRs (red line) for the 
portfolio that is long winners and short losers (WML). The sample period 1981:12–2020:12. 
 

Return spreads are more volatile than EBR spreads, perhaps due to our expectations 

proxy being imperfect (e.g., EBRs do not account for expected growth beyond 5 years) or to 
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the presence of other factors driving short term returns. Importantly, in line with Table 2, EBR 

and return spreads are strongly positively correlated. EBR spreads appear to track return 

spreads both at times when return spreads are positive – consistent with the average return 

differences in Table 1 Panel A – and when returns spreads are negative, contrary to the 

conventional risk explanation.  

We next systematically assess the extent to which the variation in EBRs can account 

both for average return spreads and their predictable time variation. Studying the two 

phenomena through the prism of expectations data offers a unique opportunity to disentangle 

risk-based accounts, focused on 𝑟#, from expectations-based accounts, focused on ∆𝐸#$.   

 

2.5 Measured Expectations versus Market Expectations 

One concern with our analysis is the use of analyst forecasts as a proxy for market 

expectations of earnings growth.  One issue is that analyst forecasts may measure market 

expectations with noise. To deal with this issue, we extract the contemporaneous information 

contained in expectations by regressing return spreads on contemporaneous EBR spreads. Still, 

the measurement error contaminates the regression constant in (8), which is our measure of the 

risk-based spread.  In the next section we present one method to adjust the estimated constant 

under specific assumptions about noise and other possible measurement distortions in EBRs. 

These adjustments do not affect our key findings. More broadly, measurement noise would 

work against finding any explanatory power of EBRs for return spreads, making our estimates 

more conservative than they would be with a better proxy for market beliefs.   

The second concern is “price-based inference”: analysts might infer earnings growth 

expectations from stock prices by inverting a valuation formula such as the Campbell-Shiller 

approximation, which involves using a model for required returns.  It is a priori implausible 

that analysts behave in this way. Producing cash flow forecasts for individual firms is their 
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main task, and available evidence suggests that analysts perform it using a “bottom up” 

approach based on accounting and management information including earnings calls (Ben-

David and Chinco 2024) and forecasts of the aggregate economy (Decaire and Graham 2024). 

Nevertheless, “price-based inference” has implications for the relationship between 

analyst forecasts and stock returns, which we can test for in the data. These implications depend 

on which model of required returns would be used by analysts. If analysts use the same required 

return as investors, then inference from prices would reveal investors’ cash flow expectations. 

Our measured expectations would then be a perfect measure of investor cash flow expectations. 

In this case, even if analysts engaged in “price-based inference” our analysis would be valid.  

A more pressing case is if analysts mechanically infer expectations of earnings growth 

from prices using a mis-specified model of required returns, so analysts’ expectations would 

erroneously incorporate priced information about required returns. For instance, analysts may 

assume that 𝑟# is constant across stocks or follows the CAPM when instead the true 𝑟# 

incorporates the Fama-French risk factors. This is a leading case because it would imply that, 

consistent with the data: i) EBRs would track actual portfolio returns and ii) forecast errors 

would be systematically lower for the portfolio’s long arm. These features however would not 

reflect non-rational beliefs about cash flows but rather contamination of analyst beliefs with 

discount rates under mechanical inference from prices, invalidating our market efficiency tests.  

We assess this second case by exploiting its two key testable implications. First, if 

analysts mechanically infer cash flow expectations from prices, then forecast revisions for a 

firm’s cash flows should be driven by its contemporaneous stock return.  In particular, returns 

should: i) have strong explanatory power for EBRs and, ii) controlling for cash flow news 

should add no explanatory power.  In Appendix B we show that both predictions are rejected 

at the portfolio and firm levels. In both cases, the contemporaneous correlation between EBRs 

and returns is well below one (for portfolios we already saw this in Table 2).  Moreover, future 
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EBRs are strongly predicted by contemporaneous cash flow growth and/or forecast errors (both 

measures of news), controlling for returns.  Importantly, the increase in explanatory power by 

adding news to univariate regressions of EBRs on returns is substantial, with e.g. 1-year R2s 

increasing from 26% to 38% at the firm level, and 32% to 57% on average across portfolios.  

This indicates that, independent of current returns, current tangible cash flow news predicts 

forecast errors and revisions, consistent with non-rationality. In a similar vein, BGLS (2024) 

show that cash flow news is essential to account for LTG revisions at the aggregate and firm 

levels, and that stock returns in the past 1 or 3 years play a much smaller role. The first key 

prediction of mechanic inference from prices does not hold in the data.10’11 

The second key prediction of price-based inference is that in an efficient market the 

price dividend (or earnings) ratio is the leading predictor of returns, because it contains priced 

information about the required return 𝑟#. If expectations are mechanically inferred from prices 

by inverting a valuation formula under a mis-specified model of required returns, then such 

expectations should contain no predictive power for returns beyond that contained in the price 

itself. Thus, when predicting future return spreads using current measured expectations and 

current scaled price variables, the latter should exhibit strong predictive power, dwarfing that 

of expectations. In Section 5, we show that the opposite is true in the data: current expectations 

have strong predictive power for future return spreads, while scaled prices have virtually no 

predictive power.12 Consistent with this result, BGLS (2024) found that measured expectations 

                                                
10 Nagel (2024) argues that the explanatory power of cash flow news could surreptitiously capture time varying 
required returns (that vary countercyclically with the firm, portfolio, or aggregate conditions).  Again, since time 
varying required returns would directly affect actual returns, this view implies that there should be no added 
explanatory power for analyst forecasts coming from cash flow news, in contrast to our findings. 
11 Chaudhry (2024) uses indexation events (Pavlova and Sikorskaya 2023) to construct proxies for non-cash flow 
driven price changes. He finds that such price changes impact analyst forecasts (more for the short term, less so 
for LTG). This identification strategy is based on the null that “analyst revisions only react to current cash flow 
news”. This null however rules out non-rational analyst updating, which is the heart of the matter. Absent current 
good cash flow news, for instance, analysts may revise expectations up because they overreacted to past bad cash 
flow news, as in models of diagnostic expectations.  Chaudhry also uses a mutual fund flow instrument (Lou 
2012), which is subject to similar endogeneity concerns. 
12 The same holds when replacing scaled prices with current returns. In fact, under price-based inference EBRs 
should be collinear with contemporaneous returns, which is strongly rejected in the data. Nagel (2024) argues that 
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predict future returns both in the aggregate and at the firm level even controlling for current 

aggregate or firm level scaled price variables.  

Other evidence on analysts also contradicts the price-based inference hypothesis. First, 

analysts make “buy” recommendations for stocks for which they have high LTG expectations, 

consistent with them viewing these firms as undervalued by the market (Bradshaw 2004).13 

Second, analysts do not expect these same firms to exhibit lower stock return in the future, 

which would be the case if analysts attributed at least some of the price increase to lower 

required returns by investors (BGLS 2019, De la O and Myers 2021, Decaire and Graham 

2024). In sum, the analysis of expectations data and their role in return predictability rejects 

the hypothesis of “price-based inference.” Measured expectations contain genuine information 

about non-rational market beliefs that affects prices and helps predict future returns. 

 

3. EBRs and the Value and Size Premia 

To study whether EBRs account for cross sectional spreads, we proceed as follows.  In 

Section 3.1, we assess the roles of expectations versus risk by constructing EBRs for the value 

minus growth and small minus big long-short portfolios (from Fama and French’s three factor 

model) and using them to estimate Equation (8).  We then allow analyst expectations to be an 

imperfect proxy for market beliefs about earnings growth, and correct for measurement error 

the coefficients obtained from estimating Equation (8). Our empirical analysis shows that such 

discrepancies indeed exist but that accounting for them usually makes little difference for the 

entailed required return differential 𝑟Y − 𝑟Z. 

                                                
expectations may exhibit independent predictive power because prices may be influenced by short term factors, 
such as short-term cash flow variation. It seems implausible that cash flow expectations inferred under a wrong 
required return model would be a better proxy for market required returns than the prices from which the same 
expectations are inferred. This seems all the more implausible for EBRs, which embed variation in short term 
expectations that heavily depend on short term cash flows.    
13 Jung, Shane, and Yang (2012) further show that prices respond more strongly to analyst recommendations when 
these are accompanied by LTG forecasts, suggesting a similar view by market participants. 
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In Section 3.2 we assess the contribution of different components of EBRs, in particular 

the forecast errors and revisions, by separately introducing them into equation (8). After 

accounting for EBRs, there is little systematic variation in the value and size spreads left for 

risk premia to explain.  Forecast errors play a key role in this result.  In Section 4, we extend 

the analysis to the other long-short portfolios.   

 

3.1 EBRs Explain the Value and Size Premia 

Table 3, Panel A reports regressions of the actual value and size long-short portfolio 

spreads 𝑟Y~Z,$/y on EBRY~Z,$/y, as specified in Equation (8), for various horizons ℎ. In this 

regression, the constant term represents a first estimate of the required return spread, under the 

assumption that analyst beliefs are a perfect proxy for market beliefs.14 To deal with 

overlapping observations for horizons ℎ > 1 month, we correct standard errors using the 

Newey-West (1987) procedure. 

Table 3 
Expectation based returns and the HML and SMB spreads 

Note: Panel A presents univariate regression results of log returns for the portfolio that is long value and short 
growth (HML) on expectation-based returns (EBRs) for that portfolio (columns 1 to 5) and similarly for the 
portfolio long small firms and short big firms (columns 6 to 10). Separate regressions are estimated for horizons 
ℎ of one-month, three-month, one-year, three-year, and five-year horizon. Panel B extends the analysis by adding 
the expectation-based returns for the market portfolio (EBR~�$,$/y), which includes all the stocks in the sample. 
Standard errors are corrected for overlapping observations using the Newey-West (1987) procedure.  The sample 
period is December 1981 to December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% 
level, c significant at the 10% level.  

Panel A 
 𝑟}~Y,$/y 𝑟Z~�,$/y 

  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

EBRY~Z,$,$/y 0.5067a 0.8313a 1.0274a 1.1719a 1.1723a 0.5698a 0.7813a 1.1470a 1.1858a 1.0915a 
  (0.1527) (0.1638) (0.1156) (0.2274) (0.1842) (0.1304) (0.1559) (0.1779) (0.1787) (0.2321) 

Constant 0.0032c 0.0052 -0.0055 -0.0269 -0.0308 0.0027 0.0092c 0.0177 0.0365 0.0698 

  (0.0018) (0.0046) (0.0140) (0.0462) (0.0424) (0.0017) (0.0049) (0.0134) (0.0291) (0.0485) 

Obs 504 502 493 469 445 504 502 493 469 445 

Adj R2 4% 16% 46% 45% 50% 5% 12% 34% 55% 49% 

                                                
14 The right hand side is reported in log returns over the appropriate horizon, so in the first column the constant 
should be read as a return of 0.32% over 1 month.  



 22 

 
Panel B 

 𝑟}~Y,$/y 𝑟Z~�,$/y 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
EBRY~Z,$/y 0.3965b 0.7954a 1.0884a 1.2214a 1.1425a 0.4514a 0.6816a 1.1747a 1.2365a 1.2018a 
  (0.1561) (0.1732) (0.1452) (0.2369) (0.2260) (0.1390) (0.1640) (0.1902) (0.2469) (0.2735) 
EBR~�$,$/y 0.3438c 0.0824 -0.1408 -0.2122 -0.3558b 0.3564c 0.2144 -0.0546 -0.0923 -0.1987 
 (0.1813) (0.1511) (0.1374) (0.1629) (0.1676) (0.1839) (0.1532) (0.1387) (0.2143) (0.2551) 
Constant 0.0002 0.0032 0.0065 0.0344 0.1591c -0.0005 0.0037 0.0230 0.0644 0.1705 
  (0.0026) (0.0059) (0.0167) (0.0661) (0.0893) (0.0025) (0.0066) (0.0225) (0.0857) (0.1586) 
Obs 504 502 493 469 445 504 502 493 469 445 
Adj R2 6% 16% 47% 47% 57% 6% 12% 34% 55% 50% 

 

EBRs and actual returns are significantly positively correlated for the HML and SMB 

portfolios, especially at longer horizons.  The 𝑅d also sharply rises with the horizon: it is 6% 

at one month and 40% or more at horizons of one to five years.  Expectations thus contain 

substantial information about the news perceived by the market. Consistent with Equation (8), 

the estimated coefficient on EBRs is close to one, and is statistically indistinguishable from 

one, at most horizons.  It is smaller than one at the monthly horizon, suggesting that analyst 

forecasts are a noisier proxy for market beliefs at higher frequencies. 

The estimate for the risk premium for HML, the regression constant, is small in 

magnitude and statistically indistinguishable from zero at all horizons over one month. The 

estimate for the risk premium for SMB is also statistically indistinguishable from zero at all 

horizons, except three months (recall that in our sample there is no SMB spread to begin with). 

After accounting for the average difference in “perceived cash flow news” with EBRs, there is 

no systematic value or size spreads left for risk to explain. This is our first joint hypothesis 

assessment: after accounting for expectations, no risk premium difference is needed to explain 

the average HML and SMB return spreads.   

BGLS (2024) show that lagged aggregate optimism, as measured by high expectations 

of long-term aggregate earnings growth, high LTG�, predicts both aggregate disappointment 
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and a larger subsequent HML spread, suggesting that at least part of the value spread is driven 

by a predictable, aggregate expectations based ‘factor’.  Is the explanatory power of portfolio 

level EBR in Table 3, Panel A due to this aggregate factor, or does it point to further sources 

of expectation based cross sectional spreads? 

To answer this question, we compute the market-level expectations-based return 

EBR~�$,$,$/y,15 and run a horse race between the aggregate EBR, EBR~�$,$,$/y, and the 

portfolio ones EBR}~Y,$,$/y and EBRZ~�,$,$/y, in accounting for the contemporaneous 

observed return spread, Table 3 Panel B.  The question is not only whether the portfolio EBR 

survives in the regression, but also how much adding EBR~�$,$,$/y affects the regression 𝑅d 

and the estimated constant compared to Panel A.   

The results of Panel B indicate that the cross-sectional value spread is mostly accounted 

for by cross sectional movement in expectations.  The estimated coefficients on EBR}~Y,$/y 

and EBRZ~�,$/y  remain similar to those in Panel A and are always statistically significant. The 

proxy for market-wide growth in optimism, EBR~�$,$/y plays some role at the one month and 

5 years horizons: it adds a bit of explanatory power in terms of 𝑅d, and it causes the regression 

constant to shrink, further reducing the need for required return differentials.  Broadly 

speaking, the value and size premia are largely due to cross sectional cycles in expectations, as 

proxied by EBR}~Y,$,$/y and EBRZ~�,$,$/y. This finding is consistent with the results in BGLS 

(2024), who find similar expectational boom and bust patterns in the aggregate stock market. 

As seen in Table 3, EBRs are a good proxy for market expectations, consistent with 

research showing their explanatory power for prices and returns (BGLS 2019, 2024, De la O 

and Myers 2021, 2024, Nagel and Xu 2022), but not a perfect measure, especially at short 

horizons. We next allow analyst expectations to constitute an imperfect proxy of market beliefs 

                                                
15 Analogously to portfolio EBRs, the market EBR is EBR~�$,$,$/y = ln �∑ 𝛼Rx0 0

|~|
∑ EBR#,$/Rx0,$/R#∈~�$

y
Re0 �, 

see Section 2.2. 
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and develop a correction for the estimated required return differential that takes measurement 

error into account. Our correction assumes the following affine stochastic relation between 

analyst forecasts 𝔼L#$b  and market forecasts 𝔼L#$ at time 𝑡 about stock 𝑖: 

𝔼L#$b = 𝛽 + 𝜏 ∙ 𝔼L#$ + 𝜎 ∙ 𝜀#$.																																																				(11) 

where 𝜀#$ is an iid possibly stock specific white noise shock. This specification allows for three 

distortions: 𝛽 > 0 may capture analysts’ systematic over-optimism relative to the market, 

which may be due to agency problems, 𝜏 captures analysts’ distorted reaction to news 

compared to the market, where analyst reaction is excessive relative to the market for 𝜏 > 1 

and insufficient for 𝜏 < 1, while 𝜎 > 0 is the volatility of the iid white noise term.  

As we show in Appendix A, given the measurement error structure in (11), we can use 

the estimated constant 𝜅 and slope 𝛾 in Table 3 and other moments estimated in the data to 

adjust the original estimate of the required return spread 𝜅 for distortion parameters (𝛽, 𝜏, 𝜎). 

The analysts’ systematic bias 𝛽 is irrelevant for the adjustment because it cancels out when 

comparing different portfolios. Parameters 𝜎 and 𝜏 can be recovered using two moments of the 

data: the deviation of the estimated slope 𝛾 from one and the gap between 𝑐𝑜𝑣4𝑔#$, 𝐸𝐵𝑅#,$8 

and 𝑐𝑜𝑣4𝑔#$, 𝑟#,$8.16 Under the maintained assumption that the required return is constant, there 

are two equations in two unknowns, 𝜏 and 𝜎.  This estimation only uses the restriction that the 

required return is constant but allows for any possible risk model satisfying that restriction, 

including the Fama and French model.17  

                                                
16 The adjusted estimate is equal to (where variables capture differences between long and short portfolios):	

𝑟 = 𝜅 + �𝛾 −
𝑐𝑜𝑣(𝑟$, 𝑔$) − 𝑣𝑎𝑟(𝑔$)

𝑐𝑜𝑣(EBR$, 𝑔$) − 𝑣𝑎𝑟(𝑔$)
� EBR +

𝑐𝑜𝑣(𝑟$, 𝑔$) − 𝑐𝑜𝑣(EBR$, 𝑔$)
𝑐𝑜𝑣(EBR$, 𝑔$) − 𝑣𝑎𝑟(𝑔$)

𝑔 

See Appendix A for a proof.   If there is no measurement error, 𝛾 = 1 and the covariance of actual return and cash 
flow growth is identical to the covariance of EBRs and cash flow growth, 𝑐𝑜𝑣(𝑟$, 𝑔$) = 𝑐𝑜𝑣(EBR$, 𝑔$), so the 
estimate for the required risk premium is equal to the estimated regression constant, 𝑟 = 𝜅, as in Equation (7).     
17 This exercise also allows to estimate the extent to which time variation in required returns unrelated to time 
variation in non-rational analyst expectations may be needed to account for the return spread observed on average. 
A direct horse race between possibly time varying required returns and time varying expectations is performed in 
our return-spread predictability tests in Section 5.        
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Applying this method, we find that the average 𝜏 is 1.1 so that analysts tend to respond 

to news on average slightly more strongly than the market. We can use these estimated 

parameters to adjust the estimated constant 𝜅 of the required return premium of the HML and 

SMB portfolios that account for measurement error in analyst expectations. Table 4 compares 

the actual return spread between the value and growth portfolios, and the small and big firm 

portfolios, to the adjusted required return measure (both measures are annualized). 

Table 4  
Expectation based estimates of the HML and SMB required return spreads 

Note: the table presents estimates of the required return premia for the portfolio that is long value and short growth 
(HML, Columns 1 to 5) and for the portfolio that is long small firms and short big firms (SMB, Columns 6 to 10).  
The adjustment allows for three distortions in expectation-based returns (EBRs) as described in Equation (11).  
As benchmarks, we report (in the first row) the sample long-short spreads for the relevant portfolios for horizons 
of one-month, three-month, one-year, three-year, and five-year horizons. The second row reports the intercept 
from a univariate regression of annualized log returns of relevant long-short portfolio and horizon h on their EBRs.  
The last row reports annualized estimates of the required risk premia.  Standard errors are corrected for 
overlapping observations using the Newey-West (1987) procedure. The sample period extends from December 
1981 to December 2018. Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at 
the 10% level. 

 𝑟}~Y,$/y 𝑟Z~�,$/y  

  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Average 0.0535a 0.0484b 0.0411b 0.0338b 0.0259b 0.0263 0.0290 0.0340 0.0241 0.0216 
 spread (0.0206) (0.0196) (0.0200) (0.0153) (0.0127) (0.0213) (0.0202) (0.0210) (0.0182) (0.0154) 
Constant κ 0.0387c 0.0207 -0.0055 -0.0090 -0.0062 0.0319 0.0368c 0.0177 0.0122 0.0140 
 (0.0213) (0.0183) (0.0140) (0.0154) (0.0085) (0.0209) (0.0188) (0.0134) (0.0097) (0.0097) 
Adjusted κ 0.0257 0.0150 -0.0091 -0.0029 -0.0007 0.0362 0.0379 0.0130 0.0207 0.0298 

 

Correcting for measurement error confirms our previous results, and yields estimated 

true spreads for HML that are even closer to zero than those in Table 3. The value-growth 

puzzle appears to be entirely about expectations of future earnings growth being bullish for 

growth stocks and bearish for value stocks, compared to reality.  In our sample, the average 

SMB spread is not significant (yet as shown in Table 3 its variation over time is well captured 

by expectations). 

In sum, the evidence shows that the observed cross-sectional differences in expectations 

fully account for HML and SMB spreads. Growth stocks do worse when optimism for them 
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drops relative to that for value stocks, and similarly for big stocks relative to small ones.  

Growth stocks do worse on average because such optimism happens more than its reverse, not 

because growth stocks are less risky.  In principle, it is entirely possible that the value and size 

spreads are predictably negative when the prospects of high growth (resp. big) firms are 

underestimated relative to those of value (resp. small) firms.  We later assess this possibility. 

 

3.3 Decomposing EBRs into Forecast Errors and Revisions 

Instead of computing EBRs, in the spirit of Equation (4) we can directly regress realized 

returns on contemporaneous forecast errors and revisions at different horizons.  This strategy 

is informative for two reasons. First, it allows us to separately assess the explanatory power of 

forecast errors, which are directly linked to belief biases, and of forecast revisions at different 

horizons. Second, it relaxes the parametric restrictions embedded in our computation of EBRs, 

in particular by allowing analyst forecasts (available up to 5 years ahead) to capture potentially 

correlated but unmeasured variation in longer term beliefs. 

We perform the decomposition at the yearly horizon or above (earnings are published 

quarterly so we refrain from computing forecast errors at a 1- or 3-month frequency). For one 

and three years horizons, ℎ = 12, 36, we compute the firm level forecast error as the difference 

between realized one or three year earnings growth and the growth expected one or three years 

prior 𝐹𝐸#,$/y = ln	  qlZm,in¡
qlZm,i

¢ − ln £𝔼$  
qlZm,in¡
qlZm,i

¢¤.  At five year horizons, we compute the 

forecast error using LTG as 𝐹𝐸#,g = ln  qlZm,in¡
qlZm,i

¢ /5 − 𝐿𝑇𝐺#,$.  We compute revisions of short 

term growth forecasts, ℎ = 12,24, as Δy𝑆𝑇𝐺#,$/y = (𝔼$/y − 𝔼$)𝑙𝑛  
qlZm,in¡no
qlZm,in¡

¢ and revisions 

of long term forecasts as Δy𝐿𝑇𝑅#,$/y = 𝐿𝑇𝐺#,$/y − 𝐿𝑇𝐺#,$. 
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We aggregate each measure of forecast error and revision at the portfolio level, e.g. for 

the forecast error we compute 𝐹𝐸s,$/y =
0
|s|
∑ 𝐹𝐸#,$/y#∈s  and we analogously aggregate 

forecast revisions.  We use the differences in these aggregated forecast errors and revisions 

between the long and short portfolios as explanatory variables for contemporaneous long minus 

short return spreads.18  Table 5 shows the results. 

Table 5 
Portfolio level forecast errors and revisions predict spreads 

Note: This table presents multivariate regressions of log returns for the long-short value minus growth (HML) 
and small minus big (SMB) portfolios for horizons (h) of one-year, three-years, and five-years. The independent 
variables include: (a) spreads in forecast errors between 𝑡 and 𝑡 + ℎ, (b) spreads in forecast revisions between 𝑡 
and 𝑡 + ℎ of one-year earnings growth in year 𝑡 + ℎ + 1, and (c) spreads in changes in long-term growth forecasts 
between 𝑡 and 𝑡 + ℎ. Panel B presents analogous results for the portfolio that small stocks and short big stocks 
(SMB). Standard errors are corrected for overlapping observations using the Newey-West (1987) procedure. The 
sample period spans from December 1981 to December 2023. Superscripts: a significant at the 1% 
level, b significant at the 5% level, c significant at the 10% level. 

  𝑟}~Y,$,$/0d 𝑟}~Y,$,$/©h 𝑟}~Y,$,$/hJ 𝑟Z~�,$,$/0d 𝑟Z~�,$,$/©h 𝑟Z~�,$,$/hJ 
(1 − 𝐸$)	∆y𝑒Y~Z,$/y 0.1318a 0.1743a 0.1413a 0.1108a 0.1386a 0.0616 
 (0.0134) (0.0261) (0.0376) (0.0202) (0.0347) (0.0475) 
(𝐸$/y − 𝐸$)∆y𝑒Y~Z,$/y/0d  0.0808a 0.0575b -0.0240 0.0313c 0.0144 -0.0255 
 (0.0127) (0.0248) (0.0289) (0.0188) (0.0261) (0.0365) 
∆y𝐿𝑇𝐺Y~Z,$/y 0.0276a 0.0182 0.0665c -0.0217 0.0213 0.0783b 
 (0.0094) (0.0207) (0.0346) (0.0137) (0.0288) (0.0364) 
Constant -0.1111a -0.2847a -0.3308a -0.0728a -0.1219b -0.1031 
 (0.0213) (0.0634) (0.0872) (0.0179) (0.0473) (0.0749) 
Obs 493 469 445 493 469 445 
Adj R2 53% 48% 45% 32% 40% 21% 
 

Two results stand out. First, the expectation components are strongly predictive of 

HML and SMB spreads, with forecast errors playing a dominant role in the multivariate 

regression (note that the regressors are standardized).  The pre-eminence of forecast errors for 

explaining both HML and SMB suggests that returns reflect a disappointment in the short arm 

compared to the long arm, e.g. of growth stocks compared to value stocks for HML. Portfolio 

expectations revisions also play a role, so part of the HML spread is accounted for by 

                                                
18 Following the logic of the Campbell-Shiller firm-level decomposition, we are averaging logs, which implicitly 
drops firms with negative 𝐸𝑃𝑆#,$ and/or 𝐸𝑃𝑆#,$/y. 
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systematically lower upward revisions or larger downward revisions of future prospects for 

growth firms relative to value firms, particularly over the first two years.  

Consistent with already reported findings, the constant terms in Table 5 suggest that 

the average returns spreads are entirely explained by expectations.  The regression constants in 

Table 5 are all negative, and often statistically significant. 

In sum, estimating Equation (7) shows that the systematic return spreads on the Fama 

French HML and SMB factors are explained by EBRs, and in particular by systematic 

differences in forecast errors and revisions (Tables 3 and 5).  Taking these into account, there 

is little evidence of systematic differences in required returns (Table 4).  

 

4. Other FF factors 

We repeat the analysis of Section 3 for investment, profitability and momentum. Table 

6 presents our baseline estimates of equation (8) for these factors.  

Table 6 
Actual and expectations based long short portfolio return spreads 

Note: This table presents univariate regression results for log returns against expectation-based returns (EBRs) 
for three distinct long-short (𝐿𝑀𝑆) portfolios.  The portfolios examined are: (1) CMA, which is long stocks in 
lowest quintile of one-year asset growth and short stocks in highest quintile, (2) RMW, which is long stocks in 
the highest quintile of operating profitability and short stocks in the lowest quintile, and (3) WML, which is long 
stocks in the top quintile of returns during period 𝑡 − 11 through 𝑡 − 1 and short stocks in the bottom quintile of 
returns during the same period. We estimate separate regressions for one-month, three-months, one-year, three-
years, and five-years horizons. Standard errors are corrected for overlapping observations using the Newey-West 
(1987) procedure. The sample period extends from December 1981 to December 2023.  Superscripts: a significant 
at the 1% level, b significant at the 5% level, c significant at the 10% level. 

  𝑟Y~Z,$/0 𝑟Y~Z,$/© 𝑟Y~Z,$/0d 𝑟Y~Z,$/©h 𝑟Y~Z,$/hJ 
 Investment (CMA) (1) (2) (3) (4) (5) 

EBRY~Z,$,$/y 0.2743a 0.4859a 0.8019a 0.7562a 0.8602a 
  (0.0945) (0.0931) (0.1291) (0.1857) (0.1404) 

Constant 0.0030b 0.0041 -0.0116 -0.0142 -0.0424 

  (0.0012) (0.0032) (0.0130) (0.0411) (0.0282) 

Adj R2 3% 10% 36% 27% 42% 
      
Profitability (RMW)      

EBRY~Z,$,$/y 0.2975a 0.4276a 0.4877a 0.5502a 0.6400a 
  (0.1087) (0.1101) (0.1464) (0.0756) (0.0830) 

Constant 0.0035b 0.0118a 0.0406a 0.0755a 0.0965a 
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  (0.0014) (0.0035) (0.0107) (0.0161) (0.0202) 

Adj R2 2% 7% 16% 33% 42% 

      

Momentum (WML)      

EBRY~Z,$,$/y 0.1214 0.5786a 0.7418a 0.7299a 0.5738a 
  (0.0991) (0.1268) (0.1692) (0.1427) (0.1343) 

Constant 0.0000 -0.0499a -0.1499a -0.1251a -0.1055a 
  (0.0044) (0.0166) (0.0412) (0.0313) (0.0323) 

Adj R2 0% 10% 29% 50% 33% 

Obs 504 502 493 469 445 
 

As with HML and SMB, expectation-based returns have strong explanatory power for 

actual returns.  The slope coefficients are large, statistically significant, and increase with the 

holding horizon.  For CMA and RMW, their magnitudes are comparable to those obtained for 

HML and SMB returns: for investment the coefficients are close to, or statistically 

indistinguishable from, the benchmark value of 1 at longer horizons. For momentum, and 

especially for profitability, they are lower than 1 although still substantial throughout.    

Turning to our main test, the intercepts are either small and statistically 

indistinguishable from zero, or negative, except for investment at the one-month horizon and 

for profitability. This result for profitability is in line with Table 1, where the average EBR is 

higher for low profitability firms, while actual returns go in the opposite direction.  Momentum 

has a negative spread, which may be consistent with winners being deemed safer than losers.  

We next adjust the estimated required return for measurement error across portfolios 

and present the results in Table 7.  

Table 7 
Expectation based estimates of long-short portfolios required return spread 

Note: the table estimates of the required return premia (adjusted κ) for the portfolio that is long conservative and 
short aggressive investment stocks (CMA), long robust and short weak profitability stocks (RMW), and long 
winners and short momentum stocks (RMW).  The adjustment allows for three distortions in expectation-based 
returns (EBRs) as described in Equation (11).  As benchmarks, we report (in the first row) the sample long-short 
spreads for the relevant portfolios for horizons of one-month, three-month, one-year, three-year, and five-year 
horizons. The second row reports the intercept from a univariate regression of annualized log returns of relevant 
long-short portfolio and horizon h on their EBRs.  The last row reports annualized estimates of the required risk 
premia.  Standard errors are corrected for overlapping observations using the Newey-West (1987) procedure. The 
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sample period extends from December 1981 to December 2023.  Superscripts: a significant at the 1% 
level, b significant at the 5% level, c significant at the 10% level. 
 

  𝑟Y~Z,$/0 𝑟Y~Z,$/© 𝑟Y~Z,$/0d 𝑟Y~Z,$/©h 𝑟Y~Z,$/hJ 

Investment (CMA) (1) (2) (3) (4) (5) 

Average 0.0588
a
 0.0571

a
 0.0515

a
 0.0329

a
 0.0249

a
 

 spread (0.0124) (0.0113) (0.0106) (0.0081) (0.0068) 

Constant κ 0.0361b 0.0162 -0.0116 -0.0047 -0.0085 
 (0.0140) (0.0123) (0.0130) (0.0137) (0.0056) 
Adjusted κ -0.0212 -0.0240 -0.0264 -0.0076 -0.0068 
      
Profitability (RMW)      
Average 0.0221 0.0219 0.0168 0.0061 -0.0029 
 spread (0.0169) (0.0143) (0.0140) (0.0063) (0.0063) 
Constant κ 0.0419b 0.0474a 0.0406a 0.0252a 0.0193a 
 (0.0167) (0.0135) (0.0107) (0.0054) (0.0040) 
Adjusted κ 0.0510 0.0289 -0.0127 0.0237 0.0075 
      
Momentum      
Average 0.0601b 0.0512b 0.0025 -0.0082 -0.0077 
 spread (0.0271) (0.0232) (0.0216) (0.0119) (0.0084) 
Constant κ 0.0006 -0.1996a -0.1499a -0.0417a -0.0211a 
 (0.0532) (0.0618) (0.0412) (0.0104) (0.0065) 
Adjusted κ -0.2795 -0.2904 -0.1709 -0.0541 -0.0316 

 
 

The earlier findings are broadly confirmed. For investment the correction proves 

important for spreads at short rather than long horizons. For profitability and momentum, EBRs 

may have more noise and the corrections are accordingly larger. For profitability the estimated 

required return spreads decline, especially at longer horizons.  The corrections for momentum 

are in line with the earlier interpretation that firms in the long portfolio (winners) are if anything 

viewed as safer than those in the short portfolio. 

These patterns are confirmed in the EBR decomposition exercise, which is reported in 

the Appendix B2: spreads in forecast errors and revisions positively and significantly predict 

return spreads and the intercepts are either small and insignificant -- for investment and 

profitability -- or negative for size, momentum, as well as for HML (Table 4). 
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In sum, the investment, size and momentum puzzles are solved with expectations. As 

with HML, the market does not see conservative firms as riskier than aggressive ones, nor 

winners as riskier than losers. Instead, analysts and the market appear to hold systematically 

bullish expectations about firms in the short portfolios, compared to firms in the long portfolios, 

and the former do worse on average because that relative optimism systematically decreases.  

 

5.  Predictable returns and market efficiency. 

The central puzzle motivating our paper is the predictability of cross-sectional return 

spreads from firm characteristics, which are sometimes interpreted are proxies for risk.  While 

the literature has focused on the average predictability, cross sectional spreads exhibit dramatic 

variation over time, as shown in Figure 1, and recent work suggests that this time variation is 

in part predictable (Lochstoer and Tetlock 2020, Campbell, Giglio, and Polk 2023). Because 

expectations of earnings growth are not rational, and display revisions and errors that are 

predictable from lagged expectations (BGLS 2019, 2024), market inefficiency is a possible 

explanation for such predictable time variation. 

We thus ask two questions. First, can future cross-sectional returns be predicted – 

conditional on price scaled variables – using current measured expectations, and in a way that 

is consistent with non-rational expectations?  An affirmative answer would reject the joint 

hypothesis of efficient markets plus “price-based inference”. Second, what is the link between 

expectations and firm characteristics that have been shown to predict returns? Do standard firm 

characteristics predict future EBRs (and hence future forecast errors and revisions) and not just 

returns? An affirmative answer would help explain why characteristics matter: they capture 

non-rational beliefs, rather than an elusive connection to tangible risks.   

      

5.1 Predicting Portfolio Return Spreads from Expectations 
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We examine return predictability by first running a horse race between current 

measured expectations and price dividend ratio in predicting future return spreads.  As 

discussed in Section 2.5, if the market is efficient and analysts mechanically infer expectations 

from prices under a wrong required return model, then the price dividend ratio should exhibit 

overwhelming predictive power, with higher spreads in portfolio 𝑝 − 𝑑 forecasting lower 

return spreads.  If instead current optimism as captured by high current expectations negatively 

predicts future returns but the 𝑝 − 𝑑 ratio does not, then analysts do not infer expectations from 

𝑝 − 𝑑, indicating that time variation in return spreads mostly reflect market inefficiency, not 

variation in required returns incorporated in prices. This test is very demanding, both because 

current prices also contain information about longer term unmeasured investor expectations 

and because analyst expectations are only a proxy for market expectations embedded in prices.   

We regress the future return spread 𝑟Y~Z,$,$/y of the long short portfolio 𝐿𝑀𝑆 on the 

difference in current dividend to price ratio between the long and short portfolios,	𝑑𝑝Y~Z,$ =

ln𝐷𝑃Y,$ − ln𝐷𝑃Z,$ , and on the expectation components of current EBR spreads used in Table 

5, namely: revisions of forecasts of long term growth, Δy𝐿𝑇𝐺Y~Z,$, and of short term growth, 

(𝔼$ − 𝔼$xy)∆y𝑒Y~Z,$/0d, and forecast errors 𝐹𝐸Y~Z,$x«,$.  Following BGLS (2024), who show 

that expectation levels, as well as expectations of aggregate earnings, predict forecast errors, 

we further control for lagged expectations for long term growth, 𝐿𝑇𝐺Y~Z,$xy, and short term 

growth, 𝔼$xy∆y𝑒Y~Z,$/0d, as well as the current revision Δy𝐿𝑇𝐺~�$,$ and lagged value 

𝐿𝑇𝐺~�$,$xy of expectations for the aggregate market.  All variables are standardized to allow 

for a quantitative comparison of explanatory power. 

Table 8 presents the results for the 1-month and 1-year horizon for each factor, with 

other horizons reported in the Appendix C1.  The last row of Table 8 presents the 𝑅d of a 

univariate regression of 𝑟Y~Z,$,$/y on 𝑑𝑝Y~Z,$. 

Table 8 
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Predicting future return spreads from expectations data 
Note: the table presents regressions of log returns for portfolios that are long value and short growth stocks (HML), 
long small and short big stocks (SMB), long conservative and short aggressive investment stocks (CMA), 
long robust and short weak profitability stocks (RMW), and long winner and short momentum stocks (WML). 
Separate regressions are estimated for horizons (h) one-month and one year. The set of independent variables 
includes: (a) the ranked forecast error in portfolio earnings between 𝑡 − ℎ	and 𝑡, (b) the change in the portfolio 
forecast for short-term growth in earnings between 𝑡 − ℎ	and 𝑡, (c) the lagged portfolio forecast for one-year 
growth in earnings at 𝑡 − ℎ, (d) the change in the portfolio forecast for long-term growth in earnings between 
𝑡 − ℎ	and 𝑡, (e) the lagged portfolio forecast for long-term growth in earnings at 𝑡 − ℎ, (f) the change in the 
aggregate forecast for long-term growth in earnings between 𝑡 − ℎ	 and 𝑡, (g) the forecast for long-term 
growth in aggregate earnings at 𝑡 − ℎ, and (g) the portfolio log dividend-to-price ratio (𝑑𝑝Y~Z,$) at time t. 
Portfolio forecast errors are ranked from 0 (lowest percentile) to 1 (top percentile). All independent variables 
are standardized. The last row reports the R2 from a univariate regression of  𝑟Y~Z,$/y on 𝑑𝑝Y~Z,$.  Standard 
errors are corrected for overlapping observations using the Newey-West (1987) procedure. The sample period 
spans from December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at the 
5% level, c 0% level.  

 𝑟}~Y,$/y 𝑟Z~�,$/y 𝑟�~�,$/y 𝑟�~�$/y 𝑟�~Y,$/y 

 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
(1 − 𝐸$)	∆y𝑒Y~Z,$   0.0821c   0.0142   -0.0246   -0.0309c   -0.0031 
   (0.0492)   (0.0576)   (0.0232)   (0.0184)   (0.0320) 
(𝔼$/y − 𝔼$) 
∆y𝑒Y~Z,$/y/0d -0.0022 0.0396b 0.0020 0.0456a -0.0007 0.0113 0.0039 0.0035 0.0075b 0.0706a 

  (0.0023) (0.0167) (0.0026) (0.0157) (0.0017) (0.0118) (0.0025) (0.0120) (0.0032) (0.0236) 
𝔼$xy∆y𝑒Y~Z,$/0d 0.0158 0.2155a 0.0304b 0.1286c 0.0081 0.1187b 0.0234c 0.0130 0.0558a 0.2527a 
 (0.0105) (0.0651) (0.0132) (0.0737) (0.0092) (0.0479) (0.0139) (0.0683) (0.0176) (0.0704) 
∆y𝐿𝑇𝐺Y~Z,$/y 0.0045c -0.0762b 0.0060b 0.0057 0.0038b 0.0088 0.0014 -0.0029 0.0031 -0.0279 
  (0.0026) (0.0341) (0.0025) (0.0277) (0.0016) (0.0161) (0.0023) (0.0159) (0.0030) (0.0249) 
𝐿𝑇𝐺Y~Z,$xy -0.0190 -0.2657 0.0052 0.0348 -0.0098c -0.1410a 0.0034 0.0794 -0.0134c -0.1470b 
 (0.0143) (0.1730) (0.0068) (0.0708) (0.0057) (0.0516) (0.0080) (0.0724) (0.0075) (0.0572) 
Δy𝐿𝑇𝐺~�$,$ -0.0046c 0.0257 0.0085a -0.0033 -0.0023c 0.0176 -0.0082a 0.0373 0.0022 0.0073 
 	
 (0.0025) (0.0307) (0.0028) (0.0248) (0.0012) (0.0112) (0.0023) (0.0257) (0.0025) (0.0184) 

𝐿𝑇𝐺~�$,$xy  0.0041c 0.0346 0.0030 0.0483b 0.0038a 0.0246a 0.0026 0.0356 0.0028 -0.0205 
 (0.0022) (0.0294) (0.0032) (0.0203) (0.0014) (0.0092) (0.0028) (0.0272) (0.0027) (0.0297) 
𝑑𝑝Y~Z,$ -0.0075 0.0305 0.0098 0.1491 -0.0087 0.0828 0.0232 0.1470 0.0118 0.0880 
 (0.0243) (0.2334) (0.0153) (0.1159) (0.0152) (0.0972) (0.0215) (0.2000) (0.0163) (0.0922) 
Constant -0.0401b -0.4177b -0.0307 -0.2504c -0.0255a -0.2406a -0.0102 -0.1953 0.0027 0.2259 
  (0.0164) (0.1890) (0.0271) (0.1497) (0.0086) (0.0675) (0.0170) (0.1537) (0.0160) (0.2092) 
Obs 444 433 444 433 444 433 444 433 444 433 
Adjusted R2 5% 16% 4% 23% 6% 27% 5% 9% 7% 26% 

Univariate R2 0% 3% 0% 7% 0% 8% 0% 0% 0% 4% 
 

Lagged expectations have strong predictive power for the future HML return spread, 

even at the short 1-month horizon, a challenging test, and increasing at the 1-year horizon.  This 

is driven in particular by the role of lagged optimism about both short- and long-term earnings 



 34 

growth. Contrary to the efficient markets plus “price-based inference” hypothesis, the 

predictive power of expectations dwarfs that of prices.  In the horse race of Table 8, the 

dividend price ratio is never significant, whereas one standard deviation of individual 

expectations variables can explain up to 0.25 standard deviations of spreads, depending on the 

factor (as before, predictive power is lower for profitability).  

Critically, the dividend price ratio’s predictive power in univariate regressions is 

negligible, as seen by the univariate 𝑅d shown in the last row. Adding lagged expectations 

leads to a dramatically higher adjusted 𝑅d in all specifications, and the dividend price ratio is 

insignificant. This suggests that priced portfolio risk is not time varying enough to explain time 

variation in the spread, which is instead explained by time varying beliefs measured by analyst 

forecasts.  At longer horizons, expectations account for up to 60% of variation in return spreads 

across factors, and these results are robust to using other valuation ratios, such as price earnings 

or book to market (Appendix C1).19 

Taken together, our results show that returns are predictable by measured expectations 

of earnings growth at the portfolio level (as well as at the aggregate and firm level, BGLS 

2024). There is no evidence that these expectations erroneously capture discount rates inferred 

from prices. The Appendix offers further evidence against this hypothesis.20 

How then do expectations predict future returns?  Linking to our earlier evidence that 

EBRs explain contemporaneous spreads, future return spreads may be explained, at least in 

                                                
19 Price earnings ratio spreads are not significant in the horse race with expectations, while book to market is 
significant at longer horizons for some factors (size and momentum).  The predictive power of expectations is 
very similar to that in Table 8.  As noted above, this is consistent with market growth expectations driving cross 
sectional spreads, because prices incorporate those expectations. Note that aggregate returns are strongly 
predicted by aggregate 𝑝𝑑, yet also in that case current measured expectations explain future aggregate returns 
controlling for prices (BGLS 2024).  To further control for inference from prices, we repeat the analysis replacing 
the valuation ratio by the return spread, which is in closer correspondence with the forecast revisions and errors 
over the corresponding horizon.  The results are very similar, see Appendix C. 
20 Appendix C extends the predictability analysis in Tables 8 and 9 to the firm level. Specifically, we predict firm 
level EBRs using the expectation variables in Table 8, and then run a horse race between predicted future firm 
level EBRs and current firm level valuation ratios to explain future firm level returns.  Predicted EBRs again 
explain future returns at all horizons and firm valuation ratios have little predictive power except at long horizons, 
confirming that expectations are not spuriously capturing information about required returns. 
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part, by the unfolding of predictable market expectations errors as proxied by predictable 

EBRs.  To assess this mechanism, we perform a two-step exercise. In the first stage, we use 

the variables in Table 8 to predict future EBR spreads of long-short portfolios at time 𝑡 + 1. 

This assesses the non-rationality of expectations, because EBRs, as a combination of forecast 

errors and revisions, should not be predictable if expectations are rational.  We also control for 

the price dividend ratio, which would absorb predictability of future EBRs under the price-

based inference hypothesis. In the second stage, we test the ability of the EBRs predicted from 

expectations, which we denote by EBR¬Y~Z,$→$/0, to explain contemporaneous returns, again 

controlling for the price dividend ratio:  

𝑟Y,$/0 − 𝑟Z,$/0 = 𝛽J + 𝛽0 ∙ EBR¬Y~Z,$→$/0 + 𝑑𝑝Y~Z,$ + 𝑣$/0																							(9) 

Compared to Equation (8), this test ties return differentials to error predictability, the 

hallmark of non-rationality, and allows for a quantitative assessment of the role of predictable 

EBRs in explaining actual spreads. The results are reported in Table 9.   

Table 9 
Non-rational expectations and predictable returns 

Note: the table presents instrumental variable regressions of log returns for the HML, SMB, CMA, RMW, 
and WML portfolios on expectations-based returns (EBRs) for the relevant portfolio. The set of 
instrumental variables includes all independent variables in Table 8.  Separate regressions are estimated for 
one- month and one-year horizons.  The last row of the table presents the R2 from the first stage regressions. 
Superscripts: a significant at the 1% level, b 5% level, c 10% level. 

 𝑟}~Y,$/y 𝑟Z~�,$/y 𝑟�~�,$/y 𝑟�~�,$/y 𝑟�~Y,$/y 
  ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝐸𝐵𝑅¬Y~Z,$,$/y 1.3267a 1.0300a 1.4470a 0.8276b 0.9758a 1.4032a 0.9479 -0.2098 1.1135b 0.8457a 

 (0.4452) (0.3119) (0.4084) (0.3781) (0.2722) (0.3526) (0.7012) (0.2690) (0.5053) (0.2920) 

𝑑𝑝Y~Z,$ 0.0171 0.1747b 0.0003 0.0763 0.0160 0.1420b 0.0178 -0.0176 0.0078 0.0998 

 (0.0126) (0.0853) (0.0112) (0.1082) (0.0104) (0.0580) (0.0157) (0.0840) (0.0103) (0.0778) 

Constant -0.0039 -0.0562b 0.0035 0.0774 -0.0065c -0.1044a 0.0015 0.0015 -0.0397c -0.1604a 

  (0.0040) (0.0267) (0.0070) (0.0714) (0.0037) (0.0335) (0.0033) (0.0284) (0.0205) (0.0600) 

Obs 444 433 444 433 444 433 444 433 444 433 

Adjusted R2 4% 16% 2% 12% 4% 25% 0% 0% 2% 19% 

1st stage R2 14% 30% 9% 47% 14% 18% 5% 30% 7% 50% 
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The first stage R2 is presented in the last row of the Table (see Appendix C for the full 

first stage results). EBRs are strongly predicted by lagged expectations, reflecting systematic 

predictability of forecast revisions and errors.  In particular, analyst differential optimism about 

long term growth of the short arm negatively predicts subsequent forecast errors and revisions, 

and hence high EBRs, in line with previously documented analyst overreaction to news (BGLS 

2019, 2024).  Turning to the second stage, Table 9 shows that actual spreads load strongly on 

predicted EBRs, with all coefficients strongly significant and indistinguishable from 1, except 

for profitability where we knew from Table 7 that EBRs do not predict returns. 

The loadings on the price dividend ratio are instead small and insignificant. Intercepts 

for actual return spreads are small and insignificant, and in some cases negative, confirming 

that EBRs, and in particular their predictable component, can account for the observed spreads 

in actual returns.  Overall, these results show that predictable expectational errors and revisions 

explain not only average spreads, but also their time variation. This is consistent with the fact 

that future return spreads capture, at least in part, the unfolding of predictable market 

expectations errors, as proxied by predictable EBRs. 

To visualize this point, Figure 3 plots the predicted 1-year return spreads 	

𝐸𝐵𝑅¬Y~Z,$,$/y (residualized of the dividend to price ratio spread 𝑑𝑝$) in the x-axis, against the 

realized spreads (also residualized of the dividend to price ratio spread 𝑑𝑝$) in the y-axis, 

 
 

Panel A: HML                                                            Panel B: SMB 

  
 

Panel C: CMA                                                              Panel D: RMW 
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Panel E: WML 

 
Figure 3. Predicted and realized return spreads 

Note.  The Figure plots one-year returns for portfolios that are long value and short growth stocks (HML), long 
small and short big stocks (SMB), long conservative and short aggressive investment stocks (CMA), long robust 
and short weak profitability stocks (RMW), and long winner and short momentum stocks (WML) against the 
predicted expectation-based return (EBR) for the relevant portfolio.  See Table 8 for the list of variables used to 
generate predicted EBRs. Both portfolio returns and predicted EBRs are residualized of the log dividend to price 
ratio. We show 95% confidence bands around predicted EBRs. Standard errors are based on Newey-West (1987) 
standard errors. 

 

Figure 3 shows that the predicted long minus short return spread covers a large range, 

and helps account not only for substantial variation in positive spreads but also for negative 

spreads.  Large spreads systematically arise following periods when beliefs about firms in the 

short arm are particularly bullish, in line with a correction to overly optimistic beliefs about 

such firms, as in the overreaction mechanism documented by BGLS (2024) for the aggregate 

market. Negative spreads instead arise following periods when beliefs about aggregate growth 

are optimistic but not disproportionately so for firms in the short arm.  These periods may be 

followed by increases in optimism about the short arm, as illustrated by the underperformance 

of value portfolios during the late 1990s and mid 2010s stock market boom (see Figure 1).  
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Predictable time variation in return spreads is a challenge to the view that characteristics 

predict returns by capturing discount rates (Fama French 1993).  A growing literature seeks to 

explain such time variation under a decomposition of returns into shocks to discount rates or 

shocks to cash flow expectations, similar to Equation (4).  This approach typically assumes 

that changes in prices or characteristics such as book to market capture shocks to discount rates, 

and to assign residual movement in returns to expectations (Vuolteenaho 2002, Campbell and 

Vuolteenaho 2004). This work has found a small role for discount rate shocks in accounting 

for time variation in cross-sectional spreads (Lochstoer and Tetlock 2020, Campbell et al. 

2023), consistent with our finding that valuation ratios fail to predict return spreads.  

Our approach additionally shows that significant predictive power comes from directly 

measured non-rational cash flow expectations. These expectations account for time variation 

due to predictable reversals of forecast errors: excess optimism about a portfolio is 

systematically disappointed in the future, leading to low predictable returns. This effect is at 

times so strong that the spread becomes predictably negative: a finding inconsistent with any 

model of a risk averse marginal investor. Consistent with this view, Engelberg et al (2018) 

shows that such cross-sectional returns accrue mainly during cash flow news events when 

forecast errors materialize, consistent with measured expectations capturing market 

expectations and being systematically surprised. 

 

5.2 Characteristics and EBRs. 

We next assess the predictability of EBRs, and hence of expectations errors, from 

characteristics. This test closes the circle in our investigation of the extent to which standard 

characteristics proxy for market inefficiency as opposed to risk.  

Table 10 regresses, at the firm level, future EBRs on current characteristics.  In 

Columns 1 through 5 we examine how firm level book to market, size, investment, profitability 



 39 

and momentum predict future EBRs. We do not include firm fixed effects here, because they 

would potentially absorb the role of the measured characteristics themselves. 

Table 10 
Characteristics predict firm level expectation based returns 

Note: This table presents regressions of firm level log expectations-based returns (EBRs) at horizons (h) of one-
month, three-months, one-year, three-years, and five-years. The independent variables include: (a) log book-to-
market (ln 𝑏𝑚#,$) at time 𝑡, (b) one-year growth in assets between 𝑡 − 1 and  t (𝐼𝑛𝑣#,$), (c) log market value of 
equity at time t, (d) operating profitability at time 𝑡 (𝑜𝑝#,$),  and (e)  returns between periods 𝑡 − 11 and 𝑡 − 1 
(𝑟#,$x00→$x0).  All specifications have firm fixed effects.  Standard errors are corrected for overlapping 
observations and cross-correlations using the Driscoll and Kraay (1998) procedure. The sample period spans from 
December 1981 to December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% level, c 

significant at the 10% level. 
  𝐸𝐵𝑅#,$,$/0 𝐸𝐵𝑅#,$,$/© 𝐸𝐵𝑅#,$,$/0d 𝐸𝐵𝑅#,$,$/©h 𝐸𝐵𝑅#,$,$/hJ 

  (1) (2) (3) (4) (5) 

𝑏𝑚#,$ 0.0019a 0.0074a 0.0450a 0.1110a 0.1543a 

 (0.0005) (0.0024) (0.0101) (0.0194) (0.0191) 

𝑠𝑖𝑧𝑒#,$ -0.0021a -0.0081a -0.0364a -0.0660a -0.0704a 

  (0.0002) (0.0011) (0.0031) (0.0056) (0.0093) 

𝐼𝑛𝑣#,$ -0.0018a -0.0047a -0.0050 0.0055 0.0130 

  (0.0003) (0.0010) (0.0045) (0.0101) (0.0116) 

𝑜𝑝#,$ 0.0090a 0.0135a -0.0708a -0.2604a -0.3516a 

  (0.0008) (0.0029) (0.0149) (0.0551) (0.0795) 

𝑟#,$x0d→$x0 0.0136a 0.0387a 0.0652a 0.0242b 0.0206b 

  (0.0007) (0.0030) (0.0098) (0.0110) (0.0102) 

Obs 875,404 815,293 772,240 594,850 474,100 
Adj R2 0% 2% 2% 7% 13% 

 

On their own, characteristics have strong and highly significant predictive power for 

EBRs (columns 1 to 5).  Low book to market, high investment and low past returns predict 

subsequent disappointment and low EBRs at all horizons, consistent with the average spread 

of the corresponding factors.21 Interestingly, large firms have higher short term EBRs but lower 

EBRs at horizons of one year and longer. Of all characteristics, only profitability does not 

reliably predict EBRs once other characteristics are controlled for. 

                                                
21 These results are consistent with recent work linking characteristics and expectations data. Frey (2023) 
examines a large number of factors and finds that short term growth expectations between the long and short arm 
to converge.  Gormsen and Lazarus (2023) find that characteristics associated with the short arm of factors, such 
as low book to market, high investment, low profitability, high beta and low payout, predict high 𝐿𝑇𝐺. 
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In Appendix D, we further examine the link between characteristics and market 

inefficiency. In a mediation exercise (MacKinnon 2012) we estimate the share of return 

predictability from characteristics that works through their ability to predict analyst 

expectations (versus the share that works through their direct predictive ability after controlling 

for EBRs).  The exercise shows that, to a large extent, characteristics predict returns precisely 

because they capture distorted expectations (Table D1).  Finally, following BGLS (2024), we 

assess the extent to which firm-level return predictability from the book to market ratio is 

accounted for by future expectation errors and revisions, and find that, particularly at longer 

horizons, the strong predictability of 𝑏𝑚#,$ is entirely captured by expectations (Table D2).   

 

6.Taking stock 

 We started the paper with a simple question: does understanding the cross-section of 

stock returns need exotic risk factors, first introduced by Fama and French (1993)?  The 

evidence we presented says no. Rather, the risk premia identified by Fama and French appear 

to reflect corrections of measurable expectations errors about earnings growth.  Relaxing the 

assumption of rational expectations allows us to use the classical dividend discount model and 

observed expectations of future cash flows to account for the cross-sectional evidence on stock 

returns.  We view this result as a victory for financial economics, because it shows that we do 

not need exotic risk factors to explain the data.  

Our evidence shows that spreads are generated because expectations about future 

growth of firms in the short arm of the portfolios are systematically too optimistic, and those 

about firms in the long arm too pessimistic, so that the long portfolio outperforms the short one 

as expectation errors are corrected in the future.  Characteristics such as book to market or 

investment predict returns at least in part because they predict differential optimism and 

forecast errors. Notably, the same mechanism helps account for momentum.  Predictability 
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from other characteristics may also work through expectations.  This, of course, has significant 

implications not just for cross sectional (and time series) asset pricing, but also for firm 

investment policies, financial policies, and other decisions.  We conclude by highlighting two 

follow-up questions. 

The first question concerns the structure of expectations. Analyst beliefs can reproduce 

return co-movements across firms sharing similar characteristics because expectations 

themselves comove within groups of firms identified by those characteristics.  Where does 

such co-movement come from, and why does it lead firms with certain characteristics to be 

over-priced?  One possibility is that co-movement reflects the non-rational reaction of beliefs 

to common shocks hitting groups of firms or sectors.  Another possibility is that co-movement 

in beliefs reflects spurious similarity of firms to their peers (Sarkar 2024). Understanding the 

structure of expectations may also shed light on the evidence that idiosyncratic risk is priced 

(Campbell et al 2001), because such firm-specific return differentials may also reflect time 

varying optimism about firm growth rather than compensation for firm specific risk. 

The second question concerns the required rate of return that the dividend discount 

model relies on. What are its properties and determinants?  In standard theory one component 

is the risk premium, which depends on the curvature of the utility of wealth and the quantity of 

risk, another component is interest rates, which are determined by time preference and 

technology. Yet, a large body of work using experimental and field data, including applications 

to the stock market (Benartzi and Thaler 1995, Barberis 2018), shows that risk attitudes depend 

on factors other than the marginal utility of wealth. It is also well known that interest rates 

themselves are highly volatile (Shiller 1980, Singleton 1980, Giglio and Kelly 2018).  

Psychology may also help us understand where the required return comes from.  
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Appendix 
 

Appendix A: Adjusting for measurement noise in analysts’ expectations 

Here we present a method for recovering the expected return differential 𝑟Y − 𝑟Z from Equation 

(8), in particular from the corresponding regression constant 𝜅, the slope 𝛾, and other known 

moments, under two assumptions: first, that the true return for firm 𝑖 is equal to: 

𝑟#,$/0 = 𝑟# + M𝑔#,$/0 − 𝔼L$4𝑔#,$/08N +G𝛼H4𝔼L$/0 − 𝔼L$84𝑔#,$/0/H8
HI0

. 

where 𝔼L#$ are market expectations about firm 𝑖, and second, that measured (analysts’) 

expectations 𝔼L$#³ relate to 𝔼L#$ as: 

𝔼L$#³ = 𝛽 + 𝜏 ∙ 𝔼L#$ + 𝜎 ∙ 𝜀#$. 

The revision in measured expectations between 𝑡 and 𝑡 + 1 is given by: 

𝔼L$/0,#³ − 𝔼L$,#³ = 𝜏 ∙ 4𝔼L$/0 − 𝔼L$8 + 𝜎 ∙ (𝜀#$/0 − 𝜀#$). 

The measured forecast error at 𝑡 + 1 is equal to: 

𝑔#,$/0 − 𝔼L#,$³ = 𝑔#,$/0 − 𝛽 − 𝜏 ∙ 𝔼L#$ − 𝜎 ∙ 𝜀#,$. 

So the measured EBR for firm 𝑖 is equal to: 

EBR#,$/0 = 𝑟 + M𝑔#,$/0 − 𝛽 − 𝜏 ∙ 𝔼L#,$4𝑔#,$/08 − 𝜎 ∙ 𝜀#$N

+ G 𝛼HM𝜏 ∙ 4𝔼L$/0 − 𝔼L$84𝑔#,$/0/H8 + 𝜎 ∙ (𝜀#$/0 − 𝜀#$)N
He0,…,g

 

We can then aggregate at the level of portfolio 𝑝: 

𝑟 ,$/0 = 𝑟 + M𝑔´,$/0 − 𝔼L$4𝑔´,$/08N +G𝛼H4𝔼L$/0 − 𝔼L$84𝑔´,$/0/H8
HI0

 

= 4𝑟 − 𝑟8 + EBR´,$/0. 

Where EBR´,$/0 are true EBRs. The measured EBR for firm 𝑖 is equal to: 

EBR´,$/0³ 	= 𝑟 + 𝑔´,$/0 − 𝛽 − 𝜏 ∙ 𝔼L´$ − 𝜎 ∙ 𝜀´,$

+G𝛼H �𝜏 ∙ 4𝔼L$/0 − 𝔼L$8� 4𝑔´,$/0/H8 + 𝛼H𝜎 ∙ 4𝜀´$/0 − 𝜀´$8
HI0

= 𝑟 − 𝛽 + (1 − 𝜏)𝑔´,$/0 + 𝜏M𝑔´,$/0 − 𝔼L´$4𝑔´,$/08N − 𝜎 ∙ 𝜀´,$

+ 𝜏G𝛼H4𝔼L$/0 − 𝔼L$84𝑔´,$/0/H8 + 𝛼H𝜎 ∙ (𝜀#$/0 − 𝜀#$)
HI0

= 𝑟 − 𝛽 + (1 − 𝜏)𝑔´,$/0 + 𝜏EBR´,$/0 − 𝜎 ∙ 𝜀´,$ + +𝛼H𝜎 ∙ (𝜀#$/0 − 𝜀#$) 
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Drop for notational simplicity the portfolio label except for 𝑟  that denotes the portfolio 

required return.  We can then redefine these equations as  

𝑟$/0 = 𝑟 + 𝑣$/0 

where 𝑣$/0 = EBR´,$/0 − 𝑟, and 

EBR$/0³ = 𝑟 − 𝛽 + (1 − 𝜏)𝑔´,$/0 + 𝜏 ∙ 𝑣$/0 + 𝑘0 ∙ 𝜀$ + 𝑘d ∙ 𝜀$/0, 

Note that 𝑣 is not EBR as defined in the paper, it is just the expectations component (without 

the aggregate required return 𝑟).  

Next, the estimated portfolio regression gives (denoting sample averages by upper bars) 

𝑟 = 𝜅 + 𝛾 ∙ EBR³, 

And we also know 𝑟 = 𝑟 + 𝑣, which implies: 

𝑟 = 𝜅 + 𝛾 ∙ EBR³ − 𝑣 

If we know 𝑣, we get to know the required return 𝑟 , which is the first ingredient for computing 

the spread we are looking for.  To find 𝑣, first note that:  

EBR³ = 𝑟 − 𝛽 + (1 − 𝜏)𝑔 + 𝜏 ∙ 𝑣 

Thus, because 𝑟, 𝑔 and EBR³ are known, if we find out 𝜏 and 𝛽 then we can backup 𝑣.   Assume 

that market expectations are on average unbiased. This implies that measured forecast errors, 

which satisfy: 

M𝑔$/0 − 𝔼L$³(𝑔$/0)N = 𝑔$/0 − 𝛽 − 𝜏 ∙ 𝔼L$ − 𝜎 ∙ 𝜀$, 

on average obey: 

M𝑔$/0 − 𝔼L$³(𝑔$/0)N = 𝑔 − 𝛽 − 𝜏 ∙ 𝑔, 

So that: 

𝛽 = (1 − 𝜏) ∙ 𝑔 − 𝑒, 

where 𝑒 is the average forecast error.  We can then plug this expression for beta in the previous 

equation and obtain:  

EBR³ = 𝑟 + 𝑒 + 𝜏 ∙ 𝑣 

To recover 𝜏 note that: 

𝑐𝑜𝑣(EBR³, 𝑔) = (1 − 𝜏) ∙ 𝑣𝑎𝑟(𝑔) + 𝜏 ∙ 𝑐𝑜𝑣(𝑣, 𝑔) 

where we know 𝑐𝑜𝑣(EBRµ, 𝑔) and 𝑣𝑎𝑟(𝑔) but not 𝑐𝑜𝑣(𝑣, 𝑔).  Under our assumptions on the 

true required returns, the latter can be obtained from: 

𝑐𝑜𝑣(𝑣, 𝑔) = 𝑐𝑜𝑣(𝑟$/0, 𝑔). 

This yields: 



 49 

𝜏 =
𝑐𝑜𝑣(EBR³, 𝑔) − 𝑣𝑎𝑟(𝑔)
𝑐𝑜𝑣(𝑟$/0, 𝑔) − 𝑣𝑎𝑟(𝑔)

 

This allows us to back up 𝑣 from EBR³, and thus the required return spread: 

𝑟Y − 𝑟Z = 𝜅Y − 𝜅Z + EBRY³ − EBRZ³ �𝛾 −
𝑐𝑜𝑣(𝑟$/0, 𝑔) − 𝑣𝑎𝑟(𝑔)
𝑐𝑜𝑣(EBR³, 𝑔) − 𝑣𝑎𝑟(𝑔)�

+
𝑐𝑜𝑣(𝑟$/0, 𝑔) − 𝑐𝑜𝑣(EBR³, 𝑔)
𝑐𝑜𝑣(EBR³, 𝑔) − 𝑣𝑎𝑟(𝑔) 4𝑔Y − 𝑔Z8. 

  

 
 

Appendix B: Expectation Based Returns (EBRs), assumptions and robustness 
 

 
B.1 Samples and robustness. 

In this Section, we present descriptive statistics, assess the robustness of our construction of 

EBRs to alternative choices regarding sample selection, assumptions about payout ratios, and 

value weighting portfolio EBRs.  Table B.1 compares our main sample, defined in Section 2.2, 

to the full CRSP / COMPUSTAT sample.  

Table B1. 
Sample descriptive statistics 

Note: The table presents descriptive statistics for the sample of firms that meet the CRSP/COMPUSTAT data 
requirements of Fama and French (1992) and the subsample with an expectation-based return (EBR) for July of 
year t (our sample).  We report sample means for: (1) the book-to-market ratio, (2) the one-year change in total 
assets in fiscal year t-1  divided by t-2 total assets (investment), (3) annual revenues minus cost of goods sold, 
interest expense, and selling, general, and administrative expenses divided by book equity (operating 
profitability), (4) the return between t-11 and t, (5) the ratio of the 3-year moving average of earnings per share to 
price, (6) , (7) the dividend to price ratio, and (8) the average number of observations. For each variable, we report 
sample mans for the two samples, their difference, the standard error for the difference, the z-stat, and the 
significance of the difference of the two means. 

 
  Sample mean 

Difference Standard 
error z-stat p 

  
All CRSP/ 

COMPUTAT 
Our 

Sample 

book-to-market 0.6365 0.6109 0.0256 0.0038 6.72 0.0% 
investment 0.1905 0.1918 -0.0013 0.0020 -0.67 50.3% 
operating profitability 0.3320 0.3256 0.0064 0.0378 0.17 86.6% 
market capitalization (mill) 7,256 7,842 -586 65 -8.99 0.0% 
Lagged one-year return 0.1527 0.1687 -0.0160 0.0020 -8.12 0.0% 
earnings-to-price ratio 0.0202 0.0452 -0.0250 0.0035 -7.06 0.0% 
cape ratio 0.0300 0.0461 -0.0161 0.0024 -6.63 0.0% 
dividend-to-price ratio 0.0159 0.0165 -0.0006 0.0001 -6.87 0.0% 
observations 2,162 1,786 375.8 34.8 10.80 0.0% 
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Next, we show that the results of Tables 1 and 2 on how portfolio level EBRs compare to actual 

returns are qualitatively similar under an alternative payout definition.  We use the expected 

payout ratio implied from analysts’ expectations of dividends and earnings, namely 

𝔼L$𝐷𝑃𝑆#,$/0d/𝔼L$𝐸𝑃𝑆#,$/0d for observations with available expectations of dividends.   When 

this data is not available, we set the expected payout ratio to zero if the firm did not pay a 

dividend the previous year.  If the firm did pay a dividend the previous year, we set the payout 

ratio to the average expected payout ratio 𝔼
LiklZm,inop
𝔼LiqlZm,inop

 in our sample for those firms which paid 

dividends that year, 𝐷𝑃𝑆#,$/0d > 0, which equals 0.41. In the text we assumed a constant 

payout ratio, which has a correlation with the above specification of over 97%. 

Table B2. 
Expectation Based Returns with Alternative Measures of Payout Ratio 

Note: Panel A presents sample means of log expectation-based returns (EBR) returns for portfolios of stocks 
formed on book-to-market, investment, size, profitability and momentum over holding horizons ranging from one 
month to five years. EBRs are computed following Equation (10) in the text with the payout ratio set to: (1) the 
ratio of expected dividends-to-earnings in period t+12  (i.e. 𝔼L$𝐷𝑃𝑆#,$/0d/𝔼L$𝐸𝑃𝑆#,$/0d) for those observations 
where expectations of dividends are available, or (2) zero if the firm did not pay a dividend the previous year and 
𝔼L$𝐷𝑃𝑆#,$/0d is unavailable, or (3) the average expected payout ratio 𝔼

LiklZm,inop
𝔼LiqlZm,inop

 in our sample for those firms which 

paid dividends in the previous year but do not have  𝔼L$𝐷𝑃𝑆#,$/0d.  Portfolio EBRs are equally weighted with 
monthly rebalancing.  Panel B shows pairwise correlations between log returns and EBR for portfolios of stocks 
formed on book-to-market, investment, size, profitability and momentum sorts over holding horizons ranging 
from one month to five years.  The sample period extends from December 1981 to December 2023. 

  Panel A:  EBRs 
Holding 
Horizon Growth Value Aggressive Conservative Small Big Weak Robust Losers Winners 

1 Month 10.7% 13.5% 15.0% 7.4% 10.2% 11.5% 15.2% 9.7% -16.0% 33.0% 
3 Months 9.9% 13.0% 14.6% 6.7% 9.9% 11.1% 14.4% 9.4% -13.4% 30.0% 
1 Year 9.2% 13.7% 14.4% 6.9% 11.6% 10.3% 13.9% 9.6% -0.8% 20.2% 
3 Years 9.4% 13.1% 13.0% 8.2% 11.3% 10.3% 13.1% 10.0% 7.9% 12.9% 
5 Years 9.6% 12.5% 12.6% 8.9% 10.9% 10.2% 13.0% 9.9% 9.2% 11.8% 
  Panel B:  Correlation between returns and EBRs 
Holding 
Horizon Growth Value Aggressive Conservative Small Big Weak Robust Losers Winners 

1 Month 7% 18% 14% 9% 14% 9% 11% 12% 11% 5% 
3 Months 22% 34% 30% 24% 29% 23% 28% 21% 27% 25% 
1 Year 35% 50% 36% 40% 45% 33% 43% 32% 46% 42% 
3 Years 43% 49% 35% 51% 60% 30% 46% 33% 52% 49% 
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5 Years 34% 37% 25% 40% 47% 16% 38% 23% 35% 32% 
 
 
Next, we show our baseline analysis in Tables 3 and 6 is robust to value weighting portfolio 
EBRs. 
 

Table B3.  
Value weighted EBRs and Returns 

Note: This table presents univariate regression results of log value-weighted returns for portfolios of stocks formed 
on book-to-market and size (Panel A), investment and profitability (Panel B), and momentum (Panel C) over 
holding horizons ranging from one month to five years.  The independent variable is the value-weighted 
expectation-based returns (EBR) for the relevant portfolio.  Standard errors are corrected for overlapping 
observations using the Newey-West (1987) procedure.  The sample period is December 1981 to December 2023.  
Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% level. 
 

Panel A: book to market and size 
  Book-to-market (HML) Size (Small minus Big) 
  1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 

  (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) 
EBRLMS 0.2398b 0.5377a 0.8245a 1.0648a 1.0778a 0.6007a 0.9965a 1.1643a 1.2857a 1.1787a 

  (0.0991) (0.1401) (0.1314) (0.1598) (0.1757) (0.1438) (0.1868) (0.1879) (0.2032) (0.2162) 

Constant 0.0012 0.0028 0.0025 -0.0131 -0.0106 0.0049b 0.0098c -0.0020 -0.0615 -0.0677 

  (0.0020) (0.0051) (0.0157) (0.0368) (0.0469) (0.0019) (0.0051) (0.0193) (0.0423) (0.0516) 
Obs 504 502 493 469 445 504 502 493 469 445 
Adj R2 2% 11% 37% 56% 59% 6% 19% 38% 54% 49% 

 
Panel B: profitability and investment 

  Profitability (Robust minus Weak) Investment (CMA) 
  1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 

  (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) 
EBRLMS 0.0645 0.3204a 0.5553a 0.5242a 0.5076a 0.3024a 0.4724a 0.8755a 0.9631a 0.9690a 

  (0.0806) (0.0898) (0.1197) (0.1159) (0.0944) (0.0711) (0.0852) (0.1293) (0.1317) (0.0974) 

Constant 0.0016 0.0080b 0.0417a 0.0654a 0.0603 0.0018 0.0049 0.0071 -0.0022 -0.0061 

  (0.0016) (0.0038) (0.0120) (0.0235) (0.0367) (0.0014) (0.0038) (0.0126) (0.0269) (0.0336) 
Obs 504 502 493 469 445 504 502 493 469 445 
Adj R2 0% 6% 23% 33% 40% 4% 11% 33% 52% 56% 

 
Panel C: momentum 

  1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 
  (1) (2) (3) (4) (5) 

EBRLMS 0.1561 0.5484a 0.5909a 0.7103a 0.5882a 

  (0.1035) (0.0979) (0.0914) (0.1351) (0.1518) 

Constant -0.0034 -0.0440a -0.1040a -0.1347a -0.1151b 

  (0.0043) (0.0111) (0.0230) (0.0446) (0.0535) 
Obs 504 502 493 469 445 
Adj R2 1% 11% 21% 37% 25% 
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B2.  EBR spreads and realized return spreads  

We reproduce the EBR decomposition analysis of Table 5 for all factors.  We further control 

for the spread in portfolios’ price dividend ratios as a means to control for spreads in discount 

rates incorporated in lagged valuation ratios. 

Table B4.  
Portfolio level forecast errors and revisions predict spreads 

Note: This table presents univariate regression results of log value-weighted returns for portfolios of stocks formed 
on book-to-market and size (Panel A), investment, profitability and momentum (Panel B) over holding horizons 
ranging from one year  to five years.  The independent variables include the long-short: (a) forecast error between 
𝑡 and 𝑡 + ℎ, (b) forecast revisions between 𝑡 and 𝑡 + ℎ of one-year earnings growth in year 𝑡 + ℎ + 1, and (c) 
changes in long-term growth forecasts between 𝑡 and 𝑡 + ℎ, and (d) log dividend-to-price ratio.  Standard errors 
are corrected for overlapping observations using the Newey-West (1987) procedure. The sample period spans 
from December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at the 5% 
level, c significant at the 10% level. 

 
Panel A: Book to market and Size 

  Book-to-Market (HML) Size (SMB) 
  𝑟}~Y,$/0d 𝑟}~Y,$/©h 𝑟}~Y,$/hJ 𝑟}~Y,$/0d 𝑟}~Y,$/©h 𝑟}~Y,$/hJ 

(1-Et) ∆eLMS,t+h 0.1302a 0.1745a 0.1351a 0.1035a 0.1295a 0.0381 

  (0.0136) (0.0267) (0.0376) (0.0204) (0.0367) (0.0486) 

(Et+h-Et) ∆eLMS,t+h+1 0.0800a 0.0572b -0.0249 0.0334c 0.0109 -0.0340 

  (0.0128) (0.0247) (0.0284) (0.0185) (0.0262) (0.0351) 

∆hLTGLMS,t+h 0.0278a 0.0197 0.0486 -0.0280b 0.0175 0.0799b 

  (0.0094) (0.0212) (0.0345) (0.0139) (0.0291) (0.0351) 

ln(dpLMS,t) 0.0030 -0.0040 0.0500 0.0252c 0.0239 0.0662 

  (0.0106) (0.0263) (0.0351) (0.0148) (0.0342) (0.0485) 

Constant -0.1149a -0.2827a -0.3671a -0.1410a -0.1896c -0.2954c 

  (0.0259) (0.0661) (0.0916) (0.0442) (0.1069) (0.1545) 

Obs 493 469 445 493 469 445 
Adj R2 53% 48% 48% 34% 40% 26% 

 
Panel B: Investment, Profitability, Momentum 

  Investment (CMA) Profitability (RMW) Momentum (WML) 
  𝑟}~Y,$/0d 𝑟}~Y,$/©h 𝑟}~Y,$/hJ 𝑟}~Y,$/0d 𝑟}~Y,$/©h 𝑟}~Y,$/hJ 𝑟}~Y,$/0d 𝑟}~Y,$/©h 𝑟}~Y,$/hJ 

(1-Et) ∆eHML,t+h 0.0649a 0.0737a 0.1023a 0.0489a 0.0652a 0.0143 0.1325a 0.1796a 0.0706b 

  (0.0089) (0.0126) (0.0199) (0.0155) (0.0173) (0.0167) (0.0269) (0.0292) (0.0342) 

(Et+h-Et) ∆eHML,t+h+1 0.0497a 0.0400a 0.0333b 0.0225 0.0075 0.0215 0.0833a 0.0668a 0.0239 

  (0.0081) (0.0123) (0.0134) (0.0159) (0.0173) (0.0164) (0.0228) (0.0236) (0.0257) 
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∆hLTGHML,t+h 0.0149b 0.0428a -0.0207 -0.0201 -0.0135 -0.0095 0.0187 0.0428c 0.0012 

  (0.0065) (0.0137) (0.0201) (0.0127) (0.0147) (0.0217) (0.0176) (0.0249) (0.0393) 

ln(dpHML,t) 0.0128c -0.0131 0.0198 -0.0127 -0.0344b -0.0099 0.0150 -0.0325 0.0602 

  (0.0067) (0.0135) (0.0185) (0.0132) (0.0164) (0.0255) (0.0164) (0.0237) (0.0371) 

Constant 0.0225 0.0451 0.0524 0.0326 0.0439 0.0594 -0.1582a -0.0900b 0.0145 

  (0.0157) (0.0319) (0.0515) (0.0245) (0.0274) (0.0460) (0.0377) (0.0352) (0.0478) 

Obs 493 469 445 493 469 445 493 469 445 
Adj R2 46% 47% 39% 11% 20% 4% 30% 46% 16% 

 
 
 
Section 2.5 discusses the hypothesis that analyst expectations may surreptitiously capture 

discount rates that may be incorporated in prices. Here we show, following BGLS (2024), that 

changes in measured beliefs respond to realized fundamentals, and do not appear to 

mechanically respond to prices.  Table B5 regresses portfolio level EBRs on contemporaneous 

portfolio level returns (which would drive the results if analysts mechanically infer forecasts 

from prices), as well as on contemporaneous cash flow news.  

 
Table B5. 

Expectation based portfolio returns and contemporaneous news 
Note: The table presents portfolio-level regressions of expectation-based returns (EBR) at horizons (h) of one-
and 3-months, and one-, three- and five-years. In each panel, the independent variables in the first regression are: 
(a) log returns between 𝑡 and 𝑡 + ℎ. (b) earnings growth between 𝑡 and 𝑡 + ℎ, and (c) the forecast error for earnings 
growth between 𝑡 and 𝑡 + ℎ. The independent variable in the second regression is (a) log returns between 𝑡 and 𝑡 
+ ℎ. Panel A presents results for book to market and size, Panel B for investment and profitability, and Panel C 
for momentum.  Standard errors are corrected for overlapping observations using the Newey-West (1987) 
procedure. The sample period spans from December 1981 to December 2023. Superscripts: a significant at the 1% 
level, b significant at the 5% level, c significant at the 10% level. 

Panel A: book to market and size 
 𝐸𝐵𝑅}~Y,$/y 𝐸𝐵𝑅Z~�,$/y 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 1 Mo 3 Mo 1 yr 3 yrs 5 yrs 

𝑟Y~Z,$/y 0.6313a 0.4407a 0.2819a 0.2631a 0.2765a 0.5551a 0.4168a 0.1457a 0.2315a 0.3035a 

 (0.1111) (0.0753) (0.0492) (0.0577) (0.0637) (0.0901) (0.0646) (0.0349) (0.0534) (0.0690) 
 Δ𝑒}~Y,$/y 1.7713a 0.8254a 0.2801a 0.2021a 0.2096b 1.2244a 0.5266a 0.0126 -0.0411 -0.2125 
 (0.3345) (0.1355) (0.0686) (0.0767) (0.0912) (0.3545) (0.1452) (0.0685) (0.1020) (0.1933) 
(1 − 𝐸$) 
Δy𝑒Y~Z,$/y     0.1342b 0.5288c 0.8856c     0.3297a 1.6494a 3.4592a 
      (0.0639) (0.2761) (0.5174)     (0.0535) (0.2744) (0.8469) 
Constant 0.0338a 0.0266a -0.0097 0.0085 0.0126 0.0135 0.0083 0.0355a 0.0914a 0.1208b 
  (0.0106) (0.0094) (0.0131) (0.0250) (0.0326) (0.0098) (0.0087) (0.0098) (0.0296) (0.0613) 
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Obs 493 493 493 469 445 493 493 493 469 445 
Adj R2 24% 36% 57% 56% 63% 17% 27% 58% 76% 70% 

                 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 1 Mo 3 Mo 1 yr 3 yrs 5 yrs 

𝑟Y~Z,$/y 0.7452a 0.5792a 0.4476a 0.1523a 0.4260a 0.6280a 0.4788a 0.2982a 0.1954a 0.4516a 

  (0.1312) (0.0905) (0.0498) (0.0530) (0.0665) (0.0982) (0.0694) (0.0426) (0.0354) (0.1002) 

Constant 0.0418a 0.0379a 0.0270a 0.0279b 0.0817a 0.0127 0.0103 0.0041 -0.0036 -0.0138 

  (0.0121) (0.0108) (0.0086) (0.0120) (0.0195) (0.0104) (0.0093) (0.0080) (0.0097) (0.0377) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 8% 18% 46% 12% 50% 9% 20% 34% 34% 49% 

 
Panel B: investment and profitability 

 𝐸𝐵𝑅�~�,$/y 𝐸𝐵𝑅�~�,$/y 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 1 Mo 3 Mo 1 yr 3 yrs 5 yrs 

𝑟Y~Z,$/y 0.6677a 0.5822a 0.3262a 0.1717b 0.3588a 0.6522a 0.5484a 0.2675a 0.4881a 0.5255a 
 (0.1323) (0.0955) (0.0528) (0.0707) (0.0763) (0.1411) (0.1137) (0.0650) (0.1101) (0.0865) 

 Δ𝑒}~Y,$/y 0.4480 0.2204c 0.0280 0.2330a 0.1873c 0.5070c 0.3237b 0.2613a 0.2475a 0.4244a 
 (0.2841) (0.1154) (0.0521) (0.0777) (0.1088) (0.2972) (0.1271) (0.0544) (0.0913) (0.0884) 
(1 − 𝐸$) 
Δy𝑒Y~Z,$/y     0.2402a 0.5612b 0.2571     0.1635a 0.1859 -0.3512 

      (0.0470) (0.2245) (0.4179)     (0.0621) (0.3016) (0.3792) 

Constant 0.0675a 0.0612a 0.0318a 0.0951a 0.1250a -0.0322b -0.0230 -0.0048 -0.0430 -0.0153 

  (0.0087) (0.0080) (0.0069) (0.0140) (0.0269) (0.0154) (0.0153) (0.0171) (0.0385) (0.0287) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 8% 19% 51% 42% 48% 7% 16% 44% 42% 60% 

                 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 1 Mo 3 Mo 1 yr 3 yrs 5 yrs 

𝑟Y~Z,$/y 0.7165a 0.6256a 0.4534a 0.1313b 0.4898a 0.6498a 0.5682a 0.3335a 0.2644a 0.6561a 

  (0.1372) (0.0978) (0.0581) (0.0582) (0.0699) (0.1430) (0.1173) (0.0821) (0.0820) (0.1186) 

Constant 0.0750a 0.0694a 0.0553a 0.0626a 0.1330a -0.0500a -0.0517a -0.0545a -0.0481a -0.1639a 

  (0.0074) (0.0068) (0.0068) (0.0111) (0.0127) (0.0116) (0.0110) (0.0108) (0.0107) (0.0228) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 6% 17% 36% 8% 42% 5% 11% 16% 14% 42% 

 

Panel C: momentum (WML) 
 𝐸𝐵𝑅�~Y,$/y 
  (1) (2) (3) (4) (5) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 
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𝑟Y~Z,$/y 0.7864a 0.7271a 0.2403a 0.4357a 0.5007a 
 (0.1248) (0.0931) (0.0456) (0.0851) (0.1161) 
 Δ𝑒}~Y,$/y 0.9235b 0.4931a 0.1464c -0.0318 0.1481 
 (0.4523) (0.1677) (0.0749) (0.1073) (0.2198) 
(1 − 𝐸$) 
Δy𝑒Y~Z,$/y     0.4035a 1.3463a 0.9940 
      (0.0553) (0.2896) (0.8039) 
Constant 0.1360a 0.1146a 0.0634a 0.0818a 0.1166b 
  (0.0357) (0.0309) (0.0190) (0.0258) (0.0513) 
Obs 493 493 493 469 445 
Adj R2 12% 29% 62% 63% 40% 

            
  (1) (2) (3) (4) (5) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 

𝑟Y~Z,$/y 0.7611a 0.7223a 0.3904a 0.2582a 0.5731a 

  (0.1269) (0.0974) (0.0627) (0.0679) (0.1135) 
Constant 0.2016a 0.1964a 0.2045a 0.2151a 0.1389a 
  (0.0161) (0.0141) (0.0142) (0.0219) (0.0442) 
Obs 493 493 493 469 445 
Adj R2 8% 24% 29% 20% 33% 

 

Consistent with our portfolio level results (Tables 3 and 7), portfolio level EBRs have 

significant loadings on contemporaneous portfolio level returns (Panel A).  In turn, Panel B 

shows that, controlling for actual return spreads 𝑟Y~Z,$/y, EBRs strongly responds to news, in 

terms of both contemporaneous realized growth Δy𝑒Y~Z,$/y and realized forecast errors, which 

are a broader proxy for news including forward looking news.  In particular, accounting for 

forecast errors leads to a substantial increase in the adjusted R2, as well as a drop in the 

correlation of EBR and actual returns in most cases.  Thus, stock returns are not mechanically 

incorporated into expectations. In the next section we present an analogous firm level result. 

 

B3. Firm level results 

In this section we complement our portfolio level analysis with three sets of exercises at the 

firm level.  We first repeat the baseline analysis of Table 3 regressing returns on EBRs, because 
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Equations (8) and (4) for realized returns hold at that level, too.  This exercise confirms our 

findings that EBRs explain contemporaneous returns, and addresses a possible critique of our 

approach, namely that there it relies on a relatively small number of observations.   Next, we 

show (following Table 5) that the components into of EBRs – forecast errors and revisions – 

explain returns. 

Finally, we repeat the analysis in Table B5, assessing the extent to which firm level 

EBRs respond to firm level news, controlling for firm level returns, which confirms that 

expectations respond strongly to news controlling for prices and is evidence for the validity of 

analyst expectations as proxies for market expectations.  

Starting with the baseline analysis, there is substantial firm level variation in beliefs 

that can be exploited to detect the link between expectations and returns. In BGLS (2024) we 

already showed robust predictability of returns from lagged expectations at the firm level.  

Here, in line with Equations (4) and (8), we similarly report the explanatory power of 

contemporaneous firm level EBR for actual firm level returns.   

Table B6.  
Expectation based returns and actual returns 

Note: This table presents firm level univariate regression results for log returns against expectation-based returns 
(EBRs) We estimate separate regressions for one-month, three-months, one-year, three-years, and five-years 
horizons. Each regression is run with (odd columns) and without (even columns) time and firm fixed effects. 
Standard errors are corrected for overlapping observations using the Newey-West (1987) procedure. The sample 
period extends from December 1981 to December 2023.  Superscripts: a significant at the 1% level, b significant 
at the 5% level, c significant at the 10% level. 

 1 Mo 3 Mo 1 Yr 3 Yrs 5 Yrs 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

EBRi,t+h 0.1552a 0.1734a 0.2064a 0.2438a 0.4141a 0.4715a 0.5951a 0.6612a 0.6752a 0.7486a 
  (0.0045) (0.0099) (0.0069) (0.0148) (0.0152) (0.0220) (0.0222) (0.0238) (0.0225) (0.0203) 

Constant   0.0027   0.0088   0.0455b   0.1207a   0.1691a 
    (0.0028)   (0.0074)   (0.0206)   (0.0380)   (0.0493) 
Obs 899,458 899,977 837,316 837,792 790,868 791,014 604738 604,871 479,198 479,282 

Adj R2 3% 3% 7% 7% 25% 26% 45% 47% 51% 54% 
F-stat 0.0 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.5 
Time FE Y N Y N Y N Y N Y N 
Firm FE Y N Y N Y N Y N Y N 
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To focus on firm level variation in beliefs, in some specifications we include time and 

firm fixed effects in firm level regressions. In those specifications, 𝑅ds capture explanatory 

power relative to the demeaned variables. Firm level EBRs have strong explanatory power for 

realized returns, and more so at longer horizons.  The explanatory power is similar with and 

without fixed effects.  This is an important finding: first, it suggests that firm level differences 

in required returns are negligeable (since firm fixed effects do not matter).  Second, and related, 

it suggests that aggregate changes in required returns are also negligeable (since time fixed 

effects do not matter). 

Next, we present a firm-level counterpart to Table 5, which decomposes the link 

between EBRs and returns into EBR’s forecast error and forecast revision components. 

Table B7. 
Forecast errors and revisions predict returns at the firm level 

Note: This table present firm-level multivariate regressions of expectation-based returns (EBRs) over holding 
horizons (h) of one-year, three-years, and five-years. The independent variables include: (a) the forecast error for 
earnings growth between 𝑡 and 𝑡 + ℎ, (b) forecast revisions between 𝑡 and 𝑡 + ℎ of one-year earnings growth in 
year 𝑡 + ℎ + 1, and (c) changes in long-term growth forecasts between 𝑡 and 𝑡 + ℎ,.  Regressions include time 
and firm fixed effects in columns (1), (4), and (7), only time fixed effects in columns (2), (5), and (8), and exclude 
fixed effects in columns (3), (6), and (9).  All independent variables are standardized.  Standard errors are corrected 
for overlapping observations and cross-correlations using the Driscoll and Kraay (1998) procedure. The sample 
period spans from December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at 
the 5% level, c significant at the 10% level.   

  
 1 Yr 3 Yrs 5 Yrs 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1-Et) ∆ei,t+h 0.2946a 0.2989a 0.3070a 0.4556a 0.4643a 0.4725a 0.3996a 0.4269a 0.4445a 
  (0.0103) (0.0107) (0.0134) (0.0122) (0.0138) (0.0121) (0.0113) (0.0132) (0.0160) 
(Et+h-Et) ∆ei,t+h+1 0.2073a 0.2158a 0.2262a 0.2378a 0.2552a 0.2636a 0.1713a 0.1553a 0.1691a 

  (0.0076) (0.0082) (0.0114) (0.0074) (0.0081) (0.0092) (0.0058) (0.0086) (0.0127) 

∆hLTGi,t+h 0.0340a 0.0351a 0.0394a 0.0532a 0.0490a 0.0498a 0.0291 0.0196 0.0234 

  (0.0044) (0.0044) (0.0043) (0.0122) (0.0101) (0.0105) (0.0250) (0.0181) (0.0181) 
Constant     0.1432a     0.4276a     0.6330a 
      (0.0171)     (0.0325)     (0.0451) 
Obs 695,893 696,107 696,107 570,256 570,431 570,431 447,310 447,421 447,421 

Adj R2 28% 30% 28% 44% 46% 43% 35% 37% 36% 

Time FE Y Y N Y Y N Y Y N 
Firm FE Y N N Y N N Y N N 
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Consistent with Equation (4), all three expectations measures have strong explanatory 

power for the variation of firm level returns over time, with a large aggregate adjusted 𝑅d.  

Each specification is run with and without time and fixed effects; remarkably, and similar to 

Table B6, the explanatory power of expectations – both the coefficients and R2 – remains 

unchanged.  In sum, Tables B6 and B8 place sharp limits on the role of required returns in the 

Campbell Shiller decomposition.  In fact, the results are thus consistent with the decomposition 

(4) with 𝑟#y being a constant that scales with horizon ℎ, as captured by the constant term in 

columns 3, 6, and 9.22  

Finally, we replicate Table B5 above at the firm level.  Specifically, we examine 

whether firm level EBRs are explained entirely by contemporaneous firm level returns (which 

would hold if analysts mechanically infer forecasts from prices), or whether they reflect 

contemporaneous cash flow growth. 

Table B8 
Expectation based returns and contemporaneous news 

Note: Panel A presents firm-level univariate regressions of expectation-based returns (EBR) at horizons (h) of 
one-month, three-months, one-year, three-years, and five-years. The independent variable is: (a) log returns 
between 𝑡 and 𝑡 + ℎ.  Panel B presents firm-level multivariate regressions of expectation-based returns (EBR) at 
horizons (h) of one-month, three-months, one-year, three-years, and five-years. The independent variables 
include: (a) log returns between 𝑡 and 𝑡 + ℎ, (b) earnings growth between 𝑡 and 𝑡 + ℎ, and (c) the forecast error 
for earnings growth between 𝑡 and 𝑡 + ℎ. All specifications include firm fixed effects. Standard errors are 
corrected for overlapping observations and cross-correlations using the Driscoll and Kraay (1998) procedure. The 
sample period spans from December 1981 to December 2023. Superscripts: a significant at the 1% 
level, b significant at the 5% level, c significant at the 10% level.   

Panel A 
  𝐸𝐵𝑅#,$/0 𝐸𝐵𝑅#,$/© 𝐸𝐵𝑅#,$/0d 𝐸𝐵𝑅#,$/©h 𝐸𝐵𝑅#,$/hJ 
  (1) (2) (3) (4) (5) 
𝑟#,$/y 0.1221a 0.2265a 0.4741a 0.6325a 0.6424a 
  (0.0015) (0.0093) (0.0151) (0.0168) (0.0110) 
Obs 721,554 683,366 731,977 540,744 406,309 
Adj R2 2% 7% 26% 47% 55% 

 
Panel B 

  𝐸𝐵𝑅#,$/0 𝐸𝐵𝑅#,$/© 𝐸𝐵𝑅#,$/0d 𝐸𝐵𝑅#,$/©h 𝐸𝐵𝑅#,$/hJ 
  (1) (2) (3) (4) (5) 
𝑟#,$/y 0.1185a 0.2113a 0.3449a 0.3952a 0.4648a 
  (0.0014) (0.0091) (0.0140) (0.0117) (0.0119) 

                                                
22 In line with the prediction, the coefficients for 1 year horizon are larger for forecast errors and smaller for long 
term forecasts (note that for long horizons, information about long term forecasts is already included in the other 
two regressors). 
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Δ𝑒#,$/y 0.0098a 0.0319a 0.0219a -0.0170b 0.0059 
  (0.0002) (0.0014) (0.0026) (0.0071) (0.0183) 
(1 − 𝐸$)Δy𝑒#,$/y     0.1451a 0.3095a 0.2334a 
      (0.0056) (0.0103) (0.0173) 
Obs 721,347 683,145 731,768 540,564 406,189 
Adj R2 2% 7% 36% 59% 60% 

 

Consistent with our portfolio level results (Tables 3 and 7 in the text, and Table B7 

above), firm level EBRs have significant loading on firm level contemporaneous returns, which 

increase at longer horizons (Panel A).  In turn, Panel B shows that, controlling for actual returns 

𝑟#,$/y, EBRs strongly responds to news, in terms of both contemporaneous realized growth 

Δy𝑒$/y and realized forecast errors, which are a broader proxy for news including forward 

looking news.  In fact, accounting for news leads to a significant drop in the correlation of EBR 

and actual returns, as well as a substantial increase in the adjusted R2.  Table B8 shows that 

stock returns are not mechanically incorporated into expectations.   

 
 
 

Appendix C: Return predictability 
 

C1. Portfolio level results. 

Table C1 presents the full results of the return predictability exercise described in Table 8, in 

which return spreads are predicted from lagged expectations variables and from the dividend-

to-price ratio (as a proxy for required returns).  

Table C1 
Predicting return spreads from expectations data and the price dividend ratio spreads 

Note: The table presents portfolio-level regressions of log returns (𝑟Y~Z,$/y) at horizons (h) of one-and 3-months, 
and one-, three- and five-years. In each panel, the independent variables in the first regression are: (a) log 
dividend-to-price ratio at time t (𝑑𝑝Y~Z,$), (b) the change in the portfolio forecast for long-term growth in 
earnings between 𝑡	−	h	and 𝑡,  (c) the lagged portfolio forecast for long-term growth in earnings at 𝑡	−	h, (d) 
the change in the portfolio forecast for one-year growth in earnings between 𝑡-h	and	t, (e) the ranked forecast 
error in portfolio earnings between 𝑡	−	h	and 𝑡, (f) the change in the aggregate forecast for long-term growth 
in earnings between 𝑡	–	h	and 𝑡, and (g) the aggregate forecast for long-term growth in earnings at t. Portfolio 
forecast errors are ranked from 0 (lowest percentile) to 1 (top percentile).  In the second regression, the 
independent variable is (a) log dividend-to-price ratio at time t (𝑑𝑝Y~Z,$). Panel A presents results for portfolios 
that are long value and short growth stocks (HML) and long small and short big stocks (SMB), Panel B for 
portfolios that are long conservative and short aggressive investment stocks (CMA) and long robust and 
short weak profitability stocks (RMW), and Panel C for portfolios that are long winner and short momentum 
stocks (WML). All independent variables are standardized. The last row reports the R2 from an univariate 
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regression of  𝑟𝑒𝑡Y~Z,$/y on 𝑑𝑝Y~Z,$.  Standard errors are corrected for overlapping observations using the Newey-
West (1987) procedure. The sample period spans from December 1981 to December 2023. Superscripts: a 
significant at the 1% level, b significant at the 5% level, c 0% level. 

Panel A: value and size  
 𝑟}~Y,$/y 𝑟Z~�,$/y 
  (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
ln(dpLS,t) -0.0075 0.0392 0.0305 0.0753 0.4096b 0.0098 0.0815c 0.1491 0.1727 0.7869a 
  (0.0243) (0.0591) (0.2334) (0.3420) (0.1880) (0.0153) (0.0465) (0.1159) (0.1093) (0.1819) 
ΔhLTGLS,t 0.0045c 0.0093 -0.0762b -0.0571c 0.0470 0.0060b -0.0020 0.0057 -0.0192 -0.0227 
  (0.0026) (0.0074) (0.0341) (0.0337) (0.0364) (0.0025) (0.0104) (0.0277) (0.0542) (0.0613) 
LTGLS,t-h -0.0190 -0.0395 -0.2657 -0.4045 -0.1988 0.0052 0.0280 0.0348 -0.1523 0.1743 
  (0.0143) (0.0364) (0.1730) (0.2788) (0.2063) (0.0068) (0.0172) (0.0708) (0.1073) (0.1513) 
ΔhSTGLS,t -0.0022 0.0017 0.0396b 0.0829a 0.1156a 0.0020 0.0028 0.0456a 0.0494a 0.0192 
  (0.0023) (0.0075) (0.0167) (0.0263) (0.0343) (0.0026) (0.0079) (0.0157) (0.0153) (0.0183) 
STGLS,t-h 0.0158 0.0676b 0.2155a 0.4322a 0.2980b 0.0304b 0.0407 0.1286c -0.0153 -0.1179 

  (0.0105) (0.0341) (0.0651) (0.0902) (0.1306) (0.0132) (0.0261) (0.0737) (0.1290) (0.1442) 

FELS,t-h rank     0.0821c 0.1261 -0.2389b     0.0142 0.0451 0.0478 
      (0.0492) (0.1359) (0.0978)     (0.0576) (0.0853) (0.0704) 
ΔhLTGAgg,t -0.0046c 0.0047 0.0257 0.0586 0.2336a 0.0085a 0.0008 -0.0033 0.0843a 0.1584a 
  (0.0025) (0.0072) (0.0307) (0.0377) (0.0507) (0.0028) (0.0106) (0.0248) (0.0233) (0.0362) 
LTGAgg,t-h 0.0041c 0.0115 0.0346 0.1279a 0.1237a 0.0030 0.0064 0.0483b 0.0992a 0.0667b 
  (0.0022) (0.0071) (0.0294) (0.0351) (0.0428) (0.0032) (0.0069) (0.0203) (0.0249) (0.0259) 
Constant -0.0401b -0.1147b -0.4177b -1.0655a -1.2508a -0.0307 -0.0314 -0.2504c -0.2601c 0.0421 
  (0.0164) (0.0533) (0.1890) (0.3428) (0.3593) (0.0271) (0.0542) (0.1497) (0.1421) (0.2209) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 5% 7% 16% 27% 67% 4% 3% 23% 43% 58% 

           

           

ln(dpp,t) 0.0039 0.0365 0.1756 0.1500 0.3681 0.0119 0.0519c 0.2031b 0.4859a 0.6227a 

 (0.0118) (0.0372) (0.1171) (0.2480) (0.3079) (0.0102) (0.0293) (0.0913) (0.1871) (0.1859) 

Constant 0.0024 0.0002 -0.0103 0.0338 -0.0107 0.0101 0.0413b 0.1707a 0.4201a 0.5668a 

 (0.0033) (0.0106) (0.0301) (0.0644) (0.0725) (0.0064) (0.0187) (0.0634) (0.1413) (0.1514) 

Obs 444 442 433 409 385 444 442 433 409 385 

Adjusted R2 0% 0% 3% 1% 5% 0% 2% 7% 19% 26% 
 

Panel B: investment and profitability 
 𝑟�~�,$/y 𝑟�~�,$/y 
  (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
ln(dpp,t) -0.0087 -0.0525 0.0828 -0.3400c -0.0501 0.0232 0.0903 0.1470 -0.3627 -0.1907 
  (0.0152) (0.0393) (0.0972) (0.1787) (0.2076) (0.0215) (0.0552) (0.2000) (0.3296) (0.2050) 
LTGp,t-1 0.0038b 0.0051 0.0088 -0.0781a -0.0588 0.0014 -0.0026 -0.0029 0.0006 0.0214 
  (0.0016) (0.0045) (0.0161) (0.0174) (0.0364) (0.0023) (0.0043) (0.0159) (0.0213) (0.0207) 
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ΔLTGp,t -0.0098c -0.0386a -0.1410a -0.2884b -0.1174 0.0034 0.0210 0.0794 -0.1677 0.3496a 
  (0.0057) (0.0138) (0.0516) (0.1162) (0.1259) (0.0080) (0.0172) (0.0724) (0.1077) (0.0972) 
STGp,t -0.0007 0.0044 0.0113 0.0030 0.0201 0.0039 0.0052 0.0035 0.0065 -0.0261c 
  (0.0017) (0.0043) (0.0118) (0.0227) (0.0223) (0.0025) (0.0047) (0.0120) (0.0208) (0.0135) 
FEp,t-1 rank 0.0081 0.0197 0.1187b -0.0077 0.1047 0.0234c 0.0410c 0.0130 0.0292 -0.1556 

  (0.0092) (0.0243) (0.0479) (0.1204) (0.1458) (0.0139) (0.0238) (0.0683) (0.1351) (0.1241) 

FEp,t-3 rank     -0.0246 0.0138 0.1186b     -0.0309c 0.0234 -0.0327 
      (0.0232) (0.0580) (0.0484)     (0.0184) (0.0267) (0.0222) 
FEp,t-5 rank -0.0023c 0.0026 0.0176 0.0044 0.0475b -0.0082a -0.0072 0.0373 0.0004 0.0502c 
  (0.0012) (0.0030) (0.0112) (0.0168) (0.0205) (0.0023) (0.0066) (0.0257) (0.0248) (0.0269) 
ΔLTGagg,t 0.0038a 0.0120a 0.0246a 0.0177 0.0399b 0.0026 0.0108c 0.0356 -0.0294 0.1315a 
  (0.0014) (0.0035) (0.0092) (0.0180) (0.0162) (0.0028) (0.0059) (0.0272) (0.0361) (0.0366) 
LTGagg,t-1 -0.0255a -0.0722a -0.2406a -0.0913 -0.1604 -0.0102 -0.0579c -0.1953 0.1942 -0.7219a 
  (0.0086) (0.0223) (0.0675) (0.1801) (0.1361) (0.0170) (0.0311) (0.1537) (0.2336) (0.2458) 
Constant 444 442 433 409 385 444 442 433 409 385 
  6% 11% 27% 18% 16% 5% 4% 9% 8% 28% 
Obs -0.0087 -0.0525 0.0828 -0.3400c -0.0501 0.0232 0.0903 0.1470 -0.3627 -0.1907 
Adjusted R2 (0.0152) (0.0393) (0.0972) (0.1787) (0.2076) (0.0215) (0.0552) (0.2000) (0.3296) (0.2050) 

           

           

ln(dpp,t) -0.0012 0.0238 0.1889a 0.0746 0.1146 0.0001 0.0172 -0.0051 -0.1520 -0.4238b 

 (0.0093) (0.0265) (0.0561) (0.1014) (0.0744) (0.0106) (0.0260) (0.0813) (0.1044) (0.1687) 

Constant 0.0052b 0.0089 0.0056 0.0617c 0.0614b 0.0010 -0.0023 0.0097 0.0511 0.0928b 

 (0.0024) (0.0070) (0.0161) (0.0336) (0.0277) (0.0033) (0.0086) (0.0255) (0.0317) (0.0434) 

Obs 444 442 433 409 385 444 442 433 409 385 

Adjusted R2 0% 0% 8% 0% 1% 0% 0% 0% 3% 13% 
Panel C: momentum 

 𝑟�~Y,$/y 
  (1) (2) (3) (4) (5) 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
ln(dpp,t) 0.0118 0.0125 0.0880 0.1077 0.4152a 
  (0.0163) (0.0318) (0.0922) (0.0876) (0.0991) 
LTGp,t-1 0.0031 0.0018 -0.0279 -0.0166 0.0161 
  (0.0030) (0.0082) (0.0249) (0.0338) (0.0634) 
ΔLTGp,t -0.0134c -0.0372b -0.1470b -0.1787a -0.0013 
  (0.0075) (0.0149) (0.0572) (0.0502) (0.1105) 
STGp,t 0.0075b 0.0199b 0.0706a 0.0971a 0.0877b 
  (0.0032) (0.0093) (0.0236) (0.0238) (0.0392) 
FEp,t-1 rank 0.0558a 0.1102a 0.2527a 0.4252a 0.4535 

  (0.0176) (0.0387) (0.0704) (0.1387) (0.3245) 

FEp,t-3 rank     -0.0031 -0.0026 -0.0313 
      (0.0320) (0.0371) (0.0462) 
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FEp,t-5 rank 0.0022 0.0002 0.0073 -0.0787a -0.1070a 
  (0.0025) (0.0069) (0.0184) (0.0298) (0.0350) 
ΔLTGagg,t 0.0028 0.0077 -0.0205 -0.0593a -0.0609c 
  (0.0027) (0.0059) (0.0297) (0.0223) (0.0353) 
LTGagg,t-1 0.0027 0.0056 0.2259 0.4656a 0.4755c 
  (0.0160) (0.0335) (0.2092) (0.1683) (0.2567) 
Constant 444 442 433 409 385 
  7% 16% 26% 36% 23% 
Obs 0.0118 0.0125 0.0880 0.1077 0.4152a 
Adjusted R2 (0.0163) (0.0318) (0.0922) (0.0876) (0.0991) 

      

      

ln(dpp,t) 0.0074 0.0219 0.1333c 0.1800 0.1798b 

 (0.0104) (0.0219) (0.0704) (0.1100) (0.0910) 

Constant 0.0040 0.0093 -0.0068 -0.0487 -0.0726b 

 (0.0025) (0.0067) (0.0216) (0.0336) (0.0363) 

Obs 444 442 433 409 385 

Adjusted R2 0% 0% 4% 4% 3% 
 

The results in Table C1 generalize those of Table 8 to other horizons:  the dividend 

price ratio is nearly never significant and often of the wrong sign, while the coefficients on 

expectations variables are large, particularly at long horizons.  The dividend price ratio’s 

predictive power in univariate regressions is very low, while adding lagged expectations 

dramatically increases it in all specifications, as measured by higher adjusted 𝑅d.  The same 

results obtain when replacing the dividend-to-price ratio with the book-to-market ratio or the 

lagged return spread, as shown in Table C2.  

Table C2 
Robustness of return predictability from expectations data 

Note: the table presents regressions of log returns for portfolios that are long value and short growth stocks (HML), 
long small and short big stocks (SMB), long conservative and short aggressive investment stocks (CMA), 
long robust and short weak profitability stocks (RMW), and long winner and short momentum stocks (WML). 
Separate regressions are estimated for horizons (h) one-month and one year. The set of independent variables 
includes: (a) the ranked forecast error in portfolio earnings between 𝑡 − ℎ	and 𝑡, (b) the change in the portfolio 
forecast for short-term growth in earnings between 𝑡 − ℎ	and 𝑡, (c) the lagged portfolio forecast for one-year 
growth in earnings at 𝑡 − ℎ, (d) the change in the portfolio forecast for long-term growth in earnings between 
𝑡 − ℎ	and 𝑡, (e) the lagged portfolio forecast for long-term growth in earnings at 𝑡 − ℎ, (f) the change in the 
aggregate forecast for long-term growth in earnings between 𝑡 − ℎ	 and 𝑡, (g) the forecast for long-term 
growth in aggregate earnings at 𝑡 − ℎ, and (g) the portfolio log book-to-market ratio (𝑏𝑚Y~Z,$) at time t in 
Panel A, and the portfolio log return spread (𝑟Y~Z,$) at time t in Panel B. Portfolio forecast errors are ranked 
from 0 (lowest percentile) to 1 (top percentile). All independent variables are standardized. The last row reports 
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the R2 from a univariate regression of  𝑟Y~Z,$/y on 𝑏𝑚Y~Z,$ (panel A) or on 𝑟Y~Z,$ (panel B).  Standard errors 
are corrected for overlapping observations using the Newey-West (1987) procedure. The sample period spans 
from December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at the 5% 
level, c 0% level.  

Panel A: controlling for lagged book-to-market ratio spreads 
 𝑟}~Y,$/y 𝑟Z~�,$/y 𝑟�~�,$/y 𝑟�~�$/y 𝑟�~Y,$/y 

 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝑏𝑚Y~Z,$ -0.0144c 0.0850 -0.0123b 0.1425a -0.0080b 0.0171 -0.0096b 0.0058 -0.0076b 0.0292 
 (0.0079) (0.0824) (0.0059) (0.0438) (0.0037) (0.0276) (0.0039) (0.0268) (0.0037) (0.0259) 
∆y𝐿𝑇𝐺Y~Z,$/y 0.0046c -0.0789b 0.0063b -0.0151 0.0043a 0.0050 0.0017 -0.0088 0.0036 -0.0232 
  (0.0027) (0.0308) (0.0026) (0.0260) (0.0016) (0.0164) (0.0024) (0.0179) (0.0032) (0.0244) 
𝐿𝑇𝐺Y~Z,$xy -0.0058 -0.3733a 0.0016 0.0099 -0.0110b -0.1537a -0.0002 0.0300 -0.0227a -0.1346b 
  (0.0083) (0.1274) (0.0056) (0.0510) (0.0049) (0.0420) (0.0057) (0.0351) (0.0074) (0.0560) 
(𝔼$/y − 𝔼$) 
∆y𝑒Y~Z,$/y/0d -0.0025 0.0413b 0.0021 0.0362b -0.0010 0.0125 0.0042c 0.0063 0.0084a 0.0698a 

 (0.0024) (0.0170) (0.0026) (0.0168) (0.0017) (0.0110) (0.0024) (0.0132) (0.0032) (0.0217) 
𝔼$xy∆y𝑒Y~Z,$/0d 0.0119 0.2466a 0.0338a 0.1325c 0.0078 0.1052b 0.0221 0.0115 0.0620a 0.1990a 
 (0.0091) (0.0690) (0.0125) (0.0709) (0.0088) (0.0459) (0.0141) (0.0698) (0.0172) (0.0749) 
(1 − 𝐸$)	∆y𝑒Y~Z,$   0.0727c   0.0404   -0.0148   -0.0285   0.0051 

   (0.0372)   (0.0492)   (0.0247)   (0.0198)   (0.0322) 
Δy𝐿𝑇𝐺~�$,$  -0.0044c 0.0156 0.0085a -0.0393 -0.0024b 0.0206c -0.0081a 0.0325 0.0018 0.0084 
 (0.0024) (0.0292) (0.0029) (0.0248) (0.0012) (0.0118) (0.0023) (0.0223) (0.0025) (0.0189) 
𝐿𝑇𝐺~�$,$xy 0.0050b 0.0248 0.0059 0.0050 0.0028c 0.0276a 0.0029 0.0260 0.0010 -0.0091 
 (0.0022) (0.0301) (0.0036) (0.0184) (0.0015) (0.0094) (0.0026) (0.0248) (0.0028) (0.0315) 
Constant -0.0132 -0.5732b -0.0398 -0.1901 -0.0184c -0.2523a -0.0272 -0.1132 0.0029 0.1818 
  (0.0176) (0.2240) (0.0268) (0.1259) (0.0102) (0.0655) (0.0175) (0.1658) (0.0162) (0.2108) 
Obs 442 433 442 433 442 433 442 433 442 433 
Adjusted R2 6% 18% 5% 27% 8% 27% 6% 8% 9% 27% 

Univariate R2 2% 0% 0% 16% 2% 1% 1% 0% 0% 9% 
 

Panel B: controlling for lagged return spreads 
 𝑟}~Y,$/y 𝑟Z~�,$/y 𝑟�~�,$/y 𝑟�~�$/y 𝑟�~Y,$/y 

 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝑟Y~Z,$ 0.2180a 0.0466 0.2591a -0.0676b 0.2133a 0.0054 0.2392a -0.0835b 0.1708a 0.0348 
 (0.0329) (0.0379) (0.0256) (0.0336) (0.0262) (0.0353) (0.0338) (0.0355) (0.0294) (0.0377) 
∆y𝐿𝑇𝐺Y~Z,$/y 0.0051b -0.0837b 0.0023 -0.0078 0.0024c 0.0060 -0.0020 -0.0072 0.0017 -0.0175 
  (0.0026) (0.0327) (0.0021) (0.0258) (0.0013) (0.0163) (0.0020) (0.0153) (0.0027) (0.0296) 
𝐿𝑇𝐺Y~Z,$xy -0.0118 -0.2688a 0.0023 -0.0067 -0.0064 -0.1607a -0.0002 0.0453 -0.0129c -0.1866a 
  (0.0082) (0.0886) (0.0045) (0.0542) (0.0044) (0.0386) (0.0046) (0.0343) (0.0068) (0.0527) 
(𝔼$/y − 𝔼$) 
∆y𝑒Y~Z,$/y/0d 0.0012 0.0374b 0.0039b 0.0503a 0.0005 0.0112 0.0025 0.0116 0.0050 0.0770a 

 (0.0022) (0.0179) (0.0019) (0.0157) (0.0014) (0.0118) (0.0020) (0.0144) (0.0040) (0.0239) 
𝔼$xy∆y𝑒Y~Z,$/0d 0.0163c 0.1675a 0.0228b 0.1569b 0.0090 0.1027b 0.0088 0.0273 0.0315c 0.2083a 
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 (0.0089) (0.0641) (0.0102) (0.0720) (0.0080) (0.0442) (0.0119) (0.0723) (0.0165) (0.0696) 
(1 − 𝐸$)	∆y𝑒Y~Z,$   0.0645   0.0840   -0.0266   -0.0165   0.0060 

   (0.0533)   (0.0692)   (0.0247)   (0.0211)   (0.0323) 
Δy𝐿𝑇𝐺~�$,$  0.0005 0.0285 0.0030 -0.0027 -0.0002 0.0186 -0.0006 0.0182 0.0019 -0.0040 
 (0.0022) (0.0284) (0.0026) (0.0247) (0.0012) (0.0116) (0.0022) (0.0230) (0.0024) (0.0205) 
𝐿𝑇𝐺~�$,$xy 0.0029 0.0319 0.0021 0.0511b 0.0023c 0.0244b 0.0015 0.0257 0.0021 -0.0354 
 (0.0019) (0.0290) (0.0025) (0.0201) (0.0013) (0.0095) (0.0022) (0.0234) (0.0026) (0.0332) 
Constant -0.0289b -0.3911b -0.0241 -0.3043b -0.0174b -0.2284a -0.0057 -0.1179 0.0012 0.2084 
  (0.0137) (0.1746) (0.0208) (0.1345) (0.0078) (0.0664) (0.0131) (0.1265) (0.0151) (0.2091) 
Obs 444 433 444 433 444 433 444 433 444 433 
Adjusted R2 23% 17% 29% 24% 24% 26% 25% 13% 24% 26% 

Univariate R2 21% 2% 29% 2% 23% 1% 26% 9% 21% 0% 
 

 

Table C3 presents the first stage of the exercise of Table 9, in which EBRs spreads are predicted 

from lagged expectations variables and from the dividend-to-price ratio.  

 
Table C3 

Note: The table presents portfolio-level regressions of log expectations-based returns (EBRs) at horizons (h) of one-
and 3-months, and one-, three- and five-years. In each panel, the independent variables in the first regression are: 
(a) log dividend-to-price ratio at time t (𝑑𝑝Y~Z,$), (b) the change in the portfolio forecast for long-term growth 
in earnings between 𝑡	−	h	and 𝑡,  (c) the lagged portfolio forecast for long-term growth in earnings at 𝑡	−	h, (d) 
the change in the portfolio forecast for one-year growth in earnings between 𝑡-h	and	t, (e) the ranked forecast 
error in portfolio earnings between 𝑡	−	h	and 𝑡, (f) the change in the aggregate forecast for long-term growth 
in earnings between 𝑡	–	h	and 𝑡, and (g) the aggregate forecast for long-term growth in earnings at t. Portfolio 
forecast errors are ranked from 0 (lowest percentile) to 1 (top percentile).  In the second regression, the 
independent variable is (a) log dividend-to-price ratio at time t (𝑑𝑝Y~Z,$). Panel A presents results for portfolios 
that are long value and short growth stocks (HML) and long small and short big stocks (SMB), Panel B for 
portfolios that are long conservative and short aggressive investment stocks (CMA) and long robust and 
short weak profitability stocks (RMW), and Panel C for portfolios that are long winner and short momentum 
stocks (WML). All independent variables are standardized. The last row reports the R2 from an univariate 
regression of log 𝐸𝐵𝑅Y~Z,$/y on 𝑑𝑝Y~Z,$.  Standard errors are corrected for overlapping observations using the 
Newey-West (1987) procedure. The sample period spans from December 1981 to December 2023. Superscripts: 
a significant at the 1% level, b significant at the 5% level, c 0% level. 

 𝐸𝐵𝑅}~Y,$/y 𝐸𝐵𝑅Z~�,$/y 
  (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
ln(dpLS,t) -0.0102 -0.0400 -0.2259c -0.1714 0.0089 -0.0042 0.0065 -0.0353 0.0673 0.4009a 
  (0.0086) (0.0246) (0.1166) (0.1779) (0.0947) (0.0053) (0.0166) (0.0525) (0.0568) (0.0727) 
ΔhLTGLS,t 0.0033a 0.0125a -0.0623a -0.0491b -0.0177 0.0011 0.0029 0.0051 -0.0375 -0.0547b 
  (0.0010) (0.0037) (0.0177) (0.0249) (0.0222) (0.0008) (0.0031) (0.0100) (0.0242) (0.0267) 
LTGLS,t-h -0.0052 -0.0267 -0.2889a -0.3699b -0.1250 -0.0040c -0.0098 -0.0576a -0.1481a -0.0514 
  (0.0049) (0.0166) (0.0973) (0.1587) (0.0963) (0.0022) (0.0066) (0.0188) (0.0429) (0.0516) 
ΔhSTGLS,t -0.0039a -0.0094a 0.0386a 0.0590a 0.0654a -0.0004 -0.0020 0.0322a 0.0677a 0.0579a 
  (0.0009) (0.0025) (0.0099) (0.0131) (0.0125) (0.0008) (0.0029) (0.0075) (0.0114) (0.0072) 
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STGLS,t-h -0.0000 0.0121 0.1617a 0.2786a 0.2212b 0.0170a 0.0363a 0.1110a 0.1738a 0.3351a 

  (0.0041) (0.0119) (0.0434) (0.0682) (0.0909) (0.0045) (0.0133) (0.0269) (0.0537) (0.0691) 

FELS,t-h rank     0.0839b 0.0427 -0.0692     0.0913a 0.1016b 0.0515 
      (0.0378) (0.0461) (0.0435)     (0.0261) (0.0470) (0.0860) 
ΔhLTGAgg,t -0.0001 0.0028 0.0309b 0.0337b 0.0946a 0.0014 0.0007 0.0215b 0.0311b 0.0286c 
  (0.0008) (0.0032) (0.0132) (0.0140) (0.0208) (0.0010) (0.0032) (0.0088) (0.0121) (0.0170) 
LTGAgg,t-h 0.0024a 0.0072a 0.0319b 0.0554a 0.0190 0.0000 0.0007 0.0212a -0.0024 -0.0335a 
  (0.0008) (0.0026) (0.0134) (0.0138) (0.0178) (0.0007) (0.0023) (0.0060) (0.0127) (0.0115) 
Constant -0.0174a -0.0588a -0.3480a -0.4974a -0.1977 -0.0087 -0.0122 -0.0902c 0.2324b 0.4529a 
  (0.0055) (0.0210) (0.0954) (0.1520) (0.1524) (0.0067) (0.0192) (0.0501) (0.1113) (0.1596) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 14% 28% 30% 34% 55% 9% 16% 47% 57% 68% 

R2 univariate 1% 2% 0% 0% 0% 1% 6% 16% 30% 46% 
 

 𝐸𝐵𝑅�~�,$/y 𝐸𝐵𝑅�~�,$/y 
  (1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
ln(dpLS,t) -0.0151c -0.0576a 0.0039 -0.0848 0.2493b 0.0046 0.0237 0.0587 -0.0079 0.0546 
  (0.0080) (0.0222) (0.0618) (0.1104) (0.1139) (0.0100) (0.0257) (0.0842) (0.1284) (0.1970) 
ΔhLTGLS,t 0.0010 0.0014 0.0154 -0.0412a -0.0113 0.0012 0.0078a 0.0211b 0.0021 0.0442b 
  (0.0007) (0.0036) (0.0102) (0.0150) (0.0164) (0.0009) (0.0022) (0.0087) (0.0136) (0.0219) 
LTGLS,t-h -0.0039 -0.0156b -0.0773b -0.1276c -0.0366 0.0062c 0.0178b -0.0356 -0.0859 0.0979 
  (0.0035) (0.0071) (0.0362) (0.0736) (0.0576) (0.0032) (0.0081) (0.0385) (0.0532) (0.0845) 
ΔhSTGLS,t -0.0045a -0.0029 0.0187c 0.0157c 0.0504a -0.0009 0.0006 0.0191b 0.0319b 0.0275c 
  (0.0009) (0.0023) (0.0100) (0.0092) (0.0091) (0.0009) (0.0023) (0.0090) (0.0131) (0.0155) 
STGLS,t-h -0.0058 0.0065 0.1111a 0.1619a 0.3005a 0.0055 0.0229c 0.1493a 0.2473a 0.1441 

  (0.0048) (0.0124) (0.0343) (0.0471) (0.0473) (0.0047) (0.0123) (0.0404) (0.0714) (0.1012) 

FELS,t-h rank     -0.0149 -0.0363 0.0265     -0.0294c -0.0263 -0.0325 
      (0.0201) (0.0402) (0.0461)     (0.0165) (0.0233) (0.0280) 
ΔhLTGAgg,t -0.0003 0.0014 0.0114 0.0021 0.0196 -0.0012 -0.0025 -0.0137 0.0017 -0.0089 
  (0.0007) (0.0026) (0.0084) (0.0105) (0.0132) (0.0008) (0.0025) (0.0094) (0.0149) (0.0268) 
LTGAgg,t-h 0.0018a 0.0071a 0.0160a -0.0059 0.0403a 0.0007 0.0024 -0.0152 -0.0047 0.0187 
  (0.0007) (0.0021) (0.0061) (0.0095) (0.0087) (0.0009) (0.0026) (0.0140) (0.0215) (0.0397) 
Constant -0.0049 -0.0202 -0.0893c 0.1119 -0.1918b -0.0035 -0.0131 0.0922 0.0181 -0.1791 
  (0.0046) (0.0138) (0.0468) (0.0902) (0.0747) (0.0059) (0.0149) (0.0787) (0.1526) (0.2510) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 14% 15% 18% 16% 30% 5% 13% 30% 18% 23% 

R2 univariate 3% 4% 1% 0% 0% 3% 5% 1% 2% 7% 
 

 𝐸𝐵𝑅}~Y,$/y 
  (1) (2) (3) (4) (5) 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
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ln(dpLS,t) -0.0102 -0.0400 -0.2259c -0.1714 0.0089 
  (0.0086) (0.0246) (0.1166) (0.1779) (0.0947) 
ΔhLTGLS,t 0.0033a 0.0125a -0.0623a -0.0491b -0.0177 
  (0.0010) (0.0037) (0.0177) (0.0249) (0.0222) 
LTGLS,t-h -0.0052 -0.0267 -0.2889a -0.3699b -0.1250 
  (0.0049) (0.0166) (0.0973) (0.1587) (0.0963) 
ΔhSTGLS,t -0.0039a -0.0094a 0.0386a 0.0590a 0.0654a 
  (0.0009) (0.0025) (0.0099) (0.0131) (0.0125) 
STGLS,t-h -0.0000 0.0121 0.1617a 0.2786a 0.2212b 

  (0.0041) (0.0119) (0.0434) (0.0682) (0.0909) 

FELS,t-h rank     0.0839b 0.0427 -0.0692 
      (0.0378) (0.0461) (0.0435) 
ΔhLTGAgg,t -0.0001 0.0028 0.0309b 0.0337b 0.0946a 
  (0.0008) (0.0032) (0.0132) (0.0140) (0.0208) 
LTGAgg,t-h 0.0024a 0.0072a 0.0319b 0.0554a 0.0190 
  (0.0008) (0.0026) (0.0134) (0.0138) (0.0178) 
Constant -0.0174a -0.0588a -0.3480a -0.4974a -0.1977 
  (0.0055) (0.0210) (0.0954) (0.1520) (0.1524) 
Obs 444 442 433 409 385 
Adjusted R2 14% 28% 30% 34% 55% 

R2 univariate 1% 2% 0% 0% 0% 
 

C2. Firm level results 

Here we perform, at the firm level, the analysis of Table 10: we first show that firm level future 

EBRs are predictable from current expectations (Panel A), and then run a horse race between 

predicted EBRs and current dividend price ratio (Panels B), the latter being a proxy for required 

returns.   

Table C4. 
Predicted EBRs predict returns at the firm level   

Note:  Panel A presents firm-level regressions of log expectations-based returns (EBRs) over holding horizons (h) of one-
month, three-months, one-year, three-years, and five-years.  The set of independent variables includes: (a) log 
dividend-to-price ratio at time t (𝑑𝑝Y~Z,$), (b) the change in the portfolio forecast for long-term growth in 
earnings between 𝑡	−	h	and 𝑡,  (c) the lagged portfolio forecast for long-term growth in earnings at 𝑡	−	h, (d) 
the change in the portfolio forecast for one-year growth in earnings between 𝑡-h	and	t, (e) the ranked forecast 
error in portfolio earnings between 𝑡	−	h	and 𝑡, (f) the change in the aggregate forecast for long-term growth 
in earnings between 𝑡	–	h	and 𝑡, and (g) the aggregate forecast for long-term growth in earnings at t.   Portfolio 
forecast errors are ranked from 0 (lowest percentile) to 1 (top percentile). All independent variables are 
standardized. The dependent variable in Panel B is  firm-level returns (EBRs) over holding horizons (h) of one month, 
three months, one year, three years, and five years  The independent variables in Panel B include the log dividend-
price ratio.  In columns 6 to 10, the EBRs predicted by the Panel A regressions are also included.  All regressions 
include firm fixed effects.  Standard errors are corrected for overlapping observations and cross-correlations using 
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the Driscoll and Kraay (1998) procedure. The sample period spans from December 1981 to December 2023. 
Superscripts: a significant at the 1% level, b significant at the 5% level, c 0% level. 

Panel A: Predicting firm level expectation based returns 
  (1) (2) (3) (4) (5) 
  1 Mo 3 Mo 1 Yr  3 Yrs 5 Yrs 

ln(dpi,t) -0.0043a -0.0132a -0.0206a -0.0224a -0.0268c 
  (0.0005) (0.0016) (0.0054) (0.0081) (0.0143) 
ΔhLTGi,t 0.0019a 0.0010 -0.0547a -0.1408a -0.1594a 
  (0.0003) (0.0012) (0.0058) (0.0115) (0.0235) 
LTGi,t-h -0.0050a -0.0221a -0.1084a -0.1494a -0.1605a 
  (0.0007) (0.0027) (0.0097) (0.0143) (0.0263) 
ΔhSTGi,t -0.0107a -0.0343a 0.0019 0.0133 0.0137 
  (0.0007) (0.0045) (0.0137) (0.0170) (0.0222) 
STGi,t-h -0.0117a -0.0197a 0.0278b 0.0312b 0.0566b 
  (0.0010) (0.0049) (0.0136) (0.0158) (0.0246) 
FEi,t-h rank     0.0329a -0.0473a -0.0835a 
      (0.0044) (0.0083) (0.0092) 
ΔhLTGAgg,t 0.0040a 0.0136a -0.0039 -0.0632a -0.0288 
  (0.0008) (0.0032) (0.0077) (0.0173) (0.0294) 
LTGAgg,t-h 0.0002 -0.0025 -0.0296a 0.0013 -0.0691c 
  (0.0006) (0.0022) (0.0091) (0.0245) (0.0376) 
Observations 501,342 467,941 443,350 355,688 273,440 
Adj R2 0% 2% 3% 4% 5% 
F-Stat 69 41 55 24 27 

 
Panel B: Predicted expectation based returns and actual returns 

  Dependent Variable:  ri,t+h 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 1 Mo 3 Mo 1 Yr 3 Yr 5 Yr 

ln(dpi,t) 0.0014 0.0057 0.0301a 0.0625a 0.1195a 0.0015 0.0070c 0.0316a 0.0544a 0.0837a 
  (0.0014) (0.0037) (0.0101) (0.0211) (0.0273) (0.0016) (0.0037) (0.0099) (0.0184) (0.0183) 
Hat EBRi,t           0.0363 0.1370 0.4184a 0.5527a 0.8322a 
            (0.1650) (0.1171) (0.0911) (0.1364) (0.2091) 
Obs 501,342 467,941 443,334 355,657 273,400 501,342 467,941 443,334 355,657 273,400 

Adj R2 -1.0% -1.0% -0.8% -0.6% 0.2% -1.0% -1.0% -0.1% 1.2% 3.7% 

F-stat 1.0 2.3 8.8 8.8 19.1 0.5 2.3 11.5 12.4 13.4 
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APPENDIX D: Characteristics, expectations and market efficiency 

The next step of our analysis is a mediation exercise (MacKinnon 2012). To obtain an 

estimate of the share of return predictability from characteristics that works through their 

ability to predict analyst expectations (versus the share that works through their direct 

predictive ability after controlling for EBRs), we regress firm level realized returns on 

contemporaneous EBRs and lagged firm characteristics.  The exercise shows that, to a large 

extent, characteristics predict returns precisely because they capture distorted expectations.  

Specifically, we run the regression: 

𝑟#,$/y = 𝑎» + 𝑏 ∙ EBR#,$,$/y + 𝑐¼³ ⋅ 𝑏𝑚#,$ + 𝑐#¾¿ ∙ 𝑖𝑛𝑣#,$ + 𝑐H#À= ⋅ 𝑠𝑖𝑧𝑒#,$ + 𝑐´»ÁÂ ∙ 𝑜𝑝#,$

+ 𝑐³Á³ ∙ 𝑟#,$x0d→$x0 + 𝜖$/y, (𝐷1) 

where coefficients 𝑐Ä capture the predictive power of characteristic 𝜒 for returns that is 

independent of the firm level EBR.   The predictive power of a characteristic such as book to 

market working through EBRs can then be quantified as 𝑏 ∙ 𝑑¼³, where 𝑑¼³ is the coefficient 

on the regression that predicts EBRs from characteristics (Table 11 in the text):  

EBR#,$,$/y = 𝑎=¼» + 𝑑¼³ ⋅ 𝑏𝑚#,$ + 𝑑#¾¿ ∙ 𝑖𝑛𝑣#,$ + 𝑑H#À= ⋅ 𝑠𝑖𝑧𝑒#,$ + 𝑑´»ÁÂ ∙ 𝑜𝑝#,$ + 𝑑³Á³

∙ 𝑟#,$x0d→$x0 + 𝜀$/y.																						(𝐷2) 

Finally, the predictive power of book to market working through EBRs, 𝑏 ∙ 𝑑¼³, can be 

compared to the independent predictive power 𝑐¼³ of book to market alone, and similarly for 

other characteristics. This exercise offers a lower bound for the role of growth expectations 

(and their predictable errors and reversals) on the documented return predictability from 

characteristics: our measured analyst beliefs in fact contain only partial information about 

market beliefs, not only due to measurement noise, but also because we observe expectations 

only for specific forecast horizons. 

Table D1 shows the empirical results, reporting Equation (D2) in Panel A. 

Table D1 
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Return predictability from characteristics is mediated by expectations 
Note: Panel A presents regressions of log firm-level returns at horizons (h) of one month, three months, one year, 
three years, and five years. The independent firm-level variables include: (a) log book-to-market (ln 𝑏𝑚#,$) at time 
𝑡, (b) log market value of equity at time t, (c) one-year growth in assets between 𝑡 − 1 and 𝑡 (𝐼𝑛𝑣#,$), (d) operating 
profitability at time 𝑡 (𝑜𝑝#,$), and (e)  returns between periods 𝑡 − 11 and 𝑡 − 1 (𝑟#,$x00→$x0).  All specifications 
have firm fixed effects. Standard errors are corrected for overlapping observations and cross-correlations using 
the Driscoll and Kraay (1998) procedure. The sample period spans from December 1981 to December 2023.  
Panel B shows the share of predictability of log firm-level returns at each horizon h accounted for by 𝐼𝑛𝑣#,$ and 
ln 𝑏𝑚#,$ as detailed in Equations (12,13) and in the text. Superscripts: a significant at the 1% level, b significant at 
the 5% level, c significant at the 10% level. 

Panel A: Explaining Returns 
  𝑟#,$/0 𝑟#,$/© 𝑟#,$/0d 𝑟#,$/©h 𝑟#,$/hJ 
  (1) (2) (3) (4) (5) 
EBR#,$,$/y 0.1701a 0.2440a 0.4456a 0.5609a 0.6016a 
  (0.0012) (0.0138) (0.0221) (0.0227) (0.0223) 
ln 𝑏𝑚#,$ 0.0126a 0.0213a 0.0460a 0.0758a 0.1107a 
 (0.0003) (0.0054) (0.0097) (0.0149) (0.0217) 
ln 𝑠𝑖𝑧𝑒#,$	 -0.0029a -0.0081a -0.0189a -0.0191a -0.0124b 
  (0.0002) (0.0018) (0.0049) (0.0043) (0.0050) 
𝐼𝑛𝑣#,$	 0.0034a 0.0088a 0.0284a 0.0378a 0.0513a 
  (0.0002) (0.0017) (0.0051) (0.0084) (0.0079) 
𝑜𝑝#,$ 0.0038a -0.0364a -0.1610a -0.2681a -0.3424a 
  (0.0003) (0.0068) (0.0215) (0.0414) (0.0610) 
𝑟#,$x0d→$x0 -0.0022a -0.0115a -0.0560a -0.0646a -0.0821a 
 (0.0001) (0.0033) (0.0108) (0.0120) (0.0094) 
Obs 875,404 815,293 772,217 594,792 474,032 
Adj R2 2% 7% 31% 51% 59% 

 
Panel B: Share of predictability from characteristics via expectations 

𝑏𝑚 113% 70% 46% 38% 43% 
𝑠𝑖𝑧𝑒 17% 24% 22% 16% 10% 
𝑖𝑛𝑣 -58% -54% -253% 385% 237% 
𝑜𝑝 7% -65% 102% 58% 59% 
𝑟#,$x0d→$x0 -3% -7% -38% -148% -239% 

 

 Panel A shows that EBR has substantial explanatory power: conditioning on 

characteristics, 𝑏 is large and significant, consistent with Table 9.  The converse is also true 

(𝑐Ä are large and significant) which, on its own, is consistent both with a characteristic based 

required return and with the earlier remark that our measures of market beliefs are partial.  

Momentum has the wrong sign in Table D1 panel A but the correct sign in Table 11, suggesting 

all of the predictability is captured by EBR.   
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We next compute a lower bound for the expectation-channel share of the predictability 

of characteristic 𝜒 = 𝑏𝑚, 𝑠𝑖𝑧𝑒, 𝑖𝑛𝑣, 𝑝𝑟𝑜𝑓,𝑚𝑜𝑚 as ¼⋅ÇÈ
¼⋅ÇÈ/ÉÈ

, which are reported in Table D1 

panel B. At horizons of 1 year or longer, most predictability from 𝑏𝑚, 𝑠𝑖𝑧𝑒 and 𝑚𝑜𝑚, and a 

substantial share of predictability from 𝑖𝑛𝑣, works through the expectations channel.23  There 

is no explanatory power for profitability, in line with the result from Table C2 that, controlling 

for other characteristics, 𝑑𝑝 does not predict EBRs.  These results offer direct evidence that 

analyst expectations help explain the documented predictive power of firm characteristics for 

future returns. 

We next complement the analysis in Table D1 concerning the link between 

characteristics and expectations.  We first predict returns 𝑟#,$/y	at the firm level using a 

saturated specification of contemporaneous expectations measures: forecast errors 𝐹𝐸#,$/R, 

revisions of long term forecasts ΔÊ𝐿𝑇𝐺#,$/R and of short term forecasts ΔR𝐸$/RΔ𝑒#,$/R/0 for 𝑗 =

1,… , ℎ.  We also include measures of lagged aggregate optimism 𝐿𝑇𝐺$, Δ𝐿𝑇𝐺$x0 which BGLS 

(2024) show predict the future value premium. These regressions achieve 𝑅ds ranging from 

27% to 48%. We next regress the residual firm level returns on firm level book to market 𝑏𝑚#,$.  

Since 𝑏𝑚#,$ is scaled by market price, and thus includes a measure of market expectations, this 

sequential procedure helps better identify the component of returns that is orthogonal to the 

(noisier) measured expectations component.  The regressions do not include time or firm fixed 

effects, since they seek to capture cross-sectional variation in returns arising from firm level 

characteristics.  

Table D2. 

                                                
23 As a further test, we offer another lower bound on the role of expectations by following the residualization 
strategy in BGLS (2024). Specifically, we first regress returns 𝑟#,$/y	at the firm level using a saturated specification 
of contemporaneous expectations measures. These regressions achieve 𝑅ds ranging from 27% to 48%. We next 
regress the residuals of this regression on firm level book to market 𝑏𝑚#,$.  Appendix C2 shows that the predictive 
power of characteristics drops dramatically in magnitude and significance and ceases to be significant for horizons 
of 1 year or above, once expectations are controlled for in this way. Under efficient markets, the predictive power 
of characteristics for returns should be unaffected. 
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Residualization exercise 
Note: Panel A presents univariate regressions of firm level log returns at horizons (h) of one-month, three-months, 
one-year, three-years, and five-years on log book-to-market at time t.  The dependent variable in Panel B is the 
residualized return from separate regressions –which are not shown--  of returns at horizon t+h on forecast errors 
and revisions in both long-term and short-term growth between t and t+h. The independent variables in both 
panels is log book-to-market at time t.  All variables are standardized. Standard errors are corrected for 
overlapping observations using the Newey-West (1987) procedure.  The sample period spans from December  
1981 to December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at 
the 10% level. 

Panel A. Book to market and firm level returns 
 Dep. Variable: 𝑟#,$/y	 
 (1) (2) (3) (4) (5) 
 ℎ =1 Mo ℎ =	3 Mo ℎ =	1 Yr ℎ =	3 Yrs ℎ =	5 Yrs 

ln(bmi,t) 0.0049a 0.0118a 0.0402a 0.0746a 0.1006a 
  (0.0012) (0.0029) (0.0084) (0.0183) (0.0235) 
Constant 0.6959a 2.0899a 8.3633a 24.5599a 40.0203a 
  (0.0015) (0.0037) (0.0124) (0.0244) (0.0302) 
Obs 477,256 445,657 506,844 478,353 416,251 
Adj R2 0% 0% 1% 1% 1% 
F-stat 18.1 16.8 22.9 16.6 18.3 

 
Panel B. Book to market and firm level residual returns 

 Dep. Variable: residual 𝑟#,$/y	 
 (1) (2) (3) (4) (5) 
 ℎ =1 Mo ℎ =	3 Mo ℎ =	1 Yr ℎ =	3 Yrs ℎ =	5 Yrs 

ln(bmi,t) 0.0036a 0.0058b 0.0120c 0.0049 0.0024 
  (0.0012) (0.0028) (0.0064) (0.0133) (0.0192) 
Constant -0.0020 -0.0031 -0.0063 -0.0025 -0.0012 
  (0.0015) (0.0032) (0.0083) (0.0178) (0.0231) 
Obs 477,256 445,657 401,537 352,841 302,816 
Adj R2 0% 0% 0% 0% 0% 
F-stat 9.8 4.3 3.5 0.1 0.0 

 

The Table shows 𝑏𝑚#,$ has strong predictive power for firm level returns in our sample 

(panel A).  The predictive power of 𝑏𝑚#,$ drops substantially, both in magnitude and in 

significance, when contemporaneous measured expectations are controlled for (panel B). At 

the 1 year horizon, the slope coefficient drops by more than 40% which, given the limits in the 

measures of expectations, this is a lower bound for the role of expectations.  For longer 

horizons, the strong predictability of 𝑏𝑚#,$ is entirely captured by expectations.   

These results also complement the finding in BGLS (2024) that the return predictability 

of the aggregate price dividend ratio for returns on the aggregate market disappears once 
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contemporaneous expectations are taken into account. These two conceptually similar 

exercises show that return predictability from valuation ratios is to a large extent a 

predictability of (differential) expectation revisions.  This fact implies that characteristics 

encode information about beliefs, and specifically about departures from rationality. 

 
 

 
 
 


