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Abstract

We model a new type of bank run, a deposit franchise run. Banks pay below-
market rates on deposits, which makes the deposit franchise a valuable asset. For a
bank to keep this value, deposits must stay in the bank; if they leave, their value is
lost to the bank. This makes the deposit franchise a runnable asset. Unlike Diamond-
Dybvig runs, deposit franchise runs can occur even if the bank’s loans are fully liquid.
Since the deposit franchise value increases with interest rates, a run is more harmful,
and hence more likely, when rates are high. To avoid runs, banks can shorten the
duration of their assets, but this can make them insolvent if interest rates fall. Avoid-
ing both runs and insolvency requires additional capital in proportion to the value of
the uninsured portion of the deposit franchise. We use our model to estimate deposit
franchise values and show how to identify vulnerable banks in the context of the 2023
Regional Bank Crisis.
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1 Introduction

In the year leading up to March 2023, the Federal Reserve raised short-term interest rates
by nearly 5%. Long-term rates rose by 2.5%. The sharp increase had a big impact on
the value of bank assets. Banks held $17 trillion of long-term loans and securities with
an average duration of about four years. The implied loss on these assets was thus 4 ×
0.025 × $17 = $1.7 trillion. Bank equity stood at $2.2 trillion, hence these losses had the
potential to wipe out most of the capital of the banking sector.

Strikingly, bank investors were unconcerned. The value of bank stocks, shown in
Figure 1, held up well and tracked the overall stock market throughout 2022 and early
2023. Bank profits, as captured by their net interest margins, also held up and even rose
slightly despite the large maturity mismatch. Evidently, banks had another source of
profits supporting their value.

That source of profits was deposits. Deposits are special, as reflected in their rates,
which are low and insensitive to market rates. This “low beta” makes deposits much more
profitable for banks when interest rates rise. Historically, deposit betas have been about
0.4. As a result, when the Fed raised rates banks went from earning 0% to a (1 − 0.4)×
0.05 = 3% spread on deposits. Deposits stood at $17 trillion, so deposit profits rose by
$510 billion per year. At this rate, it would take banks just over three years to recoup their
asset losses with higher deposit profits.

The offsetting impact of interest rates on bank assets and deposits is not a coincidence.
Prior work shows that banks use long-term assets to hedge their deposit franchise (Drech-
sler et al., 2021). This explains the stability of bank stocks in the face of interest rate hikes
seen in Figure 1. Yet the figure also shows that something broke in March 2023 when Sili-
con Valley Bank (SVB) failed. Bank stocks dropped by 20% and stayed down. The deposit
franchise hedge turned out to be fragile. Why was it fragile?

In this paper, we argue that the deposit franchise is a runnable asset, and that this
creates fragility when interest rates rise. When rates rise, the value of a bank’s assets falls
while the value of its deposit franchise rises. For the deposit franchise to remain valuable,
however, deposits must stay in the bank. If they run, the bank loses the future profits it
would have earned on them, and the deposit franchise is destroyed. The bank’s asset
losses, on the other hand, remain. The loss of the deposit franchise can therefore make
the bank insolvent. This justifies the run in the first place. Unlike in traditional bank
run models (Diamond and Dybvig, 1983), a run equilibrium arises even if loans are fully
liquid. The run is on the deposit franchise itself. We call it a deposit franchise run.

We provide a model of deposit franchise runs and analyze the conditions under which
they occur. A representative bank issues deposits and invests in loans and securities with
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Figure 1: The figure plots the NASDAQ Bank Stock Index (BANK) in red, the S&P500 index in blue dash,
and Fed funds rate in black dash-dot (right scale). The bank index and S&P 500 are indexed to 100 in
September, 2021. The vertical line marks the failure of Silicon Valley Bank.

a given duration. These assets are fully liquid; there are no fire sales or liquidation costs.
The bank has deposit market power, which allows it to pay a deposit rate that is low
and insensitive to the market interest rate, i.e. its deposit beta is less than one. The bank
thus earns a deposit spread that increases with the market rate. This makes its deposit
franchise valuable. The deposit franchise does not come for free: the bank must pay an
operating cost to maintain it. The deposit franchise therefore resembles an interest rate
swap in which the bank pays fixed (the operating cost) and receives floating (the deposit
spread). Like a swap, the deposit franchise has negative duration, at least partly hedging
the positive duration of the bank’s loans and securities.

Unlike a swap, the deposit franchise is an intangible asset. Depositors are not con-
tractually obligated to pay the bank its deposit spread. They can withdraw at any time,
leaving the bank with fewer profits. This lowers the value of the bank’s deposit franchise,
and by extension its total value. The lower bank value gives the remaining depositors
an incentive to run. Specifically, we assume that a fraction of depositors are uninsured.
Uninsured depositors take the bank’s solvency into account in deciding to stay or run. If
they stay, the deposit franchise is valuable and the bank is solvent, which justifies their
decision to stay. But if they run, the uninsured portion of the deposit franchise is de-
stroyed. If the loss exceeds the value of the bank’s equity, the bank becomes insolvent.
This justifies the decision to run. A run equilibrium thus emerges without loan illiquidity.
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The runnable asset is the uninsured portion of the deposit franchise.
A unique feature of deposit franchise runs is their sensitivity to interest rates. When

interest rates are low, deposit spreads are narrow and the value of the deposit franchise
is low. This value would still be lost if a run took place, but that would not make the
bank insolvent, and so a run does not take place. In contrast, when interest rates are
high, deposit spreads are wide and the value of the deposit franchise is high. Losing the
deposit franchise in this case does more harm to the bank’s solvency, and this makes a run
more likely. This implies that deposit franchise runs, if left unaddressed, create a tradeoff
between monetary tightening and financial stability.

To deter a deposit franchise run, the bank must be able to survive one. This means
that it must be able to pay off its depositors if they decide to run. Since a run destroys the
uninsured deposit franchise, the bank’s assets excluding the uninsured deposit franchise
must be worth more than its deposits. In particular, the value of its loans and securi-
ties must be high enough. This imposes a tighter constraint on the bank than the one it
needs to remain solvent absent a run. The wedge between the bank’s solvency and “no-
run” constraints widens when interest rates rise because its uninsured deposit franchise
becomes large relative to the value of its loans and securities.

One way the bank can satisfy its no-run constraint is by setting a short asset duration.
This keeps the value of its loans and securities high when interest rates rise, eliminating
the run equilibrium. However, setting a short asset duration violates the bank’s solvency
constraint if interest rates fall instead of rising. Falling rates shrink deposit spreads and
depress the value of the deposit franchise. If the bank’s loans and securities have a short
duration, they will not appreciate enough to offset this. If rates fall sufficiently, the bank
becomes unable to cover its operating costs and becomes insolvent, a “zombie bank”.
Banks thus face a risk management dilemma: if they set a long asset duration they risk
runs at high interest rates, but if they set a short asset duration they risk insolvency at low
rates.

Escaping the dilemma requires sufficient capital. Higher capital keeps the value of
the bank high enough to pay off depositors if interest rates rise. The bank can then set a
long asset duration that avoids insolvency if interest rates fall. Our model gives a simple
formula for the amount of capital needed: it is given by the highest possible value of the
uninsured deposit franchise, u

(
1 − βU), where u is the share of uninsured deposits and

βU is their deposit beta. Banks with a lot of uninsured deposits (high u) or highly prof-
itable ones (low βU) need more capital. The formula highlights another unique feature of
deposit franchise runs: unlike other types of runs, they are not caused by uninsured de-
posits per se but by low-beta uninsured deposits. Low-beta uninsured deposits thus pose
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a particular risk to financial stability.1

We use our model to estimate banks’ deposit franchise values from regulatory data.
We first estimate bank-level deposit betas, separately for insured and uninsured deposits,
as our model requires. We then estimate deposit operating costs, also separately for in-
sured and uninsured deposits, using a hedonic approach similar to Hanson et al. (2015).
We input these estimates into our model to calculate bank-level deposit franchise values
as a function of interest rates. We find that deposit franchise values rose sharply, from
about 0% of assets in 2021 (prior to the rate hikes) to 11% on the eve of SVB’s failure. This
increase is about the same as total bank capital.

To see if banks were exposed to deposit franchise runs, we also need to estimate the
market value of their assets. We do so using detailed information on their repricing matu-
rity and amortization schedule. We match each asset-by-maturity bin to a corresponding
Bloomberg index to recover its market value. We find that asset values fell sharply, by
about 8%, as a result of the interest rate hikes. Banks were thus roughly hedged to inter-
est rates absent a run as the gain on their deposit franchise offset the loss on their assets.
This explains why bank stocks performed relatively well during this period.

The warning sign in our estimation is that about half the value of the average bank’s
deposit franchise came from low-beta uninsured deposits. This is still manageable as
the average bank had enough capital to cover a loss of that size. However, we find that
uninsured deposit franchise values were highly concentrated among a few banks. Specif-
ically, SVB, Signature, and First Republic stand out as big outliers. Each of these banks
had both a high share of uninsured deposits and a low uninsured deposit beta. They also
had relatively long asset duration. As a result, when interest rates rose, the value of their
uninsured deposit franchise became large relative to their capital. This made them ex-
posed to deposit franchise runs, which explains their failure. Our framework is thus able
to identify which banks are vulnerable to deposit franchise runs—and which are not.

To validate our model and empirical results, we run an event study around the failure
of SVB. The idea is that SVB’s failure triggered concerns about other banks. Our model
predicts that these concerns should be stronger for banks more at risk of a deposit fran-
chise run. We therefore expect banks with a lot of low-beta uninsured deposits to have
lower stock returns during a window around SVB’s failure. Our results support this pre-
diction: banks with more uninsured deposits experienced lower returns, but only if their
uninsured deposits had a low beta. This finding distinguishes deposit franchise runs from

1Almost all of SVB’s deposits were uninsured business checking and savings accounts with very low
beta. Our model implies that this exposed SVB to a deposit franchise run. In contrast, Citigroup also had
a large amount of uninsured deposits but they paid close to the market rate. Citigroup was therefore not
exposed. Other banks were not exposed because they had mostly insured deposits. Thus, while SVB is an
outlier, it helps to explain why other banks, which had similar mark-to-market losses, did not fail.
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other mechanisms such as traditional bank runs.
We conclude by extending the model in three ways. The first recognizes that deposits

may flow out for other reasons than runs such as rate-driven outflows as in the deposits
channel of monetary policy (Drechsler et al., 2017). In our model, rate-driven outflows
reduce the rate at which the deposit franchise appreciates with interest rates, making its
duration less negative. We show that this is equivalent to having a higher deposit beta in
our baseline model, and provide a formula for the required adjustment. The second ex-
tension accounts for credit risk. We show that credit losses can trigger a deposit franchise
run, particularly when interest rates are high.

Finally, we consider the implications of our model for setting interest rates. If bank
capital is sufficiently high to deter a deposit franchise run, then monetary policy is un-
constrained. But if it is not sufficiently high, and if banks’ asset duration is long, then
interest rate hikes risk triggering runs. If asset duration is short, then interest rate cuts
risk making banks insolvent. This reinforces the case for either shrinking the amount of
low-beta uninsured deposits or requiring additional capital so that the threat of deposit
franchise runs does not impose a constraint on monetary policy.

2 Related Literature

Our paper brings together the literatures on bank runs and bank interest rate risk man-
agement. In the canonical model of Diamond and Dybvig (1983), a key pre-condition for
runs is that bank loans are illiquid. Illiquidity makes the value of the bank lower if depos-
itors run than if they stay. If it is low enough, a run equilibrium exists (see also Allen and
Gale, 1998, 2000; Rochet and Vives, 2004). Egan et al. (2017) use structural estimation to
identify run equilibria. Goldstein and Pauzner (2005) recover a unique equilibrium using
the theory of global games (Morris and Shin, 2000). Gorton and Winton (2003); Allen and
Gale (2009); Royal Swedish Academy of Sciences (2022) provide insightful reviews. Our
contribution is to identify a new source of bank runs, the deposit franchise. The value of
the deposit franchise inherently depends on whether depositors run or stay. It therefore
makes the bank vulnerable to runs whether its loans are liquid or not.2

The distinction is important because regulators have sought to prevent runs by requir-
ing banks to hold high quality liquid assets such as Treasury bonds and agency mortgage-
backed securities (see Diamond and Kashyap, 2016; Dewatripont and Tirole, 2018). This

2There is an interesting connection between deposit franchise runs and the international finance litera-
ture on reserve assets (e.g., Farhi and Maggiori, 2017; He et al., 2019). Triffin (1961) warned that persistent
U.S. current account deficits would eventually trigger a collapse of the dollar, while Despres et al. (1966)
argued that the dollar is implicitly backed by the present value of the liquidity premia on U.S. Treasuries.
In this sense, one can think of U.S. debt as the world’s uninsured deposit franchise.
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type of requirement is ineffective against deposit franchise runs because they can occur
even if assets are fully liquid. Hanson et al. (2024) argue that banks should be required
to hold short-term liquid assets such as Treasury Bills. In our framework this would
prevent deposit franchise runs by raising the value of banks’ assets when interest rates
rise. However, it would also make banks unhedged to interest rates, which could make
them insolvent when interest rates fall.3 To avoid both runs and insolvency, banks in our
framework need a combination of long-term assets and greater capital.

Within the literature on bank risk management (e.g., Freixas and Rochet, 2008; Nagel
and Purnanandam, 2020), our paper belongs to the strand that focuses on interest rate risk
(Begenau et al., 2015; English et al., 2018; Drechsler et al., 2021; Gomez et al., 2021; Di Tella
and Kurlat, 2021; Greenwald et al., 2023; DeMarzo et al., 2024). Closest is Drechsler et al.
(2021), which argues that banks invest in long-term assets to hedge the negative duration
of their deposit franchise. Drechsler et al. (2021) consider a bank with a fixed deposit
base. Our contribution is to incorporate deposit outflows and show that they weaken the
deposit franchise hedge. In the case of uninsured depositors, the outflows can cause the
hedge to fail and trigger a run. This point is related to Hanson et al. (2015), who argue
that deposit insurance enables banks to invest in long-term assets.

Our emphasis on the deposit franchise builds on the large literature on the role of
banks as providers of safe and liquid assets (e.g. Gorton and Pennacchi, 1990; Holmström
and Tirole, 1998; Kashyap et al., 2002; Stein, 2012; DeAngelo and Stulz, 2015; Krishna-
murthy and Vissing-Jorgensen, 2015; Greenwood et al., 2015; Sunderam, 2015; Dang et al.,
2017; Moreira and Savov, 2017; Egan et al., 2021). An important theme in this literature
is that private liquidity creation is fragile and that this creates scope for regulatory in-
tervention. A distinguishing feature of our framework is that “low-beta” private liquid
assets such as uninsured checking and savings accounts pose a particular risk (especially
at high interest rates), hence they merit extra regulatory scrutiny.

Our paper is part of the literature inspired by the 2023 Regional Bank Crisis.4 Jiang
et al. (2023) estimate that banks suffered large mark-to-market asset losses (see also Granja,
2023), leading to widespread insolvency and risk of “insolvency runs” among banks with
high uninsured leverage. A key difference with our paper is that we account for the value
of the deposit franchise, insured and uninsured, and show that it predicts which banks
failed and which did not. Haddad et al. (2023) share our focus on the fragility of the de-
posit franchise but argue that even insured deposits are a source of runs. While the line

3This point is related to the literature showing that low interest rates are harmful to bank profitability:
Ulate (2021); Abadi et al. (2022); Wang (2022); Wang et al. (2022); Acharya et al. (2022).

4On the empirical side, Cookson et al. (2023), Koont et al. (2024), and Caglio et al. (2023) highlight the
roles of social media, digital banking, and bank size, respectively, in driving deposit flows during the crisis,
while Maingi (2023) uses a spatial model to study the impact of these flows on lending and output.
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between “flighty” (i.e., run-prone) and “sleepy” deposits is not clear-cut, there is little
evidence of insured depositors running during the Regional Bank Crisis. We also pro-
vide an empirical methodology for valuing the deposit franchise and assessing the risks
of deposit franchise runs.

3 Model

We model a bank with a deposit franchise. The deposit franchise is the present value of
profits the bank earns by paying below-market rates on deposits. The value of the deposit
franchise is increasing in interest rates, which makes it a hedge for the bank’s long-term
loans and securities. However, the deposit franchise is runnable because when a deposit
is withdrawn the bank loses the profits it would have earned on it. We show that this can
lead to a self-fulfilling run among depositors. We call it a “deposit franchise run.”

Timing. Time is discrete, t = 0, 1, . . . . The initial interest rate is r. At the end of period
t = 0, an interest rate shock is realized and the interest rate becomes r′. The shock can be
positive or negative. In the baseline model, it is the only shock; in Section 5.2 we introduce
other shocks such as credit losses. The interest rate remains r′ for all t ≥ 1.5

Deposit base. A bank enters period t = 0 with a deposit base D. There are two kinds of
deposits, insured deposits DI and uninsured deposits DU:

DI = (1 − u) D, (1)

DU = uD, (2)

where u = DU/D ∈ [0, 1] is the bank’s uninsured deposit share. As we discuss below,
insured and uninsured depositors differ in their response to shocks to the bank’s value.

Deposit pricing. The bank sets the interest rate on each type of deposit after the interest
rate shock is realized according to a deposit pricing schedule ri

d(r
′) for i = I, U. We

assume linear pricing as in Drechsler et al. (2021):

rI
d
(
r′
)
= βIr′ and rU

d
(
r′
)
= βUr′, (3)

5The rate r′ should be interpreted as a long-term rate. In Appendix C we generalize our model to allow
for a rich yield curve.
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where βI , βU ∈ [0, 1] are the bank’s “deposit betas” on insured and uninsured deposits,
respectively.6 It is convenient to define the bank’s overall deposit beta:

β = (1 − u) βI + uβU. (4)

The deposit pricing policy is in principle chosen endogenously by the bank, for instance
to maximize profits on deposits as in Drechsler et al. (2017). However, since our focus is
on the risks the bank faces, we take it as given.

Operating costs. The ability to pay below-market deposit rates (β ≤ 1) does not come
for free. The bank must pay operating costs of cI , cU ≥ 0 per dollar of insured and unin-
sured deposits, respectively, in each period starting with period t = 1. Similar to beta, we
define the overall operating cost as

c = (1 − u) cI + ucU. (5)

We adopt the timing convention that date-t interest expenses and operating costs are
paid on outstanding deposits at the end of the previous period, Dt−1, whereas with-
drawals take place at the end of the current period.

Exogenous outflows. In periods t ≥ 1, the bank experiences exogenous outflows of both
insured and uninsured deposits at a rate δ ≥ 0:

Dt = (1 − δ) Dt−1. (6)

Thus, deposits have an average maturity of 1/δ. These outflows capture the natural decay
of the bank’s deposit base.7

Bank assets. The bank enters period t = 0 with a portfolio of loans and securities whose
market value is A = A (r). For tractability, we assume this portfolio is made up of two
types of assets: short-term or floating-rate assets that have duration of zero, and long-
term fixed-rate assets whose cash flows decline at the rate δ, matching the decay rate of

6In practice, banks issue different types of deposits (e.g., checking, savings, time), hence βI and βU are
the average of the betas across the different products for insured and uninsured deposits, respectively.

7Banks in practice can avoid these outflows by expending additional resources to acquire new deposits.
The acquisition cost can come in the form of higher non-interest expenses c or a higher β on new accounts.
Under free entry, the acquisition cost equals the present value of the expected future profits on the new
deposits. The value of the bank is therefore the same whether we value it based on existing deposits that
decay at rate δ, or include the net present value of new deposits that keep its deposit base stable.

8



the bank’s deposits. Their date-t cash flow is thus (1− δ)tC0, where C0 is their date-0 cash
flow. Their value on date 0 is C0/ (r + δ).

Let l = [C0/ (r + δ)] /A be the share of long-term assets and 1 − l be the share of
short-term assets, which trade at par. Then, following the interest rate shock, the value of
the bank’s assets is

A
(
r′
)
=

C0

r′ + δ
+ (1 − l) A =

[
l
(

r + δ

r′ + δ

)
+ (1 − l)

]
A. (7)

Hence the dollar duration of the bank’s assets at r is

TA ≡ − ∂A (r′)
∂r′

∣∣∣∣
r′=r

=
lA

r + δ
. (8)

We first take l, and thus asset duration, as given. By varying l, we can compute compara-
tive statics with respect to asset duration. However, asset duration is a choice of the bank,
so we return to this choice in Section 3.3.

Uninsured deposit withdrawals. The key difference between insured and uninsured
deposits is that uninsured depositors withdraw if they become concerned about the bank’s
solvency. To highlight this, we first assume there are no other withdrawals when the in-
terest rate shock hits at t = 0. Then, in Section 5.1, we allow for “rate-driven” outflows as
in the deposits channel of monetary policy (Drechsler et al., 2017).

At the end of t = 0, after the interest rate shock, uninsured depositors withdraw a
fraction 1 − λ of their initial deposits DU, i.e., the bank is left with uninsured deposits

D′
U = λDU = uλD. (9)

Uninsured depositors are sensitive to the value of the bank. Let this value be V and let
v = V/D be the value per dollar of deposits. We refer to it as the bank’s solvency ratio.
We assume that the fraction of uninsured deposits that remain, λ, is a weakly increasing
function of v:

λ = Λ (v) , (10)

where Λ′ ≥ 0. When λ = 1, there is no run and all depositors, insured and uninsured, re-
main with the bank; when λ = 0 there is a full uninsured run and only insured depositors
remain.

The bank meets its withdrawals by selling assets of equal value. Since there are no
other shocks, it does not matter whether the bank sells short- or long-term assets. Unlike
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Figure 2: Fraction of remaining depositors Λ(v) as a function of the solvency ratio v.

in Diamond and Dybvig (1983) and other bank run models, the bank’s assets are fully
liquid and selling them is costless.

We work directly with the function Λ and assume a step function around an insol-
vency threshold v:

Λ (v) =

0 v < v

1 v ≥ v
(11)

A natural threshold is v = 0, but v may be positive, e.g., if uninsured depositors run
when the bank is sufficiently distressed even if it is still solvent. It could also be negative,
e.g., due to regulatory forbearance. Figure 2 displays the function λ = Λ (v). When the
solvency ratio v is below v, all uninsured depositors run, λ = 0 and D′

U = 0; whereas
when v is above v no uninsured depositors run, λ = 1 and D′

U = DU.8

Remark 1 (Depositor attentiveness). Our theory does not require all uninsured deposi-
tors to be fully attentive to the bank’s value. In general, λ could be an increasing function
with a finite slope capturing heterogeneity in depositors’ attention to bank fundamen-
tals such as earnings and the stock price. As these fundamentals start falling, the most
attentive uninsured depositors notice start withdrawing. This makes fundamentals de-
cline further, triggering withdrawals by depositors with intermediate attention, and so
on. The slope of λ should also increase with depositor concentration, social media usage,
and access to mobile banking (Cookson et al., 2023; Koont et al., 2023). Our step function
corresponds to the conservative case of an extremely concentrated and coordinated unin-
sured depositor base with access to an almost instantaneous withdrawal technology, as
in the case of the business checking and savings accounts at SVB.

Remark 2 (Insured vs. uninsured depositors). Different types of depositors may be best
defined in terms of whether they are “flighty”, i.e. prone to runs, or “sleepy”, i.e. not
prone to runs. We map these types to observed characteristics by identifying uninsured

8Following the literature on fundamental-based runs (e.g., Rochet and Vives 2004; Goldstein and
Pauzner 2005) the model can be extended a step further by deriving the probability of a run as a decreasing
function of v, using a richer game with imperfect information among depositors.
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depositors as flighty and insured depositors as sleepy. This is reasonable because insured
depositors have no incentive to run, whereas uninsured depositors do. While useful, in
practice this mapping may not be exact: some uninsured depositors may be sleepy (i.e.,
they do not monitor the bank’s health), while some insured depositors may be flighty (i.e.,
they question the soundness of deposit insurance). We discuss this issue in the context of
our empirical analysis in Section 4.

3.1 Valuing the deposit franchise

The ability to pay below-market rates on deposits makes the deposit franchise a valuable
asset. We derive its value and show how it depends on interest rates. We start with
the case of the bank as a going-concern, i.e., computing its value without runs. In that
case, insured and uninsured deposits behave in the same way, hence we can focus on the
overall deposit base D, deposit beta β, and operating cost c.

At a given interest rate r′, the value of the bank is

V
(
r′
)

= A
(
r′
)
− L

(
r′
)

,

where L(r′) is the market value of the bank’s liabilities. This value is the present value
of all future cash outlays that the bank has to make for deposit withdrawals, interest
expenses, and operating costs:

L
(
r′
)

= X0 +
∞

∑
t=1

Xt

(1 + r′)t +
∞

∑
t=1

(βr′ + c) Dt−1

(1 + r′)t , (12)

where Xt = Dt−1 − Dt are outflows in period t. Absent a run, outflows are

X0 = 0, (13)

Xt = δ(1 − δ)t−1D for t ≥ 1. (14)

The first term in (12) corresponds to date-0 withdrawals, which are zero absent a run, and
the second to exogenous withdrawals in periods t ≥ 1. The third term captures interest
expenses and operating costs on the remaining deposits in each period.

It is convenient to decompose the value of the bank as

V
(
r′
)

= A
(
r′
)
− D + DF

(
r′
)

, (15)
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where DF (r′) is the value of the bank’s deposit franchise:

DF
(
r′
)

= D − L
(
r′
)

. (16)

The deposit franchise is an intangible asset that arises from the bank’s ability to pay
below-market rates on deposits. To see why, consider a bank that pays the market rate
(β = 1) and incurs no operating cost (c = 0), e.g., a money market fund. In this case
(12) gives L = D, hence deposits are worth their book value and the deposit franchise is
worth DF = 0. The value of the bank is then just V (r′) = A (r′)− D. 9

In general, the deposit franchise value will not be zero as the present value of the
payments the bank makes on its liabilities in (12) does not equal their book value. Our
first result derives the value of the deposit franchise in this general case and shows it has
negative duration:

Proposition 1 (Deposit Franchise Valuation). If there are no runs, then the value of the deposit
franchise after the interest rate shock is

DF
(
r′
)

=

[
(1 − β) r′ − c

r′ + δ

]
D. (17)

The dollar duration of the deposit franchise prior to the interest rate shock is

TDF ≡ − ∂DF (r′)
∂r′

∣∣∣∣
r′=r

= − c + (1 − β) δ

(r + δ)2 D ≤ 0. (18)

Equation (17) is a simple valuation equation similar to a Gordon Growth formula. The
first term is the deposit franchise value per dollar of deposits and the second term scales
it up by the deposit base D. The value per dollar is the net cash flow, (1 − β) r′ − c (the
deposit spread net of operating costs), divided by the discount rate r minus the growth
rate −δ. The deposit franchise value can be positive or negative, depending on the interest
rate r’. It is positive when r′ is high enough for the deposit spread to exceed the operating
cost, (1 − β) r′ > c. Conversely, it becomes negative if rates fall so that (1 − β) r′ < c.10

Equation (18) shows the dollar duration of the deposit franchise. The deposit fran-
chise has a negative dollar duration, i.e., the deposit franchise becomes more valuable when
interest rates rise. There are two reasons for this. First, a higher interest rate lowers the

9We focus on the role of banks as deposit providers and abstract from the loan franchise value coming
from, e.g., monitoring (Diamond, 1984) or relationship lending (Petersen and Rajan, 1994). Implicitly, this
value can be incorporated into the asset portfolio, A.

10In Appendix C we show how to value the deposit franchise in a richer environment with a yield curve
that is not perfectly flat. The deposit franchise can be valuable even if deposit spreads are temporarily
below operating costs, as long as long-term yields price in sufficiently higher future spreads.
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present value of operating costs c. Second, it raises the present value of deposit spreads
(1 − β)r′ as long as δ > 0. This occurs because a higher interest rate r′ means that more
of the present value of the future spreads (1 − β)r′ is earned in the near future, before
the deposit franchise decays significantly. As δ → 0, which is the case in Drechsler et al.
(2021), the deposit franchise becomes infinitely lived and the bank captures the whole
present value of the future spreads 1 − β regardless of r′. In this case, the income side of
the deposit franchise has zero duration, and the duration of the deposit franchise comes
solely from the present value of future operating costs.

Numerical example: We use a numerical example to give a sense of magnitudes. U.S.
commercial bank deposits stood at D = $17.5 trillion at the end of 2022. The long-term
(10-year) interest rate was r′ = 4%, up from r = 1.5% in 2021. Using the historical av-
erage deposit beta β = 0.4, operating cost c = 1.2% (see Section 4), and average deposit
maturity 1/δ = 10 years (e.g., Stanton, 2023), the aggregate value of U.S. banks’ deposit
franchise was

DF
(
r′
)

= $1.5 trillion, (19)

up from DF (r) = −$0.45 trillion in 2021. The increase in the value of banks’ deposit
franchise is thus comparable to the unrealized losses on their loans and securities. This
means that accounting for the deposit franchise has a large impact on the value of banks.
We provide a comprehensive valuation at the bank level in Section 4.

3.2 Deposit franchise runs

We now analyze runs by uninsured depositors. This requires decomposing the deposit
franchise into an insured and uninsured component:

DF
(
λ, r′

)
= DFI

(
r′
)
+ DFU

(
λ, r′

)
. (20)

The insured and uninsured components have the same form as (17) but with the corre-
sponding deposit base D′

i , deposit beta βi, and operating cost ci, i ∈ {I, U}. The uninsured
component further depends on the fraction of uninsured depositors that remain, λ.

The insured deposit base is unchanged after the interest rate shock, D′
I = DI , while the

uninsured deposit base potentially shrinks, D′
U = λDU. The uninsured deposit franchise,

if positive, therefore also shrinks:

DFU
(
λ, r′

)
= λDFU

(
1, r′

)
. (21)
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The risk for the bank is that outflows of uninsured deposits reduce its uninsured deposit
franchise value and hence its overall value. This lowers its solvency ratio, which triggers
more outflows, and so on, potentially ending in a run. To see how it works, consider the
bank’s solvency ratio at a given level of outflows:

v
(
λ, r′

)
= v

(
0, r′

)
+ λu

[
(1 − βU)r′ − cU

r′ + δ

]
︸ ︷︷ ︸

=DFU/D

, (22)

where

v
(
0, r′

)
=

A(r′)− D + DFI(r′)
D

(23)

is the solvency ratio if all uninsured depositors withdraw (λ = 0). Note that it includes
the value of the assets because they are fully liquid. It also includes the value of the
insured deposit franchise because insured depositors do not run.

The solvency ratio v (λ, r′) is monotone in the fraction of remaining depositors λ: in-
creasing if DFU > 0 and decreasing if DFU < 0. An equilibrium solves a fixed-point
problem where the remaining fraction of uninsured depositors λ = Λ (v) is justified by
the bank’s resulting solvency ratio v (λ, r′):

Definition 1 (Equilibrium). Given r′ and bank assets A(r′), an equilibrium is given by a
fraction of remaining depositors λ such that

λ = Λ
(
v
(
λ, r′

))
. (24)

The following result shows that a large uninsured deposit franchise creates the poten-
tial for runs, particularly when interest rates are high:

Proposition 2 (Deposit Franchise Runs). Suppose
(
1 − βU) r′ > cU, so that the uninsured

deposit franchise is valuable. Then:

(i) If v (0, r′) ≥ v, then the unique equilibrium is λ = 1, i.e., there is no run.

(ii) If v (1, r′) < v, then the unique equilibrium is λ = 0, i.e., all uninsured depositors run.

(iii) If v (0, r′) < v ≤ v (1, r′), then there are two possible equilibria, λ = 0 (run) and λ = 1
(no run).

Holding fixed the no-run value of the bank, v (1, r′), a run equilibrium is more likely if the unin-
sured franchise is more valuable, i.e., if the share of uninsured deposits u is higher, the uninsured
beta βU or operating cost cU is lower, or the interest rate r′ is higher.
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Proposition 2 characterizes the conditions under which a run can occur. A run equilib-
rium arises when uninsured outflows sufficiently harm the bank’s solvency by reducing
the value of its deposit franchise. Once solvency falls below the threshold v, the outflows
are justified and the run becomes self-fulfilling. This is different from standard bank run
models such as Diamond and Dybvig (1983), where outflows harm solvency due to the
costs of early liquidation of the bank’s loan portfolio, that can be either technological or
due to fire sales. Here, loans are fully liquid and there are no fire sales. Instead it is the
deposit franchise itself that is the runnable asset. This distinction is important because it
means that a run can occur even if only a single bank is affected, and even if it holds only
high-quality liquid assets (HQLA), as SVB did. To highlight the distinction, we refer to
this type of run as a deposit franchise run.

The destructiveness of a deposit franchise run, and hence its likelihood, increases with
the value of the uninsured deposit franchise absent a run, DFU (1, r′). This value is high
when uninsured deposits are a large profit center for the bank, either because there are
more of them (u is high), or they are more profitable (βU and cU are low). Thus, the banks
at risk of a deposit franchise run are those with large amounts of uninsured low-beta
deposits, which again describes SVB.

We highlight that a deposit franchise run cannot occur if uninsured deposits are high-
beta (βU ≈ 1), as in the case of wholesale funding or money market fund shares. In that
case the uninsured deposit franchise earns little or no deposit spread and is not valuable.
Hence, outflows do not harm the bank’s solvency and a run is not an equilibrium. This
isolates the special risk posed by low-beta uninsured deposits rather than uninsured de-
posits generally. There can still be runs if assets are illiquid, but they cannot be deposit
franchise runs.

The value of the uninsured deposit franchise is also increasing in the level of interest
rates r′. This makes a run more damaging and hence more likely unless the value of the
bank’s other assets (its loans and insured deposit franchise) simultaneously rises enough
to offset the greater potential loss. If the value of the other assets falls, then the risk of a run
increases with interest rates. This aspect of franchise runs is also different from traditional
fire sale-driven runs, which have no direct connection to interest rates. Deposit franchise
runs are therefore a novel channel by which tighter monetary policy can lead to financial
instability.

Figure 3 illustrates the shift that occurs from a unique run-free equilibrium to equi-
librium multiplicity when interest rates rise. Holding fixed the going-concern value of
the bank, v (1, r′), a higher interest rate r′ raises the value of the uninsured deposit fran-
chise. This makes the run more harmful, v(0, r′) < v(0, r), potentially pushing the bank’s
solvency below the threshold v, and making the run self-fulfilling.
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0 vv
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v(0, r)v(0, r′)

v(1, r) = v(1, r′)

rise in interest rates

Figure 3: Unique equilibrium (blue dot) at rate r, two equilibria (blue dot and red circle)
at higher rate r′ > r.

Of course, the no-run value of the bank will generally also change with interest rates.
The exception is if the bank hedges interest rate risk perfectly as in Drechsler et al. (2021)
by setting the positive duration of its assets to exactly offset the negative duration of its
deposit franchise. If it instead sets asset duration higher, then its no-run value will have
positive duration and fall with r′, reinforcing the increased run risk from the uninsured
deposit franchise. If it sets asset duration lower, then it will have negative duration and
rise with r′, mitigating run risk. The following proposition characterizes the impact of
interest rates on run risk in this general case:

Proposition 3 (Interest rates and run risk). Suppose there is no risk of a run prior to the interest
rate shock, i.e., v ≤ v(0, r) ≤ v(1, r). Then there are asset duration thresholds TRun

A and T Insolv
A ,

and associated interest rate thresholds rRun and rInsolv such that:

(i) If the bank’s asset duration is TA > TRun
A , then when r′ > rRun the bank is exposed to a run

equilibrium, i.e., v(0, r′) < v.

- however, as long as TA < TRun
A +

(1−βU)u
r+δ , there is also a no-run equilibrium, i.e.,

v(1, r′) ≥ v for r′ > rRun.

(ii) If the bank’s asset duration is TA < T Insolv
A , then when r′ < rInsolv the bank becomes

insolvent, i.e., v(λ, r′) ≤ v in any equilibrium, and λ < 1.

In setting its asset duration, the bank has to navigate two risks. The first is that if
asset duration is too high, TA > TRun

A , the bank opens itself up to runs if interest rates
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rise sufficiently, r′ > rRun. The reason is that the value of the bank’s asset portfolio falls
faster than the value of its insured deposit franchise rises, which makes the uninsured
franchise account for an increasing fraction of the bank’s total value. When this fraction
gets high enough (r′ > rRun), a run leaves the bank insolvent, v (0, r′) < v, and hence a
run equilibrium exists.

This is not the only possible equilibrium. As the proposition shows, there is also a
no-run equilibrium for a range of asset durations exceeding TRun

A . The reason is that the
uninsured deposit franchise pushes up the no-run value of the bank as interest rates rise.
This works to offset the bank’s asset losses. If the uninsured franchise is large enough
and the asset losses small enough, the value of the bank actually rises with interest rates.
This preserves the no-run equilibrium even if a run equilibrium emerges. More generally,
as interest rates rise the uninsured deposit franchise drives an increasing wedge between
the run and no-run values of the bank. This wedge gives rise to multiple equilibria.

The second risk the bank faces, highlighted by (ii) of Proposition (3), is if the bank’s
asset duration is too low, TA < T Insolv

A , and the interest rate falls sufficiently, r′ < rInsolv.
If this happens the bank becomes insolvent, as its value falls to v. The reason is that at
low rates the value of the deposit franchise falls (insured and uninsured), since deposit
spreads shrink while operating costs remain the same. To offset the decreased spread
income, the bank requires interest income from its assets. If those assets are short-term or
floating-rate, their interest income will also be low and the bank will become insolvent.
Rather, the bank needs interest income to remain high enough to cover its operating costs
when the interest rate falls. Therefore, a sufficiently high share of the bank’s portfolio
must be long-term fixed-rate assets. Equivalently, the increase in the value of the bank’s
long-term assets needs to offset the fall in the value of its deposit franchise, so that its
no-run value v(1, r′) remains above v.

Note that when rates are low, there is only a single equilibrium if the bank is solvent,
i.e. if v(1, r′) > v. This is the case because the deposit franchise is not valuable, hence
a run on the franchise does not damage the bank’s value and there is no incentive to
run. The fundamental asymmetry underlying this difference is that when rates fall, the
bank’s value is derived mostly from the gain in its asset portfolio, which can be captured
independently of depositors’ behavior (since the assets are assumed to be liquid). In con-
trast, when rates are high the bank’s value is derived mostly from earning large deposit
spreads, which crucially requires depositors to stay with the bank.

The two thresholds T Insolv
A and TRun

A have natural interpretations (we provide closed-
form expressions in the proof of Proposition 3). T Insolv

A is the asset duration that perfectly
hedges the no-run value of the bank v (1, r′) to interest rates. It corresponds to investing
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a share

l =
(1 − β)δ + c
(1 + e)(r + δ)

(25)

of the bank’s initial assets A in long-term assets, which hedges the negative duration of
the bank’s deposit franchise. where e = A−D

D . If the bank’s long-term holdings share is
less than this threshold, it will be unable to meet its operating costs should the interest rate
fall sufficiently. The threshold long-term share is higher the larger is the bank’s operating
cost c, and the lower is its deposit beta (i.e., the more sensitive to the interest rate are its
deposit spreads).

On the other side, the bank’s asset duration cannot be too large. To prevent a run
equilibrium from emerging when rates are high, the bank must set its asset duration less
than or equal to TRun

A , which corresponds to a maximum long-term holdings share of

l = 1 − u + βI(1 − u) + v
1 + e

. (26)

The intuition for this expression is that at high rates the value of the bank’s long-term
assets declines toward zero, so its short-term asset share must be sufficient to (i) pay
back the uninsured depositors u if they run, (ii) pay insured depositors their deposit rate
(which requires βI(1 − u) in short-term assets), and (iii) cover the solvency ratio v. The
remaining asset share, given by (26), is the maximum share that can be invested in long
term assets. All else equal, a bank with more uninsured deposits (higher u) must hold
less in long-term assets (set a shorter asset duration) to avoid runs.

The long-term asset share that avoids insolvency (25) is generally not equal to the one
that avoids runs (26). This creates a risk management dilemma for the bank, which we
analyze below.

Remark 3 (Cash flow hedging vs. present value hedging). Drechsler et al. (2021) consider
the special case where δ = 0, depositors do not run, and there is a free-entry condition
on the initial deposit franchise, DF(r) = 0, equivalently (1 − β)r = c. In this case the
long-term share that perfectly hedges the bank’s going-concern market value v(1, r′) to
interest rates simplifies to l = 1−β

1+e .
An alternative target often mentioned by banks is a constant net interest margin (NIM),

that is, cash flow hedging instead of market value hedging.11 With a constant operating
cost c, this is equivalent to a constant return on assets (ROA). Since a constant stream
of cashflows has positive duration, so does a bank that earns a constant ROA. Starting
from the perfectly hedged bank, we can obtain the constant-NIM bank by increasing its

11The NIM is defined as 1
A [(1 − l)Ar′ + lAr − Dβr′].
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long-term asset share until the additional fixed interest generated equals the ROA. By
construction this additional share is the present value of the ROA, which is given by the
bank’s market equity (per dollar of assets). With free-entry and δ = 0, equity per dollar
of assets is e

1+e . Adding this to the long-term share of the perfectly-hedged bank gives

l = 1 − β
1+e , the long-term share of the constant-NIM bank.

Hence, the only difference between the two banks is that the constant-NIM bank in-
vests its equity in long-term assets rather than short-term assets. If e = 0, there is no
equity, and the two banks are identical. For e > 0 the constant-NIM bank’s long-term
asset share is larger than the perfectly-hedged bank’s by the market equity ratio.practice).

Remark 4 (Repeated shocks and gradualism.). Our framework implies that the risk of
deposit franchise runs is higher when interest rates rise suddenly than when they do so
gradually. A gradual rise in rates allows banks to earn higher deposit spreads in the
meantime, helping to recoup their asset losses. If the rise is gradual enough, banks will
never enter the run region even if they would have done so if it had been sudden. Our
framework thus provides a rationale for monetary policy “gradualism” based on finan-
cial stability concerns, similar to Stein and Sunderam (2018). The gradual rise in rates
must be unanticipated, however, otherwise long-term rates would rise suddenly on the
expectation of higher future short-term rates, which could trigger a run. Deposit franchise
runs thus arise from large and sudden increases in long-term interest rates as opposed to
gradual ones or high interest rate levels.

Remark 5 (Mark-to-market accounting.). Runs in our model depend on the market value
of the bank v(r′) (per deposit dollar), inclusive of any “unrealized losses” caused by the
interest rate shock. This value differs from e(r′), which is the value of the bank’s equity
using market prices for its assets, but book values for its liabilities. The difference between
the book value of deposits (D) and their market value (L) is the value of the deposit
franchise, DF(r′). Thus:

v
(
r′
)

= e
(
r′
)
+

DF (r′)
D

. (27)

This shows that instituting fair-value accounting for banks’ assets requires that account-
ing also correctly value the deposit franchise. To highlight the importance of this, consider
a bank with positive asset duration that is perfectly hedged (i.e., its asset duration equals
T Insolv

A ), and suppose the interest rate increases (r′ > r). The value of the bank’s assets
declines, e(r′) < e(r), and will have significant unrealized losses relative to book value.
Because the bank is hedged, there is an increase in its deposit franchise, DF(r′) > DF(r),
which exactly offsets the asset losses, hence its market value is unchanged, v(r′) = v(r).
Thus, if regulation were to account for unrealized asset losses, it would also need to cap-
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italize the unrealized deposit franchise gains.

3.3 Bank capital and asset choice

Propositions 2 and 3 examine the bank’s exposure to deposit franchise runs, taking its
asset duration as given. A natural question is how banks should set their duration in
light of this exposure. Endogenizing asset duration requires a richer model of the ob-
jective function of the bank that specifies, e.g., the costs of financial distress and equity
issuance. However, we can highlight the risk management tradeoffs created by the risk
of deposit franchise runs without deriving the bank’s optimal choice of how to balance
these tradeoffs.

Can the bank avoid the risks from both high and low interest rates with an interme-
diate asset duration? This requires T Insolv

A ≤ TRun
A so that the run and insolvency regions

do not overlap. If instead T Insolv
A > TRun

A , the bank faces a “hedging dilemma”; there
is no asset duration that avoids both a run if rates rise and insolvency if rates fall. The
following result shows that escaping the hedging dilemma requires additional capital:

Proposition 4 (Bank capital and avoiding the hedging dilemma). T Insolv
A ≤ TRun

A , i.e. there
is no hedging dilemma, if and only if the bank’s initial value is sufficiently high,

v(r) ≥ v + u
(

1 − βU
)

. (28)

In this case the bank can choose TA ∈ [T Insolv
A , TRun

A ] to avoid both a run for any r′ > r and
insolvency for any r′ < r.

Proposition 4 shows that unless the bank’s initial value v (r) is high enough above
the insolvency threshold v, there is no asset duration that simultaneously avoids runs at
high rates and insolvency at low rates. The natural interpretation is that the bank does
not have enough capital. Our model therefore implies that weakly capitalized banks are
destabilized by changes in interest rates no matter how they set their asset portfolios.

This is illustrated in Figure 4, which plots the asset durations for which the bank is
exposed to either runs or insolvency for different levels of initial bank value v (r). When
bank value is below the threshold in (28), i.e. the bank is weakly capitalized, the run and
insolvency risk regions overlap. The bank can either avoid insolvency at low rates by
setting TA ≥ T Insolv

A or a run at high rates by setting TA ≤ TRun
A . It cannot do both.

Figure 4 further shows that as the bank becomes better capitalized (v (r) rises), the
run risk and insolvency risk regions pull apart. The bank can now satisfy both risk man-
agement goals with an intermediate asset duration TA ∈ [T Insolv

A , TRun
A ]. With sufficient

capital, the bank has enough assets to cover the loss of its uninsured deposit franchise
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at high rates even if it has a relatively high duration. In turn, a relatively high duration
protects the bank from insolvency at low rates, when its deposit franchise value is low.
Capital thus allows the bank to use the quantity of its assets to achieve what it could not
with their duration alone.

Importantly, the amount of additional capital the bank needs to escape its risk manage-
ment dilemma, u

(
1 − βU), depends only on the nature of its uninsured deposit business.

If uninsured deposits are a big profit center for the bank, either because they make up
a lot of its deposit base (u is high) or are very profitable (βU is low), the bank stands to
lose more in a run, and therefore needs a larger capital buffer. This again contrasts with
models such as Diamond and Dybvig (1983), where runs are driven by asset-side illiquid-
ity. In these models, any uninsured funding creates run risk, regardless of whether it is
low-beta (e.g. corporate checking) or high-beta (e.g. wholesale funding).

Remark 6 (Required capital with bounded interest rate shocks). Proposition 4 provides
an extremely simple formula for the amount of capital needed to avoid the risk manage-
ment dilemma. It relies on the conservative assumption that the bank avoid a run for any
increase in rates. If we assume instead that r′ cannot exceed some upper bound r, or that
the bank raises additional capital whenever r is reached, then Propositions 3 and 4 still
apply, but with a higher duration threshold TRun

A . The bank can set a higher asset dura-
tion without risking a run because the upper bound on r′ translates into an upper bound
on asset losses and the appreciation of the uninsured deposit franchise. The higher as-
set duration in turn allows the bank to avoid insolvency at low rates. The condition
T Insolv

A ≤ TRun
A becomes

v (r) ≥ v + u
(1 − βU)r − cU

r + δ
. (29)

The term u (1−βU)r−cU

r+δ is simply the uninsured deposit franchise per dollar of total de-
posits, and it is bounded above by u

(
1 − βU), the expression that appears in Proposition

4. The generalized condition (29) clarifies that the capital needed to escape the risk man-
agement dilemma is the maximal uninsured deposit franchise value that the bank stands
to lose in the event of an interest rate shock.

Quantification. Under plausible parameter values, the minimum capital requirement
implied by Proposition 4 is significantly higher than what current capital regulation re-
quires. Note that our results should be interpreted as characterizing the additional capital
to address risks inherent to the uninsured deposit franchise, over and above the capital
required to address the usual credit risk.
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v + u(1 − βU)

T
Run

A
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A

Insolvency at low r′

Run equilibrium at high r′

Figure 4: Risk management dilemma for weakly capitalized banks. The figure plots the
regions where (i) a run equilibrium exists at a sufficiently high interest rate (red) and
(ii) the bank is insolvent at a sufficiently low interest rate (black) as a function of asset
maturity TA and bank value v. The dilemma occurs when v < v + u

(
1 − βU) (dashed

line). In that case there is no asset maturity that avoids both run and insolvency risk.
Banks with an uninsured deposit franchise (u > 0 and βU < 1) thus need additional
capital of u

(
1 − βU) to avoid instability.
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Figure 5: Capital requirement v̄ at low rate rlow and high rate rhigh.

Suppose that v = 0 and we start from a rate r such that the bank breaks even on its
deposit franchise, DF (r) = 0. Then to avoid the risk management dilemma the bank
needs

e ≥ u
(

1 − βU
)

(30)

With an uninsured ratio u = 50% and an uninsured deposit beta βU = 0.5, and reformu-
lating the equity ratio in terms of book equity over assets A−D

A (which is equal to e
1+e ), we

get that the bank needs a 20% book equity ratio.
As explained above, this is a rather conservative estimate that requires the bank to

avoid a run for any increase in rates. If instead we assume that the interest rate r′ is
bounded above by r = 15%, and use the generalized formula (29) with a cost cU = 1%,
the required book equity ratio required falls to 12%.

Rate-cyclical capital. Instead of raising enough capital ex ante to protect itself against
any interest rate realization, the bank can address its risk management dilemma by raising
additional capital as interest rates change. Our model shows how such a capital buffer
would depend on interest rates:

Proposition 5. The minimum solvency ratio v (r′) that prevents runs at r′ is

v
(
r′
)

= v + u
(1 − βU)r′ − cU

r′ + δ
. (31)

It increases with the interest rate r′ and the uninsured deposit ratio u and decreases with βU and
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cU.

Proposition 5 characterizes the level of capital the bank needs to deter runs as a func-
tion of the realized interest rate r′. This level is increasing in r′ as illustrated in Figure
5.

Implementing v(r′) ≥ v(r′) with a capital requirement can be interpreted as attribut-
ing a risk-weight to the uninsured deposit franchise. The risk-weight accounts for both
cross-sectional differences in u and βU, and time-series variation in the liquidity risk of
each bank as interest rates rise. The behavior of liquidity risk thus yields a new rationale
for procyclical capital requirements. Unlike standard arguments, the procyclicality here
comes from a pure interest rate effect, not the state of the economy. While we frame the
result in terms of a capital requirement, depending on the cost of issuing equity banks
may wish to follow this strategy independent of regulation in order to prevent runs.

Remark 7 (Raising capital ex ante vs. ex post). Our previous Proposition 4 describes the
ex-ante level of capital that, combined with the correct asset duration, deters runs for
any realization of r′. One advantage of raising capital ex ante, before negative shocks are
realized, is that raising capital is difficult in times of stress. Incomplete information about
bank strength means that going to the equity market is viewed as a signal of weakness.
This stigma effect may be dampened, however, if equity issuance is mandated according
to a well-understood rule that depends on the aggregate interest rate as in Proposition 5.

4 Empirical analysis

In this section we show how to apply our framework to identify banks’ exposures to
interest rate risk and deposit franchise runs. Our setting is U.S. banks during the recent
rate-hiking cycle, which included the 2023 Regional Bank Crisis.

4.1 Data and sample

Our main data source are the U.S. call reports from June 2015 to December 2023. We
restrict the sample to commercial banks with at least $1 billion of assets as of December
2021. We exclude banks without a significant domestic deposit base, specifically broker-
dealers, credit cards banks, custodians, foreign-owned banks, and banks with a deposits
to assets ratio of less than 65%. This leaves 715 banks.

Column 1 of Table 1 provides summary statistics as of December 2021, on the eve of
the hiking cycle. The average bank in our sample has $23 billion in assets, consisting
of loans (68%), securities (22%), and cash (5%). Its main source of funding are domestic
deposits (85%), 37% of which are uninsured. Its book equity ratio is 9%.
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Column 2 breaks out large banks, which we define as those with at least $100 billion
in assets. There are 17 large banks in our sample. Their average assets are $740 billion,
58% of which are loans, 24% securities, and 8% cash. Large banks also finance themselves
primarily with domestic deposits (78%), but with a higher uninsured share (56%). Their
equity ratio is also 9%.

The last row of Table 1 reports the average net non-interest expense rate for all banks
(1.66%) and large banks (1.1%). We use it to estimate the cost of running a deposit fran-
chise.

We supplement the call reports with data on the stock prices of public banks from
CRSP, interest rate data from FRED, and Treasury and MBS index prices from Bloomberg.
Additional details are provided in Appendix B.

4.2 Estimation

We implement our framework by estimating bank values on three distinct dates: Decem-
ber 2021, February 2023, and February 2024. December 2021 is the end of the last quarter
before the Fed began raising rates. We think of it as the initial date in the model. At the
time, the 10-year Treasury yield was r = 1.52%.12 It rose sharply from there, reaching
r′ = 3.92% in February 2023. This is a natural choice for our second date because it im-
mediately precedes the failure of SVB in early March 2023. The third date, February 2024,
is one year later and corresponds to r′ = 4.25%.13

Estimating bank values in our framework requires three separate components: the
market value of the bank’s assets, the value of its insured deposit franchise, and the value
of its uninsured deposit franchise. We need to separate the insured and uninsured fran-
chise values because they behave differently in a run. For this we need to estimate their
respective deposit betas and costs. We explain how we do this next.

Deposit betas. The literature (Drechsler et al., 2017, 2021) typically estimates deposit
betas from banks’ interest expense on deposits. A key challenge we face is that banks do
not break out interest expense on insured and uninsured deposits. We develop a two-step
estimation procedure to overcome this challenge.

The first step is to estimate each bank’s overall deposit beta, as in (4). We do this
by simply dividing the change in the bank’s deposit rate (deposit interest expense over

12Note that valuations depend on long-term rates like the 10-year rate, not short-term rates like the Fed
funds rate. See Appendix C for a derivation.

13While we have interest rates and asset prices daily, we only have call reports at quarter ends. We there-
fore use the December 2022 and 2023 call reports for our February 2023 and 2024 valuations, respectively.
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deposits) by the change in the Fed funds rate over a given period 0 to t:

βi,t =
Deposit Ratei,t − Deposit Ratei,0

Fed Funds Ratet − Fed Funds Rate0
. (32)

For the initial date, December 2021, we take these betas from the previous cycle (Decem-
ber 2015 to June 2019). For the second and third dates (February 2023 and 2024), we take
them from December 2021 up to that point in the current cycle.

Since the current cycle is ongoing and deposit rates tend to lag policy rates, the esti-
mated betas for February 2023 and 2024 are likely below the true, forward-looking betas
that enter banks’ valuations. We address this by scaling them up using survey data on
banks’ current and expected future deposit betas from the Fed’s Senior Financial Officer
Survey (see details in Appendix B).

Panel A of Table 2 presents our estimated betas. The average beta in December 2021,
which is calculated from the previous hiking cycle, is 0.25 (standard deviation 0.14). The
scaled betas for February 2023 are similar with a mean of 0.21 (standard deviation 0.16).
Thus, early in the current cycle betas behaved similarly to the previous cycle. The average
beta for February 2024, on the other hand, is 0.42 (standard deviation of 0.16). Betas thus
increased significantly later in the cycle. A likely explanation is that the previous cycle
was slower and shallower than the current one, which allowed banks to keep betas low.
By February 2024, the current cycle had turned out to be much steeper and faster, forcing
banks to raise their betas.14

The second step is to separate the insured and uninsured betas. We do so by assuming
that the difference between the insured and uninsured beta is constant across banks. This
allows us to identify it from a cross-sectional regression of overall betas on the uninsured
deposit share:

βi = α + γ × Uninsured Deposit Sharei + ϵi, (33)

where Uninsured Deposit Sharei is bank i’s ratio of uninsured deposits to domestic de-
posits, averaged over the period during which βi is estimated. We run this regression
separately for each of our three dates.

Figure 7 provides a binscatter plot of the deposit beta against the uninsured deposit
share for February 2023 (plots for the other dates look similar). The figure shows a robust
positive relationship, indicating that uninsured deposits have significantly higher betas.
Panel B of Table 2 reports the regression results. The coefficients are 0.13 in December

14Interestingly, the historical average beta over all cycles is about 0.4, very close to the February 2024
estimate (see https://pages.stern.nyu.edu/∼pschnabl/data/data_deposit_beta.htm). Thus, after a period
of unusually low betas (possibly due to the zero lower bound), betas have reverted to their historical mean.
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2021, 0.26 in February 2023, and 0.25 in February 2024, all highly significant. The increase
over time is consistent with the fact that betas were compressed during the previous cycle,
which is used to compute the December 2021 betas. The magnitudes imply that on aver-
age uninsured deposits have betas that are between 0.13 (December 2021) and 0.25–0.26
(February 2023 and 2024) higher than insured deposits.

We use these estimates to back out an insured and uninsured deposit beta for each
bank as follows:

βI
i = βi − γ̂ × Uninsured Deposit Sharei (34)

βU
i = βI

i + γ̂. (35)

The implicit assumption is that insured and uninsured betas differ by the same amount,
estimated as γ̂ in Table 2 Panel B separately for each date. In a final step, we winsorize
the betas at the 5%-level to reduce the impact of outliers.

Panel C of Table 2 reports the results. In December 2021, the average insured and
uninsured deposit betas are 0.21 and 0.34, respectively. In February 2023, they are similar:
0.11 and 0.37. Then in February 2024 they are higher: 0.33 and 0.58. Thus, early on in the
cycle betas behaved as in the previous, shallow cycle. They increased later as the cycle
became much steeper. The increase was similar for insured and uninsured betas.15

Deposit costs. The next task is to estimate the cost of deposit provision. We cannot mea-
sure it directly because the call reports do not break out deposit costs from other expenses.
We therefore use a hedonic approach similar to Hanson et al. (2015). We regress banks’ net
non-interest expense (non-interest expense minus income over assets) on deposits while
controlling for other balance sheet items. The coefficient on deposits identifies deposit
costs under the identifying assumption that deposits are not correlated with unobserved
variables that drive costs independently of deposits.

We focus on core deposit costs, taking out large time deposits, which are a form of
wholesale funding. We break up core deposits into three types to capture their cost
differences: insured zero-maturity (i.e. checking and savings) deposits, uninsured zero-
maturity deposits, and small time deposits. This gives us separate insured and uninsured
deposit cost estimates. We also interact deposits with size controls to capture differences

15It is plausible that part of the increase in betas is due to the Regional Bank Crisis, which may have
“awakened” some depositors. However, from Figure A.3, there is no clear discontinuity or inflection point
in betas following that episode. Rather, betas have been rising steadily as rates have risen sharply.
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in costs by bank size. Our regressions thus have the form:

Net Non-Interest Expensei,t = αt + γj + ∑
j,k

βj,k Sizej
i,t × Depositsk

i,t + Xi,t + ϵi,t, (36)

where Net Non-Interest Expensei is bank i’s annualized net non-interest expense over
assets, αt are time fixed effects, γj are size quartile fixed effects for j = 1, . . . , 4, Sizej

are size quartile indicators, Depositsk are deposits of type k (uninsured zero-maturity
deposits, insured zero-maturity deposits, and small time deposits), and X are balance
sheet controls. We cluster standard errors at the bank level. We estimate the regression
over the previous hiking cycle, from December 2015 to December 2019.

Like Hanson et al. (2015), the balance sheet controls we include are such that the omit-
ted category is a bank that funds itself with wholesale funding (large time deposits and
repo) and invests in cash and securities.16 The cost of running such a bank is absorbed in
the size fixed effects γj. We expect this cost to be close to zero, which gives us a simple
diagnostic for potential misspecification.

Panel A in Table 3 presents the results. Column (1) gives the average cost of core
deposits without breaking them up by type or differentiating by bank size. This cost is
1.311% per dollar of deposits. This number is very similar to Hanson et al. (2015), who
estimate a cost of 1.3% for checking and savings deposits.

Column (2) splits core deposits into the three types. It finds a cost of 1.130% for unin-
sured zero-maturity deposits, 1.558% for insured, and 1.535% for small time deposits.
Uninsured deposits thus have lower per-dollar costs than insured deposits, which is ex-
pected given their larger account sizes.

Column (3) presents the full specification with size interactions. We do not interact
uninsured deposits with size because they are concentrated among the largest banks.
The cost of uninsured deposits dips slightly to 1.061%. The costs of insured deposits
are decreasing in size. Banks in the bottom quartile of our sample have insured zero-
maturity deposit costs of 1.602% versus 1.250% for banks in the top quartile. For small
time deposits, costs are 1.840% in the bottom quartile and 0.829% in the top quartile. This
pattern is consistent with economies of scale in the deposit business.

The last four rows in Column (3) show the size fixed effects. They are all close to
zero and statistically insignificant. This is consistent with the prediction that wholesale-
funded banks that invest in cash and securities have near-zero costs, and suggests that
the regression is reasonably well specified.

16The specific controls we use are loans, foreign deposits, other borrowed money, equity, trading assets
and liabilities, and other assets and liabilities. Other assets and liabilities are those that exclude deposits,
the controls, and the omitted categories of cash, securities, large-time deposits and repo (these are absorbed
in the size fixed effects). All items are scaled by assets.
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We use the estimates in Panel A in Table 3 to compute bank-level insured and unin-
sured deposit costs. For each bank, the insured deposit cost is the weighted average of the
coefficients in Column (3) on zero-maturity insured deposits and small time deposits for
the bank’s size quartile, where the weights are the deposit shares. The uninsured deposit
cost is a weighted average of the coefficient on uninsured zero-maturity deposits and the
cost of large (uninsured) time deposits, which is zero. We also calculate an overall deposit
cost as the weighted average of the insured and uninsured costs.

Panel B in Table 3 summarizes the deposit cost estimates. The average cost of insured
deposits across all banks is 1.497% with a standard deviation across banks of 0.198%.
Insured costs are higher for the smallest quartile (1.647%) than the largest (1.202%). Unin-
sured deposit costs are 0.933% on average and similar across the size distribution. The
average overall cost is 1.296% (again very similar to the Hanson et al., 2015, estimate) and
falls to 1.109% for the largest size quartile.17

To help validate our methodology, we compare the estimated insured deposit cost
with the insured deposit beta across banks. The two are estimated from unrelated out-
come variables, hence there is no mechanical relationship between them. Figure 8 shows
a binscatter plot of the insured deposit cost against the insured beta across banks. There
is a clear negative relationship: deposit costs decline from 1.54% for a beta of 0.1 to 1.44%
for a beta of 0.6 (the slope coefficient is −0.194 and highly significant). This supports the
view that banks incur higher costs to reduce their deposit betas (Drechsler et al., 2021).
Based o

Exogenous outflows. The deposit franchise value depends on the exogenous outflow
rate δ, which captures the natural rate of decay of a bank’s deposit base. Banks do not
disclose their deposit decay rates, hence we rely on estimates from the literature. These
estimates differ substantially for both conceptual and measurement reasons. The con-
ceptual reason is that as existing deposits decay, banks incur deposit acquisition costs to
replace them (for marketing, promotional pricing, etc.). These costs are difficult to cap-
ture because they rise with the profitability of the marginal deposit dollar. To the extent
they are not fully captured, a higher decay rate is appropriate. Ellis and Jordan (2001)
discuss this issue in detail.

An obvious source of decay rate estimates comes from the OCC’s “Interest Rate Risk
Statistics Report.” The most recent report (Office of the Comptroller of the Currency,

17Bank of America is unusual in that it breaks out its non-interest expense and income related to deposits.
For 2023, they report $10.477 billion in net non-interest expense on $987.675 billion of deposits (Bank of
America, 2023). This gives a per-dollar deposit cost of 1.061%, which is very close to our estimate of 1.109%
for large banks in Panel B of Table 3. It is even closer to our point estimate for Bank of America, which is
1.106% at the end of 2023. This helps to validate our deposit cost methodology.
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2024) shows an average life of between five and six years for zero-maturity deposits at
banks with over $10 billion in assets (similar to our sample). However, Sheehan (2013)
argues that the OCC’s estimates are too low and finds an average life of about ten years for
most types of deposits (Sheehan, 2013, Table 4). This implies an annual decay rate of 10%.
Artavanis et al. (2022) also find a 10% decay rate using Greek data. Wilary Winn (2016)
and Stanton (2023) are studies by consulting firms that provide advisory services to banks.
They also find decay rates of about 10%. Based on this reading of the academic literature
and industry practice, we use δ = 10% as our baseline rate of exogenous outflows.18

Marking assets to market. Banks report the book value of their assets but we need mar-
ket values for valuation. We estimate them as follows. We first assume that book and
market values are the same in December 2021, before the interest rate shock.19 We then
estimate the mark-to-market losses on the assets as interest rates went up.

Banks report the distribution of their assets by repricing maturity bins.20 We match
each bin to a Bloomberg total return index with the nearest maturity. We use Treasury
indices for non-real estate assets and MBS indices for real estate assets. This is important
because the duration of mortgages is greatly affected by their amortization and prepay-
ment schedules. Using MBS indices for real estate assets accounts for this. The exact
indices and how we match them to repricing maturity bins are listed in Appendix B.

We calculate the mark-to-market losses of each bank by multiplying its holdings in a
given asset bin as of December 2021 by the percentage change in the matched Bloomberg
index from December 2021 to February 2023 and February 2024 (the dates we focus on).
We then sum up the losses across bins to get the loss for the whole bank (we assume zero
loss on cash). We divide it by the sum of securities, loans, and cash as of December 2021
to convert it to a percentage asset loss.21

Table 4 reports summary statistics for the mark-to-market asset losses. The average
bank lost 8.22% of assets from December 2021 to February 2023. There is substantial
variation in this number, with a standard deviation of 2.41%. Asset losses recover slightly
to 7.36% as of February 2024. Large banks incur slightly smaller losses of 6.75% as of
February 2023 and 5.98% as of February 2024.22 These losses are large compared to banks’

18In Appendix D we provide robustness using an average deposit life of six years (δ = 1/6), in line with
the OCC’s “Interest Rate Risk Statistics Report.”

19To validate this assumption, we take advantage of the fact that banks report market (or “fair”) values
for their securities portfolios. We find that book and fair values are nearly identical in December 2021.

20The repricing maturity of an asset is the time until its interest rate resets.
21The implicit assumption is that banks have the same percentage loss on assets whose repricing ma-

turity they do not report. These assets are small, representing only 6.2% of the balance sheet, hence their
impact is likely small.

22Our losses are similar but slightly smaller than Drechsler et al. (2023) who estimate an aggregate loss
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average equity ratio of 9%.

4.3 Results

Deposit franchise values. We plug our bank-level estimates of deposit betas, costs, and
outflows into the deposit franchise valuation formula in Proposition 1. We do so sepa-
rately for the insured and uninsured deposit franchise values. We use the 10-year Trea-
sury rate at each date as the interest rate.23 We scale deposit franchise values by assets as
of December 2021.

The results are summarized in Table 5. Panel A looks at all banks. The average insured
deposit franchise (DFI) is −1.42% of assets in December 2021. The slightly negative value
highlights that deposits were not profitable at the time. This is due to the very low 10-
year rate, 1.52%, which compresses deposit spreads relative to operating costs.24 The
uninsured deposit franchise (DFU) is slightly positive, 0.13%, due to its lower operating
cost. The combined value, −1.29% is close to zero, hence banks were roughly breaking
even on deposits at this time.

Deposit franchise values increase sharply by February 2023 as the 10-year rate reaches
3.92%. This highlights the negative duration of the deposit franchise. The average in-
sured deposit franchise value rises to 7.67%, nearly offsetting the asset losses in Table 4.
The uninsured deposit franchise value contributes an additional 3.48%, for a combined
deposit franchise value of 11.34%, more than offsetting the asset losses. This number is
very large relative to the average equity ratio of 9%, which shows the importance of the
deposit franchise for bank valuation.

Deposit franchise values decline to 5.20% (insured) and 1.91% (uninsured) in February
2024. This is due to the substantial increase in deposit betas (see Table 2). The combined
deposit franchise remains high, 7.10%, roughly offsetting the asset losses in Table 4.

Panel B of Table 5 shows the results for large banks. The numbers are similar. Large
banks slightly lower operating costs, which makes their deposit franchise break even at
very low interest rates in December 2021. We estimate that the average large bank’s in-
sured and uninsured deposit franchise were each worth −0.02% of assets in December
2021 for a combined franchise value of −0.04%. The insured franchise value rises to 5.64%
in February 2023, which is enough to offset 84% of the asset losses in Table 4. The unin-

of 10% and Jiang et al. (2023) who estimate a loss of 9.2% for all banks and 10% for large banks.
23While in the model there is a single interest rate and a flat yield curve, in practice the yield curve takes

different shapes. In Appendix C we show that the same interest rate is appropriate in the numerator (cash
flow) and denominator (discount rate) of our valuation formula regardless of the shape of the yield curve.
The 10-year rate is appropriate given our assumption that the maturity of deposits is 10 years (1/δ = 10).

24In principle, banks could shut down an unprofitable deposit franchise but this may not fully recoup
its cost. We provide such an extension in Appendix G.1.
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sured deposit franchise contributes an additional 3.85% for a combined franchise value
of 9.49%, more than enough to offset the asset losses. The insured and uninsured deposit
franchise values drop to 5.18% and 1.91%, respectively, in February 2024 due to the higher
deposit betas. The drop is larger for the uninsured portion because the uninsured betas
for large banks increased by more than the insured betas. It is plausible that this is a con-
sequence of the failure of SVB. Nevertheless, large banks’ franchise values remain high
and offset their asset losses.

An important difference between large banks and all banks is that large banks have
more uninsured deposits (56% versus 37%, see Table 1). This makes the uninsured de-
posit franchise more important in the valuation of large banks. In February 2023, 40% of
their deposit franchise value was due to uninsured deposits. Since the uninsured deposit
franchise is a runnable asset, large banks were at greater risk of a deposit franchise run. In
contrast, the uninsured deposit franchise made up just 30% of the deposit franchise value
of all banks, leaving them relatively insulated.

Bank values and deposit franchise runs. We now add up the deposit franchise value
estimates and the mark-to-market asset loss estimates to characterize total bank values
and the banking system’s vulnerability to deposit franchise runs.

We compare three notions of bank value. The first follows the literature and ignores
the deposit franchise. It simply marks assets to market and subtracts the book value of
deposits: A (r)− D. The implicit assumption is that deposits are worth their book value
because they can be withdrawn at any time. We measure this value starting from the
bank’s initial equity ratio in December 2021 and subtracting the mark-to-market asset
losses.25

The results are in the first row of Table 6, Panel A. The average bank value without
the deposit franchise is 10.26% of assets in December 2021. It then drops sharply to 2.03%
in February 2023, on the eve of the Regional Bank Crisis, before recovering slightly to
2.91% in February 2024. White the average bank remains solvent under this valuation,
there is substantial heterogeneity with a standard deviation of 3.22%. Below the standard
deviations, we report the percentage of banks with negative value. It rises from 0% in
December 2021 to 26.43% in February 2023 and then falls slightly to 17.10% in February
2024. Thus, over a quarter of banks were insolvent in February 2023 if we ignore their
deposit franchise values. A sixth are still insolvent at the end of the sample. This echoes
popular concerns about the solvency of the banking system.

25We use the book equity ratio primarily because most banks are not public. Banks’ market-to-book
ratios are on average very close to one though there is significant variation. Market-to-book ratios contain
additional information about intangibles such as the deposit franchise, a loan franchise (if any), and implicit
government guarantees, which are difficult to separate for our purposes.
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Panel B looks at large banks. Their initial value is similar at 9.96%. It also drops
sharply to 2.95% in February 2023 and 4.20% in February 2024. These averages again
come with substantial heterogeneity: the standard deviations are 2.57% and 1.83%, re-
spectively. Below them, we report the number of large banks with negative value (as
opposed to the percentage). It rises from 0 in December 2021 to 2 in February 2023. As we
will see below, the two are First Republic and SVB. The number of banks with negative
value drops to zero in February 2024 as the these two banks exit the sample.

The precipitous drop in these values from December 2021 to February 2023 is due to
the large mark-to-market asset losses we saw in Table 4. These losses average over 80% of
equity values. Yet, as we saw in Figure 1, bank stocks did not decline by anywhere near
80% during this period (their decline was on par with the overall market). This suggests
that there is more to bank values than marking assets to market. Our model provides an
answer for what that is.

There are two notions of bank value in the model, one with a run (λ = 0) and one
without a run (λ = 1):

V (0, r) = A (r)− D + DFI (r) (Run) (37)

V (1, r) = A (r)− D + DFI (r) + DFU (1, r) (No run). (38)

In a run, the bank retains its assets (marked to market) net of deposits, A (r)− D, because
assets are fully liquid. It also retains its insured deposit franchise, DFI (r), because in-
sured depositors do not run.26 It loses its uninsured deposit franchise, DFU (r), because
uninsured depositors run.27

The second set of estimates in Panel A of Table 6 show the run values, V (0, r), for all
banks. They start at 8.84% of assets in December 2021, slightly below the no-franchise
value because insured deposits were unprofitable at the time. Importantly, unlike the no-
franchise value, the run value does not decline and actually rises to 9.70% in February
2023 before decreasing slightly to 8.10% in February 2024 due to the higher betas. Thus,
for the average bank the increase in the value of the insured deposit franchise fully offset

26It is possible that some insured depositors run to avoid any inconvenience. In Appendix E we show
robustness results if 15% of insured depositors run. This has limited impact because it primarily affects
banks with a large insured deposit franchise, which are less at risk of deposit franchise runs.

27The assumption that the uninsured deposit franchise is lost in a run is supported by the results of FDIC
auctions for failed banks. The FDIC reports that of 20 bids for SVB, 19 offered a 0% “deposit premium”
(one offered a 0.5% premium). A deposit premium is paid when an acquiring bank assumes the deposit
liabilities of the target for less than their book value. Deposit premiums are very common in bank M&A,
averaging 7% of core deposits in 2023 (Stanton, 2023). For robustness, in Appendix F we show results if
15% of uninsured depositors do not run so the bank retains 15% of its uninsured deposit franchise value.
This has the expected effect: banks with a large uninsured deposit franchise like SVB, First Republic, and
Signature have higher run values though SVB’s remains marginally negative.
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the asset losses from the rise in interest rates. Panel B shows similar results for large
banks: their run values go from 9.94% in December 2021 to 8.60% in February 2023 and
9.38% in February 2024. By this measure, banks were no less solvent on the eve of the
Regional Bank Crisis than they were prior to the rate hikes, which helps to explain the
behavior of their stock prices.

There is still substantial heterogeneity, but only 0.7% of all banks have negative run
values in February 2023 (versus 26.43% when we ignore the deposit franchise). These
are the banks exposed to deposit franchise runs according to the model with a solvency
threshold of zero (v = 0). Among the large banks, there is one: SVB.28 This shows that
accounting for the insured deposit franchise has a large impact on the solvency of the
banking system.

The final set of estimates in Table 6 look at bank values without a run, V (1, r). No-run
values start at 8.97% for all banks and 9.92% for large banks in December 2021. They
increase to 13.18% and 12.45%, respectively, in February 2023, before dipping slightly to
10.01% and 11.32% in February 2024. The uninsured deposit franchise therefore forms a
large portion of bank values, especially for large banks.

Average bank values mask large differences across banks. Figure 9 shows a binscatter
plot of bank values against the uninsured share of deposits. Values ignoring the deposit
franchise (A − D) are in red, values with the insured deposit franchise (A − D + DFI) are
in blue, and values with the insured and uninsured deposit franchise (A − D + DFI +

DFU) are in yellow. Panel A looks at December 2021, before the interest rate shock. Bank
values are similar across all three measures and do not vary systematically with the unin-
sured deposit share. This is because deposit franchise values, both insured and unin-
sured, were close to zero given the low interest rates. Bank values are also comfortably
above zero, indicating solvency.

Panel B looks at February 2023.29 Bank values ignoring the deposit franchise are now
much lower, barely above zero, suggesting widespread insolvency. This is due to the
large asset losses from the rise in interest rates. The binscatter is also flat in the uninsured
deposits share, which shows that banks with a lot of uninsured deposits had similar asset
losses as other banks, i.e. their maturity mismatch was not particularly high.

Adding in the insured deposit franchise raises bank values substantially, and comfort-
ably above zero, but only for banks with few uninsured deposits. For banks with 10%
uninsured deposits, bank values rise from less than 2% to 12%, whereas for banks with
80% uninsured deposits they increase only from 3% to just 5%. Thus, banks with few
uninsured deposits were just as able to sustain a run as they had been in December 2021,

28First Republic and Signature become exposed under a slightly higher threshold of 2% (v = 0.02).
29We leave out February 2024, which looks very similar.
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while banks with a lot of uninsured deposits were more vulnerable. For these banks, the
monetary tightening led to a much greater risk of failure.

Adding in the uninsured deposit franchise levels out bank values across the uninsured
deposit share distribution. These no-run bank values are slightly higher than in Decem-
ber 2021 due to the increased deposit franchise values. However, there is a large wedge
between the run and no-run bank values for banks with a lot of uninsured deposits. These
banks stood to lose 9 percentage points of value in case of a run, on average. Thus, while
banks were hedged to the interest rate shock in the absence of a run, those with a high
uninsured deposit share became exposed to a run.

Figure 10 breaks out the results for large banks, plotting their values against their
uninsured deposit share in December 2021 (Panel A) and February 2023 (Panel B). Bank
values ignoring the deposit franchise (A − D) are in red, bank values if there is a run
(A − D + DFI) are in blue, and bank values if there is no run (A − D + DFI + DFU) are in
yellow.

From Panel A, bank values cluster around 10% of assets under all measures and flat
across the uninsured share distribution in December 2021. This is because the deposit
franchise was not valuable at the time due to the lower interest rates. Panel B shows
a very different picture in February 2023. Almost all bank values without the deposit
franchise are now below 5%, many are close to zero, and two are negative: SVB and
First Republic. Nevertheless, the differences across banks by this measure are relatively
narrow with many banks potentially at risk.

The differences across banks widen when we add in the insured deposit franchise to
compute bank values in a run. Most large banks experience a large increase in value that
pushes them back up to around 10%. These banks can survive a deposit franchise run
and therefore, according to our model, they are not vulnerable to one. The exceptions to
this are SVB, First Republic, and Signature. These three banks see only a small increase in
value from adding in the insured deposit franchise. In the case of SVB, its value remains
negative. The values of First Republic and Signature are about 2%. All other banks are at
5% or higher. Thus, SVB, First Republic and Signature are uniquely exposed to deposit
franchise runs under a solvency threshold of v = 2%.30 SVB is exposed under a solvency
threshold of v = 0%.

Figure 10 thus shows that our model and estimation procedure accurately identify
which banks were exposed to deposit franchise runs on the eve of the Regional Bank Cri-
sis. Equally important, they also identify which banks were not exposed. This contrasts
with measures that focus solely on asset losses and ignore the deposit franchise, which

30This is consistent with Basel III, under which banks with capitalization ratios of less than 3% are con-
sidered severely undercapitalized.
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tend to over-predict bank failure.

Event study: the Regional Bank Crisis. Our framework can also shed light on changes
in bank values during the Regional Bank Crisis in March 2023. If the failure of SVB was
a deposit franchise run, then other banks with a large uninsured deposit franchise value
should have experienced larger declines in market value during the episode. We can use
bank stock prices to test this prediction.

We construct an “SVB beta” for each public bank in our sample. The SVB beta is
simply the bank’s stock return in a window around the failure of SVB. We use March 6
and March 13, 2013, as the start and end points of the window. March 6 is just before
SVB’s ill-fated earnings announcement, and March 13 is the Monday after its takeover by
the FDIC. Since not all banks in our sample are public, we obtain 171 SVB betas.

Table 7 shows the results of regressing the SVB beta on the uninsured share of deposits,
the uninsured deposit beta, and both. Our model predicts that these are the two main
ingredients of the uninsured deposit franchise. Banks with a lot of uninsured low-beta
deposits have a large uninsured deposit franchise and are therefore more exposed to a
deposit franchise run.

Column (1) shows that banks with a larger uninsured share of deposits had a more
negative SVB beta. The relationship is strong, with an R2 of 28% and a constant of zero,
implying that banks with no uninsured deposits are predicted to have an SVB beta of
zero.

Column (2) adds in the uninsured deposit beta, as well as its interaction with the
uninsured deposit share.31 The reason for the interaction is that according to the model
uninsured deposits increase the risk of a deposit franchise run only if they are low-beta
deposits.

This is indeed what we find. Summing the stand-alone coefficient on the uninsured
deposit share and the interaction coefficient, a bank with an uninsured deposit beta of one
has a flat (and in fact increasing) relationship between uninsured deposit share and SVB
beta. In contrast, a bank with an uninsured deposit beta of zero has a steeply decreasing
relationship. Uninsured deposits thus only matter if they are low-beta, consistent with
our model. Relative to column (3), the R2 is also increased to 35.6%, hence the uninsured
beta and its interaction add significant explanatory power.

Column (3) replaces the right-hand variables with the product of the uninsured share
and one minus the uninsured beta, u

(
1 − βU). This is a simplified expression for the

value of the uninsured deposit franchise that holds at very high interest rates (see Propo-

31We use the December 2021 beta, which is estimated from the previous cycle. The reason is that the
February 2023 may already incorporate information about deposit flight.
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sition 4). As such, it should predict the SVB beta about as well as the reduced-form in-
teraction regression. We find that this is roughly the case. The R2 declines slightly (this
is not surprising since we are in effect restricting the coefficients) but remains high. The
coefficient is large: a bank with uninsured beta of zero and uninsured share of one (a large
uninsured deposit franchise) is predicted to have a 63% lower stock return than a bank
with either an uninsured beta of one or uninsured share of zero (small uninsured deposit
franchise).

Column (4) uses our actual estimate of the uninsured deposit franchise, DFU. We scale
it by the total bank value (V (1, r)) to turn it into a percentage loss of value in case of a run.
The dependent variable, the SVB beta, is a return, hence it measures the actual percentage
loss of value during the crisis. The result shows that banks with a large uninsured deposit
franchise had significantly lower returns during the SVB crisis. The coefficient implies
that banks on average lost 41.5% of their uninsured deposit franchise values. The R2 is
slightly lower than the reduced-form estimates but still high.

Column (5) adds the insured deposit franchise, DFI , as an additional control. Unlike
the uninsured deposit franchise, the insured deposit franchise comes in with a positive
and significant coefficient that roughly offsets the negative constant. Thus, banks with
only an insured deposit franchise are predicted to have an SVB return of about zero,
whereas banks with only an uninsured deposit franchise are predicted to have an SVB
return of −50%.

The opposing signs of the coefficients on the insured and uninsured deposit franchise
values show that markets perceived one as a source of stability and the other as a source
of instability. This confirms our assumption that uninsured deposits are runnable while
insured deposits are not. Overall, the results in Table 7 support the prediction of our
model that an uninsured deposit franchise is a source of run risk for banks.

5 Extensions

In this section we consider two extensions of the model that bring it closer to the data. We
first allow for “rate-driven” deposit outflows to high-yield alternatives such as money
market funds. We then show how exposure to credit risk interacts with interest rates. An
important point is that while we focused on interest rate shocks, any asset loss can trigger
a deposit franchise run.32

32In Appendix G, we consider three additional extensions: (i) we allow for fixed as well as variable
operating costs, (ii) we study capital requirements that depend on the level of interest rates, and (iii) we
show how a lender of last resort policy similar to the Fed’s Bank Term Funding Program introduced after
SVB’s failure works in our framework.
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5.1 Rate-driven outflows

Our baseline model captures deposit outflows due to runs by uninsured depositors (λ)
and the natural decay of the deposit base (δ). In practice banks also experience “rate-
driven” outflows, which arise in response to changes in interest rates. When interest rates
rise and the opportunity cost of holding deposits (the deposit spread) widens, some de-
positors reallocate their funds to money market funds and other assets (Drechsler et al.,
2017; Xiao, 2020). These rate-driven outflows apply to both insured and uninsured de-
positors.

We capture them as follows. The bank enters with a deposit base D−1 = D as before.
Then, at the end of t = 0, after the interest rate shock r′ is realized, depositors withdraw
a fraction w (r′), which is increasing in r′. The bank is thus left with deposits

D0 =
[
1 − w

(
r′
)]

D. (39)

We normalize outflows to zero at the initial interest rate: w (r) = 0.33 Given this, w′ (r) >
0 is a local measure of rate-driven outflows.

The following proposition generalizes Proposition 1 to the case with rate-driven out-
flows:

Proposition 6 (Deposit Franchise Valuation with Rate-Driven Outflows). If there are no
runs, then the value of the deposit franchise with rate-driven outflows after the interest rate shock
is

DF
(
r′
)

=
[
1 − w

(
r′
)] [ (1 − β) r′ − c

r′ + δ

]
D. (40)

The dollar duration of the deposit franchise with rate-driven outflows before the interest rate shock
is

TDF ≡ − ∂DF (r′)
∂r′

∣∣∣∣
r′=r

= Tw=0
DF + w′ (r) DFw=0 (r) , (41)

where Tw=0
DF and DFw=0 (r) are the duration and deposit franchise values without rate-driven

outflows, as in Proposition 1.

Rate-driven outflows shrink the deposit base when interest rates rise. This limits the
appreciation of the deposit franchise, making its duration less negative. Intuitively, while
deposits are becoming more profitable, there are fewer of them, so total profits and their

33Note that w (r′) is the reduced-form withdrawal rate, implicitly capturing the bank’s deposit pricing
policy (see (3)). We discuss how the reduced-form withdrawal rate arises and how our results extend to a
nonlinear deposit pricing policy in Appendix G.2 and G.3.
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present value rise less. The amount by which it does so is equal to the outflows times
the present value of profits per deposit dollar. Under the market power mechanism in
Drechsler et al. (2017), total deposit profits still rise, hence the duration of the deposit
franchise remains negative. In our reduced-form setting, this requires that rate-driven
outflows w′ (r) are not too large:

c + (1 − β) δ

r + δ
≥ w′ (r) [(1 − β) r − c] . (42)

This condition says that when rates rise, the bank gains more on the deposits that remain
(left side) than it loses on the deposits that leave (right side). Given our estimates of β and
w′ described below, this condition is easily satisfied in the data.

The prior discussion shows that rate-driven outflows affect the bank in the same way
as a higher deposit beta. Whether the bank loses profitable deposits or earns less profit
per deposit dollar, the impact on total profits is the same. The model with rate-driven
outflows can thus be re-cast as our baseline model without rate-driven outflows but with
a higher deposit beta, allowing the rest of our result to go through:

Proposition 7 (Effective Deposit Beta with Rate-Driven Outflows). For hedging purposes,
rate-driven outflows w′ (r) > 0 are equivalent to assuming w′ (r) = 0 with an effective deposit
beta

β̃ = β + w′ (r) [(1 − β) r − c] (1 + r/δ). (43)

The effective deposit beta is higher than the true beta, β̃ > β, if and only if the deposit franchise is
valuable, (1 − β) r > c.

Proposition 7 shows that when deposits are valuable, a bank facing rate-driven out-
flows w′ (r) should act as if its deposit beta is higher than it really is. The effective beta,
β̃, captures the loss of profits the bank faces from outflows as interest rates increase. To
hedge this loss, the bank has to make sure its assets fall less as interest rates rise, i.e. it
needs a shorter asset duration.34

Note that the effective beta depends on the interest rate. It tends to be increasing in the
interest rate if rate-driven outflows do not diminish too quickly. This means that outflows
create negative convexity in the value of the bank’s deposit franchise. The convexity
has no effect in our single-shock model, but in a dynamic model it would require the

34A surprising implication of Proposition 7 is that the impact of outflows reverses sign at low rates.
When rates are so low that deposits are unprofitable, (1 − β)r < c, the effective beta is lower than the true
beta, β̃ < β, hence hedging with rate-driven outflows calls for longer asset duration. In this case outflows
benefit the bank by shrinking its unprofitable deposit business. To hedge this increase in value the bank
sets a longer asset duration.
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fall in slower r

Figure 6: Effect of a shock to asset values s′ < s and policy response r′ < r.

bank’s interest rate hedging strategy to be time-varying. Specifically, as the effective beta
increases, the bank’s duration would need to shorten.35

The impact of outflows on the effective beta is particularly stark because we assume
that all operating costs are variable. When depositors leave, the bank recoups the costs
it would have paid to service them. In Appendix G.1 we introduce fixed costs that still
need to be paid even if depositors leave. We show that if the fixed costs are large enough,
outflows always shrink asset duration.36

The strength of the rate-driven outflows w′ can be calibrated using estimates from
Drechsler et al. (2017). They show that the typical 400 bps Fed hiking cycle corresponds to
a 12% outflow, hence w′ ≈ 3. For an average bank with β = 0.3, this implies an effective
beta of β̃ = 0.35.37 In Appendix G.4 we show how the correction β̃i − βi varies across
banks i given the negative relationship between βi and w′

i documented in Drechsler et al.
(2017).
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5.2 Deposit franchise runs triggered by credit losses

We have focused on interest rate shocks but banks are also exposed to credit risk. We
show that as long as the bank has an uninsured deposit franchise value, any shock to its
asset value can trigger a deposit franchise run. Since the deposit franchise is particularly
high when interest rates are high, credit losses are more likely to trigger deposit franchise
runs in a high-rate environment.

Let s denote the unhedged credit risk shock so that the value of assets is decreasing in
s (∂A/∂s < 0). Suppose that initially only the run-free equilibrium exists and

v(1, r, s) =
A(r, s)− D + DFI(r) + DFU(1, r)

D
.

In our framework the deposit franchise does not hedge credit shocks because they do not
enter into the deposit demand function.38 This leaves the bank overall unhedged. An
adverse shock s triggers a fall in A, and hence lowers bank solvency v. If the fall in v is
large enough, some uninsured depositors withdraw (λ < 1), reducing the value of the
deposit franchise DFU. If the deposit franchise is large, as it is at high interest rates, the
fall in its value hurts v further and triggers more withdrawals, and so on. The mechanism
is shown in Figure 6. It highlights that credit risk in our framework is amplified by high
interest rates.39

5.3 Constraints on monetary policy

How should the central bank set interest rates, taking into account the impact on financial
stability? Our framework implies that it depends on banks’ risk management policy.

If banks hedge their going-concern value against interest rate risks, then an interest
rate increase can expose them to deposit franchise runs. Conversely, an interest rate cut
makes runs less likely. However, the rate cut does not increase the value of banks in

35This complements Greenwald et al. (2023) where the actual deposit beta rises with rates. In Appendix
G.3 we allow for variable betas and show that they have the same effect as rate-driven outflows.

36It is difficult to know the mix of fixed and variable costs in practice. Some costs, like branches, are
relatively fixed while others, like transaction services, are variable. One component of variable costs are
regulations like the supplementary leverage ratio (SLR), which led large banks to turn away deposits in
2021 when rates were low and deposits were not profitable (see Bolton et al., 2020).

37The numbers for the current hiking cycle are similar. Between March 2022 and May 2023, the Fed
funds rate rose by 5% and deposits declined by 9%. This gives w′ ≈ 1.8. Deposit outflows tend to lag,
hence w′ is likely to increase toward the historical norm.

38For large banks that are considered too-big-to-fail, adverse macroeconomic shocks may lead to an
inflow of “flight-to-safety” deposits which can be captured through a net outflow function w(r, s).

39An interesting extension outside the scope of our model would be to include imperfect and dispersed
information about s and other characteristics such as β and w′. In that case, uninsured depositors could
even interpret ordinary rate-driven withdrawals as a signal of poor asset quality s.
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the no-run equilibrium (asset values rise but deposit franchise value falls). Thus, accom-
modative monetary policy, for example following credit losses, does not improve bank
solvency.

If banks hedge liquidity risk by holding short-term assets, then interest rate cuts ac-
tually hurt bank solvency. The reason is that asset values rise less than the amount by
which the deposit franchise value shrinks. A rate cut then worsens the impact of a neg-
ative credit shock. If the deposit franchise is very valuable, accommodative monetary
policy can even make the good equilibrium disappear, as depicted by the dotted red line
in Figure 6.

This reinforces the case for capital requirements that allow banks to keep their deposit
franchise valuable and hedge interest rate risk based on the good equilibrium (see Section
3.3). When banks have enough capital to do so the central bank can set interest rates
without adversely affecting bank health.

6 Conclusion

Banks are in the business of issuing deposits. They earn profits by paying low deposit
rates while incurring substantial servicing costs. The net present value of these profits
is the value of the deposit franchise. It is an intangible asset that banks must carefully
manage. Our paper is about whether it exposes banks to runs.

The deposit franchise is only valuable if deposits remain in the bank. If they leave, the
bank loses the stream of profits it would have earned on them and the deposit franchise
is destroyed. If the loss exceeds the bank’s equity, it gives uninsured depositors a self-
fulfilling incentive to run. Unlike in existing models, this type of run can occur even if the
bank’s loans are fully liquid. We call it a deposit franchise run.

A deposit franchise run is more likely when interest rates are high. This is because
the value of the deposit franchise is increasing in interest rates (it has negative duration).
To avoid a run, the bank needs the value of its assets to remain sufficiently high as in-
terest rates rise. However, the bank cannot simply shorten the duration of its portfolio
to achieve this. The reason is that it needs enough long-term assets to avoid insolvency
if interest rates fall. To avoid both runs and insolvency, the bank therefore needs more
assets in general, i.e. it needs more capital.

Our model provides a channel by which monetary tightening can lead to financial
instability. It arises when banks have a large uninsured deposit franchise, i.e. when they
have a lot of low-beta uninsured deposits relative to their capital. This was the case during
the recent hiking cycle, which triggered the collapse of Silicon Valley Bank. Our results
thus highlight the need to monitor banks’ uninsured deposit franchise in order to avoid
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an adverse tradeoff between monetary policy and financial stability.

43



References

Abadi, Joseph, Markus Brunnermeier, and Yann Koby (2022), “The Reversal Interest
Rate”, working paper.

Acharya, Viral V., Simone Lenzu, and Olivier Wang (2022), “Zombie Lending and Policy
Traps”, working paper.

Allen, Franklin and Douglas Gale (1998), “Optimal Financial Crises”, The Journal of Fi-
nance, Vol. 53, pp. 1245–1284.

(2000), “Financial contagion”, Journal of political economy, Vol. 108, pp. 1–33.
(2009), Understanding Financial Crises: OUP Oxford.

Artavanis, Nikolaos, Daniel Paravisini, Claudia Robles Garcia, Amit Seru, and Mar-
garita Tsoutsoura (2022), “One Size Doesn’t Fit All: Heterogeneous Depositor Compen-
sation During Periods of Uncertainty”,Technical report, National Bureau of Economic
Research.

Bank of America (2023), Annual Report to Shareholders.
Begenau, Juliane, Monika Piazzesi, and Martin Schneider (2015), “Banks’ Risk Expo-

sures”, working paper.
Bolton, Patrick, Ye Li, Neng Wang, and Jinqiang Yang (2020), “Dynamic Banking and

the Value of Deposits”, Working Paper 28298, National Bureau of Economic Research.
Caglio, Cecilia, Jennifer Dlugosz, and Marcelo Rezende (2023), “Flight to safety in the

regional bank crisis of 2023”, Working paper.
Cookson, J Anthony, Corbin Fox, Javier Gil-Bazo, Juan Felipe Imbet, and Christoph

Schiller (2023), “Social Media as a Bank Run Catalyst”, Working paper.
Dang, Tri Vi, Gary Gorton, Bengt Holmström, and Guillermo Ordoñez (2017), “Banks

as Secret Keepers”, American Economic Review, Vol. 107, pp. 1005–29.
DeAngelo, Harry and René M. Stulz (2015), “Liquid-claim production, risk manage-

ment, and bank capital structure: Why high leverage is optimal for banks”, Journal of
Financial Economics, Vol. 116, pp. 219–236.

DeMarzo, Peter, Arvind Krishnamurthy, and Stefan Nagel (2024), “Interest Rate Risk in
Banking”, working paper.

Despres, E., E. Kindleberger, and W.S. Salant (1966), The Dollar and World Liquidity: A
Minority View: Brookings Institution.

Dewatripont, Mathias and Jean Tirole (2018), “Liquidity regulation, bail-ins and
bailouts”,Technical report, TSE working paper.

Di Tella, Sebastian and Pablo Kurlat (2021), “Why Are Banks Exposed to Monetary Pol-
icy?”, American Economic Journal: Macroeconomics, Vol. 13, pp. 295–340.

Diamond, Douglas W. (1984), “Financial Intermediation and Delegated Monitoring”, The

44



Review of Economic Studies, Vol. 51, pp. 393–414.
Diamond, Douglas W. and Philip H. Dybvig (1983), “Bank Runs, Deposit Insurance, and

Liquidity”, Journal of Political Economy, Vol. 91, pp. 401–419.
Diamond, D.W. and A.K. Kashyap (2016), “Chapter 29 - Liquidity Requirements, Liquid-

ity Choice, and Financial Stability”, Vol. 2 of Handbook of Macroeconomics: Elsevier,
pp. 2263–2303.

Drechsler, Itamar, Alexi Savov, and Philipp Schnabl (2017), “The Deposits Channel of
Monetary Policy”, The Quarterly Journal of Economics, Vol. 132, pp. 1819–1876.

(2021), “Banking on Deposits: Maturity Transformation without Interest Rate
Risk”, The Journal of Finance, Vol. 76, pp. 1091–1143.

(2023), “Valuing the deposit franchise”, working paper.
Egan, Mark, Ali Hortaçsu, and Gregor Matvos (2017), “Deposit Competition and Finan-

cial Fragility: Evidence from the US Banking Sector”, American Economic Review, Vol.
107, pp. 169–216.

Egan, Mark, Stefan Lewellen, and Adi Sunderam (2021), “The Cross-Section of Bank
Value”, The Review of Financial Studies, Vol. 35, pp. 2101–2143.

Ellis, David M and James V Jordan (2001), “The evaluation of credit union non-maturity
deposits”, National Economic Research Associates.

English, William B., Skander J. Van den Heuvel, and Egon Zakrajsek (2018), “Interest
rate risk and bank equity valuations”, Journal of Monetary Economics.

Farhi, Emmanuel and Matteo Maggiori (2017), “A Model of the International Monetary
System*”, The Quarterly Journal of Economics, Vol. 133, pp. 295–355.

Freixas, Xavier and Jean-Charles Rochet (2008), Microeconomics of banking: MIT press.
Goldstein, Itay and Ady Pauzner (2005), “Demand-Deposit Contracts and the Probability

of Bank Runs”, The Journal of Finance, Vol. 60, pp. 1293–1327.
Gomez, Matthieu, Augustin Landier, David Sraer, and David Thesmar (2021), “Banks’

exposure to interest rate risk and the transmission of monetary policy”, Journal of Mon-
etary Economics, Vol. 117, pp. 543–570.

Gorton, Gary and George Pennacchi (1990), “Financial Intermediaries and Liquidity Cre-
ation”, The Journal of Finance, Vol. 45, pp. 49–71.

Gorton, Gary and Andrew Winton (2003), “Chapter 8 - Financial Intermediation”, in
George M. Constantinides, Milton Harris, and Ren? M. Stulz eds. Corporate Finance,
Vol. 1 of Handbook of the Economics of Finance: Elsevier, pp. 431–552.

Granja, Joao (2023), “Bank fragility and reclassification of securities into HTM”, Working
paper.

Greenwald, Emily, Sam Schulhofer-Wohl, and Josh Younger (2023), “Deposit Convex-
ity, Monetary Policy and Financial Stability”, Working paper.

45



Greenwood, Robin, Samuel G. Hanson, and Jeremy C. Stein (2015), “A Comparative-
Advantage Approach to Government Debt Maturity”, The Journal of Finance, Vol. 70,
pp. 1683–1722.

Haddad, Valentin, Barney Hartman-Glaser, and Tyler Muir (2023), “Bank fragility when
depositors are the asset”, Working Paper.

Hanson, Samuel G, Victoria Ivashina, Laura Nicolae, Jeremy C Stein, Adi Sunderam,
and Daniel K Tarullo (2024), “The Evolution of Banking in the 21st Century: Evidence
and Regulatory Implications”, Brookings Papers on Economic Activity, Vol. 27.

Hanson, Samuel G., Andrei Shleifer, Jeremy C. Stein, and Robert W. Vishny (2015),
“Banks as patient fixed-income investors”, Journal of Financial Economics, Vol. 117, pp.
449–469.

He, Zhiguo, Arvind Krishnamurthy, and Konstantin Milbradt (2019), “A Model of Safe
Asset Determination”, American Economic Review, Vol. 109, pp. 1230–62.

Holmström, Bengt and Jean Tirole (1998), “Private and Public Supply of Liquidity”, Jour-
nal of Political Economy, Vol. 106, pp. 1–40.

Jiang, Erica Xuewei, Gregor Matvos, Tomasz Piskorski, and Amit Seru (2023), “Mone-
tary Tightening and US Bank Fragility in 2023: Mark-to-Market Losses and Uninsured
Depositor Runs?”,Technical report, National Bureau of Economic Research.

Kashyap, Anil K., Raghuram Rajan, and Jeremy C. Stein (2002), “Banks as Liquidity
Providers: An Explanation for the Coexistence of Lending and Deposit-taking”, The
Journal of Finance, Vol. 57, pp. 33–73.

Koont, Naz, Tano Santos, and Luigi Zingales (2023), “Destabilizing Digital Bank Walks”,
Working Paper 328, Chicago Booth.

(2024), “Destabilizing digital" bank walks"”,Technical report.
Krishnamurthy, Arvind and Annette Vissing-Jorgensen (2015), “The impact of Treasury

supply on financial sector lending and stability”, Journal of Financial Economics, Vol. 118,
pp. 571 – 600, NBER Symposium on New perspectives on corporate capital structures.

Maingi, Quinn (2023), “Regional banks, aggregate effects”, Working paper.
Moreira, Alan and Alexi Savov (2017), “The macroeconomics of shadow banking”, The

Journal of Finance, Vol. 72, pp. 2381–2432.
Morris, Stephen and Hyun Song Shin (2000), “Rethinking multiple equilibria in macroe-

conomic modeling”, NBER macroeconomics Annual, Vol. 15, pp. 139–161.
Nagel, Stefan and Amiyatosh Purnanandam (2020), “Banks’ risk dynamics and distance

to default”, The Review of Financial Studies, Vol. 33, pp. 2421–2467.
Office of the Comptroller of the Currency (2024), Interest Rate Risk Statistics Report, Spring

2024.
Petersen, Mitchell A. and Raghuram G. Rajan (1994), “The Benefits of Lending Relation-

46



ships: Evidence from Small Business Data”, The Journal of Finance, Vol. 49, pp. 3–37.
Philippon, Thomas and Philipp Schnabl (2013), “Efficient Recapitalization”, The Journal

of Finance, Vol. 68, pp. 1–42.
Philippon, Thomas and Vasiliki Skreta (2012), “Optimal Interventions in Markets with

Adverse Selection”, American Economic Review, Vol. 102, pp. 1–28.
Philippon, Thomas and Olivier Wang (2022), “Let the Worst One Fail: A Credible Solu-

tion to the Too-Big-To-Fail Conundrum*”, The Quarterly Journal of Economics, Vol. 138,
pp. 1233–1271.

Rochet, Jean-Charles and Xavier Vives (2004), “Coordination Failures and the Lender Of
Last Resort: Was Bagehot Right After All?”, Journal of the European Economic Association,
Vol. 2, pp. 1116–1147.

Royal Swedish Academy of Sciences (2022), “Scientific Background on the Sveriges Riks-
bank Prize in Economic Sciences in Memory of Alfred Nobel 2022”, Financial Intermedi-
ation and the Economy.

Sheehan, Richard G (2013), “Valuing core deposits”, Journal of Financial Services Research,
Vol. 43, pp. 197–220.

Stanton, Eden G. (2023), “2023 Core Deposit Intangibles update”, Mercer Capital Insights.
Stein, Jeremy C. (2012), “Monetary Policy as Financial Stability Regulation”, The Quar-

terly Journal of Economics, Vol. 127, pp. 57–95.
Stein, Jeremy C and Adi Sunderam (2018), “The fed, the bond market, and gradualism

in monetary policy”, The Journal of Finance, Vol. 73, pp. 1015–1060.
Sunderam, Adi (2015), “Money creation and the shadow banking system”, The Review of

Financial Studies, Vol. 28, pp. 939–977.
Tirole, Jean (2012), “Overcoming Adverse Selection: How Public Intervention Can Re-

store Market Functioning”, American Economic Review, Vol. 102, pp. 29–59.
Triffin, Robert (1961), Gold and the Dollar Crisis: The future of convertibility, New Haven:

Yale University Press.
Ulate, Mauricio (2021), “Going Negative at the Zero Lower Bound: The Effects of Nega-

tive Nominal Interest Rates”, American Economic Review, Vol. 111, pp. 1–40.
Wang, Olivier (2022), “Banks, Low Interest Rates, and Monetary Policy Transmission”,

working paper.
Wang, Yifei, Toni M. Whited, Yufeng Wu, and Kairong Xiao (2022), “Bank Market Power

and Monetary Policy Transmission: Evidence from a Structural Estimation”, The Journal
of Finance, Vol. 77, pp. 2093–2141.

Wilary Winn (2016), “Non-Maturity Deposits”, Industry Report.
Xiao, Kairong (2020), “Monetary transmission through shadow banks”, The Review of

Financial Studies, Vol. 33, pp. 2379–2420.

47



7 Tables

Table 1: Summary statistics

This table provides summary statistics for all banks in the sample as of December 2021. The
sample is restricted to commercial banks with over $1 billion in assets and deposits over assets of
at least 65%. Credit card banks, trusts, foreign banks, and broker dealers are excluded. The data
are from the U.S. call reports. Large banks have at least $100 billion in assets. All shares are scaled
by assets except the uninsured deposit share, which is scaled by domestic deposits. Standard
deviations in parentheses.

All banks Large banks

(1) (2)
Assets ($ bill) 23.62 740.39

(180.166) (940.039)

Loan % 0.68 0.58
(0.134) (0.128)

Securities % 0.22 0.24
(0.126) (0.098)

Cash % 0.05 0.08
(0.059) (0.049)

Equity % 0.09 0.09
(0.027) (0.014)

Domestic deposit % 0.85 0.78
(0.055) (0.100)

Uninsured % 0.37 0.56
(0.165) (0.169)

Net non-interest expense % 1.66 1.10
(0.732) (0.281)

Observations 715 17
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Table 2: Deposit betas

The table presents estimates of deposit betas. Panel A shows average deposit betas in December
2021, February 2023, and February 2024. The December 2021 betas are calculated based on the
previous cycle from December 2015 to June 2019. The betas in February 2023 and 2024 are calcu-
lated as of that date in the current cycle and scaled up using survey data on expected betas from
the Fed’s Senior Financial Officer Survey. Panel B shows regressions of the deposit beta on the
uninsured share of deposits. Panel C reports summary statistics for the estimated insured and
uninsured betas, which are obtained under the assumption that they differ by a constant amount
for each bank, obtained from the regression in Panel B. Panels A and C show standard deviations
in parentheses.

Panel A: Deposit betas

Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
Deposit beta 0.254 0.213 0.421

(0.139) (0.162) (0.163)
Obs. 710 715 690

Panel B: Regressing beta on the uninsured deposit share

Deposit beta

Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
Uninsured Share 0.129*** 0.262*** 0.252***

(0.036) (0.036) (0.043)
Constant 0.215*** 0.114*** 0.330***

(0.012) (0.015) (0.017)
Obs. 710 715 690
R2 0.018 0.069 0.047

Panel C: Insured and uninsured deposit betas

Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
Insured deposit beta 0.211 0.108 0.329

(0.122) (0.131) (0.142)

Uninsured deposit beta 0.341 0.370 0.581
(0.122) (0.131) (0.142)

Obs. 711 715 690
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Table 3: Deposit costs

The table presents regressions of net non-interest expense on bank characteristics, which we use
to estimate deposit costs. Net non-interest expense is non-interest interest expense minus non-
interest income divided by assets. Core deposits are checking, savings, and small time deposits
over assets. Uninsured zero-maturity (ZM) deposits are uninsured checking and savings deposits.
Insured zero-maturity (ZM) deposits are insured checking and savings deposits. Size controls and
interactions use quartile splits. All columns control for time fixed effects and the asset shares
of loans, foreign deposits, other borrowed money, equity, trading assets, trading liabilities, other
assets (assets net of cash, reverse repo, securities, loans, and trading assets), and other liabilities
(assets net of deposits, repo, trading liabilities, other borrowed money, and equity). The omitted
categories are large time deposits, fed funds and repo on the liabilities side and cash and securities
on the asset side. The sample is from 2015q4 to 2019q4.

Panel A: Deposit cost estimation

Net non-interest expense %

(1) (2) (3)
Core dep % 1.311*** (0.425)
Uninsured ZM dep % 1.130** (0.502) 1.061** (0.489)
Insured ZM dep % 1.558*** (0.439)
Small time dep % 1.535** (0.750)
Insured ZM dep % × Size

1 1.602*** (0.521)
2 1.407*** (0.531)
3 1.770*** (0.537)
4 1.250** (0.532)

Small time dep % × Size
1 1.840** (0.781)
2 1.659 (1.134)
3 1.208* (0.713)
4 0.829 (0.712)

Size
1 −0.044 (0.365) −0.121 (0.403) −0.175 (0.428)
2 −0.080 (0.049) −0.084* (0.048) 0.031 (0.236)
3 −0.272*** (0.054) −0.269*** (0.055) −0.241 (0.356)
4 −0.415*** (0.062) −0.384*** (0.068) −0.103 (0.240)

Controls Yes Yes Yes
Time FE Yes Yes Yes
Obs. 12.023 12.023 12.023
R2 0.199 0.204 0.207
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Table 3: Deposit costs (cont.)

Panel B: Insured and uninsured deposit costs

Insured Uninsured Overall

(1) (2) (3)
All Banks 1.497 0.933 1.296

(0.198) (0.152) (0.155)
Size

1 1.647 0.926 1.397
(0.030) (0.132) (0.092)

2 1.452 0.898 1.261
(0.034) (0.205) (0.084)

3 1.687 0.923 1.415
(0.065) (0.140) (0.129)

4 1.202 0.985 1.109
(0.044) (0.095) (0.053)
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Table 4: Mark-to-market asset losses

The table presents summary statistics for the mark-to-market asset losses for all banks and large
banks. Asset losses are calculated using matched Bloomberg indices by asset class and repricing
maturity. They are reported as a percentage of December 2021 asset values. Standard deviations
in parentheses.

All banks Large banks

Dec 2021 Feb 2023 Feb 2024 Dec 2021 Feb 2023 Feb 2024

(1) (2) (3) (4) (5) (6)
Asset loss 0.00 8.22 7.36 0.00 6.75 5.98

(0.00) (2.41) (2.38) (0.00) (1.84) (1.42)
Obs. 717 715 690 17 17 14
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Table 5: Deposit franchise values

The table reports our estimates of deposit franchise values. Panel A is for all banks in our sample
and Panel B is for large banks. Deposit franchise values are calculated using the formula in Propo-
sition 1 and our empirical estimates of deposit betas, costs, and the exogenous outflow rate (see
Tables 2 and 3). We report the values of the insured and uninsured deposit franchise separately,
as well as their sum at each of the three dates, December 2021, February 2023, and February 2024.
Deposit franchise values are scaled relative to assets. Standard deviations in parentheses.

Panel A: All banks

All banks

Deposit Franchise Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
DFI (Insured) −1.42 7.67 5.20

(1.30) (2.82) (2.52)

DFU (Uninsured) 0.13 3.48 1.91
(0.62) (1.96) (1.48)

DFI + DFU (Total) −1.29 11.14 7.10
(1.60) (3.26) (3.45)

Obs. 717 715 690

Panel B: Large banks

Large banks

Deposit Franchise Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
DFI (Insured) −0.02 5.64 5.18

(0.29) (2.75) (1.74)

DFU (Uninsured) −0.02 3.85 1.94
(0.59) (1.34) (0.83)

DFI + DFU (Total) −0.04 9.49 7.12
(0.81) (3.39) (2.44)

Obs. 17 17 14
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Table 6: Bank values

The table reports our estimates of bank values. Panel A is for all banks and Panel B is for large
banks. The first row is without the deposit franchise. Assets are marked to market using matched
Bloomberg indices by asset class and repricing maturity. The second row is the bank value if
a deposit franchise run occurs, V (0, r) = A − D + DFI . The third value is if there is no run,
V (1, r) = A − D + DFI + DFU . Deposit franchise values are calculated using the formula in
Proposition 1 and our empirical estimates of deposit betas, costs, and the exogenous outflow rate
(see Tables 2 and 3). Bank values are reported on three dates, Dec 2021, Feb 2023, and Feb 2024.
Bank values are scaled relative to assets. Standard deviations in parentheses; % and # ≤ 0 are the
percentage and number of banks with non-positive value, respectively.

Panel A: All banks

All banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 10.26 2.03 2.91

(2.08) (3.22) (3.22)
% ≤ 0 0.00 26.43 17.10

V(0, r) = A − D + DFI (Run) 8.84 9.70 8.10
(2.40) (3.78) (3.57)

% ≤ 0 0.00 0.70 1.16

V(1, r) = A − D + DFI + DFU (No run) 8.97 13.18 10.01
(2.52) (4.01) (4.02)

% ≤ 0 0.00 0.14 0.72
Obs. 717 715 690

Panel B: Large banks

Large banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 9.96 2.95 4.20

(1.68) (2.57) (1.83)
# ≤ 0 0 2 0

V(0, r) = A − D + DFI (Run) 9.94 8.60 9.38
(1.66) (4.31) (2.37)

# ≤ 0 0 1 0

V(1, r) = A − D + DFI + DFU (No run) 9.92 12.45 11.32
(1.65) (4.51) (2.88)

# ≤ 0 0 0 0
Obs. 17 17 14
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Table 7: Regional Bank Crisis event study

The table shows regression results of SVB betas (a bank’s SVB beta is its stock return during the
SVB crisis, from March 6 to March 13, 2023) on uninsured deposits shares, uninsured deposit betas,
and deposit franchise values. The uninsured deposit beta is measured during the previous cycle
from 2015 to 2019. Column 3 replaces the variables with the product of the uninsured deposit
share and one minus the uninsured deposit beta, as implied by Proposition 4. Column 4 replaces
the variables with the uninsured deposit franchise in February 2023, scaled by the total bank value.
Column 5 adds the insured deposit franchise in February 2023, also scaled by total bank value.

SVB beta

(1) (2) (3) (4) (5)
Uninsured share −0.449*** −1.097***

(0.055) (0.157)
Uninsured beta 2019 −0.740***

(0.199)
Unins beta × Unins share 1.834***

(0.422)
(1 − Unins beta) × Unins share −0.636***

(0.077)
Uninsured deposit franchise −0.415*** −0.393***

(0.059) (0.060)
Insured deposit franchise 0.105**

(0.049)
Constant 0.001 0.260*** −0.015 −0.081*** −0.144***

(0.025) (0.072) (0.023) (0.018) (0.034)
Obs. 171 171 171 171 171
R2 0.280 0.356 0.286 0.225 0.246
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8 Figures

Figure 7: Deposit beta and the uninsured deposit share
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The figure shows a binscatter plot of the relationship between deposit betas and the uninsured
share of deposits as of February 2023.
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Figure 8: Deposit costs and betas
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This figure shows a binscatter plot of the cost of insured deposits against the insured
deposit beta (estimated over the same period). The deposit costs and betas are estimated
following the methodology in Section 4.2. The plot is shown for the end of our sample, in
December 2023, but other dates look similar.
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Figure 9: Bank values and the uninsured share of deposits
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This figure plots bank values against the uninsured share of deposits as of December 2021 (Panel
A) and February 2023 (Panel B). (February 2024 looks similar to February 2023.) The red circles
show bank values without the deposit franchise, A − D. Blue circles show the value in a run,
V (0, r) = A − D + DFI . Yellow circles show the value without a run, V (1, r) = A − D + DFI +

DFU . All values are scaled by assets.
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Figure 10: Large bank values
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This figure plots bank values against the uninsured share of deposits, for the 17 large banks in our
sample as of December 2021 (Panel A) and February 2023 (Panel B). The red circles show bank
values without the deposit franchise, A − D, the blue circles show the value in a run, V (0, r) =

A − D + DFI , and the yellow circles show the value without a run, V (1, r) = A − D + DFI + DFU .
All values are scaled by assets.
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Appendix

A Proofs

A.1 Proof of Proposition 1

From (12) and using Dt−1 = (1 − δ)t−1 D we have

L =
∞

∑
t=1

δDt−1

(1 + r′)t +
∞

∑
t=1

(βr′ + c) Dt−1

(1 + r′)t

= D

[
∞

∑
t=1

(1 − δ)t−1

(1 + r′)t

]
(δ + βr′ + c)

= D
[
(δ + βr′ + c)

r′ + δ

]
.

Therefore

DF = D − L = D
[

1 − (δ + βr′ + c)
r′ + δ

]
= D

[
(1 − β)r′ − c

r′ + δ

]
and

∂DF (r)
∂r

= D
[
(1 − β)δ + c
(r + δ)2

]
Thus, the dollar duration evaluated at r is

TDF ≡ −∂DF (r)
∂r

= − c + (1 − β) δ

(r + δ)2 D ≤ 0. (44)

A.2 Proof of Proposition 2

Recall that an equilibrium requires the fixed-point condition (24)

Λ(v(λ(r′), r′)) = λ(r′),

where Λ is given by the step function (11). Since r′ is given we can simply denote λ =

λ(r′), omitting the r′ argument to ease notation.
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• If v(0, r′) ≥ v then λ = 1 is an equilibrium since

Λ(v(1, r′)) = 1.

Conversely, consider any λ ∈ [0, 1). Since
(
1 − βU) r′ > cU we have v(λ, r′) >

v(0, r′) hence
Λ(v(λ, r′)) ≥ Λ(v(0, r′)) = 1 > λ,

hence λ cannot be an equilibrium.

• If v(1, r′) < v then λ = 0 is an equilibrium. Since
(
1 − βU) r′ > cU we have v(0, r′) <

v(1, r′) hence Λ(v(0, r′)) ≤ Λ(v(1, r′)) = 0, therefore

Λ(v(0, r′)) = 0.

Conversely, consider any λ ∈ (0, 1]. Then v(λ, r′) < v(1, r′) hence Λ(v(λ, r′)) ≤
Λ(v(1, r′)) = 0, therefore Λ(v(λ, r′)) = 0 < λ and λ cannot be an equilibrium.

• If v(0, r′) < v ≤ v(1, r′) then:

– λ = 0 is an equilibrium since Λ(v(0, r′)) = 0;

– λ = 1 is an equilibrium since Λ(v(1, r′)) = 1.

Given a no-run bank value v(1, r′), the solvency ratio under a run is

v(0, r′) = v(1, r′)− u ×
(
1 − βU) r′ − cU

r′ + δ
.

Therefore the condition v(0, r′) < v is more likely to be satisfied if u is higher, if βU or cU

is lower, and when r′ is higher.

A.3 Proof of Proposition 3

An equilibrium with λ = 0 exists when v (0, r′) < v. From (8) and (??)

TA

D
=

l (1 + e)
(r + δ)

. (45)

We have

v
(
0, r′

)
=

A (r′)
D

− 1 +
DFI (r′)

D
. (46)
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The value of the assets is equal to the sum of short term assets, (1 − l) A, whose value is
independent of the interest rate, and long-term assets. Long-term assets represent a frac-
tion l of the value A of assets at r. If their initial cash flow is C, we have lA = C/ (r + δ),
which gives C = (r + δ) lA. Therefore, at r′, the value of the long-term assets is r+δ

r′+δ lA.
Thus,

A(r′) = (1 − l) A +
r + δ

r′ + δ
lA. (47)

Therefore

v(0, r′) = (1 − l)
A
D

+
r + δ

r′ + δ
l

A
D

− 1 +
(1 − βI)r′ − cI

r′ + δ

DI

D

= (1 − l) (1 + e)− 1 + (1 − u)(1 − βI) +
l(1 + e)(r + δ)− (1 − u)

[
(1 − βI)δ + cI]

r′ + δ
.

This shows that v (0, r′) is monotone in r′. The existence of a threshold rRun therefore
depends on whether limr′→∞ v (0, r′) < v. This limit is

lim
r′→∞

v
(
0, r′

)
= (1 + e) (1 − l)− 1 +

(
1 − βI

)
(1 − u) . (48)

Note that this limit is decreasing in l. Thus, the threshold TRun
A is where l is high enough

that

(1 + e) (1 − l)− 1 +
(

1 − βI
)
(1 − u) = v. (49)

Re-arranging to match the expression in (45),

TRun
A = D

e − v +
(
1 − βI) (1 − u)
r + δ

. (50)

Therefore when l is high enough so that TA > TRun
A or

l >
e − v +

(
1 − βI) (1 − u)
1 + e

,

then limr′→∞ v (0, r′) < v, and since v (0, r′) is monotone in r′, it must be weakly below v
at some r′ = rRun and remain below after, hence λ = 0 is an equilibrium for all r′ > rRun,
where

rRun =
l(1 + e)r − (1 − u)cI + δ(e − v)

l (1 + e)− (e − v)− (1 − u) (1 − βI)
.
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An equilibrium with λ = 1 fails to exist when v (1, r′) < v. We have

v
(
1, r′

)
=

A (r′)
D

− 1 +
DF (r′)

D
. (51)

Plugging in,

v
(
1, r′

)
= (1 − l) (1 + e)− β +

l(1 + e)(r + δ)− [(1 − β)δ + c]
r′ + δ

(52)

Like v (0, r′), v (1, r′) is also monotone in r′. Note that limr′→−δ v(1, r′) = ±∞, hence
the λ = 1 equilibrium disappears for low enough r′ when limr′→−δ v(1, r′) = −∞. This
requires v(1, r′) to be increasing in r′, that is

l <
(1 − β) δ + c
(1 + e)(r + δ)

. (53)

Therefore, the threshold asset duration below which λ = 1 is not an equilibrium for
sufficiently low r′ is

T Insolv
A = D

(1 − β) δ + c

(r + δ)2 = −TDF (r) . (54)

When TA is below T Insolv
A , the value of the bank falls toward −∞ as r′ → −δ. Since it is

monotone in r′, it must fall below the threshold v for sufficiently low r′ ≤ rInsolv , where

rInsolv =
l(1 + e)r − c + δ(e − v)

l (1 + e)− (e − v)− (1 − β)
.

A.4 Proof of Proposition 4

We wish to know when T Insolv
A ≤ TRun

A so that the bank can rule out both runs at high
interest rates and insolvency at low interest rates. Plugging in, this requires

T Insolv
A ≤ TRun

A (55)

(1 − β) δ + c

(r + δ)2 ≤
e − v +

(
1 − βI) (1 − u)
r + δ

(56)

(1 − β)− (1 − β) r − c
r + δ

≤ e − v +
(

1 − βI
)
(1 − u) . (57)
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Re-arranging and using v (r) = A(r)
D − 1+DF (r) = e+ (1−β)r−c

r+δ and 1− β = u
(
1 − βU)+

(1 − u)
(
1 − βI), the condition becomes

v (r) ≥ v +
(

1 − βU
)

u. (58)

More generally, suppose that r′ is bounded above by r̄. Then T Insolv
A is unchanged but

TRun
A is higher, such that

v = (1 − l) (1 + e)− 1 + (1 − u)(1 − βI) +
l(1 + e)(r + δ)− (1 − u)

[
(1 − βI)δ + cI]

r̄ + δ
(59)

l(1 + e) =
r̄ + δ

r̄ − r

{
e − v + (1 − u)

[
(1 − βI)r̄ − cI

r̄ + δ

]}
(60)

hence

TRun
A = D

e − v +
(
1 − βI) (1 − u)
r + δ

× r̄ + δ

r̄ − r
.

Relative to the case with r̄ → ∞, TRun
A is simply multiplied by a factor r̄+δ

r̄−r > 1. As a result
the condition T Insolv

A ≤ TRun
A becomes

v (r) ≥ v + u
(
1 − βU) r̄ − cU

r̄ + δ
.

A.5 Proof of Proposition 6

The proof of (40) follows the proof of Proposition 1 with the new deposit base D [1 − w (r′)]
replacing D.

The proof of (41) follows by differentiating (40) with respect to r′ and substituting
r′ = r and the expressions for TDF and DF (r) from Proposition 1.
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A.6 Proof of Proposition 7

Substituting the expressions for TDF (r) and DF (r) from Proposition 1 back into (41),

TDF = − (1 − β) δ + c

(r + δ)2 + w′ (r)
[
(1 − β) r − c

r + δ

]
(61)

= − [1 − (β + w′ (r) [(1 − β) r − c] (1 + r/δ)]) δ + c

(r + δ)2 (62)

= −
(
1 − β̃

)
δ + c

(r + δ)2 . (63)

This expression is the same as (17) but with ˜beta replacing β.

B Data appendix

Call reports. The call reports are accessible through the Federal Financial Institutions
Examination Council and Wharton Research Data Services. The data contain quarterly
income statements and balance sheets. We use the CRSP-FRB crosswalk provided by the
New York Federal Reserve to merge in the stock returns of publicly traded bank holding
companies from CRSP.

Macro data. We collect interest rate data from FRED. We use the quarterly average ef-
fective Fed funds rate (FEDFUNDS) for the estimation of deposit betas. We use the daily
10-year Treasury yield (DGS10) for the estimation of deposit franchise values as of De-
cember 31, 2021 (1.52%), February 28, 2023 (3.92%), and February 29, 2024 (4.25%).

Bloomberg indices. We collect data on the prices (with reinvested coupons) of Treasury
and mortgage-backed security (MBS) indices by maturity from Bloomberg on the same
dates as the Treasury yields. The specific indices and how we map them to banks’ balance
sheets from the call reports are listed in Table A.1. The mapping uses the same asset class
whenever possible, and closest available remaining maturity. In some cases we use more
than one index to match the average remaining maturity of a call report item. Since call
report items give a range of remaining maturities, we approximate the average remain-
ing maturity of an item under the assumption that remaining maturities are uniformly
distributed (i.e., staggered).

Expected betas. The Fed began surveying banks about their expected deposit betas
starting with the November 2022 Senior Financial Officer Survey (SFOS, available through
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the Board of Governors website). This was done separately for retail and wholesale betas;
we use the retail betas as they are closest to the call reports.

Banks were asked to report their current realized beta and their expected beta in six
months. We use the ratio of these two values (expected over current) as the scaling factor
for each partial-cycle beta (February 2023 and 2024). For the February 2023 date, we use
the November 2022 survey (the most recent at the time), which gives us a scaling factor of
0.31/0.23 = 1.35. For the February 2024 date, we use the September 2023 survey, which
gives a scaling factor of 0.41/0.35 = 1.17. It remains possible that even these betas are
incomplete; they are also uncertain. This is an intrinsic problem in valuing an intangible
asset such as the deposit franchise.

Figure A.3 plots our call report betas against the current and expected betas from the
SFOS at each point in time. There are some differences but the overall pattern is that the
betas evolve consistently across the two datasets.

C Deposit franchise value with a general yield curve

We show that our valuation formulas generalize to the case when the yield curve is not
flat. The appropriate interest rate that enters our formulas becomes the yield of an amor-
tizing perpetuity at rate δ.

We use continuous time to simplify the notation but nothing changes with discrete
time. Total interest expense and costs normalized by initial deposits has a value∫ ∞

0
e−δt︸︷︷︸

=Dt/D

(βrt + c) e−
∫ t

0 rsdsdt =
∫ ∞

0
(βrt + c) e−

∫ t
0 (rs+δ)dsdt (64)

=
∫ ∞

0
(β (rt + δ) + c − βδ) e−

∫ t
0 (rs+δ)dsdt (65)

= β + (c − βδ)
∫ ∞

0
e−

∫ t
0 (rs+δ)dsdt︸ ︷︷ ︸

=P0(r,δ)

, (66)

where P0(r, δ) is the date-0 price of the geometrically declining (amortized) perpetuity as
a function of the path of interest rates r = {rt}∞

t=0. It is just a portfolio of zero-coupon
bonds of maturity t with weight e−δt. The last line uses the identity∫ ∞

0
(rt + δ)e−

∫ t
0 (rs+δ)dsdt = 1 (67)

which follows from integration by parts; the same identity holds in discrete time by Abel
transformation.
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Defining the deposit franchise DF as a reduction in total interest expense and costs
relative to β = 1 and c = 0, we have

DF
D

= [1 − δP0(r, δ)]︸ ︷︷ ︸
without deposit franchise

− [β + (c − βδ) P0(r, δ)] (68)

= 1 − β − [c + (1 − β)δ] P0(r, δ). (69)

In the special case of a flat yield curve with constant rate r, this specializes to

DF
D

= 1 − β − [c + (1 − β)δ]

r + δ
=

(1 − β)r − c
r + δ

, (70)

as in Proposition 1.
Since the geometrically declining perpetuity has duration 1/δ, when computing its

sensitivity to interest rates we can approximate

P0(r, δ) ≈ Z0(r, 1/δ), (71)

where Z0(r, T) is the price of a zero-coupon bond with maturity T. In our case this corre-
sponds to using the 10-year rate since δ = 0.1.

D Higher exogenous outflow rate δ

Our baseline rate of exogenous outflows is δ = 0.1, implying an average deposit life of
10 years. This is consistent with Sheehan (2013) but higher than the average deposit life
estimates in the OCC’s “Interest Rate Statistics Report.” The latest OCC report shows an
average life of about six years for zero-maturity deposits. To see what impact this has, we
re-run our estimates with δ = 1/6 = 0.167.

Table A.2 reproduces our main Table 6 with δ = 1/6. The results are broadly similar.
The main difference is that bank values decline. The average bank value in a run in
February 2023 falls from 9.70% to 7.22%. The fraction of banks with negative run values
rise from 0.70% to 1.54%. For large banks, run values decline from 8.60% to 6.77%. The
number of large banks with a negative run value remains the same (one).

The impact is larger on bank values if there is no run. For all banks they fall from
13.18% to 9.57% and for large banks from 12.45% to 9.37%. A higher exogenous outflow
rate lowers deposit franchise values. This has a larger impact on no-run values because
they include the uninsured deposit franchise value.

Figure A.4 similarly reproduces Figure 10. As in Table A.2, the impact is concentrated

67



in the no-run values (yellow dots), which decrease substantially. Run values fall too but,
importantly, they do not fall appreciably for the vulnerable banks (First Republic, Signa-
ture, and SVB). The reason is that these banks do not have a significant insured deposit
franchise, so raising outflow rates does not hurt their run values much. Our results are
therefore robust to using a different exogenous outflow rate.

E Partial runs by insured depositors

Our main empirical results assume that the bank retains (or is able to sell) its entire in-
sured deposit franchise in a run. This assumption is supported by the experience of the
Regional Bank Crisis. Nevertheless, it is also plausible that some share of insured depos-
itors would leave in a run so that the insured deposit franchise is partly lost.

Table A.3 re-estimates Table 6 under the assumption that 15% insured depositors
leave. This implies that only a fraction λI = 85% of the insured deposit franchise is
retained in a run. Bank values without the deposit franchise (A − D) and without a run
(V (1, r)) are unaffected, while bank values in a run (V (0, r)) decline due to the partial
loss of the insured deposit franchise.

For all banks in February 2023, the average value in a run drops from 9.70% to 8.55%.
For large banks, it drops from 8.60% to 7.75%. While adding to the stress of the banking
system, these values are still only slightly below the values in December 2021. Inter-
estingly, for the most exposed banks (SBV, First Republic, Signature), insured depositor
outflows have almost no impact because these banks had very few insured deposits.

F Partial retention of uninsured depositors

Our main empirical results assume that all uninsured depositors leave in a run. It is
plausible that some remain, especially since the FDIC’s preferred resolution process is a
sale to another bank. We can easily implement this by adjusting the run value of the bank,
V (0, r) to include a fraction of the uninsured deposit franchise.

Table A.4 re-estimates Table 6 under the assumption that 15% of the uninsured deposit
franchise is retained in a run. Bank values in a run increase, as expected.

The interesting effect of this policy is that it benefits precisely those banks most at risk
of a deposit franchise run. To illustrate, we also re-estimate Figure 10 and present the
results in Figure A.5. The main difference is that SVB now has a run value of −0.20%,
which is only marginally negative. First Republic and Signature bank are in the green
with 2.78% and 2.46%, respectively.
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G Further extensions

G.1 Fixed and variable operating costs

Recall that in the main model we assume that c is a cost per dollar of remaining deposits
hence the franchise value is

DF
(
r′
)

= D
[
1 − w

(
r′
)] (1 − β) r′ − c

r′ + δ
. (72)

In practice operating costs are a combination of pre-determined costs that do not fully
respond to withdrawals, and costs that scale with the amount of deposits in each period.
Here we extend the model by allowing the bank to decide the scale of the branch network
and services offered before the interest rate shock, which corresponds to costs κD that
must be paid even if deposits are withdrawn at t = 0.

For simplicity we assume that the costs κ stop being paid on the exogenous with-
drawals at rate δ (otherwise nothing substantial changes except that expressions are slightly
more complex because the last term is −Dκ/r′ instead). Define the total cost

C = c + κ. (73)

Results are mostly unchanged under this formulation except for two points:
First, since outflows do not help to economize on the fixed operating costs κ, if all

costs are fixed (C = κ, c = 0) then outflows always hurt the franchise value, even when
DF < 0. We can generalize Proposition 6 to:

Proposition 8 (Deposit Franchise Valuation with Fixed Costs). If there are no runs, then the
value of the deposit franchise with fixed costs after the interest rate shock is

DF
(
r′
)

=
[
1 − w

(
r′
)] [ (1 − β) r′ − c

r′ + δ

]
D − κ

r′ + δ
. (74)

The dollar duration of the deposit franchise with fixed costs before the interest rate shock is

TDF ≡ − ∂DF (r′)
∂r′

∣∣∣∣
r′=r

= − (1 − β) δ + C

(r + δ)2 + w′ (r)
[
(1 − β) r − c

r + δ

]
. (75)

Proof: Equation (74) comes from the fact that outflows do not affect the fixed cost κ.
Equation (75) comes from differentiating it with respect to r′ and evaluating at r′ = r.

Proposition (8) shows that, holding total costs C = c + κ fixed, higher fixed costs
(lower c) make the duration of the deposit franchise less negative. The reason is that
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fixed costs are not recouped due to rate-driven outflows. This makes their present value
decrease less when interest rates go up, so the deposit franchise appreciates less. All else
equal, the bank needs a lower asset duration to hedge interest rate risk.

Second, the analysis of uninsured depositor runs is unchanged, except that in a run
(λ = 0) the uninsured deposit franchise can become negative instead of zero, since the
fixed costs κ still need to be paid. This only affects the expressions for v and Λ as follows.
The solvency ratio of the bank after the interest rate shock as a function of λ is still

v
(
λ, r′

)
= v

(
0, r′

)
+ uλ

(
1 − βU) r′ − c

r′ + δ
(76)

as in (22), but the solvency ratio when all uninsured depositors run (λ = 0) is

v
(
0, r′

)
=

A (r′)− D + DFI (r′)
D

− u
κ

r′ + δ
(77)

instead of (23). The cost κ implies that the bank should hold some long-term assets to
cover κ per period even to hedge liquidity risk, i.e., to stabilize v(0, r′). However, the
dilemma between hedging interest rate and liquidity risk persists for two reasons: first, a
bank hedging interest rate risk in the no-run equilibrium must account for total operating

costs C = c + κ, and second, the term (1−βU)r′−c
r′+δ increases with r′ even if c = 0, hence

the uninsured deposit franchise still drives a wedge between v (0, r′) and v (1, r′) that is
increasing in r′.

G.2 Endogenous deposit pricing

Our results take advantage of the fact that the endogenous variables β and w′ can be used
as “sufficient statistics” for the bank’s hedging problem. Here we discuss how they are
related in a more micro-founded setting.

Let ω(s′d, r′) be the household deposit withdrawal rate, where s′d = r′ − r′d is the de-
posit spread. The bank is thus left with deposits

D0 =
[
1 − ω

(
s′d, r′

)]
D (78)

after the interest rate shock. Let the withdrawal rate ω be increasing in the deposit spread
s′d and, holding s′d fixed, decreasing in r′. The two arguments capture the “deposits chan-
nel” of monetary policy (Drechsler et al., 2017): depositors withdraw if the deposit spread
widens. The dependence on r′ captures the fact that deposit demand becomes less elastic
at higher rates as the opportunity cost of cash rises. The lower elasticity allows banks to
charge a higher spread s′d, as we see in practice. Given the assumption that the deposit
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rate is proportional to the market interest rate (see (3)), the date-0 withdrawal rate can be
rewritten as a function of r′ only:

w
(
r′
)

≡ ω
(
(1 − β) r′, r′

)
. (79)

This is the reduced-form withdrawal rate in our main model.
While β depends on w′ through the bank’s profit maximization problem, and w′ de-

pends on β through the deposit demand function, in general neither is fully pinned down
by the other, which is why we treat them as separate. Indeed, without additional restric-
tions on the deposit demand function ω (sd, r), the correlation between β and w′ (r) can
take any sign, as w′ is given by

w′ = (1 − β)ωs + ωr,

where ωs = ∂ω/∂sd and ωr = ∂ω/∂r. Banks facing relatively inelastic depositors (low
ωs) have more market power, which allows them to set a low β. But given their low
β, these banks could see more or less outflows when rates go up, as w′ depends on the
product (1− β)ωs. Empirically, Drechsler et al. (2017) find a negative correlation between
β and w′: low β banks face stronger rate-driven outflows w′.

G.3 Variable deposit beta

We can easily extend the model to allow for non-linear deposit pricing with a deposit beta
β(r) that depends on r. In that case, the optimal modified duration is

TDF = Tβ′(r)=0
DF − β′(r)

r
r + δ

, (80)

where Tβ′(r)=0
DF is given by Proposition 1. Betas tend to increase with rates: as rates rise

the composition of deposits shifts from low-beta checking and savings accounts to higher-
beta time deposits (Drechsler et al., 2017; Greenwald et al., 2023); betas also increase for
given products (Wang, 2022). An increasing beta, β′(r) > 0, makes the duration of the
deposit franchise less negative and hence calls for a shorter asset duration. Unlike for
outflows, this duration-shortening effect is present at both low and high rates because an
increase in β always hurts the deposit franchise value, even if it is negative.
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G.4 Quantifying Rate-Driven Outflows

Figures A.1 and A.2 show the deposit franchise duration and effective beta β̃ as functions
of w′ for three values of the deposit beta.

The average correction β̃ − β is not negligible. There is also substantial heterogeneity
across banks. Most importantly, equation (43) shows that the correction β̃− β is higher for
low-β banks (as they earn higher deposit spreads hence stand to lose more from outflows)
and high w′ banks, which also tend to be the low-β banks (Drechsler et al., 2017). For
instance, their estimates imply that going from β = 0.2 (high market power) to β = 0.4
(low market power), outflow betas decline from w′ = 3.5 to w′ = 2.5. Therefore, the
effective betas for hedging are

β = 0.2 → β̃ = 0.28 (high market power) (81)

β = 0.4 → β̃ = 0.43 (low market power) (82)

Thus, correcting for outflows has a modest effect for competitive banks, but a strong effect
for banks with high deposit market power.40

G.5 Lender of Last Resort

We end by showing how a lender of last resort can eliminate the run equilibrium ex post
and thus avoid the risk management dilemma ex ante. We caution, however, that in a
richer model this could lead to moral hazard or adverse selection.

Suppose that the central bank (henceforth, the Fed) gives a long-term loan to the bank

B(λ, r′)

contingent on the extent of the run 1− λ, with B(1, r′) = 0. After borrowing from the Fed
the solvency ratio entering uninsured depositors’ run function λ(v) is v = A(r′)+λDFU(1,r′)+B(λ,r′)

D −
1. Importantly the denominator is given by deposits D hence does not take into account
the long-term loan from the Fed, which is not runnable and effectively junior to current
uninsured deposits. This is why the long-term loan improves v. More generally, it is
enough if the denominator includes the government loan B discounted by a “runnabil-
ity” factor α < 1.

By setting
B(λ, r′) = (1 − λ)DFU(1, r′)

40Interestingly, Drechsler et al. (2021) show that banks’ income is slightly more interest-sensitive than
their deposits. This is consistent with banks setting asset duration using an effective beta that is slightly
higher than their deposit beta, as in Proposition 7.
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Figure A.1: Deposit franchise duration TDF/D as a function of the outflow elasticity w′

for three values of the deposit beta β = 0.2, 0.3, 0.4. The dotted gray line captures the
negative correlation between β and w′ estimated by Drechsler et al. (2017).
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Figure A.2: Effective beta as a function of outflow elasticity w′ for three values of rate beta
β = 0.2, 0.3, 0.4. The dotted gray line captures the negative correlation between β and w′

estimated by Drechsler et al. (2017).

73



the Fed can ensure that
v(λ, r′) = v(1, r′)

for any λ. Therefore, the Fed policy eliminates the run equilibrium, in the sense that if the
bank is hedged against interest rate risk in the good, run-free, equilibrium, then there is
no run equilibrium. Moreover, since there is no run, the intervention ends up costless in
equilibrium.

Proposition 9. Suppose that for any λ, a bank facing an uninsured deposit run 1− λ can borrow

B(λ, r′) = (1 − λ)DFU(1, r′) (83)

long-term from the Fed. Then λ = 1 is the unique equilibrium and the equilibrium cost of the Fed
intervention is zero.

One particular implementation resembles the Bank Term Funding Program (BTFP)
introduced by the Federal Reserve in March 2023 allowing banks to borrow from the Fed
at par, that is against a collateral value A(r) instead of A(r′). Starting from an interest rate
r such that DFU(1, r) = 0, this corresponds to a loan size

B(λ, r′) = (1 − λ)
[
A(r)− A(r′)

]
,

which is exactly (83).
In principle complete private insurance markets could also implement this allocation:

banks would buy insurance contracts contingent on their idiosyncratic realization of λ

and not just on the aggregate interest rate r′. In the model featuring only interest rate
risk and purely idiosyncratic runs, these contracts would prevent runs from happening
in the first place hence the equilibrium price of such insurance would be zero. However,
in a richer setting featuring contagion and widespread runs, or in the presence of other
aggregate shocks s as in Section 5.2, such private insurance markets would be insufficient,
which is why we focus on government-provided insurance.

There are two main drawbacks of the Fed policy we describe: moral hazard and ad-
verse selection, both of which are outside the model. The equilibrium cost for the Fed is
zero because banks hold high-quality liquid assets such as agency MBS and Treasuries
whose value depends only on r. Banks therefore have no “bad” assets to offload on the
Fed. In a model with more complex bank incentives and assets, the intervention may lead
to excessive risk-taking and adverse selection in asset purchases, in particular because it
is targeted at the ex post weakest institutions instead of favoring the healthiest ones.41

41See, e.g., Philippon and Skreta (2012) and Tirole (2012) for an analysis of the cost of intervention with
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The expectation of ex-post Fed intervention may also reduce private incentives to buy
swaptions ex ante.

adverse selection, and Philippon and Schnabl (2013) and Philippon and Wang (2022) for the design of ex
post interventions that mitigate moral hazard.

75



Table A.1: Bloomberg indices matched to call reports

This table provides the Bloomberg indices matched to each call report asset class and maturity bucket.

Asset class Repricing maturity bucket
Matched Bloomberg Index Price
Change (Name)

Matched Bloomberg Index Price
Change (Ticker)

Non mortgage loans and securities Less than 3m Treasury index 0y-1y I22917US

3m-1y Treasury index 0y-1y I22917US

1y-3y Treasury index 1y-3y LT01TRUU

3y-5y Treasury index 3y-5y LT02TRUU

5y-15y
4/15*(Treasury index 5y-7y) + 2/5*(Treasury index
7y-10y) + 1/3*Treasury index 10y-20y

4/15*LT03TRUU + 2/5*LT09TRUU +
1/3*I00059US

Over 15y Treasury index 10y-20y I00059US

Mortgage loans and RMBS Less than 3m Treasury index 0y-1y I22917US

3m-1y Treasury index 0y-1y I22917US

1y-3y US Aggregate MBS 1y-5y I27402US

3y-5y US Aggregate MBS 1y-5y I27402US

5y-15y FNMA MBS 15y I00854US

Over 15y 2/3*FNMA MBS 15y + 1/3*Fixed Rate Conventional MBS 30y 2/3*I00854US + 1/3*I00109US

Other MBS Less than 3y
As matched for mortgage loans and RMBS less than 3y,
weighted by bank’s holding of each asset class

-

Over 3y
As matched for mortgage loans and RMBS over 3y,
weighted by bank’s holding of each asset class

-
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Table A.2: Bank values with a higher exogenous outflow rate

The table reports our estimates of bank values under the alternative assumption that the deposit
decay rate δ = 1/6 = 0.167, indicating an average maturity of 6 years, instead of 0.1. Panel A is for
all banks and Panel B is for large banks. The first row is without the deposit franchise. Assets are
marked to market using matched Bloomberg indices by asset class and repricing maturity. The
second row is the bank value if a deposit franchise run occurs, V (0, r) = A − D + DFI + DFU .
The third value is if there is no run, V (1, r) = A − D + DFI + DFU . Deposit franchise values
are calculated using the formula in Proposition 1 and our empirical estimates of deposit betas,
costs, and the exogenous outflow rate (see Tables 2 and 3). Bank values are reported on three
dates, December 2021, February 2023, and February 2024. Bank values are scaled relative to assets.
Standard deviations in parentheses; % and # ≤ 0 are the percentage and number of banks with
non-positive value, respectively.

Panel A: All banks
All banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 10.26 2.03 2.91

(2.08) (3.22) (3.22)
% ≤ 0 0.00 26.43 17.10

V(0, r) = A − D + DFI (Run) 9.36 7.22 6.45
(2.20) (3.36) (3.26)

% ≤ 0 0.00 1.54 1.30

V(1, r) = A − D + DFI + DFU (No run) 9.44 9.57 7.74
(2.24) (3.45) (3.42)

% ≤ 0 0.00 0.42 1.16
Obs. 717 715 690

Panel B: Large banks
Large banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 9.96 2.95 4.20

(1.68) (2.57) (1.83)
# ≤ 0 0 2 0

V(0, r) = A − D + DFI (Run) 9.95 6.77 7.73
(1.66) (3.61) (2.06)

# ≤ 0 0 1 0

V(1, r) = A − D + DFI + DFU (No run) 9.93 9.37 9.05
(1.61) (3.65) (2.33)

# ≤ 0 0 0 0
Obs. 17 17 14
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Table A.3: Bank values with a partial run by insured depositors

The table reports our estimates of bank values under the alternative assumption that 1− λI = 15%
of insured depositors leave in a run. Note that relative to the main results in Table 6, this only
affects run values, V (0, r). Panel A is for all banks and Panel B is for large banks. The first row
is without the deposit franchise. Assets are marked to market using matched Bloomberg indices
by asset class and repricing maturity. The second row is the bank value if a deposit franchise run
occurs, V (0, r) = A − D + λI DFI . The third value is if there is no run, V (1, r) = A − D + DFI +

DFU . Deposit franchise values are calculated using the formula in Proposition 1 and our empirical
estimates of deposit betas, costs, and the exogenous outflow rate (see Tables 2 and 3). Bank values
are reported on three dates, December 2021, February 2023, and February 2024. Bank values are
scaled relative to assets. Standard deviations in parentheses; % and # ≤ 0 are the percentage and
number of banks with non-positive value, respectively.

Panel A: All banks
All banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 10.26 2.03 2.91

(2.08) (3.22) (3.22)
% ≤ 0 0.00 26.43 17.10

V(0, r) = A − D + λI DFI (Run) 9.05 8.55 7.32
(2.31) (3.56) (3.41)

% ≤ 0 0.00 0.98 1.30

V(1, r) = A − D + DFI + DFU (No run) 8.97 13.18 10.01
(2.52) (4.01) (4.02)

% ≤ 0 0.00 0.14 0.72
Obs. 717 715 690

Panel B: Large banks
Large banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 9.96 2.95 4.20

(1.68) (2.57) (1.83)
# ≤ 0 0 2 0

V(0, r) = A − D + λI DFI (Run) 9.94 7.75 8.60
(1.66) (3.97) (2.21)

# ≤ 0 0 1 0

V(1, r) = A − D + DFI + DFU (No run) 9.92 12.45 11.32
(1.65) (4.51) (2.88)

# ≤ 0 0 0 0
Obs. 17 17 14
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Table A.4: Bank values with a partial retention of uninsured depositors

The table reports our estimates of bank values under the alternative assumption that λ = 15% of
uninsured depositors remain in a run. Note that relative to the main results in Table 6, this only
affects run values, V (0, r). Panel A is for all banks and Panel B is for large banks. The first row
is without the deposit franchise. Assets are marked to market using matched Bloomberg indices
by asset class and repricing maturity. The second row is the bank value if a deposit franchise
run occurs, V (0, r) = A − D + DFI + λDFU . The third value is if there is no run, V (1, r) =

A − D + DFI + DFU . Deposit franchise values are calculated using the formula in Proposition 1
and our empirical estimates of deposit betas, costs, and the exogenous outflow rate (see Tables
2 and 3). Bank values are reported on three dates, December 2021, February 2023, and February
2024. Bank values are scaled relative to assets. Standard deviations in parentheses; % and # ≤ 0
are the percentage and number of banks with non-positive value, respectively.

Panel A: All banks
All banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 10.26 2.03 2.91

(2.08) (3.22) (3.22)
% ≤ 0 0.00 26.43 17.10

V(0, r) = A − D + λDFI (Run) 8.86 10.22 8.39
(2.41) (3.75) (3.60)

% ≤ 0 0.00 0.70 1.01

V(1, r) = A − D + DFI + DFU (No run) 8.97 13.18 10.01
(2.52) (4.01) (4.02)

% ≤ 0 0.00 0.14 0.72
Obs. 717 715 690

Panel B: Large banks
Large banks

Bank Value Dec 2021 Feb 2023 Feb 2024

(1) (2) (3)
A − D (No DF) 9.96 2.95 4.20

(1.68) (2.57) (1.83)
# ≤ 0 0 2 0

V(0, r) = A − D + λDFI (Run) 9.94 9.18 9.67
(1.64) (4.31) (2.44)

# ≤ 0 0 1 0

V(1, r) = A − D + DFI + DFU (No run) 9.92 12.45 11.32
(1.65) (4.51) (2.88)

# ≤ 0 0 0 0
Obs. 17 17 14
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Figure A.3: Call report betas and survey betas
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These figure plots the average beta calculated from the call reports and the realized and predicted
retail betas reported in the Fed’s Senior Financial Officer Surbey. The dashed lines connect the
current and expected betas from each survey.
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Figure A.4: Large bank values with a higher exogenous outflow rate
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This figure plots bank values against the uninsured share of deposits, for the 17 large banks in
our sample as of February 2023, under the alternative assumption that the deposit decay rate
δ = 1/6 = 0.167, indicating an average maturity of 6 years, instead of 0.1. The red circles show
bank values without the deposit franchise, A − D, the blue circles show the value in a run, which
add in the insured deposit franchise, V (0, r) = A − D + DFI + 0.15 × DFU , and the yellow circles
show the value without a run, V (1, r) = A − D + DFI + DFU . All values are scaled by assets.
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Figure A.5: Large bank values with partial retention
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This figure plots bank values against the uninsured share of deposits, for the 17 large banks in our
sample as of February 2023, under the alternative assumption that 15% of the uninsured deposit
franchise is retained in a run. The red circles show bank values without the deposit franchise, A −
D, the blue circles show the value in a run, which add in the insured deposit franchise, V (0, r) =
A − D + DFI + 0.15 × DFU , and the yellow circles show the value without a run, V (1, r) = A −
D + DFI + DFU . All values are scaled by assets.
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