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Abstract

We collect a novel dataset encompassing the vast majority of the portfolio holders of the

U.S. Treasury market and estimate granular demand functions for the Federal Reserve and

preferred habitat investors such as commercial banks, mutual funds, insurance companies, and

foreign investors. We embed these estimated demand functions in an equilibrium model of the

U.S. Treasury market where risk-averse strategic arbitrageurs interact with preferred habitat

investors and the Federal Reserve. Our tractable model accommodates cross-elasticities across

different maturities, macroeconomic dynamics, and both conventional and unconventional

monetary policies. We quantify arbitrageurs’ risk aversion using data on dealers’ and hedge

funds’ Treasury positions. We find (1) that the Treasury market is elastic because of low

estimated arbitrageur risk aversion that significantly weakens demand impact; (2) a positive

term premium response to monetary policy tightening due to high estimated cross-elasticities,

rationalizing excess sensitivity of long rates; (3) a weak effect of Fed purchases on bond yields

unless the Fed credibly commits to a persistent expansion of its balance sheet.
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1. Introduction

The U.S. Treasury market is a major backbone of the financial system, influencing the execution
and transmission of monetary and fiscal policies, affecting global investment flows, and serving as
a benchmark for pricing other financial instruments. Most recently, the U.S. Treasury market has
taken center stage in the swift policy responses to both the global financial crisis and the COVID-
19 pandemic. In response to the Great Recession, for example, the Federal Reserve aggressively
lowered short-term rates, while it targeted the long-end of the yield curve by purchasing long-
term bonds in the context of quantitative easing (QE) policies. By contrast, the Fed announced
unwinding some of the Treasury positions and selling bonds by means of quantitative tightening
(QT) starting in 2017, and then again in 2022. The impact of such interventions in the Treasury
market critically depends on the extent to which bond investors are willing to accommodate such
sales or purchases, given their risk capacity and mandates, and the extent to which they are willing
to substitute alternate securities. Against this backdrop, we ask: Who are the investors that are
willing to absorb Treasuries? How elastic is investor demand for Treasuries? What is the role of
the Federal Reserve and that of arbitrageurs in the Treasury market?

In this paper, we propose to tackle these questions by combining insights from two influential
literatures: the burgeoning literature on demand-based asset pricing, in the spirit of Koijen and
Yogo (2019), and the preferred habitat view of the term structure of interest rates as in Vayanos and
Vila (2021). We start by linking investors’ Treasury holdings to observed Treasury characteristics
and macro dynamics to trace out a set of empirically tractable demand curves based on a novel
granular dataset on Treasury portfolio holdings covering most of the market, including commercial
banks, mutual funds, and insurance companies, and foreign investors, among others. Alongside,
we estimate the Federal Reserve’s demand curves and link them to its monetary policy stance.
Next, we embed these estimates into a dynamic equilibrium model to assess the pricing implica-
tions by introducing a risk-averse arbitrageur that clears the market. This framework then allows
us to examine yield effects coming from investors’ demand shocks, changes in macroeconomic
conditions, government debt supply, and the monetary policy stance through counterfactual anal-
ysis from an equilibrium perspective. Our model accommodates cross-elasticities across different
maturities, as well as conventional and unconventional monetary policy. Critically, our granular
dataset allows us to identify and quantify arbitrageur risk-aversion based on dealers’ and hedge
funds’ holdings.

Our results provide a novel perspective on the dynamics of Treasury yields and inform the
debate regarding the effects of policies implemented through the U.S. Treasury market. Em-
pirically, our dataset reveals that major investors in Treasuries, as well as the Fed, behave akin
to preferred habitat investors and exhibit downward-sloping demand curves, and notably, exhibit
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strong cross-substitution across maturities. These empirical estimations are incorporated into our
quantitative equilibrium model, which is estimated to fit the historical evolution of Treasury yields
and the average holding of arbitrageurs. We have three main findings. (1) The Treasury market is
elastic because arbitrageurs have a low estimated risk aversion that significantly weakens demand
impact, but a spike of arbitrageur risk aversion can cause a sharp increase of long-term yields and
significantly larger price impact of demand shocks. (2) Term premia rise in response to a monetary
policy tightening, since preferred habitat investors exhibit high estimated cross-elasticities so that
they reduce long-term bond positions accordingly, forcing arbitrageurs to absorb them and bear
more risks. This is in sharp contrast to Vayanos and Vila (2021) and rationalizes the excess
sensitivity of long rates to monetary policy shocks. (3) The effects of Fed purchases on bond yields
are weak unless the Fed credibly commits to a persistent expansion of its balance sheet, thereby
rationalizing a slow unwinding of the Fed’s unconventional monetary policies in the context of QT.
Throughout, we provide analytical and quantitative results, and a tractable model that can easily
be taken to the data.

As a first step, we create a rich novel dataset on Treasury holdings across a wide range of
institutions, such as insurance companies, mutual funds, banks, broker-dealers, foreign investors,
and the Federal Reserve, among others, at the security or maturity bucket level. Our dataset covers
over 70% of the total Treasury amount outstanding at any given point in time over the 2010Q1-
2022Q4 period (Figure 1). We classify preferred habitat investors as commercial banks, insurance
companies and pension funds (ICPFs), money market funds (MMFs), mutual funds, and foreign
investors, while the arbitrageurs in our setting are the broker-dealers and hedge funds (PDHFs),
mainly for two reasons: First, as shown by Hanson and Stein (2015) and Du et al. (2023b), broker-
dealers and hedge funds behave as the opposite of yield-seeking investors, taking lower positions
when the term spread is higher. Second, broker-dealers and hedge funds generally have better
access to a wider range of trading instruments and platforms, allowing them to deploy sophisticated
arbitrage strategies1, which other institutions, especially heavily regulated sectors such as pension
funds, insurance companies, and banks, could not easily implement.

While we consider the Fed separately, we find empirically that it behaves similarly to the
preferred habitat investors. The preference for maturity is evident in the data: MMFs hold a
large amount of the total Treasury outstanding with maturities below one year, while insurance
companies, mutual funds, and the Fed have a greater demand for longer maturities. Building on
the instrument in Koijen and Yogo (2020) and Fang et al. (2022), we identify own and cross yield
sensitivities at the investor-level based on a panel dataset of Treasury holdings across maturity
buckets and time.

1For example, broker-dealers and hedge funds take significantly negative net positions in Treasuries at certain
periods, while we do not observe negative Treasury positions for other investors.
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Our empirical approach adds to the extant demand-based asset pricing literature in three ways.
First, we incorporate cross elasticities in our demand estimation. Treasuries of different maturi-
ties are substitutes in providing liquidity to investors, and naturally, there are significant cross-
substitution effects. Indeed, coefficients on other-maturity yields have the opposite sign (i.e., a
lower demand for current maturity when other-maturity yields are high), an empirical regularity
borne by most preferred-habitat investors.

Second, we include macroeconomic variables that are relevant to the dynamics of real interest
rates, inflation, and monetary policy, which are important state variables driving investors’ expec-
tation of future nominal rates.

Third, we estimate a dynamic demand system that leverages information from both the cross
section and time series. This approach addresses the finding in Van der Beck (2022) that changes
in portfolio holdings contain valuable information that cannot be fully captured by examining only
the cross section.

With our estimated demand functions and dynamics of macro variables, we embed them into
an equilibrium model of the Treasury market, in the spirit of the term structure framework of
Vayanos and Vila (2021). The model is discrete-time and infinite horizon with three types of
agents: preferred habitat investors whose demand depends on asset prices, macroeconomic factors,
and latent demand shocks, a Fed that sets monetary policy and QE policy, and a representative risk-
averse arbitrageur that optimizes over a mean-variance objective. We lump demand from preferred
habitat investors and the Fed QE rule into an aggregate “preferred-habitat demand” since they carry
similar functional forms.

To capture the rich economics in the Treasury market, our model features three key innova-
tions. First, we allow for cross-substitution directly in the preferred habitat investor demand.2

This is an important force that generates a positive reaction of term premia to a monetary policy
tightening, contrasting the negative reaction in the standard setup of Vayanos and Vila (2021) with-
out cross elasticity.3 Second, we include a monetary-policy rule that depends on macroeconomic
dynamics rather than treating the short-term interest rate as purely exogenous on its own. This
provides a reasonable estimation of monetary shocks and also allows us to more comprehensively
capture how macro variables, such as inflation and GDP gap, affect the demand and pricing of
Treasuries. Third, we incorporate latent outside assets held by the arbitrageurs, to add the element
of realism that prices of risk are not entirely driven by arbitrageur’s Treasury portfolio. We let the
data inform us to what extent a Treasury supply or demand shock triggers a change in risk premia.

2See Chaudhary et al. (2022) for estimations of cross elasticities in the corporate bond market, and An and Huber
(2024) for estimations of cross elasticities in the currency market.

3Kekre et al. (2024) introduces arbitrageur’s wealth effect to Vayanos and Vila (2021) and also generates a positive
reaction of term premium to monetary policy tightening. We do not incorporate such a channel since the nonlinearity
due to the wealth effect causes numerical challenges that are beyond our paper.
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To gain intuition, we derive theoretical implications in a simplified version of the full quan-
titative model. First, we show that the monetary policy rate plays a dominant role for short-
maturity Treasuries, while macro shocks and latent demand shocks become more important for
long-maturity Treasuries. Second, we find that a higher arbitrageur risk aversion increases price
impact and equilibrium yields, so it is crucial to estimate a reasonable risk aversion. Third, we
find that higher cross elasticity of preferred-habitat demand lowers equilibrium Treasury prices.
Fourth, the model implies that whether Treasury risk premium positively or negatively responds to
monetary policy shocks depends on the magnitude of cross elasticity. Finally, QE reduces long-
term yields.

Guided by the theoretical predictions, we proceed to quantify the model based on our empirical
estimates. We estimate the model by minimizing the model fitting error on the dynamics of
Treasury yields and the difference between the model versus data on average arbitrageurs’ Treasury
holding. The latter carries a high weight, so the average holding is accurately matched. We imple-
ment this procedure by modifying the algorithm used in the standard affine term structure literature
(Duffie and Kan 1996; Duffee 2002; Joslin et al. 2011). The key difference is that the pricing kernel
is endogenously determined by market clearing, adding another layer of complexity. Critically,
arbitrageur risk-aversion is mainly identified by matching average holdings by arbitrageurs, which
in the data include dealers and hedge funds.

Using the model, we explore the drivers of Treasury pricing by analyzing contributions of the
monetary policy rate, macroeconomic variables, and latent demand. We use the Shapley value
of R2 as the measure of the relative contribution of different factors. We find that the monetary
policy rate is the dominant driver of short-maturity Treasury yield, but it becomes dominated by
macroeconomic fluctuations and latent demand shocks at the long-maturity end. The importance
of latent demand shocks is less than 5% for short-maturity yields but becomes around 20% for
long-maturity yields.

In view of our estimates of a low risk aversion, we find that the price impact of a latent demand
shock at short maturities (below one year) is much larger if we remove arbitrageurs from the
model. The reason is that arbitrageurs aggressively arbitrage between a short-term interest rate
tightly controlled by the Fed and other short-maturity Treasuries. This arbitrage force becomes
weaker at longer maturities due to larger risks. On average, the presence of arbitrageurs reduces
the price impact of latent demand shocks by more than 100 times. Moreover, in terms of aggregate
market elasticity, we find that a $1 billion dollar extra latent demand of the overall Treasury
market increases total Treasury valuation by $0.27 billion, indicating a multiplier of 0.27. In
comparison, the multiplier is 5 in the equity market (Gabaix and Koijen 2021) and 3.5 at rating-
level corporate bond markets (Chaudhary et al. 2022). Nevertheless, absent from arbitrageurs in
the Treasury market, Treasury-market multiplier becomes larger than that of equity and corporate
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bonds. Therefore, the Treasury market is elastic in the presence of arbitrageurs but inelastic
otherwise.

Next, we evaluate the impact of monetary policy shocks. In Vayanos and Vila (2021), monetary
policy tightening leads to a lower risk premium, because the higher interest rates lead to larger
preferred-habitat investor holdings and smaller arbitrageur holdings, for which the arbitrageur
requires less compensation. In sharp contrast, our results are the opposite because of a significant
cross elasticity revealed by the data. This high cross elasticity reduces preferred-habitat investors’
holdings of each maturity bucket in response to higher yields from other maturities, forcing ar-
bitrageurs to hold more Treasuries and charge a higher risk premium. Our results are consistent
with the literature that empirically identifies term premium responses to monetary policy shocks
(Hanson and Stein 2015; Bauer et al. 2023). We show that once we shut off cross elasticities, our
quantitative model generates the opposite result, and therefore, we confirm that cross elasticities
are the key to resolving the puzzle in Vayanos and Vila (2021).

Finally, we study the response of the Fed balance sheet to demand shocks, and the impact
of QE. We find that the Fed is the primary absorber of permanent demand shocks of long-term
Treasuries. Quantifying the impact of QE, we discover that if the purchase is expected to be
transient, the impact on Treasury yields is little. However, the response of Treasury yields becomes
much more prominent if investors expect QE to be a permanent demand shift of the Fed. Therefore,
we conclude that the impact of Fed purchases on bond yields is weak unless the Fed credibly
commits to a persistent expansion of its balance sheet. Our results allows for more granular
analysis of QE policies and contribute to a growing literature that quantifies the impact of QE
(Krishnamurthy and Vissing-Jorgensen 2011; d’Amico et al. 2012; Swanson 2021; Selgrad 2023;
Jiang and Sun 2024; Haddad et al. 2024).

Related Literature

Our paper contributes to a growing literature that analyzes the granular asset demand in fixed-
income markets, building on the seminal work by Koijen and Yogo (2019). Specifically, Bretscher
et al. (2020), Chaudhary et al. (2022), Siani (2022), and Darmouni et al. (2022) apply the demand
system to corporate bond markets, Fang et al. (2022) to global government bond markets, Koijen
et al. (2021) to the euro area government bond market, Jansen (2022) to the Dutch government
bond market, and Jiang et al. (2022) to international bond and currency markets. Allen et al.
(2020) analyze the demand of T-bill auctions and find that auction format matters for portfolio
allocations. Doerr et al. (2023) and Stein and Wallen (2023) provide granular analysis on the
demand of money-market funds for near-money assets. Closest to ours, Eren et al. (2023) apply
the demand system to the overall U.S. Treasury market using Flows of Funds data. Consistent
with their study, we also find that investment funds and banks are more price elastic than ICPFs
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within the U.S. Treasury market. We contribute to this literature by using granular data on U.S.
Treasury holdings by different institutions including the Fed, and analyzing cross-elasticities in the
U.S. Treasury market.

Furthermore, our paper is related to the preferred habitat view of the term structure of interest
rates, e.g., Culbertson (1957), Modigliani and Sutch (1966), Guibaud et al. (2013), Greenwood and
Vayanos (2014), and Vayanos and Vila (2021). Recent papers start to build a tighter connection
between data and theory. Droste et al. (2021) identify demand shocks from Treasury auctions
and calibrate the model in a New Keynesian framework to study the impact of QE. Hanson et al.
(2024) quantify the demand and supply shocks in the interest-rate swap market. Khetan et al.
(2023) leverages more detailed data on interest-rate swaps and find a high level of segmentation.
Bahaj et al. (2023) utilize transaction-level data on UK inflation swaps to quantify a model of
inflation risks. Our contribution is to build and estimate a quantitative version of Vayanos and
Vila (2021) in the Treasury market that accounts for empirically estimated demand functions and
arbitrageurs’ Treasury holdings.

Our estimation of preferred-habitat demand is consistent with the hypothesis of “yield-oriented
investors” in Hanson and Stein (2015), where investors consider not only long long-term yields but
also short-term yields for long-term bond investment. We both theoretically and quantitatively
confirm the rationale in Hanson and Stein (2015) that cross-substitution drives the positive term
premium response to monetary policy tightening. This also addresses a broad literature that shows
risk premium overall rises with monetary policy tightening (Bernanke and Kuttner 2005; Gertler
and Karadi 2015; Bekaert et al. 2013; Kekre et al. 2024).

Our paper is also related to the recent literature on the specialty of U.S. government debt.
Krishnamurthy and Vissing-Jorgensen (2012) show that there is a downward-sloping aggregate
demand curve for the convenience provided by Treasuries. The literature shows that Treasury con-
venience yield is closely connected to financial crises (Del Negro et al. 2017; Li 2024), monetary
policy (Nagel 2016; Drechsler et al. 2018; Diamond and Van Tassel 2021), exchange rates (Jiang
et al. 2021), pricing of stocks (Di Tella et al. 2023), hedging properties of Treasuries (Acharya and
Laarits 2023), banking (Diamond 2020; Li et al. 2023; Krishnamurthy and Li 2023), and financial
regulation (Payne et al. 2022; Payne and Szőke 2024). Jiang et al. (2024b) provide evidence that
the aggregate U.S. government debt is overvalued relative to common measures of fundamentals.
Brunnermeier et al. (2024) show that Treasuries insure against idiosyncratic risks, which can be
a resolution to the valuation puzzle. Jiang et al. (2024a) characterize government debt valuation
and debt capacity in a dynamic model with hedging and convenience. We contribute to the above
literature by unpacking the demand of Treasuries and sources of its variations across investors, and
relating it to macroeconomic factors and monetary policy dynamics.

Finally, arbitrageurs are important in our analysis, in the same spirit as a growing literature
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that focuses on the role of financial intermediaries (He and Krishnamurthy 2013; Adrian et al.
2014; He et al. 2017; Du et al. 2018; Haddad and Sraer 2020; Wallen 2020; Jermann 2020;
Haddad and Muir 2021; Fang and Liu 2021; Kargar 2021; Favara et al. 2022; Du et al. 2023a;
Diamond et al. 2024; An and Huber 2024). d’Avernas and Vandeweyer (2023) and d’Avernas
et al. (2023) provide theories of how different types of intermediaries together with the central
bank affect the Treasury market dynamics. Duffie et al. (2023) uses dealer-level data on Treasury
holdings to show that dealer balance sheet utilization is important for Treasury pricing. Du et al.
(2023b) quantitatively show that balance sheet frictions of intermediaries are important in pricing
Treasuries. A key contribution relative to this literature is that we cover the majority of the Treasury
market beyond intermediaries, and explicitly link how the intermediary pricing kernel is related to
its intermediation activities in the Treasury market.

2. Data

This section describes the various data sources that we use in our study, the merger of these data
sets, and descriptive statistics.

2.1. Holdings Data Sources

The standard dataset for U.S. Treasury holders is from the Flow of Funds of the Federal Reserve,
which has been used for Treasury demand analysis in Krishnamurthy and Vissing-Jorgensen (2007)
and Eren et al. (2023). However, although the data is at the sector level, this dataset only contains
total Treasury holdings across all maturities and therefore does not allow for more granular anal-
ysis, especially cross-substitution across maturities. Therefore, we collect several data sources for
each investor type and a summary of data sources is provided in Table 1.

We now turn to a detailed description and cleaning procedure of each data source.

A. Banks - CALL Reports

We obtain banks’ holdings of U.S. Treasuries at the maturity bucket level from CALL reports.
CALL reports are regulatory filings required for all U.S. banks and include detailed information on
a bank’s assets, liabilities, income, and expenses. The CALL reports are filed on a quarterly basis
and cover the period from the first quarter of 1976 to the end of 2022. Banks report their aggregate
U.S. Treasury holdings and their holdings in different maturity buckets of U.S. Treasuries and
U.S. Agency bonds combined. The maturity buckets are: τ < 3M, 3M ≤ τ < 1Y , 1Y ≤ τ < 3Y ,
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Table 1. Summary of Data Sources

Investor Type Data Source Frequency Period Detail

Banks CALL Reports Quarterly 1976Q1-2022Q4 Maturity bucket
ETFs ETF Global Daily/Monthly 2012M1-2022M12 Security
Fed Federal Reserve Weekly 2003W1-2022W52 Security
Foreign Holders Public TIC Monthly 2010M1-2022M12 T-bill/non T-bill
Hedge Funds CFTC Weekly 2006W26-2022W52 Maturity bucket
Insurers and Pension Funds eMAXX Quarterly 2010Q1-2022Q4 Security
Money Market Funds IMoneyNet Monthly 2011M8-2022M12 Security
Money Market Funds Flow of Funds Quarterly 1993Q1-2022Q4 T-bill/non T-bill
Mutual Funds Morningstar Monthly/Quarterly 2000M1-2022M12 Security
Primary Dealers Federal Reserve Daily 1998D28-2022D365 Maturity bucket

3Y ≤ τ < 5Y , 5Y ≤ τ < 15Y , τ ≥ 15Y . To obtain their allocation to U.S. Treasuries for different
maturities, we assume that the fraction of Treasuries versus Agency bonds is fixed across maturities
at a given point in time. Hence, at each point in time, we multiply the total maturity bucket holdings
by the fraction of Treasuries relative to the sum of Treasuries and Agency bonds.

B. ETFs - ETF Global

We obtain the holdings of U.S. Exchange Traded Funds (ETFs) at the security (CUSIP) level from
ETF Global. ETF Global contains extensive coverage of securities held by U.S. ETFs and in our
analysis we focus on fixed-income funds. Funds either report daily or monthly, and to maintain
consistency with the other datasets we use data at quarter ends. As U.S. ETFs only hold a small
fraction of U.S. Treasuries outstanding, we merge them with the U.S. mutual fund sector.

C. Fed - Federal Reserve

The Federal Reserve System Open Market Account (SOMA) reports security holdings that are
acquired through open market operations by the Fed. These data are obtained through the website
of the Federal Reserve Bank of New York.4 The holdings are at the security (CUSIP) level and
reported on a weekly basis since the start of 2003.

D. Foreign Investors - Public TIC

From January 2010 to September 2011, we obtain monthly aggregate U.S. Treasury holdings by
foreign investors from TIC Form S. As Tabova and Warnock (2021) point out, there are issues
with TIC S that lead to substantial misreporting of U.S. Treasury holdings, but only after 2012.

4https://www.newyorkfed.org/markets/soma-holdings
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Hence, we obtain monthly aggregate U.S. Treasury holdings from the public TIC Form SLT
after September 2011, the starting date of this form. As of September 2011, TIC also provides
a breakdown of the total amount held in T-bills versus non-Tbills.

Moreover, to avoid double counting, we subtract from the TIC data the holdings of foreign
mutual funds that we obtain through Morningstar.

E. Hedge Funds - CFTC

We infer the hedge fund Treasury holdings from their futures positions, because hedge funds
usually engage in the Treasury-futures basis trade on a hedged basis. Hence, the Treasury position
is the opposite of the futures position (Du et al. 2023b). Hedge funds report their futures positions
for conventional maturity buckets on a weekly basis since mid 2006. The deliverable maturity
buckets are: 13

4Y ≤ τ ≤ 2Y (2-Year T-Note), 41
6Y ≤ T ≤ 51

4Y (5-Year T-Note), 61
2Y ≤ τ ≤ 73

4Y (10-
Year T-Note), 9 5

12Y ≤ τ ≤ 10Y (Ultra 10-Year T-note), 15Y ≤ τ ≤ 25Y (T-Bond), 25Y ≤ τ ≤ 30Y

(Ultra T-Bond). The net futures position for each deliverable maturity is defined as a hedge fund’s
long position minus its short position. Therefore, the Treasury position of a hedge fund is the
opposite of the sum of its net futures positions across the deliverable maturity buckets.

F. Insurers and Pension Funds - eMAXX

eMAXX provides a comprehensive coverage of fixed income holdings of institutional investors
at the security (CUSIP) level. The database predominantly covers the holdings of insurance
companies, mutual funds, and pension funds (Becker and Ivashina 2015; Bretscher et al. 2020). We
only use the data on insurance companies and pension funds, and rely on Morningstar for mutual
funds. Due to the voluntary nature of reporting by pension funds, the coverage of pension funds
in eMAXX is limited, unlike the mandatory reporting by insurance companies. Additionally, we
focus on the U.S. eMAXX database, which covers the holdings of North American investors. The
holdings data are quarterly and cover the period from the first quarter of 2010 to the end of 2022.

G. Money Market Funds - IMoneyNet and Flow of Funds

IMoneyNet contains a wide coverage of asset holdings (predominately fixed income and cash) by
money market funds (MMFs) at the security (CUSIP) level. We focus on both holdings reported
by MMFs domiciled in the U.S. as well as on their offshore holdings. The holdings are reported
on a monthly basis since August 2011.

To obtain a longer history of U.S. MMF holdings, we use Flow of Funds (FoF) data from the
Federal Reserve. Using our security-level database, we verify that on average 99.6% of MMF

9



holdings are in either T-bills or U.S. Treasuries with remaining time to maturity below 1 year.
Hence, we can reasonably assume that MMF Treasury holdings reported in FoF have remaining
maturities below 1 year.

H. Mutual Funds - Morningstar

We obtain holdings data on domestic and foreign mutual funds and foreign ETFs from Morningstar,
Inc. The funds report all their positions including stocks, bonds, and cash at the security (CUSIP)
level. We focus on both fixed-income and allocation funds. Funds either report monthly or
quarterly, and to maintain consistency across the funds and other data sets we use data at quarter
ends. Figure 12 reports the aggregate holdings in USD (trillions) over time. These aggregates align
closely with the numbers reported in Maggiori et al. (2020).

I. Primary Dealers - Federal Reserve

To maintain transparency of primary dealers trading activities, their daily positions are made
available through the website of the Federal Reserve Bank of New York.5 Primary dealers report
their holdings for conventional maturity buckets since early 1998. However, the specific maturity
buckets reported change over time. The time frames with the same reporting standards are:
January 1998 to June 2001, July 2001 to March 2013, April 2013 to December 2014, January
2015 to December 2021, and from January 2022 onwards. Generally, more recent data reports
finer maturity buckets. To be consistent across time, we treat July 2001 to March 2013 as the
baseline and aggregate the maturity buckets of subsequent periods to match that of this time frame.
The positions in coupon paying bonds and notes (Coupons) are separately reported from inflation-
linked bonds (TIPS). The final maturity buckets are: T-Bills, Coupons: τ ≤ 3Y , 3Y < τ ≤ 6Y ,
6Y < τ ≤ 11Y , τ > 11Y , TIPS: ≤ 2Y , 2Y < τ ≤ 6Y , 6Y < τ ≤ 11Y , τ > 11Y . As an example, for
January 2022 and on, the maturity bucket 6Y < τ ≤ 11Y for Coupons is obtained by summing the
net positions of 6Y < τ ≤ 7Y and 7Y < τ ≤ 11Y .

2.2. Macro Data

We obtain four macro variables from the Federal Reserve Economic Data (FRED) that are drivers
of monetary policy, real interest rates, inflation dynamics, and total government debt supply in
classical macroeconomic models. First, we include GDP gap and core inflation to capture the
reaction of monetary policy to macroeconomic dynamics. These variables are also important

5https://www.newyorkfed.org/markets/counterparties/primary-dealers-statistics
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in determining the general equilibrium real rates and inflation dynamics. Second, we include
debt/GDP to capture the dynamics of government debt and its connection to other macroeconomic
variables, including the interaction with inflation according to the fiscal theory of price level. Third,
we include credit spread, which is the nexus between financial markets and the macro-economy as
shown by Gilchrist and Zakrajšek (2012).

2.3. Data Aggregation

First, to maintain consistency across datasets, we analyze data at the quarterly frequency from
2010Q1 to 2022Q4 when aggregating across all maturities and from 2011Q3 to 2022Q4 when
analyzing holdings at the maturity-bucket level.

For the data sources in Table 1 that are at the security level, we have the corresponding
CUSIP identifiers that we use to match the holdings data with the CRSP U.S. Treasury Database.
The CRSP U.S. Treasury Database contains detailed bond-level information on U.S. Treasuries,
including bond yields, prices, bond type, coupon rate, maturity date, issue date, and issuance size.
We use the bond prices to convert nominal holdings to market values. For the sectors that report at
a more aggregate level (banks, foreign investors, hedge funds, and primary dealers), we use their
reported market value holdings directly.

We focus on three maturity buckets: τ < 1Y , 1Y ≤ τ < 5Y , and τ ≥ 5Y . This choice is
determined by the data granularity limitations for some sectors. For investors that report at the
CUSIP level it is straightforward to divide their holdings in the respective maturity buckets. For
banks, we aggregate maturity bucket τ < 3M and 3M ≤ τ < 1Y to obtain the first bucket, 1Y ≤ τ <

3Y and 3Y ≤ τ < 5Y for the second bucket, and 5Y ≤ τ < 15Y and τ ≥ 15Y for the third bucket.
We follow a similar approach for the primary dealers and hedge funds. For foreign investors, we
only know the fraction that is held in T-bills versus non T-bills. To allocate the foreign holdings to
different maturity buckets, we first multiply the T-bill holdings by one divided by the fraction of
TAO in maturity bucket 1 that is in T-bills for each point in time. The reason is that on average only
60% of TAO in maturity bucket 1 are T-bills, while the remaining 40% are bonds and notes with
remaining time to maturity below 1 year.6 We then subtract the additional fraction we attribute to
maturity bucket 1 from the total non T-bill holdings to compute the total holdings in the remaining
maturity buckets. To further determine the fraction in maturity bucket 2 versus 3, we choose the
fraction such that the average duration of the foreign investors’ Treasury portfolio is consistent
with Tabova and Warnock (2021) at each point in time.

Figure 1 shows the fraction of the total amount outstanding of U.S. Treasuries by investor

6Our results do not depend on this assumption. We find similar results, both qualitatively and quantitatively, when
we assume that T-bills are the only securities held in bucket 1.
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type from 2010Q1 to 2022Q4. On average, our dataset contains about 78% of the holders of U.S.
Treasuries. Based on FoF data, the remaining 22% consists of U.S. households (≈ 11%), pension
funds (≈ 5%), local governments (≈ 4%), and non-financial corporations (≈ 2%). Figure 2 breaks
down the holdings at the maturity bucket level, starting in 2011Q3, the first quarter we know the
T-bill versus non T-bill split for foreign investors. Some striking patterns emerge. First, MMFs are
only active in maturity bucket 1 and held between 10-35% of the short-term Treasuries outstanding.
At the other end of the spectrum, ICPFs barely hold short-term Treasuries, but hold around 5% of
the Treasuries with maturities beyond 5 years. The Fed holds substantially more of the intermediate
and long-term bonds outstanding as opposed to short-term bonds. Mutual funds hold little short-
term bonds, but are equally spread among maturity bucket 2 and 3. The net positions of primary
dealers and hedge funds are mostly positive at longer maturities.

3. Empirical Results

3.1. Empirical Methodology

We start our empirical analysis by estimating a demand system for each sector i. Inspired by our
model specified in Section 5, we estimate the demand for U.S. Treasuries using the following
regression:

Zi
t(m) = θ

i
0 +bi

1yt(m)+bi
2yt(−m)+(bi

3)
′xt(m)+(bi

4)
′Macrot +ui

t(m), (1)

where Zi
t(m) equals the total Treasury market value holding of sector i in maturity bucket m at

time t (in billions), yt(m) is the yield for maturity bucket m, yt(−m) equals the weighted-average
yield of the other maturity buckets, xt(m) is a vector of value-weighted bond characteristics for
maturity bucket m: coupon, maturity bucket fixed effects, bid-ask spread, and Macrot equals a set
of macro variables, including GDP gap, debt/GDP, core inflation, and credit spread. We also add
the repo spread to the set of bond characteristics to control for the fact that some investors reduce
U.S. Treasury holdings and enter the repo market to obtain indirect Treasury exposure in response
to a rising repo rate relative to Treasury rates.

We focus on dollar value of holdings rather than portfolio weights, because dynamics in total
portfolio demand is crucial for the term structure of interest rates – modeling only portfolio weights
is not sufficient. Moreover, our model in Section 5 indicates that market values are what investors
should care about, so our specification in (1) has a direct mapping to our dynamic quantitative
model. Since discount rates on Treasuries during the sample period we analyze are on average low,
our empirical estimations are similar if we replace all market values with face values of Treasury
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holdings.

To ensure that demand is stationary, we standardize Zi
t(m) by potential GDP. Specifically, we

divide Zi
t(m) by the ratio of nominal potential GDP at t over the baseline value of nominal potential

GDP at the beginning of our sample period. We use nominal values so that the scaling adjusts for
the inflation effect. Moreover, using a GDP adjuster rather than just inflation ensures that we
account for the growing scale of the economy. Finally, we use nominal potential GDP rather than
nominal GDP to avoid cyclical fluctuations in nominal GDP that causes mechanical correlations
among the variables due to the scaling. Our empirical results will be similar if we simply adjust for
an exponential growth trend with the constant growth rate matching the overall economic growth
during our sample period.

We provide summary statistics for the set of bond characteristics and macro variables in
Table 2 and the correlation table is in Appendix Table 9. We denote Treasury maturity as τ and
divide Treasuries into three maturity buckets: τ < 1Y,1Y ≤ τ ≤ 15,τ > 15, and denote these
maturity buckets as m ∈ {1,2,3}. The choice for these three maturity buckets is motivated by two
reasons: First, this division is a common set across portfolio holding data that we have for different
investors. Second, we need sufficient cross-sectional variation across maturity buckets to apply our
instrument. Using more granular maturity buckets complicates identification due to a reduction in
variation across buckets.

We control for both own yield and other yield to account for the substitution effect between
Treasuries of different maturities. If we only include own yield, but investors decrease demand
when the yield in the other maturity buckets is higher, we would uncover a coefficient that is
downward biased. The reason is that own yield and other yield are correlated, while demand in-
creases if own yield goes up, but decreases when other yield goes up. Hence, when not accounting
for other yield, bi

1 picks up both the positive and negative effect, leading to a coefficient that is
biased towards zero.7

In our specification, we assume that the macro variables are exogenous to investors, as in Fang
et al. (2022) and Koijen and Yogo (2020). That is, investor (latent) demand does not contempora-
neously affect macro variables. In addition, we also assume that bond characteristics, except for
yields, are exogenous to latent demand.

7In Appendix Table 13, we indeed show that the coefficient on own yield is attenuated closer to zero when not
accounting for other yield.
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Instrument

We could estimate the demand system specified in Equation (1) by GMM if it satisfies the moment
condition:

E[ui
t(m)|yt(m),xt(m),Macrot ] = 0 (2)

The concern with this moment condition is that the error term may not be orthogonal to yields. For
instance, if sectors have a large demand for Treasuries unrelated to bond characteristics or macro
variables, then this latent demand is likely to also affect the yield. As such, we need an instrument
for bond yields.

We build on the instrument used in Koijen and Yogo (2020) and Fang et al. (2022) and use the
following three step procedure. First, we estimate demand for each investor type as in Equation (1),
but excluding the yield. We then in a second step extract the predicted values Ẑit(m). We also
follow step (1) and (2) for the market value of Treasury supply at each maturity bucket, whereby
we regress it on the FFR and macro variables, consistent with the specification of our US Treasury
model introduced in Section 5. In a third step, we impose market clearing and extract the imposed
yield that sets the implied demand equal to the implied market value of supply:

∑
i

Ẑit(m) =
Ŝt(m)

(1+ ỹt(m))τ(m)
, (3)

where Ŝt(m) is the predicted nominal value of the debt outstanding of maturity bucket m, and τ(m)

the corresponding maturity. We take τ(m) as the average bond duration for maturity bucket m. We
then extract pseudo yield ỹt(m) that clears the market at each point in time t and use it as instrument
for the actual yield yt(m):

It(m) = ỹt(m) (4)

In summary, the idea behind the instrument is that the pseudo yield isolates the exogenous
component of the yield. This instrument is valid under the identifying assumption that bond char-
acteristics and macro variables are exogenous to investor latent demand, as we assume throughout.
By construction, the instrument is independent of investors’ latent demand in the second stage
(Equation (1)) so that the exclusion restriction in (5) is satisfied. More formally, we can weaken
moment condition (2) to:

E[ui
t(m)|It(m),xt(m),Macrot ] = 0. (5)
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3.2. Demand Functions of Preferred Habitat Investors

The first stage estimates of the demand system are summarized in Appendix Table 11. The
corresponding Kleibergen-Paap statistic to test for weak instruments is 10.9, above the threshold
of 10 for rejecting weak instruments (Stock and Yogo 2005).8

Table 3 shows the results using the IV methodology outlined in the previous section.9 We find
that all investors have downward sloping demand curves, except for the foreign sector, although
the coefficient is insignificant. That is, investors demand more U.S. Treasuries of maturity bucket
m when the yield (price) is high (low). In addition, investors load negatively on the yield of other
maturity buckets, meaning that their demand for maturity bucket m decreases when the yield for
other buckets are high. Generally, we find that other elasticity is slightly higher than own elasticity,
but the order of magnitude between the coefficients is similar. This is consistent with the findings in
Chaudhary et al. (2022). They find a ratio between cross-elasticity and own-elasticity of close to 1
at the CUSIP level and for portfolios at the rating × quarter-to-maturity level for corporate bonds,
the latter aggregation closely resembling ours. This ratio implies that own and cross-elasticity
have the same magnitude, but with opposite sign. This finding is also consistent with Eren et al.
(2023), who study the aggregate elasticity of the U.S. Treasury market and find that investors load
negatively on the 5Y German yield (‘other yield’) that has the opposite sign of their loadings on
the 8Y U.S. yield (‘own yield’), but with similar magnitudes. Finally, Table 12 shows that the
coefficients on own and other yield remain virtually unchanged when not controlling for macro
variables.

In addition, ICPFs, MMFs, and other U.S. investors increase demand for Treasuries when
coupons are high, while the other sectors reduce their demand. ICPFs have a higher demand for
Treasuries when the bid-ask spreads are high, that is, when Treasuries are less liquid. Furthermore,
ICPFs have a high demand for long-term Treasuries, while other U.S. investors have a lower
demand for the longest Treasuries. By means of the investment mandates of MMFs, they only
operate in the shortest maturity bucket. Supply negatively affects foreign investor holdings, while
it positively affects demand for other sectors, especially for MMFs. Moving to the macro variables,
we find that banks, MFs U.S., and MFs ROW increase their demand for Treasuries when the GDP
gap is high, while MMFs reduce their demand. This finding is consistent with Fang et al. (2022),
who find that most investors increase demand for developed government debt when GDP growth
in those countries is high. ICPFs reduce their demand for Treasuries when core inflation is high,
while banks increase their demand. Finally, we find that all sectors except for foreign investors

8The first stage is the same for all sectors, except MMFs, for which the statistic equals 5.2. The reason is that
for MMFs we only have one maturity bucket, because they do not invest in maturities beyond 1 year. As such, the
instrument cannot exploit heterogeneity across maturities and we should interpret their result with care.

9The results of the OLS estimates are in Appendix 10.
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increase demand for Treasuries when supply (measured by debt/GDP) is high.

By looking at holdings in market values, Table 3 does not allow to compare the price elasticities
across investor types. As such, we standardize the holdings such that for each sector they have a
mean of zero and a standard deviation of one. Figure 3a plots the coefficients on own and other
yield for each investor type. Interestingly, mutual funds and MMFs appear to be most price elastic,
followed by banks. ICPFs and foreign investors are least price elastic. This finding is broadly
consistent with Eren et al. (2023), who also find that banks and investment funds are more price
elastic than the ICPF sector.

3.3. Demand Functions of the Fed

For the Fed, we estimate their demand curves maturity-by-maturity bucket. The reason is that
the Fed targets the long-end of the yield curve with it’s unconventional monetary policies, not
the shorter-end. We should therefore expect the Fed to respond to long-term yields only, while we
should find them to be rather inelastic at the shorter-end. This is opposite from the preferred habitat
investors, where we do not have a strong prior that they have significantly different responses to
yields across maturities.

Table 4 summarizes the results. Interestingly, in the long-term bucket, the Fed operates as
preferred habitat investors, whereby they increase demand for Treasuries when the yield is high,
while they reduce demand for maturity bucket m when the yield in other buckets is high. This
revealed behavior is consistent with Fed’s policy goals. The goal of QE is explicitly to reduce
long-term yields, so the Fed actively increases its balance sheet when long-term yields are high.
On the other hand, the Fed achieves a consistency of conventional and unconventional monetary
policies by increasing the short-term yields and reducing long-term Treasury holdings at the same
time, generating a negative cross elasticity as we discovered in the regressions.

Also as we expected, the Fed becomes entirely inelastic to yields in its demand for short-
and medium-term Treasuries. Additionally, like the other preferred habitat investors, their total
holdings also on average load positively on total debt supply. The Fed also increases demand for
long-term bonds when core inflation is high, while it reduces demand for medium- and long-term
bonds when GDP gap is high. Across all maturities, the Fed is not responsive to changes in the
credit spread.

Figure 3b shows the relative yield sensitivities of the Fed across maturity buckets. Clearly, the
Fed is inelastic with respect to yield in the short- and medium-term bucket, while it’s elasticity
resembles those of banks in the long maturity bucket.
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3.4. Summary

In summary, our estimated demand curves reveal three key findings. First, preferred habitat
investors and the Fed have downward sloping demand curves. Second, the total demand from
preferred-habitat investors exhibit strong cross substitution. Third, the Fed’s demand for short- and
medium-maturity is not significantly affected by Treasury yields, but its long-maturity Treasury
demand significantly increases with long-maturity Treasury yield but decreases with other yields,
similar to the overall behavior of preferred-habitat investors.

4. An Equilibrium Model of the Treasury Market

In this section, we set up a model where strategic arbitrageurs interact with preferred habitat
investors and the Federal Reserve in the market for Treasuries. Model dynamics are driven by
macroeconomic shocks, monetary policy shocks, and latent demand shocks. After we set up the
model, we provide a simplified version that allow us to derive analytical results to obtain intuition
regarding the fundamental mechanisms.

To capture the rich economics in the Treasury market, we deviate from Vayanos and Vila
(2021) in three aspects. First, we allow for cross-substitution in the preferred habitat investor
demand. This is an important force that generates reasonable term premium responses to mone-
tary policy shocks. Second, we include a monetary-policy rule that depends on macroeconomic
dynamics rather than treating the short-term interest rate as exogenous. This allows us to quantify
the magnitude of monetary policy shocks. Third, we incorporate latent outside assets held by the
arbitrageurs, to add the element of realism that risk prizes are not entirely driven by arbitrageur’s
Treasury portfolio. We let the data speak to the extent that Treasury supply or demand shocks
trigger changes in risk premia.

4.1. Model Setup

The model is discrete-time and infinite-horizon. There are four types of agents in the economy:
a competitive arbitrageur sector, the Federal reserve, a set of preferred-habitat investors, and the
government. We only explicitly model the strategic decisions by arbitrageurs while we capture
the behavior of other agents by policy rules. We model the Treasury market explicitly by market
clearing. Economic fluctuations are driven by macroeconomic shocks and monetary policy shocks.

Consider bonds of maturities τ ∈ {1,2, · · · ,N} that all pay a face value of 1 at maturity. Denote
by P(τ)

t and y(τ)t , respectively the time-t price and yield of the bond with maturity τ . Define the log
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price vector as
pt =

(
log(P(1)

t ), log(P(2)
t ), · · · , log(P(N)

t )
)′
. (6)

For simplicity, we denote the yield of an one-period bond as rt , defined as

rt =− log(P(1)
t ). (7)

We consider rt as directly controlled by monetary policy. All other bond yields and prices are
endogenously determined in equilibrium.

The dynamics of the economy is driven by K-dimensional vector of macro factors,

βt = (β1,t ,β2,t , · · · ,βK,t)
′ . (8)

which follows a VAR(1) process,

βt+1 = β̄ +Φ(βt − β̄ )+Σ
1/2

εt+1. (9)

In the above equation, εt+1 is a K-dimensional vector that follows an i.i.d. standard normal
distribution, and Φ is a matrix that determines the long-run dynamics.

We interpret the vector βt as macro states of the economy that drive the monetary policy stance
in equilibrium and also expectations regarding future economic states. Monetary policy depends
on contemporaneous economic variables,

rt+1 = r̄+φ
′
r(βt+1 − β̄ )+ρrrt +σrε

r
t+1, (10)

where ρr captures monetary policy inertia, as discussed, for example, in Clarida et al. (2000), and
εr

t+1 reflects monetary policy shocks. We assume that monetary policy shocks εr
t+1 are indepen-

dent from εt+1, i.e., monetary policy shocks are not subsumed by public information on macro
dynamics.

Denote the set of institutions excluding arbitrageurs as I . Sector-i (i ∈ I ) demand for bonds
with maturity τ ∈ {1, · · · ,N} is

Zi
t(τ) = θ

i
0(τ)−α

i(τ)′pt −θ
i(τ)′βt +ui

t(τ), (11)

where the parameter α i(τ) reflect the price sensitivity to maturity τ itself but also cross-elasticities
with maturity τ ′ ̸= τ . We use “prime” to denote transpose of vectors and matrices, and all vectors
are column vectors. We lump the demand for bonds from preferred habitat investors and the
Federal Reserve together, and refer to it either as the “non-arbitrageur demand” or “preferred-
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habitat demand”, defined as
Zt(τ) = ∑

i∈I

Zi
t(τ). (12)

Accordingly, we define θ0(τ), α(τ), θ(τ), and ut(τ) as the sums of corresponding values from
each sector i ∈ I . We use column vector forms to express our setup in a more convenient and
compact notation. In vector form, we can write (12) as

Zt = θ0 −α pt −θβt +ut , (13)

where

θ0 = (θ0(1),θ0(2), · · · ,θ0(N))′ (14)

α = (α(1),α(2), · · · ,α(N))′ (15)

θ = (θ(1),θ(2), · · · ,θ(N))′ . (16)

Thus, α is a N ×N matrix, θ is a N ×K matrix, and θ0 is a N-dimensional vector.

The unobservable, maturity-specific latent demand shock, ut = (ut(1),ut(2), · · · ,ut(N))′, re-
flects the non-systematic component of demand shocks. We assume that ut is i.i.d., with mean zero
and a covariance matrix Σu.

We can interpret the dependence of habitat-demand on the vector of Treasury prices, reflected
by α(τ), as reflecting either the notion that agents infer other investors’ latent demand shocks
from prices, or exhibiting convenience demand over Treasuries. Both interpretations naturally
suggest investors’ own sensitivity to prizes to be negative (−α(τ,τ)< 0), so that a higher Treasury
price (lower yield) implies lower demand. The first interpretation suggests that a high Treasury
price might be the result of a positive latent demand, so agents expect the price to drop and thus
they lower their current demand (i.e., sell Treasuries). Such beliefs can be rational under certain
information structures, but for our purposes, we remain agnostic whether such a behavior is rational
or not. The second interpretation suggests that there is fundamental demand for U.S. government
debt beyond just financial returns, and thus not captured by the fundamental state variables, leading
to a downward-sloping demand curve (e.g., Krishnamurthy and Vissing-Jorgensen). The second
interpretation also suggests a natural substitution effect among Treasuries of different maturities,
leading to cross-elasticities with opposite signs (−α(τ,τ ′) > 0, τ ′ ̸= τ), i.e., when Treasuries of
other maturities become more expensive, the demand for maturity-τ Treasuries increases.

On the supply side, we assume that government supplies Treasuries according to macroeco-
nomic conditions and the monetary policy rate. Accordingly, we specify the aggregate value of
government bond supply, or, more precisely, the supply to the public market, i.e. marketable
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Treasury securities, as
St(τ) = S̄(τ)+ζ (τ)′βt +ζr(τ)rt , (17)

or, in vector form, as
St = S̄+ζ βt +ζrrt , (18)

where
ζ = (ζ (1),ζ (2), · · · ,ζ (K))′ (19)

is an N ×K matrix. We can interpret Equation (17) as coming from a budget equation of the
government, where Treasury supply needs to adjust to the need for government financing and
government debt management, which in turn are driven by macroeconomic conditions and the
prevailing interest rate.

Next, we setup the strategic decision problem of arbitrageurs. Denote the total return from
holding a Treasury of maturity τ as

R(τ)
t+1 =

P(τ−1)
t+1 −P(τ)

t

P(τ)
t

. (20)

Accordingly, the total return of one-period Treasury is

Rt+1 = R(1)
t+1 = exp(rt)−1 ≈ rt , (21)

to which we tie our specification of the Fed’s monetary policy stance.

We assume that the arbitrageur takes advantage of investment opportunities in bonds with all
maturities, with positions Xt(τ), as well as an outside asset, with position X̃t . We view modeling
outside assets as adding an important element of realism to models in the spirit of Vayanos and
Vila (2021), as arbitrageurs risk-bearing capacity in the Treasury market plausibly depends on
their positions in other markets.

Accordingly, we model the arbitrageurs’ wealth dynamics as

Wt+1 =Wt(1+Rt)+
N

∑
τ=2

Xt(τ)(R
(τ)
t+1 −Rt)+ X̃t(R̃t+1 −Rt). (22)

We assume that the return of the outside asset is normally distributed and depends on the state of
the economy, in that

R̃t+1 = φ̃
′
βt + φ̃rrt + σ̃

′
εt+1 + σ̃

′
rε

r
t+1, (23)

where φ̃ is an K ×1 vector and σ̃ is an K ×1 vector.
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We follow Vayanos and Vila (2021) by assuming that arbitrageurs exhibit mean-variance
preferences over wealth. Accordingly, their objective function at time t is

max
{Xτ

t }τ ,X̃t

Et [Wt+1]−
γ

2
Vart(Wt+1), (24)

which arbitrageurs aim to maximize subject to the wealth dynamics specified in (22).

Finally, for each maturity τ , there is a market-clearing condition,

Zt(τ)+Xt(τ) = St(τ). (25)

We conjecture that there is an affine equilibrium where the log prices of bonds are affine
functions of state vector βt , the short-rate rt , and the latent demand shock ut ,

pt = Aβt +Arrt +Auut +C, (26)

where A = (A(1),A(2), · · · ,A(N))′ is an N ×K matrix, Ar = (Ar(1),Ar(2), · · · ,Ar(N))′ is an N ×1
vector, Au =(Au(1),Au(2), · · · ,Au(N))′ is an N×N matrix, C =(C(1),C(2), · · · ,C(N))′ is an N×1
vector.

4.2. A Simplified Version with Analytical Solutions

To gain intuition regarding the mechanisms at play in the model, we analyze a simplified version
of the model in this subsection. In particular, we assume N = 2, so there are only two maturities
for consideration that represent “short” and “long”. We assume that the preferred-habitat demand
has a simple structure with the matrix of demand response to price (see Equation (13)) as

α =

(
a −b/2
−b a/2

)
, (27)

so that the matrix of demand response to Treasury yields is(
a −b

−b a

)
. (28)

We assume that both a and b are positive, so that Treasury demand increases in its own yield, but
decreases in the other-maturity yield, which is the case for the aggregate preferred-habitat demand
as we uncovered in Section 3.

We set K = 1 so that the macro factor βt is only one dimensional, and we interpret this single-
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dimension factor as “supply” factor that drives the total debt supply. We also set φr = 0 so that
monetary policy process does not depend on the macro factor, and r̄ = 0 for simplicity. We further
set ζr = 0 so that debt supply is

S(τ)t = S̄(τ)+ζ (τ)βt (29)

for τ = {1,2}. We impose a regularity condition that ζ (2)>−θ(2) so that any supply expansion
does not automatically get overshadowed by the expansion of demand in response to such supply
expansion. Finally, for simplicity, we shut off all outside portfolio exposure by setting X̃t = 0.

Next, we solve the model and arrive at the following unique equilibrium solution for log prices,

p(1)t =−rt

p(2)t =−1+ρr + γσ2
r b

1+ a
2γσ2

r
rt −

γσ2
r (ζ (2)+θ(2))

1+ a
2γσ2

r
βt +

γσ2
r

1+ a
2γσ2

r
ut(2)+

1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ a

2γ
,

(30)

where the first equation comes from monetary policy controlling the short rate, and the second
equation comes from arbitrageurs accommodating the imbalance between Treasury supply and
preferred habitat demand subject to risk aversion. Detailed derivations are provided in Appendix
B.1, which also contains proofs of all the following propositions in this section.

Using Equation (30), we summarize the drivers of Treasury price variation in the following
proposition.

Proposition 1 (Decomposition of Treasury Pricing). Monetary policy rate rt plays a dominant

role for short-maturity Treasuries, while macro shocks and latent demand shocks become more

important for long-maturity Treasuries.

Proposition 1 is an intuitive result by simply observing Equation (30). The more general
message is that the relative importance of macro factors and latent demand increases as the maturity
of Treasuries increase, because the arbitrage force gets weaker at longer maturities. Furthermore,
Proposition 1 also implies that a demand shock, either latent demand or permanent demand, has a
larger price impact if it comes from longer maturities, because shorter-maturity demand shocks are
better accommodated by lower-risk arbitrage. Taking the limit, the one-period arbitrage is perfect
and the short rate is not affected by any demand shock.

Next, we analyze how arbitrageur risk aversion γ affects Treasury pricing.

Proposition 2 (Impact of Arbitrageur Risk Aversion). For long-term Treasuries, a larger arbi-

trageur risk aversion γ increases the magnitude of Treasury price sensitivity to the macro factor

βt , to latent demand ut , and to permanent demand θ0(2). Moreover, in the steady state, if the arbi-

trageur holds a positive amount of long-term Treasuries (i.e., S̄(2) > θ0(2)), higher risk aversion γ

increases long-term yields and also the term spread.
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Proposition 2 states that higher arbitrageur risk aversion makes Treasury price more sensitive
to many sources of variations in the model, which is intuitive given that arbitrageurs accommodate
order imbalances subject to risk aversion. Moreover, if arbitrageurs take a long position in long-
term Treasuries, they will demand a lower price and higher yield to compensate for bearing such
risks when they become more risk averse. Since the short-term rate is tightly controlled by the
Fed, this yield increase also translates into a higher term spread, making long-term Treasuries
particularly cheap compared to short-term Treasuries.

It is useful to consider two extreme cases. In the first case, we take γ → ∞, so that arbitrageurs
“drop out” from the market. Then the long-term Treasury price becomes

p(2)t =−2b
a

rt −
2
a
(ζ (2)+θ(2))βt +

2
a

ut(2)+
2
a
(θ0(2)− S̄(2)) (31)

This is a case where Treasury prices are entirely driven by supply and demand absent from strate-
gic arbitrage. Therefore, there is no distinction among a temporary latent demand shock ut , a
permanent demand shock θ0(2), or a supply shock ζ (2)βt – all of them have the same price
impact. Moreover, short-term rate rt has an impact on long-term Treasury price p(2)t only if cross
substitution b is not zero.

In the second case, we take γ → 0, so that arbitrageurs are risk neutral and arbitrage to the full
extent, leading to

p(2)t =−(1+ρr)rt +
1
2

σ
2
r (32)

which is the log Treasury price under the expectation hypothesis (the second term is the Jensen’s
term after taking logarithm). Intuitively, the current short rate is rt and in expectation the next
period short rate is ρrrt , leading to a log price of −(1+ρr)rt plus a convexity adjustment.

According to the preferred-habitat demand in (13) and the simplified elasticity matrix in (27),
the equilibrium non-arbitrageur Treasury holding is

Z(2)
t = θ0(2)+bpt(1)−

a
2

pt(2)−θ(2)βt +ut(2). (33)

Expanding the above using (30) and collecting the terms involving rt , βt , ut , and the intercept, we
obtain preferred-habitat holding (including the Fed) as

Z(2)
t =

θ0(2) 1
σ2

r
− 1

4a+ a
2γ S̄(2)

1
σ2

r
+ a

2γ
+

a
2(1+ρr)−b

1+ a
2γσ2

r
rt +

a
2γσ2

r (ζ (2)+θ(2))
1+ a

2γσ2
r

βt +
1

1+ a
2γσ2

r
ut(2). (34)

Equation (34) reflects equilibrium non-arbitrageur demand adjustments from two sources: one
is directly from how demand depends on the macro factor βt and latent demand ut absent from a
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Treasury price effect, and the other is from the response to the Treasury price change, both from the
own yield and the other yield, due to cross elasticity. We note that if γ → ∞, the above expression
converges to Z(2)

t → S̄(2)+ ζ (2)βt , i.e., the total debt supply in this simplified model as in (29).
In this extreme case, the arbitrageur holding of long-term Treasury becomes zero. Generally,
arbitrageur holding is X (2) = S(2)t −Z(2)

t , which in this simplified model is

X (2)
t =

1
σ2

r
S̄(2)+ 1

4a−θ0(2) 1
σ2

r
1

σ2
r
+ a

2γ
−

a
2(1+ρr)−b

1+ a
2γσ2

r
rt +

ζ (2)+θ(2)
1+ a

2γσ2
r

βt −
1

1+ a
2γσ2

r
ut(2). (35)

With both equilibrium prices in (30) and equilibrium portfolio allocations in (33) and (35), we
analyze the effect of cross elasticity b in the following proposition.

Proposition 3 (Impact of Cross Elasticity). A higher cross elasticity in preferred-habitat demand

leads to lower preferred-habitat investor holdings and thus higher equilibrium arbitrageur posi-

tions, which lowers equilibrium Treasury prices and increases equilibrium Treasury yields. On the

other hand, under a sufficient condition10 1−ρr + γσ2
r (a−b)> 0, a higher cross elasticity binds

Treasury yields of different maturities by reducing the gap of their interest-rate sensitivities.

Proposition 3 highlights the two distinct effects of the cross elasticity: it lowers the “bearing
capacity” of the market and depresses equilibrium Treasury prices, but also serves to bind Treasury
yields of different maturities. The first part is perhaps surprising, since the usual intuition is that
cross substitution reflects arbitrage, and when there is stronger arbitrage, the equilibrium price
impact is also smaller. Indeed, when we lower γ , as shown by Proposition 2, price impact is smaller
and arbitrage is stronger. We want to highlight that this is because the mean-variance model explic-
itly ties the own-elasticity with cross-substitution using a risk preference, while conceptually they
consist of two dimensions. Modeling the preferred-habitat demand as captured by two dimensions,
own elasticity and cross elasticity, thus reveals the richness in the preferred-habitat demand that
could not be uncovered if we imposed a mean-variance optimization problem. The spirit of this
separation is similar to the separation between risk aversion and the intertemporal elasticity of
substitution.

We next discuss how the yield curve responds to monetary policy.

Proposition 4 (Monetary Policy and the Yield Curve). If 2b/a > 1+ρr (strong cross elasticity), a

positive monetary policy shock increases the term premium and causes over-reaction of long-term

yield compared to the expectation hypothesis. On the other hand, if 2b/a < 1+ ρr (weak cross

elasticity), we obtain the opposite result and there is under-reaction of long-term yield.

10The condition 1−ρr + γσ2
r (a− b) > 0 is well satisfied according to our empirical estimations, mainly because

both γ and σr are very small, while a and b are of very similar magnitudes.
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We note that Proposition 4 sharply contrasts with the typical results in Vayanos and Vila (2021)
type of models without cross elasticity. As Proposition 2 of Vayanos and Vila (2021) shows, there
is under reaction of long-term yield compared to the expectation hypothesis. The basic intuition is
that when the monetary policy rate rises, long-term Treasuries are cheaper due to the expectation
effect, which induces preferred-habitat investors to hold more of them and reduces the holding
of arbitrageurs, therefore reducing the risk premium of long-term Treasuries and dampening the
yield increase in the first place. When there is strong cross substitution, there is another force
that preferred habitat investors tend to reduce long-term Treasury holdings when short-term rate
is higher, which then forces the arbitrageurs to increase their long-term Treasury holdings (see
Equation (35)). This counteracts with the first force and may cause the yield to be even higher than
according to the expectation hypothesis.

In Section 3, we show that for most sectors, the cross elasticity is of a similar order of
magnitude as the own elasticity. After aggregating all the sectors, we find that 2b/a = 1.84 across
maturities, while ρr = 0.78, so the strong cross elasticity is supported in the data. As a result,
our data imply overreaction of long-term yield compared to the expectation hypothesis, which
is consistent with the literature (Bekaert et al. 2013; Hanson and Stein 2015; Gertler and Karadi
2015; Kekre et al. 2024). Kekre et al. (2024) generates overreaction by introducing wealth effects
for arbitrageurs, while we achieve the same result by allowing for cross elasticities.

To further understand the intuition, we can also consider the two extreme cases in Equation
(31) and (32). We find that we obtain the same price sensitivity to the short rate rt in these two cases
if and only if 2b = (1+ρr)a, which is the cutoff in Proposition 4. Intuitively, an intermediate risk
aversion γ ∈ (0,∞) represents a case between those two extremes. Therefore, if 2b > (1+ρr)a, the
pure-demand case is stronger so that there is overreaction to the policy rate for γ ∈ (0,∞). When
2b < (1+ρr)a, the pure-demand case is weaker so that there is underreaction to the policy rate for
γ ∈ (0,∞).

Apart from traditional monetary policy, unconventional monetary policy can also be analyzed
within the framework. We interpret QE as a demand shift, i.e., a higher θ0(2).

Proposition 5 (QE and Treasury Pricing). QE increases Treasury prices and reduces Treasury

yields.

Proposition 5 indicates the pivotal role of Fed’s demand in the Treasury market. With a
persistent QE in place (higher θ0(2)), the Fed permanently increases Treasury prices and lowers
Treasury yields.

We note that in this two-maturity model, there is no difference between a temporary demand
shock ut(2) and a permanent demand shock θ0(2), since after one period, the two-period bond
becomes one period and the price is fully determined by the monetary policy rate. In the full model,
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we expect the effect to be stronger for permanent shocks, and we will examine this hypothesis
quantitatively using the full model.

Finally, we want to caution readers that although Propositions 2 to 5 provide very sharp
characterizations regarding the roles of cross elasticities, price responses, and arbitrageur positions,
these predictions are obtained under a drastic simplification of the full model. In the significantly
richer full model, we consider more than two maturities, so the risk premium on the macro
factors βt will be priced into long-term Treasury pricing, and the demand elasticity matrix α is
more complicated than the one in Equation (27). More importantly, the full model accounts for
arbitrageur’s outside portfolio which is affected by all the important factors including rt and βt ,
so predictions about how the short-rate rt and macro factors βt affect the Treasury yield curve are
more complicated than the simple predictions in this section. Nevertheless, we believe this simple
model still provides useful intuition that guides and helps us interpret our quantitative analysis in
the following sections.

5. Model Solution and Estimation

In this section, we solve and estimate our equilibrium model, and evaluate model fit and steady-
state implications.

5.1. Model Solution

We start with holding returns,

r(τ)t+1 = p(τ−1)
t+1 − p(τ)t

= A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ
1/2

εt+1)+Ar(τ −1)(r̄+φ
′
r(Φ(βt − β̄ )+Σ

1/2
εt+1)+ρrrt +σrε

r
t+1)

−A(τ)′ ·βt −Ar(τ)rt +Au(τ −1)′ut+1 −Au(τ)
′ut +C(τ −1)−C(τ).

(36)

We can approximate the total holding return as11

R(τ)
t+1 = exp(r(τ)t+1)−1 ≈ r(τ)t+1 +

1
2

Vart [r
(τ)
t+1]. (37)

11The approximation becomes exact when we take a continuous-time approach. Refer to Greenwood et al. (2023)
for a more detailed discussion.
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Since there is no uncertainty regarding the current short rate, this approximation also leads to
Equation (21). We can thus express the total return as

R(τ)
t+1 = A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ

1/2
εt+1)−A(τ)′ ·βt +C(τ −1)−C(τ)

+
1
2
(
A(τ −1)′+Ar(τ −1)φ ′

r
)

Σ(A(τ −1)+φrAr(τ −1))

+Ar(τ −1)(r̄+φ
′
r(Φ(βt − β̄ )+Σ

1/2
εt+1)+ρrrt +σrε

r
t+1)−Ar(τ)rt

+
1
2
(Ar(τ −1)σr)

2 +Au(τ −1)′ut+1 −Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1).

(38)

To simplify expressions, we denote

Â(τ −1) = A(τ −1)+φrAr(τ −1), (39)

so that Â(τ −1)′ = A(τ −1)′+Ar(τ −1)φ ′
r. Therefore, Equation (38) can be simplified as

R(τ)
t+1 = A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ

1/2
εt+1)−A(τ)′ ·βt +C(τ −1)−C(τ)

+
1
2

Â(τ −1)′ΣÂ(τ −1)+Au(τ −1)′ut+1 −Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1)

+Ar(τ −1)(r̄+φ
′
r(Φ(βt − β̄ )+Σ

1/2
εt+1)+ρrrt +σrε

r
t+1)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2.

(40)

We note that the return R(τ)
t+1 in (40) mainly has four components. The first one is the change in

macroeconomic factors βt . The second one is the the change in latent demand ut . The third one is
the change in the monetary policy rate rt . The final component are the Jensen terms for each type
of risk, including the macroeconomic shocks, monetary policy shocks, and latent demand shocks.

Wealth thus evolves as

Wt+1 =Wt(1+ rt)+
N

∑
τ=2

Xt(τ)(R
(τ)
t+1 − rt)+ X̃t(R̃t,t+1 − rt). (41)

To simplify notation, it is convenient to define the expected return on Treasuries of maturity τ as
µ
(τ)
t , with

µ
(τ)
t ≡ Et [R

(τ)
t+1] (42)

Next, we solve for the mean-variance problem in (24) and derive arbitrageur’s first-order
condition regarding Treasury holdings. For tractability, we make a simplifying assumption that
the idiosyncratic latent demand shocks are not priced and do not carry a risk premium. This is a
typical result in most asset pricing models. It is important to note that this assumption does not
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imply no price impact by latent demand shocks, since ut can still directly affect price via demand
pressure. In Appendix C.4, we examine this assumption numerically.

Then we obtain the first-order condition as

µ
(τ)
t − rt = Â(τ −1)′ γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)Xt(τ̂)

)
+Σ

1/2
σ̃ X̃t

)
︸ ︷︷ ︸

λβ ,t

+Ar(τ −1)′ γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)Xt(τ̂)

)
+σrσ̃rX̃t

)
︸ ︷︷ ︸

λr,t

,

(43)

where λβ ,t is the price of risk of macroeconomic shocks and λλ ,t is the price of risk of monetary
policy shocks. For the Treasury price exposure to macroeconomic shocks, Â(τ −1), the expected
return µ

(τ)
t − rt needs to provide compensation, and the compensation per unit of exposure is

reflected by λβ ,t . Similarly, the exposure of the Treasury price to interest-rate risks, Ar(τ − 1),
requires compensation as reflected by λr,t .

Moreover, Equation (43) implies that the price of risk in this model is driven by arbitrageur’s
total portfolio exposure to various risk factors, including macroeconomic risks and interest-rate
risks. Part of such exposure is driven by arbitrageur’s Treasury positions X (τ)

t , but it is also affected
by the “outside asset” position X̃t , and its risk exposure. As we will show later, the model allows
us to quantify the relative contributions of each component to the price-of-risk variations.

Next, we solve for Xτ
t using the market clearing Equation (25) and replace Zt(τ) with (12),

St(τ) with (17), thereby pinning down the equilibrium arbitrageur holdings12 as

Xt(τ) =
(
S̄(τ)+ζ (τ)′βt +ζr(τ)

′rt
)
−
(
θ0(τ)−α(τ)′pt −θ(τ)′βt +ut(τ)

)
. (44)

Plugging the definition of µ
(τ)
t in (42) and (40) as well as the equilibrium arbitrageur holdings

Xτ
t in (44) into the pricing equation (43), we obtain

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)+C(τ −1)−C(τ)

+Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2

−Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1)− rt

(45)

12Since arbitrageurs accommodate demand shocks, they are not price takers. Therefore, we cannot view this
equation as a typical “demand function”.
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=Â(τ −1)′γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′pt −θ(τ̂)′βt +ut(τ̂))

))
+Σ

1/2
σ̃ X̃t

)

+Ar(τ −1)γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′pt −θ(τ̂)′βt +ut(τ̂))

))
+σrσ̃rX̃t

)
.

Note that we do not have sufficient degrees of freedom to pin down all dynamic parameters of
X̃t (since we do not know the asset returns or positions of the outside asset). Instead, we assume
that they can be spanned by βt and rt , so that

Σ
1/2

σ̃ X̃t = Ψβt +Λrt +ψ

σrσ̃rX̃t = Ψrβt +Λrrt +ψr.
(46)

The extra parameters Ψ, ψ , Λ, Λr, Ψr, and ψr are useful to fit the arbitrageur model, but these
parameters cannot be directly observed or estimated. The parameter Ψ is a K ×K matrix and ψ is
a K ×1 vector. The loading Ψr is a 1×K vector and ψr is a scalar.

With the assumption in (46), and the affine expression of pt in (26), we can rewrite the
equilibrium condition in (45) purely in terms of βt , rt , and ut . Because the equation holds for
all values of these variables, the coefficients in front of them must all be matched. Matching the
coefficients of βt leads to

A(τ −1)′Φ−A(τ)′+Ar(τ −1)φ ′
rΦ

= Â(τ −1)′ γ

((
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))
+Ψ

)
︸ ︷︷ ︸

λβ ,β

+Ar(τ −1)γ

((
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))
+Ψr

)
︸ ︷︷ ︸

λβ ,r

.

(47)

Matching the coefficient of rt leads to

Ar(τ −1)′ρr −Ar(τ)−1 = Â(τ −1)′ γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζr(τ)

′+α(τ̂)′Ar
)
+Λ

)
︸ ︷︷ ︸

λr,β

+Ar(τ −1)′ γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζr(τ)

′+α(τ̂)′Ar
)
+Λr

)
︸ ︷︷ ︸

λr,r

(48)
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Matching the coefficient of ut leads to

−Au(τ)
′ = Â(τ −1)′γΣ

((
N

∑
τ̂=2

Â(τ̂ −1)α(τ̂)′Au

)
−
(
0, Â(1), ..., Â(N −1)

))

+Ar(τ −1)′γσ
2
r

((
N

∑
τ̂=2

Ar(τ̂ −1)α(τ̂)′Au

)
− (0,Ar(1), ...,Ar(N −1))

) (49)

Matching the constant term leads to

A(τ −1)′(I −Φ)β̄ +Ar(τ −1)(r̄−φ
′
rΦβ̄ )+

1
2

Â(τ −1)′ΣÂ(τ −1)

+
1
2
(Ar(τ −1)σr)

2 +
1
2

Au(τ −1)′ΣuAu(τ −1)+C(τ −1)−C(τ)

= Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
S̄(τ̂)−

(
θ0(τ̂)−α(τ̂)′C

))
+ψ

)

+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
S̄(τ̂)−

(
θ0(τ̂)−α(τ̂)′C

))
+ψr

)
.

(50)

The common structure in the iterative Equations (47), (48), (49), and (50) is that they are
all related to the habitat-demand price elasticity α(τ). Therefore, the price elasticity of habitat-
demand is central in driving the pricing of Treasury securities. Moreover, the arbitrageur risk
aversion coefficient γ also shows up in all equations, indicating that arbitrageurs are critical for
understanding the price fluctuations in the Treasury market, as already shown in Proposition 2.

5.2. Estimation Methodology

The model has a very high-dimension parameter space. To quantify the model, we directly set
parameters having a direct mapping to the data, and leave the rest for estimation. In particular, we
use the instrumented regressions of demand estimation to directly uncover the preferred-habitat
demand in (13), including parameters θ0, α , and θ that we summarize in Table 14. Then we
estimate the dynamics of Treasury supply in (18) and obtain coefficients S̄, ζ , and ζr. Next, we
use a regression to uncover monetary policy rules in (10), setting r̄, φr, ρr, and σr. Finally, we
implement a vector autoregression analysis on macro factors to uncover β̄ , Φ, and Σ in Equation
(9). We provide details on all of these steps in Appendix B.3.

A key observation is that since Ψ, Ψr, Λ, and Λr are unknown and have the same dimensions
as λβ ,β , λβ ,r, λr,β , λr,r, respectively, we can directly estimate the latter set of parameters, and then
back out the former after fitting the model. Moreover, the iterative equations in (47), (48), and
(49) indicate that Au, which is the loading on the latent demand vector, does not enter the pricing
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of macroeconomic factors and the interest-rate factor. Therefore, we can solve Au after obtaining
A and Ar from (47) and (48). Finally, given ψ , ψr, Au, A, Ar, and γ , we can obtain C from the
Equation in (50).

We find that Equations (47), (48), (49), and (50) do not exhibit sufficiently many degrees of
freedom to pin down all parameters. In particular, we need an extra moment for γ . We find that
the steady-state arbitrageur’s holding of long-term Treasuries as a fraction of long-term Treasury
outstanding is a moment that is very sensitive to γ . Denote the data moment as ho, which is 2% for
Treasuries above 1Y maturity in our main sample from 2011 to 2022. Denote the model-implied
moment as h. Denote the actual Treasury yield as yo

t (τ) for maturity τ , and the model-implied
Treasury yield as yt(τ). Then the estimation problem is as follows:

min
{λβ ,β ,λβ ,r,λr,β ,λr,r,γ,ψ,ψr}

E
[

M · (h−ho)2 + ∑
t

∑
τ

(yt(τ)− yo
t (τ))

2
]
, (51)

subject to the restriction in (47), (48), (49), and (50). We pick M to be large so that the average
intermediary Treasury holding is matched really well. In our implementation, we pick M =

1000000 and increasing M further does not change the results. For convenience, we rewrite (47)
and (48) as

A(τ)′ = A(τ −1)′Φ+Ar(τ −1)φ ′
rΦ− Â(τ −1)′λβ ,β −Ar(τ −1)λβ ,r (52)

Ar(τ) = Ar(τ −1)ρr −1− Â(τ −1)′λr,β −Ar(τ −1)λr,r, (53)

where Â(τ −1) is a function of A(τ −1) and Ar(τ −1) as defined in (39). The model implies that
yt(τ) = −pt(τ)/τ , where pt(τ) satisfies the pricing equation in (26), with ut being unobservable
with mean 0, variance Σu, and uncorrelated with βt and rt . As a result, we can rewrite the objective
function as

min
{λβ ,β ,λβ ,r,λr,β ,λr,r,γ,ψ,ψr}

E
[

M · (h−ho)2 + ∑
t

∑
τ

(Aβt +Arrt +C+ τyo
t (τ))

2
]
, (54)

where we assume that ut does not depend on βt and its history so that the terms involving ut drop
out. In other words, we require the latent demand shocks to be non-systematic.

Next, with λβ ,r, λβ ,β , λr,β , λr,r, γ , and Au solved, we can recover the intermediary outside
asset risk loadings Ψ, Ψr, Λ, Λr, from the definitions of λβ ,r, λβ ,β , λr,β ,and λr,r in Equations (47)
and (48). Knowing these “outside-asset” loadings inform us about the contribution of Treasury
holdings in the variation of price of risk by arbitrageurs.
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5.3. Model Estimation and Fit

We choose the macro state vector as βt = (credit spread, GDP gap, core inflation, debt/GDP),
in line with our empirical analysis. The variables GDP gap and core inflation together reflect
aggregate demand and supply fluctuations in the economy, and they are also the variables that
drive monetary policy in the Taylor rule. Debt/GDP is important for keeping track of the total
debt burden and could reflect fiscal shocks that are orthogonal to aggregate demand and supply
shocks. The credit spread reflects credit market conditions and is also an important indicator for
aggregate macroeconomic fluctuations (Gilchrist and Zakrajšek (2012), Krishnamurthy and Muir
(2017)). Adding additional macroeconomic variables does not increase the explanatory power of
the model for Treasury yield dynamics but could introduce overfitting problems, so we choose this
set of four macro variables. We estimate a VAR of the form (9) using the same sample period as
our main empirical analysis. We find that core inflation and debt/GDP are both highly persistent.
Nevertheless, the maximum absolute value of the eigenvalue is 0.89, so macro variables converge
to their long-run average.

To fit the monetary policy rule, we have to use a longer time period, because the monetary
policy rate does not exhibit much variation during our main sample period. In particular, we use
the post-Volcker period (1990 to 2024) excluding the zero lower bound (ZLB) period (2008-2015).
We start from 1990 because that is when the Fed gained credibility in its fight of inflation. We
find that the Fed lowers the interest rate if the credit spread is high, the GDP gap (GDP deviation
from potential GDP) is low and tightens the interest rate if inflation is high. The coefficients on
GDP gap and inflation have the same signs as in the classical Taylor rule (Taylor 1993). Moreover,
there is a moderate amount of monetary policy inertia reflected by the coefficient of 0.78 on the
lagged policy rate. This dependence on lagged policy rate generates an impact of monetary policy
rate on long-term yields from the expectations effect and is critical to understand how yield curve
responds to monetary policy shocks εr

t+1.

Due to economic growth, portfolio holdings in dollar values will not be stationary. For station-
arity, we scale all quantities by the ratio of potential GDP in that particular quarter over the baseline
value at the beginning of our sample period. For example, the ratio of potential GDP in 2021 Q3
to that in 2011 Q3 is 1.46. The dollar value of total debt supply in 2021 Q3 is 22.2 trillion, but we
use a scaled value, namely 22.2/1.46 = 15.2 trillion. Our scaling accounts not only for inflation
but also economic growth in general. The underlying assumption is that after accounting for the
scaling effect, all quantities are stationary in the fundamental state variables.

We estimate problem (54) on our main data sample from 2011 Q3 to 2022 Q4. In Figure
4, we show that the model can fit the the term structure pretty well, both across maturities and
over time. Note that these results are achieved by having only fundamental economic variables
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as state variables, which is much more challenging than a typical affine term structure model that
includes latent factors coming directly from Treasury yields. The equilibrium restrictions in the
model impose tight restrictions on how flexibly the model can explain the dynamics of Treasury
yields.

5.4. Quantifying Arbitrageur’s Risk Aversion

Our model identifies arbitrageur’s risk aversion by including the moment of long-term Treasury
holdings by arbitrageurs. The data moment is 2%, i.e., arbitrageurs hold about 2% of total out-
standing of > 1Y Treasuries. The model accurately matches this moment with less than 10−6 of
error, and the resulting risk-aversion parameter is γ = 0.053. This value is much smaller than the
calibrated value in Vayanos and Vila (2021)13, which is about 7. The difference is more than 100
times! There are two main reasons for this large gap. First, we accommodate rich macro dynamics
beyond interest-rate risks or supply risks. Second, we allow for dynamics in the arbitrageur’s
outside portfolio exposure. Both of these features of our model indicate that we do not need a large
risk aversion to generate volatile long-term Treasury yields in the data, which is needed if there are
fewer sources of risks and arbitrageurs’ only source of risks is Treasury holding.

We want to highlight that this value of γ is still significantly different from zero, because
the equilibrium price impact of demand shocks is still non-negligible, despite smaller than other
financial markets. We will discuss this point in Section 6.2.

The novelty of our approach is that it only relies on quantities to pin down the arbitrageur’s
risk aversion. As a result, the model can generate realistic quantity allocations across sectors and
build a tight linkage between quantities and prices. Our approach relies on granular data that allow
us to distinguish arbitrageurs explicitly versus preferred habitat investors.

5.5. Steady State Yield Curve and Portfolio Holdings

In Figure 5 panel (a), we illustrate the steady-state yield curve. This steady-state yield curve is
upward-sloping and mainly reflects the average shape of the yield curve in our model estimation
period.

In Figure 5 panel (b), we illustrate the steady-state portfolio allocations across different sectors.
The model implies that in the long run, foreign investors are still the largest holder among all
groups of investors, and the Fed also plays an important role. Insurance and pension funds
are not large holders, but they predominantly hold long-term Treasuries. Finally, as targeted by

13Table I of Vayanos and Vila (2021) reports a demand slope of 5.21 and risk aversion multiplying demand slope as
35.3, indicating a risk aversion of about 7.
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the calibration, arbitrageurs’ longer-term (>1Y) Treasury holding is 2% of the total longer-term
Treasuries outstanding.

6. Dissecting the Treasury Market

In this section, we put our estimated model to work, and illustrate its basic mechanics and im-
plications by dissecting the Treasury market. In particular, we decompose Treasury yields into
different driving forces, quantify the impact of arbitrageur risk aversion, and evaluate the role of
cross elasticities. Our quantitative analyses are guided by intuitions from Proposition 1 to 3.

6.1. Decomposition of Treasury Pricing

We start by taking guidance from the model to decompose Treasury pricing in a number of different
ways.

First, we use the model-implied state variables to estimate the regressions in (26) and examine
the contribution of each factors. We use the Shapley value of R2 to measure the relative contribution
of each variable, including macro variables (taken together), monetary policy, and latent demand.
A key advantage of our approach is that from our granular demand data, we explicitly recover the
latent demand component, which is treated as latent factors in the the literature (Ang and Piazzesi
2003; Bikbov and Chernov 2010; Joslin et al. 2014). We express the contribution of each variable
as the Shapley value of R2, which is calculated as the marginal contribution of each variable to
the R2 among all possible sets of dependent variable combinations. The Shapley value of macro
variables is taken as the sum of Shapley values on all macro variables. Finally, we divide each
individual Shapley value by the total Shapley value so that the scaled values add up to 100%.

As shown in Figure 6 panel (a), the relative contribution of different economic forces varies
across the term structure. The patterns are exactly in line with the theoretical predictions of
Proposition 1. For short-maturity Treasuries, monetary policy plays the dominant role, explaining
the vast majority of variations, while macro variables play a secondary role. We note that latent
demand almost has no explanatory power for short-maturity Treasury yields. As the maturity
increases, the relative importance of the FFR declines while the relative importance of both macro
variables and latent demand shocks expand. In particular, for long-maturity Treasuries, macroe-
conomic variables can explain about half of the variation in yields. The same exercise on prices
(not reported) gives very similar results. Overall, these results confirm the intuition provided in
Proposition 1.

Next, we use the model to decompose Treasury price variations into supply and demand
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shocks. The idea is that arbitrageurs take the order imbalances in the market and price Treasuries,
so factors affecting the supply and demand imbalance play an important role in Treasury pricing.
Define the sector-i specific shock as the following:

∆Zi
t =−θ(τ)Σ1/2

εt +ut ,

which also includes shocks to the Fed’s portfolio. Similarly, we can denote the supply shock as

∆St = ζ
′
εt +ζrσrε

r
t .

With these supply and demand shocks, we can decompose their contribution to Treasury yield
changes, ∆yt(τ) = yt(τ)− yt−1(τ) on demand and supply shocks and calculate the Shapley value
in the same way as in the previous decomposition.

The second decomposition is conceptually distinct from the first one and focuses on different
aspects of Treasury yield variations. The first one tells us how state variables and latent demand
drive the overall variations in Treasury yields. In contrast, the second one focuses on the unpre-
dictable components of supply and demand.

As shown in Figure 6 panel (b), the decomposition varies across the maturity structure of
Treasuries. We find that debt supply shocks mainly play an important role at long maturity, while
Fed portfolio shocks contribute significantly to yield variations at the short maturity. Although
banks’ holdings are very small compared to the entire market (half a trillion as shown in Figure
5), banks play a sizable role in transmitting shocks to the Treasury market, especially the medium
maturity bucket (1∼5 years). Foreign investors have significant shocks to both short maturity and
medium maturity Treasuries, but not long maturity Treasuries. Although the total contribution of
foreign investor demand shocks is similar to that of banks, foreign holdings are much larger (about
5 trillion as shown in Figure 5) than bank holdings, reflecting that foreign investors are mostly
passive and not shocking the Treasury market.

Other U.S. investors’ demand, which is the residual sector’s demand in our estimation, mainly
shocks the long-maturity bucket, as indicated by Figure 2. Money market funds only transmit
shocks to short maturity Treasuries, which is what we expect given their mandate of holding only
money-market instruments. Finally, insurance companies and pension funds (ICPF) significantly
contribute to variations in long-maturity yields, consistent with their segmentation in the long-
maturity Treasury market.

Overall, we find that the contribution of each sector to demand shocks could be very different
from the amount of holdings, since the latter mainly reflects a stable preference, not how actively a
sector trades on shocks. Therefore, decompositions in Figure 6(a) and Figure 6(b) reflect different
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aspects of what drives Treasury pricing.

6.2. The Impact of Arbitrageur Risk Aversion

As shown by Proposition 2, the risk aversion of arbitrageurs is a critical parameter that drives
how Treasury yields respond to different types of shocks. To quantitatively show the effects of
γ , we will vary γ slightly around the estimated value and calculate sensitivities of various prices
and elasticities. We interpret this variation as reflecting the impact of bank regulations or financial
disruptions on the functioning of the Treasury market, including the tighter bank regulation post-
GFC and also the Treasury market disruptions in crisis episodes such as March 2020 (Duffie 2020;
He et al. 2022).

The results are shown in Figure 7. In panel (a), we analyze the response of the steady-state
yield curve to a change of risk aversion γ . A value of 1 implies that if risk aversion increases by
1%, then steady-state yields also increase by 1%. We find that there is a slightly negative change
for yields for medium and short maturities, but a dramatic increase for long maturities. The strong
positive response of long-maturity Treasury yields is in line with the intuition in Proposition 2.

In panel (b), we analyze how γ affects the price sensitivity to the policy rate, which is Ar

in Equation (26). We find that across all maturities, a higher risk aversion increases the price
sensitivity to the policy rate. As a result, a higher γ implies that Treasury yields are more responsive
to monetary policy changes. Since the persistence parameter, ρr, in (10) remains unchanged, this
change in Ar is due to the risk premium response to monetary policy rather than the expectation
component.

In panel (c), we analyze how γ affects the price sensitivity to latent demand shocks, which
is Au in Equation (26). Since Au is an N ×N matrix, we take averages across the rows and use
the average price response across different types of shocks, i.e., we plot ∂

∂ log(γ) log( 1
N Au · 1). We

note that across all maturities, the response becomes stronger, and it is most prominent at the long
maturity.

In panel (d), we show how γ affects the price sensitivity to permanent demand averaged across
permanent demand shocks across different maturities, i.e., we plot ∂

∂ log(γ) log( 1
N

∂ p
∂θ0

· 1). We find
that when arbitrageurs become more risk averse, the price impact of permanent demand shocks
is more prominent for medium maturities, but much less prominent for long maturities. Since we
have already shown in Section 4.2 that this value should be positive under the simplified model,
the negative reaction should come from how risk aversion changes the impact of macroeconomic
risks or outside portfolio risks.

Next, to highlight the importance of explicitly modeling an arbitrageur, i.e., setting γ to a finite
value to match a moment rather than setting γ = ∞ and thus excluding the arbitrageur, we will
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compare the impact of demand shocks under the two scenarios.

The model prediction is quite different from the demand systems that do not explicitly capture
arbitrageurs. When arbitrageurs are removed from the system, market clearing implies

pt = α
−1 ((θ0 −θβt +ut)−

(
S̄+ζ βt +ζrrt

))
. (55)

Therefore, absent the arbitrageur, the equilibrium price response to a demand shock is simply
α−1. On the other hand, with arbitrageurs, the equilibrium demand elasticity is also affected by
arbitrageur risk-aversion γ , the volatility of macroeconomic shocks Σ, monetary policy uncertainty
σr and inertia ρr, and the persistence of macroeconomic dynamics Φ.

In Table 5, we illustrate the equilibrium Treasury price response (in %) to a $100 billion latent
demand shocks on a certain maturity bucket. In Panel A, we report the values of the price elasticity
in the full model with arbitrageurs. Since in our empirical investigation, we separate all Treasuries
into three buckets, we only illlustrate the responses for these three maturity buckets, picking the
average duration as the representing maturity. We find that for the same shock (i.e., same row
of the table), long maturity price response is much stronger. For example, the response of long-
maturity Treasury price is 16 times larger than that of short-maturity Treasury price response,
given a demand shock on short-maturity Treasuries. Moreover, demand shocks on longer-maturity
Treasuries is more powerful. For example, a $100 billion dollar demand shock on long-maturity
Treasuries increases the valuation of long-maturity Treasuries by 0.688%.

In Panel B, we take out the arbitrageur (i.e., setting γ = ∞), and examine the corresponding
price elasticity. Without arbitrageur, the market clearing price is given by (55). The price elasticity
assuming no arbitrageur is generally one to two orders of magnitude larger than the case with
arbitrageur. Clearly, without accounting for arbitrageurs, the price impact on T-bills is too large
and would never occur with a Federal Reserve that tightly controls the money market. In our
model with arbitrageurs, since the Fed keeps a tight control on the monetary policy rate by actively
accommodating any demand shocks in the one-period (one quarter) Treasury market, and with
arbitrageur, such a force is present across the entire term structure and becomes weaker at longer
maturities. Therefore, demand shocks on shorter-maturity Treasuries have a smaller effect on the
yield curve.

This stronger arbitrage is clearly illustrated in Panel C of Table 5, where we present the ratio
of price impact between the case without arbitrageur and the case with arbitrageur. On average,
the price impact in the case without arbitrageur is more than 100 times the price impact with
arbitrageur. In Appendix ??, we also show the impact of permanent demand shocks with and
without arbitrageurs and we obtain a similar conclusion.

We note that the results in Table 5 do not contradict those in Figure 7, where we locally vary
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the risk aversion parameter γ . Due to the nonlinearity in the model, locally the price sensitivity to
permanent demand shocks at certain maturities decreases with γ , but globally, the predictions are
consistent with the intuition in Proposition 2 derived from our simplified model.

6.3. How Elastic is the Treasury Market?

Given the price responses of each maturity bucket in Table 5, we can calculate the aggregate
Treasury market elasticity. In particular, we define a Treasury market multiplier in the same spirit
as (Chaudhary et al. 2022) and (Gabaix and Koijen 2021), which is the total valuation change of
the whole Treasury market for a $1 billion dollar demand shock that reflects the overall Treasury
market.

Using the values in Table 5 and average dollar outstanding of each maturity bucket as weights,
we find that the total market multiplier for a representative latent demand shock is 0.27. This
implies that for a $100 billion dollar demand shock on the whole Treasury market, the total
Treasury valuation increases by $27 billion dollars. On the other hand, the multiplier is 1.00
for a representative permanent demand shock. 14

In contrast, the multiplier for corporate bonds is 3.5 at the rating level aggregation (Chaudhary
et al. 2022) and 5 in the stock market (Gabaix and Koijen 2021). As a result, price impact in the
Treasury market is weaker, which suggests that the Treasury market is elastic.

However, in the same spirit as the previous section, once we remove the arbitrageur (i.e., setting
γ = ∞), Treasury market multiplier increases to 18.00, which is much bigger than the multipliers of
corporate bonds and equity.15 Given this, we conclude that the Treasury market is elastic because
of low arbitrageur risk aversion.

6.4. The Impact of Cross Elasticities

Allowing for cross elasticities in preferred-habitat demand is a major innovation in our framework
compared to Vayanos and Vila (2021). According to Proposition 3, higher cross elasticities in the
preferred-habitat demand lower equilibrium Treasury prices, but reduce the gap of interest-rate
sensitivities across maturities. In this subsection, we evaluate whether these predictions are also
present in our quantitative model.

In Figure 8, we show the impact of the cross elasticities. Panel (a) illustrates that the arbitrageur
positions increase as cross elasticities increase. Quantitatively, a 1% increase of all cross elasticities
will increase the arbitrageur position by about 4%.

14See Appendix C.1 for more details on calculating market multipliers for both latent and permanent demand shocks.
15See Appendix C.1 for more details.
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As shown by Proposition 3, such an increase in arbitrageur holdings increase the risk premium
and depress Treasury prices. Indeed, as shown by Panel (b), equilibrium Treasury prices fall, and
the price reaction is much more prominent at medium and long maturities. Quantitatively, a 1%
increase of all cross elasticities will depress Treasury prices by about 20 bps in the medium and
long maturity buckets, but less than 1 bps for Treasuries below 1Y. This tapering effect at the short-
maturity end is consistent with short-maturity demand shocks having lower price impact, as shown
in Table 5.

Since prices decrease with cross elasticities, yields increase accordingly, as shown in Panel
(c). We find that the increase of yields is most prominent for the medium maturity bucket. Conse-
quently, higher cross elasticities will render the yield curve more hump-shaped.

Finally, in Panel (d), we illustrate the interest-rate sensitivity gap, defined as the difference
of yield sensitivities between short-maturity and long-maturity Treasuries. Since short-maturity
yields are more responsive than long-maturity yields, this gap is always positive. We plot how this
gap deviates from its baseline when we increase cross elasticities. We find that a one percentage
increase of all cross elasticities decreases the interest-rate sensitivity gap by about 2%.

In summary, according to our quantitative analysis, higher preferred-habitat cross elasticity
increases arbitrageur Treasury holding, decreases Treasury prices, and shrinks interest-rate sensi-
tivity gaps, all consistent with Proposition 3.

7. Conventional and Unconventional Monetary Policies

Our estimated model provides a suitable laboratory to provide quantitative guidance regarding how
conventional and unconventional monetary policies affect the Treasury market and the yield curve.
In this section, we analyze both monetary policy and quantitative easing/tightening. Given our
granular data and quantitative model, we zoom in on Fed’s portfolio adjustments. We show Fed
policy rules, i.e., how policies depend on the underlying economic state, affect the Treasury yield
curve and portfolio adjustments.

7.1. The Impact of Conventional Monetary Policy

In this subsection, we analyze the impact of a one-standard deviation shock to monetary policy,
εr = 1, at the steady state. Given an annualized standard deviation of 0.75%, this is equivalent to a
positive shock to the short rate by 0.75%. In Figure 9, we illustrate how the term structure responds
to an increase in the monetary policy rate. The left panel illustrates the full response of the yield
curve, as well as the expected component. Absent from risk premium changes, the expected future
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short rate change is Et [∆rt+h] = σrρ
h
r , and the expectation component of the yield curve change

for maturity τ is
1
τ

τ−1

∑
h=0

σrρ
h
t . (56)

As shown in panel (a) of Figure 9, this expectation component declines quickly over maturity,
approaching almost zero at around a 15 year maturity. On the other hand, the full response implied
by the model strongly reacts to the monetary policy shock even at a 30 year maturity. Due to the
difference, the risk premium component, which is the difference between the full response and the
expectation component, positively responds to a monetary policy shock, as shown in panel (b).
The positive response of term premium to monetary policy shocks and the “excessive reaction” of
very-long maturity Treasuries are well-documented facts in the term structure literature (Hanson
and Stein 2015).

Why do the term premia “over react” to a monetary policy shock, contrary to the intuition
of Vayanos and Vila (2021)? In Vayanos and Vila (2021), a higher monetary policy rate reduces
Treasury prices and thus boosts preferred-habitat demand, which causes the arbitrageurs to reduce
their positions in Treasuries, leading to a lower risk premium and thus a lower term premium. On
curve again in Figure 10. Consistent with the model intuition, once the cross elasticity weakens,
there is under-reaction of the yield curve compared to the expectation hypothesis, and we are
back to the baseline results in Vayanos and Vila (2021). As a result, obtaining the correct cross
elasticities in preferred-habitat demand functions is crucial for getting the right response of the
term premium to monetary policy shocks.

Our quantitative result of positive term premium response to monetary policy tightening is con-
sistent with findings in Hanson and Stein (2015) that long-term real rates are much more sensitive
to monetary policy shocks than implied by the expectation hypothesis. The explanation in Hanson
and Stein (2015) is that bond investors are yield-oriented, comparing long-term yields with short-
term yields when they make investment decisions of long-term bond holdings. Our estimation
of cross elasticity in preferred-habitat demand is consistent with this explanation. Moreover, our
evidence from a quantitative model of the whole Treasury market goes beyond the evidence of only
commercial banks in Hanson and Stein (2015).

Next, we analyze the portfolio adjustment to the same Fed policy shock. Fed policy shocks
may change the total supply of government debt, which has to be accounted for in the portfolio
allocation. In Table 6, we illustrate sector-level portfolio adjustments in response to the monetary
policy shock. The general pattern is that the government supplies more short-maturity bonds while
reduces long-term bond supply, with a total net change of Treasuries outstanding of zero. The
zero total response of debt supply to a contemporaneous monetary policy rate shock is because by
definition, total debt supply is driven by the contemporaneous macro variable Debt/GDP, which
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causes the aggregate loadings on other factors, including the current monetary policy rate, to be
close to zero. In response to both a higher short-term interest rate and a larger supply of short-
term Treasuries, almost all investors increase their positions in short-term Treasuries, especially
the money market funds (MMF) and arbitrageurs.

We observe a very notable change in the Fed portfolio. The model implies that the Fed
will significantly reduce long-term Treasury holdings, which can be interpreted as quantitative
tightening. This adjustment is consistent with a coherent monetary policy stance that when the Fed
tightens monetary policy, it uses both the short rate and its balance sheet.

Given that Fed sales of long-term Treasuries go beyond the shrinking of the corresponding
supply, other investors need to absorb a net increase of long-term Treasuries. The most significant
expansion comes from “U.S. other”, which is the sector that contains U.S. corporations, certain
pension funds, and households. We also note that foreign investors are aggressively selling Trea-
suries in response to a monetary tightening. This is perhaps somewhat puzzling compared to the
typical international capital flows in a Fed tightening cycle. We want to emphasize that the foreign
investor demand coefficients on own yield and other yield are not significant and the signs are
sensitive to how we infer the medium and long maturity positions.

Overall, a one standard deviation monetary policy shock coincides with the Fed tightening
its balance sheets, which induces large portfolio adjustments in the market, causing MMF and
arbitrageurs to significantly increase their positions. Moreover, the duration of total Treasury
supply significantly decreases with a higher policy rate.

7.2. How Does Fed Balance Sheet React to Treasury Market Shocks?

Next, we analyze how the Fed balance sheet reacts to sell shocks and the role of the cross elas-
ticity of the Fed’s “demand function”. We will implement three exercises. First, we introduce a
temporary latent demand shock and examine the response of the Fed balance sheet together with
other sectors. Second, we conduct a similar analysis for a permanent demand shock. Finally, we
study the role of the cross elasticity in the Fed’s demand function and its implications on portfolio
allocations.

We use granular sector-level demand functions to study how each sector adjusts to latent
demand shocks at the average state in the model. We start with the equilibrium with a zero latent
demand shock at the steady state, so that the benchmark price is p̄ = Aβ̄ +Ar r̄ +C. Next, we
introduce a demand shock ∆u to the model, and then analyze how each sector absorbs this shock.
The new price will be p = Aβ̄ +Ar r̄+Au∆u+C, with corresponding change ∆p = p− p̄ = Au∆u.
Each sector i, including the Fed, absorbs this shock according to the demand specifications in
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equation (11), namely
∆Zi =− ∑

i∈I

α
(i)Au∆u, (57)

where we exclude the shock ∆u itself and only consider adjustments due to price changes.

In Table 7, we illustrate the portfolio reallocation across different sectors in the case of a
temporary $100 billion dollar sell shock at either the short-maturity bucket or the long-maturity
bucket. We find that the Fed balance sheet barely changes in response to either a short-maturity
or a long-maturity latent demand shock. This is in line with the notion that the Fed as a central
bank should not react to temporary market fluctuations but rather focus on long-term policy goals.
We find that for a short-maturity sell shock, arbitrageurs are the only sector that significantly
responds. On the other hand, for a long-maturity sell shock, other U.S. investors significantly
absorb quantities, while MMFs and foreign investors amplify the shock.

Next, we analyze the impact of permanent demand shocks. We introduce a change in perma-
nent demand ∆θ0, and the then solve the model again to obtain the change of steady-state yield
curve ∆ysteady, as well as portfolio changes in response to such permanent changes in Treasury
yields.

In Table 8, we illustrate the portfolio reallocation across different sectors when there is a
permanent $100 billion dollar sell shock at either the short-maturity bucket or the long-maturity
bucket. We find that the Fed balance sheet barely changes in response to a short-maturity per-
manent demand shock, similar to other sectors, while arbitrageurs entirely absorb the demand
shock, similar to the case of a latent demand shock on the short-maturity bucket. However, for a
shock on the long-maturity bucket, the Fed significantly expands its balance sheet by buying 67
billion dollars of long-maturity Treasuries while keeping the position of other Treasuries almost
unchanged. Consequently, the Fed is the main absorber of the long-maturity permanent demand
shocks in the Treasury market.

Table 8 also shows that money market funds again amplify the long-maturity Treasury sell
shock by selling more short-maturity Treasuries, together with the foreign investors, while other
U.S. investors together with arbitrageurs help with absorbing the shock.

Overall, our model suggests that the Fed is the primary absorber for long-term permanent
Treasury demand shocks, but does not significantly react to other types of permanent demand
shocks or any transient latent demand shocks. Moreover, shutting off the cross elasticity in Fed’s
demand function makes the Fed more accommodating in response to long-term Treasury demand
shocks and lowers the balance sheet pressure on arbitrageurs, consistent with the intuition in
Proposition 3.
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7.3. The Impact of Quantitative Easing

Next, we evaluate the impact of quantitative easing (QE) policies. Through the lens of our model,
we can think of QE policies as changes in Fed’s demand, either a temporary change or a permanent
change. According to Proposition 5, QE increases Treasury pries and decreases Treasury yields.

In Figure 11, we show the impact of both transient QE and permanent QE. In both cases, we
consider the steady state yield as the baseline scenario and then introduce a $100 billion extra
demand on each of the three maturity buckets, respectively. The dollar value is converted to
stationary units as in Section 5.3. Then we show the change of yields in response to the demand
shock. The key difference between the two is that a transient QE is equivalent to increasing ut

while a permanent QE is equivalent to increasing θ0.

In panel (a) of Figure 11, we show how transient QE changes yields from the baseline. First, we
find that the maturity of the purchase plays an important role. For QE on short-maturity Treasuries,
there is little reaction of the yield curve, because dealers elastically arbitrage between short-
maturity Treasuries and the one-period rate controlled by monetary policy. As maturity increases,
the yield curve is more reactive, since arbitraging becomes weaker for longer-maturity demand
shocks due to the extra risks involved in long-maturity Treasuries. These results justify why the
Fed usually purchase long-term Treasuries in the QE programs.

In panel (b) of Figure 11, we illustrate how permanent QE changes yields. We find that a
permanent QE on long-maturity Treasuries has a much larger impact on the yield curve everywhere
than the same purchase of short-maturity Treasuries, a feature shared with the latent demand shocks
in panel (a). Again, this confirms the rationale of long-term Treasury purchases. Moreover, there
is a strong localization effect of QE policy, in that QE on a specific maturity bucket affects that
maturity-bucket yield more strongly than others, which is a feature present in the framework based
on Vayanos and Vila (2021) with more than one risk factors (Greenwood et al. 2023). The idea is
that due to the presence of multiple sources of risks that are heterogeneously present at different
maturities, the arbitrageur will not aggressively trade against a permanent demand shock, causing
a localization of the price impact.

To compare the model-implied results with actual QE impact in event studies, we have to
consider details of the QE implementation: First, the duration of QE purchases range between 3
to 10 years, so the average effect is in between our maturity bucket 2 and 3, i.e., between the solid
orange line and dotted red line in Figure 11. Second, the expected duration of the QE purchase is
between one quarter (panel (a) of Figure 11) and permanent (panel (b) of Figure 11). As a rough
approximation, we use the average value of bucket 2 and 3, which implies that the impact of a $100
billion purchase generates 5 bps to 20 bps yield change of 10-year Treasuries, depending on the
expected persistence of QE. This is of similar order of magnitude to the 4.5 bps reported in Gulati
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and Smith (2022), which summarize results in many different studies in the literature, including
Krishnamurthy and Vissing-Jorgensen (2011); Swanson (2011).

The advantage of our analysis is that we are able to provide granular results on how Treasury
yields change according to the implementation details of the QE policy, including the expected
persistence of such policy and the maturity of Treasuries being purchased. Our results highlight
that QE policies are more effective when the average maturity of Treasury being purchased is
longer and expected persistence of QE policy is larger.

Overall, these results suggest that an unexpected, one-time intervention of the Fed in Treasury
markets, as represented by a temporary Fed demand shock in our model, has relatively weak effects
on bond yields. Plausibly, in the early stages of QE in the aftermath of the Great Financial Crisis,
market participants were unsure about the nature of the Fed’s unconventional monetary policies and
only learned about the Fed’s stance over time in view of the repeated interventions through Q1 to
Q3, and then Q4. A commitment by the Fed to intervene in Treasury markets and its willingness to
maintain a large balance sheet can then be more realistically represented by a permanent demand
shock in our model. The effects of permanent demand shocks on bond yields in the model are
indeed large, especially on the long end of the yield curve. A plausible narrative of the Fed’s
stance in recent years is that by providing forward guidance regarding its future policies, it credibly
committed to future interventions, and thereby shaped investor expectations in the bond market and
boost bond prices.

8. Conclusion

In this paper, we estimate an equilibrium model of the Treasury market that features preferred
habitat investors, the Federal Reserve, and a risk-averse arbitrageur. For this purpose, we collect
a novel dataset that covers the vast majority of the Treasury market with granular holdings of
different investors, including insurance companies, banks, money market funds, broker-dealers,
and the Federal Reserve. We estimate the demand functions of each investor group, and we find
that there are strong empirical regularities in price elasticities and cross elasticities, as well as how
investor demand depends on macroeconomic dynamics. Our empirical approach adds to the extant
demand-based asset pricing literature by incorporating cross elasticities, modeling macroeconomic
dynamics, and extracting demand information from both cross section and time series.

We use our rich empirical estimates as inputs to the equilibrium model, and estimate the model
to fit Treasury yield curve dynamics, as well as average holdings by arbitrageurs. Our model
features three key innovations. First, the model accounts for cross substitution of demand in a
tractable way. Second, the model captures monetary policy rules and central bank balance sheet
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as functions of macro states, and how they drive Treasury demand across different sectors. Third,
we allow for outside assets by arbitrageurs, which is critical for the equilibrium model to generate
reasonable yield curve dynamics.

Our quantitative analyses reveal three main findings. First, we find a very low risk aversion
of arbitrageurs, which contributes to an elastic Treasury market. Absent from risk-tolerant arbi-
trageurs, price impact becomes 14 times higher on average. Second, contrary to Vayanos and Vila
(2021), we find that monetary policy tightening increases risk premia, because of high estimated
cross elasticities of preferred-habitat demand. Third, we find that market expectations about the
persistence of Fed QE purchase is critical for the impact of QE.

We view our paper as building a framework for combining novel data with equilibrium demand-
based models to investigate important macro-finance issues in the government bond market. Future
research can build on our approach and either incorporate this demand view of Treasury pricing
into macroeconomic models that endogenize fiscal capacity or connect to granular data on other
fixed-income assets such as corporate bonds to investigate the origin of the Treasury convenience
yields.
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Figures and Tables

Figure 1. Holdings of US Treasuries by Investor Type

Panel (a) shows the fraction of the total US Treasuries’ outstanding held by each investor type over time.
Panel (b) shows the total dollar value of US Treasuries (billions) held by each investor type over time.
The sectors are US banks (Banks), Fed, US insurance companies and pension funds (ICPF), mutual funds
outside the US (MF ROW), US mutual funds (MF US), US money market funds (MMF US), US primary
dealers and hedge funds (PD+HF), foreign investors (Foreign), and the residual sector (Residual). We
subtract the MF ROW holdings from the foreign investor holdings. The residual sector is defined as the
total US Treasuries’ outstanding minus the holdings of all the other sectors. We report market values and
the quarterly sample period is 2010Q1-2022Q4.
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Figure 2. Holdings of US Treasuries by Maturity Bucket

These graphs display the fraction of total US Treasuries’ outstanding held by each investor type by maturity
buckets: τ < 1Y , 1 ≤ τ < 5Y , and τ ≥ 5Y . We also report the total dollar value US Treasuries (billions) held
by each investor type. The sectors are US banks (Banks), Fed, US insurance companies and pension funds
(ICPF), mutual funds outside the US (MF ROW), US mutual funds (MF US), US money market funds
(MMF US), US primary dealers and hedge funds (PD+HF), foreign investors (Foreign), and the residual
sector (Residual). We subtract the MF ROW holdings from the foreign investor holdings. The residual
sector is defined as the total US Treasuries’ outstanding minus the holdings of all the other sectors. We
report market values and the quarterly sample period is 2011Q3-2022Q4.
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Figure 3. Yield Elasticities by Investor Type

Panel (a) plots the coefficients on own and other yield for different preferred habitat investors, using
standardized holdings to allow for comparison of coefficients across investor types. The sectors are US
banks, insurance companies and pension funds (ICPF), mutual funds outside the US (MF ROW), US mutual
funds (MF US), US money market funds (MMF US), other US investors (Other US investors), and foreign
investors (Foreign). Panel (b) shows the yield sensitivities for the Federal Reserve by maturity bucket. We
use market values and the quarterly sample period is 2011Q3-2022Q4.
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Figure 4. Model Fit on the Dynamics of Treasury Yields.

Model predicted yields are constructed using equation (26) without latent demand (setting ut = 0).
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Figure 5. Steady State.

This figure illustrates the yield curve and portfolio allocations at the steady state, defined as the
state where all shocks are zero. the left panel illustrates the steady-state yield curve. The right panel
illustrates the steady-state portfolio holdings (in billions of dollars) for each group of investors and
maturity bucket.
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Figure 6. Decomposition of Treasury Yield Variation.

In this figure, we decompose Treasury yield variations. In panel (a), we show the relative contribution
of macroeconomic factors, FFR, and latent demand to the variation in Treasury yields, using the relative
magnitude of their Shapley values of R2, which is calculated as the average marginal contribution of
each variable to the R2 among all possible sets of dependent variable combinations. In panel (b), we
focus on how these different factors take effect through the supply and demand forces in the model, by
regressing one-quarter difference in Treasury yields on shocks to aggregate supply and sector-level demand.
Note that panel (b) removes predictable components of supply and demand and only focus on shocks.
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Figure 7. Impact of Arbitrageur Risk Aversion.

We illustrate how arbitrageur risk aversion γ affects the equilibrium. In particular, we increase γ by 1%,
and illustrate the percentage changes of various yields and sensitivities. Panel (a) shows ∂ log(ysteady)

∂ log(γ) , the

sensitivity of steady state yield curve. Panel (b) illustrates ∂ log(|Ar|)
∂ log(γ) , the price elasticity to interest rate

r. Panel (c) shows ∂

∂ log(γ) log( 1
N Au · 1), the price elasticity to latent demand averaged across latent demand

shocks of different maturities. Panel (d) shows ∂

∂ log(γ) log( 1
N

∂ p
∂θ0

·1), the price elasticity to permanent demand
averaged across permanent demand shocks of different maturities.
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Figure 8. Impact of Cross Elasticity.

We illustrate the impact of cross elasticities. In particular, we change all cross elasticities by percentage
deviations (x-axis), and illustrate the percentage deviations of various quantities and yields. In panel (a), we
show the percentage deviation of arbitrageur steady-state Treasury holdings from baseline. In panel (b), we
show the log price difference from baseline, expressed in %. In panel (c), we illustrate equilibrium yield
difference from baseline, expressed in %. In panel (d), we measure the interest-rate sensitivity gap, which
is the difference of yield sensitivities between short-maturity and long-maturity Treasuries (always positive
because short-maturity yield is more sensitive to the short rate). We show percentage deviations of this
measure from the baseline.
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Figure 9. Contemporaneous Yield Curve Response to a Monetary Policy Shock.

This figure illustrates impact of a one standard deviation monetary policy shock (εr
t = 1). The left panel

illustrates the full response of the yield curve and also the component due to expected future short rate. The
right panel illustrates the response of term premium, which is the difference between the two curves in the
left panel.
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Figure 10. Contemporaneous Yield Curve Response to a Monetary Policy Shock, Shutting off
Cross Elasticity.

This figure illustrates impact of a one standard deviation monetary policy shock (εr
t = 1), but shutting off

cross elasticity by setting α(τ,τ ′) = 0 for any τ ̸= τ ′. The left panel illustrates the full response of the yield
curve and also the component due to expected future short rate. The right panel illustrates the response of
term premium, which is the difference between the two curves in the left panel.
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Figure 11. Impact of QE Shocks on Treasury Yields.

This figure illustrates how a $100 billion QE shock on different maturity buckets, either temporary (left
panel, increasing latent demand ut) or permanent (right panel, increasing permanent demand θ0), affects
Treasury yields. For dollar values, we use the stationary model unit as described in Section 5.3.
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Table 2. Summary Statistics

This table provides summary statistics of the main variables of interest: yt(m), which is the value-
weighted yield of maturity bucket m, yt(−m), which is the value-weighted yield of the other
maturity buckets excluding maturity bucket m, coupon rate, bid-ask spread, Supply (measured
as Debt/GDP), Credit Spread, GDP gap, Core Inflation, and the Repo Spread.

mean sd min max
yt(m) 1.387 1.079 0.041 4.291
yt(−m) 1.456 0.898 0.132 4.289
Coupon 2.053 0.896 0.750 4.258
Bid-Ask Spread 0.046 0.028 0.010 0.096
Credit Spread 0.954 0.233 0.550 1.490
Supply 0.760 0.096 0.640 0.974
GDP Gap -1.530 1.815 -9.207 1.342
Core Inflation 2.450 1.309 1.173 6.429
Repo Spread -0.180 0.173 -0.456 0.230
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Table 3. Demand System Results - IV

This table shows the IV estimates of our demand system specified in Equation (1). The dependent
variable is the market value of US Treasuries held by sector i in maturity bucket m at time t,
adjusted for GDP growth. The endogenous variables are: yt(m), which is the value-weighted yield
of maturity bucket m, yt(−m), which is the value-weighted yield of the other maturity buckets
excluding maturity bucket m. We instrument own and other yield using pseudo yields specified
in Equation (4). Additional variables include Coupon rate, Bid-Ask Spread, indicator variable
if the holdings are in maturity bucket 2 (1{1Y ≤ τ < 5} ), indicator variable if the holdings are
in maturity bucket 3 (1{τ ≥ 5}), Credit Spread, Supply (measured as Debt/GDP), Credit Spread,
GDP gap, Core Inflation, and the Repo Spread. We orthogonalize the coupon and the bid-ask
spread with respect to the maturity fixed effects. The quarterly sample period is from 2011Q3-
2022Q4. HAC standard errors with optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Other US Investors Foreign

(1) (2) (3) (4) (5) (6) (7)
yt(m) 36.408** 4.698 5.995 91.634*** 200.521** 82.352 -149.749

[15.743] [7.247] [4.315] [29.848] [80.576] [110.642] [115.887]
yt(−m) -39.208** -1.355 -3.711 -96.909*** -249.203** 26.208 62.506

[16.632] [8.175] [4.837] [34.195] [125.315] [142.032] [149.515]
Coupon -78.355*** 0.641 -11.225* -85.442** 55.895 114.547 -414.631***

[21.228] [11.714] [5.742] [36.352] [269.002] [159.535] [159.146]
Bid-Ask Spread 5.703 7.933*** 0.870 1.147 61.998 -22.293 -1.293

[4.399] [2.640] [1.568] [10.225] [61.720] [39.002] [43.439]
1{1Y ≤ τ < 5} 34.773*** 90.672*** 11.849*** 111.611*** 536.661*** 961.296***

[9.245] [2.673] [2.388] [16.976] [57.879] [85.441]
1{τ ≥ 5} -36.630 109.861*** 8.455 10.485 -502.807** 1207.448***

[28.337] [12.925] [8.636] [57.911] [235.195] [227.333]
Credit Spread 9.362 -11.268 3.294 -24.194 -313.294*** 128.570 70.563

[12.513] [8.084] [2.418] [24.696] [83.748] [111.048] [121.835]
Supply 404.715*** 38.963 62.416*** 48.745 4125.721*** 1649.323*** -937.677**

[50.499] [31.106] [13.035] [94.955] [436.312] [387.438] [461.683]
GDP Gap 5.186** -1.183 1.248** 8.458** -29.528*** 1.483 -6.433

[2.245] [1.223] [0.493] [3.731] [8.441] [16.080] [14.612]
Core Inflation 13.638*** -4.657** -0.832 -4.791 -34.297 -41.928 -19.302

[4.587] [2.351] [0.930] [7.389] [32.818] [27.019] [37.736]
Repo Spread 16.748 -32.311*** -7.745 -21.335 -409.850*** -141.323 77.286

[18.287] [10.757] [5.456] [36.091] [140.149] [140.951] [172.406]
Constant -187.444*** 7.136 -41.223*** 110.327 -1879.445*** -545.681 1800.327***

[46.326] [27.119] [13.011] [97.928] [428.062] [408.287] [423.657]

Observations 138 138 138 138 46 138 138
Eigenvalue Kleibergen-Paap statistic
(first stage) 10.9 10.9 10.9 10.9 5.2 10.9 10.9

62



Table 4. Demand System Results - Fed

This table shows the OLS and IV estimates of our demand system specified in Equation (1) for
the Fed. The dependent variable is the market value of US Treasuries held by sector i in maturity
bucket m at time t, adjusted for GDP growth. The endogenous variables are: yt(m), which is the
value-weighted yield of maturity bucket m, yt(−m), which is the value-weighted yield of the other
maturity buckets excluding maturity bucket m. We instrument own and other yield using pseudo
yields specified in Equation (4). Additional variables include Coupon rate, Bid-Ask Spread, Credit
Spread, Supply (measured as Debt/GDP), Credit Spread, GDP gap, Core Inflation, and the Repo
Spread. Column (1) shows the results for τ < 1Y , Column (2) for 1Y ≤ τ < 5, and Column (3) for
τ ≥ 5. The quarterly sample period is from 2011Q3-2022Q4. HAC standard errors with optimal
lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

1{τ < 1Y} 1{1Y ≤ τ < 5} 1{τ ≥ 5}

(1) (2) (3)
yt(m) 4.555 80.302 342.187***

[50.368] [94.079] [98.963]
yt(−m) 57.529 -127.840 -373.290***

[72.548] [128.993] [55.647]
Coupon 14.787 -1464.432*** 14.916

[127.408] [164.344] [167.977]
Bid-Ask Spread 130.564*** 99.498*** -83.438**

[39.448] [36.702] [36.420]
Credit Spread -33.292 92.033 -25.731

[47.733] [58.457] [105.429]
Supply 2248.161*** -670.480* 2614.501***

[195.833] [403.624] [679.746]
GDP Gap -4.885 -35.976*** -26.617**

[4.553] [8.680] [12.336]
Core Inflation 27.370 26.071 76.759***

[19.645] [23.303] [21.406]
Repo Spread -145.130*** 458.134*** -47.098

[46.739] [162.043] [143.665]

R-squared 0.960 0.883 0.875
Observations 46 46 46
Kleibergen-Paap statistic
(first stage) 5.2 15.69 29.99
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Table 5. Impact of Latent Demand Shocks on Treasury Prices with and without Arbitrageurs.

We illustrate the impact of latent demand shocks with and without arbitrageurs. A value of 1
indicates that $100 billion less latent demand of Treasuries increases the price by 1%.

Panel A: With Arbitrageur

Price change (%) of
short maturity medium maturity long maturity

shock on short maturity 0.002 0.014 0.032
shock on medium maturity 0.014 0.105 0.253
shock on long maturity 0.030 0.237 0.688

Panel B: Without Arbitrageur

shock on short maturity 0.592 1.891 10.385
shock on medium maturity 2.203 10.731 48.664
shock on long maturity 0.499 2.006 13.032

Panel C: Price Impact Ratio (Panel B/Panel A)

shock on short maturity 308.49 133.33 320.70
shock on medium maturity 157.94 101.91 192.48
shock on long maturity 16.77 8.46 18.93

Table 6. Portfolio Adjustment to Monetary Policy Shocks.

This table illustrates portfolio adjustments to a one standard deviation shock to monetary policy,
which is a 0.75% increase in one-period rate. We also report the model-implied change of
Treasury supply in response to this shock. All units are in billions of dollars.

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks 10.2 2.8 -15.6 -2.7
ICPF 2.9 2.0 0.3 5.2
MF ROW 2.8 1.7 -0.8 3.7
MF U.S. 26.4 7.8 -38.2 -4.0
MMF 42.2 0.0 0.0 42.2
Other U.S. 71.1 58.5 37.2 166.8
Foreign -83.2 -56.3 1.9 -137.6
Fed 24.2 5.9 -125.3 -95.2
Arbitrageurs 32.6 -52.8 41.8 21.6
total supply 129.1 -30.4 -98.7 0.0
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Table 7. Model-Implied Sector-Level Portfolio Adjustment to Latent Demand Shocks.

This table illustrates how each sector adjusts their portfolio positions in response to a $100 billion
sell shock of Treasuries at different maturity buckets, excluding the sell shock in the first place.
The shock is temporary and will revert in one period.

Panel A: A $100 billion Sell Shock of τ < 1 Treasuries

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks 0.0 0.1 -0.1 0.0
ICPF 0.0 0.0 0.0 0.0
MF ROW 0.0 0.0 0.0 0.0
MF U.S. -0.1 0.2 -0.2 -0.1
MMF -0.3 0.0 0.0 -0.3
Other U.S. 0.4 0.6 0.4 1.4
Foreign -0.3 -0.6 -0.2 -1.1
Fed 0.1 0.1 -0.7 -0.5
Arbitrageurs 100.2 -0.3 0.7 100.6

Panel B: A $100 billion Sell Shock of τ ≥ 15 Treasuries

Banks -1.0 1.0 -0.8 -0.8
ICPF 0.2 0.4 0.2 0.7
MF ROW 0.1 0.3 0.1 0.5
MF U.S. -2.4 2.6 -1.8 -1.6
MMF -8.3 0.0 0.0 -8.3
Other U.S. 7.0 9.5 7.5 24.0
Foreign -3.8 -10.3 -4.8 -18.9
Fed 2.0 1.2 -7.4 -4.2
Arbitrageurs 6.3 -4.6 106.9 108.6
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Table 8. Model-Implied Sector-Level Portfolio Adjustment to Permanent Demand Shocks.

This table illustrates how each sector adjusts their portfolio positions in response to a permanent
$100 billion sell shock of Treasuries at different maturity buckets, excluding the sell shock in the
first place.

Panel A: A $100 billion Sell Shock of τ < 1 Treasuries

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks -0.5 -0.1 0.4 -0.2
ICPF 0.0 0.0 0.1 0.1
MF ROW 0.0 0.0 0.1 0.1
MF U.S. -1.2 -0.2 1.1 -0.3
MMF -3.3 0.0 0.0 -3.3
Other U.S. 0.5 1.1 1.7 3.3
Foreign 0.7 -0.8 -2.4 -2.5
Fed 0.0 0.1 2.8 2.9
Arbitrageurs 103.9 -0.2 -3.8 99.8

Panel B: A $100 billion Sell Shock of τ ≥ 15 Treasuries

Banks -7.6 -3.8 9.1 -2.2
ICPF -0.2 0.2 1.4 1.4
MF ROW -0.7 -0.1 1.7 0.9
MF U.S. -18.7 -9.1 23.1 -4.7
MMF -48.4 0.0 0.0 -48.4
Other U.S. 6.4 13.3 28.2 47.8
Foreign 10.9 -3.2 -44.0 -36.3
Fed 0.4 -0.3 63.9 63.9
Arbitrageurs 57.9 3.0 16.7 77.6
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Appendix

A. Additional Empirical Analysis

Table 9. Correlation Table

This table provides the correlation table of the main variables of interest: yt(m), which is the
value-weighted yield of maturity bucket m, yt(−m), which is the value-weighted yield of the other
maturity buckets excluding maturity bucket m, coupon rate, bid-ask spread, Supply (measured as
Debt/GDP), Credit Spread, GDP gap, Core Inflation, and the Repo Spread. We orthogonalize the
coupon and the bid-ask spread with respect to the maturity fixed effects.

yt(m) yt(−m) Coupon Bid-Ask Spread Credit Spread Supply GDP Gap Inflation Repo Spread
yt(m) 1
yt(−m) 0.581 1
Coupon -0.107 -0.296 1
Bid-Ask Spread 0.021 -0.022 -0.308 1
Credit Spread -0.023 -0.041 0.309 -0.061 1
Supply -0.080 -0.128 -0.565 0.444 -0.161 1
GDP Gap 0.428 0.507 -0.362 0.234 -0.308 0.131 1
Inflation 0.403 0.490 -0.478 0.010 -0.021 0.429 0.461 1
Repo Spread -0.028 -0.047 -0.239 0.205 -0.386 0.263 0.247 -0.174 1

Figure 12. Morningstar Aggregate Holdings by Domestic and Foreign Bond Funds. This
graph shows the aggregate holdings of US and foreign bond funds in USD (trillions) over time.
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Table 10. Demand System Results - OLS

This table shows the OLS estimates of our demand system specified in Equation (1). The dependent
variable is the market value of US Treasuries held by sector i in maturity bucket m at time
t. The independent variables are: yt(m), which is the value-weighted yield of maturity bucket
m, yt(−m), which is the value-weighted yield of the other maturity buckets excluding maturity
bucket m, Coupon rate, Bid-Ask Spread, indicator variable if the holdings are in maturity bucket 2
(1{1Y ≤ τ < 15} ), indicator variable if the holdings are in maturity bucket 3 (1{τ ≥ 15}), Credit
Spread, Supply (measured as Debt/GDP), GDP gap, Core Inflation, and the Repo Spread. We
orthogonalize the coupon and the bid-ask spread with respect to the maturity fixed effects. The
quarterly sample period is from 2011Q3-2022Q4. HAC standard errors with optimal lags are
reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Residual Foreign

(1) (2) (3) (4) (5) (6) (7)
y_t(m) 33.693*** -1.344 2.715 24.270** 15.343 27.609 -189.358***

[9.355] [3.550] [1.938] [10.012] [36.182] [54.724] [55.082]
y_t(−m) -34.052*** 3.248 -0.567 -20.418** 60.959 18.223 104.212

[9.753] [4.315] [2.312] [9.815] [48.134] [70.659] [81.179]
Coupon -73.739*** 5.533 -8.064** -11.198 238.157 119.960 -373.536***

[16.009] [7.642] [3.820] [19.950] [193.425] [109.558] [124.091]
Bid-Ask Spread 5.732 8.699*** 1.220 7.116 24.230 -10.290 2.550

[4.472] [2.896] [1.574] [10.565] [44.858] [35.481] [44.048]
1{1Y ≤ τ < 5} 35.493*** 92.933*** 13.015*** 134.400*** 561.913*** 975.010***

[7.832] [3.018] [1.617] [13.511] [53.055] [72.735]
1{τ ≥ 5} -30.545** 120.245*** 14.390*** 137.828*** -431.544*** 1280.822***

[15.386] [7.879] [4.154] [17.075] [123.500] [111.837]
Credit Spread 8.184 -12.014 2.713 -39.377** -176.795*** 135.373 62.528

[11.646] [7.392] [2.230] [19.608] [67.486] [111.003] [121.973]
Supply 421.600*** 38.644 65.801*** 183.985** 4948.067*** 1372.296*** -876.191**

[40.424] [29.718] [10.134] [79.781] [202.533] [305.338] [415.031]
GDP Gap 4.955** -0.932 1.313*** 8.455*** -26.426*** 9.296 -6.071

[2.216] [1.194] [0.487] [3.032] [7.884] [15.477] [14.723]
Core Inflation 12.963*** -3.724 -0.554 -3.305 -96.491*** -15.857 -17.270

[4.411] [2.283] [0.866] [5.807] [18.468] [27.299] [38.702]
Repo Spread 16.195 -30.480*** -7.038 -12.125 -415.439*** -102.575 84.159

[18.096] [10.431] [5.518] [26.151] [90.107] [137.171] [172.047]

R-squared 0.900 0.918 0.748 0.846 0.963 0.846 0.842
Observations 138 138 138 138 46 138 138
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Table 11. First Stage IV

This table shows the first stage estimates of the IV methodology specified in Equation (1). The
dependent variable in Column (1) is yt(m), the value-weighted yield of maturity bucket m and
in Column (2) is yt(−m), the value-weighted yield of the other maturity buckets −m. We
instrument own and other yield using pseudo yields specified in Equation (4). Additional variables
include Coupon rate, Bid-Ask Spread, indicator variable if the holdings are in maturity bucket 2
(1{1Y ≤ τ < 15} ), indicator variable if the holdings are in maturity bucket 3 (1{τ ≥ 15}), Credit
Spread, Supply (measured as Debt/GDP), GDP gap, Core Inflation, and the Repo Spread. We
orthogonalize the coupon and the bid-ask spread with respect to the maturity fixed effects. The
quarterly sample period is from 2011Q3-2022Q4. HAC standard errors with optimal lags are
reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

yt(m) yt(−m)

(1) (2)
It(m) 0.700*** 0.434***

[0.049] [0.046]
It(−m) 0.627*** 0.808***

[0.113] [0.074]
Coupon -0.421** -0.913***

[0.206] [0.157]
Bid-Ask Spread -0.155** -0.189***

[0.069] [0.065]
1{1Y ≤ τ < 5} -1.046*** -0.153

[0.316] [0.221]
1{τ ≥ 5} -0.042 -0.855***

[0.261] [0.196]
Credit Spread 0.841*** 0.891***

[0.223] [0.175]
Supply 1.508** 0.452

[0.721] [0.647]
GDP Gap -0.211*** -0.205***

[0.049] [0.030]
Core Inflation 0.101 0.094*

[0.063] [0.049]
Repo Spread -0.055 -0.137

[0.287] [0.247]

R-squared 0.882 0.894
Observations 138 138
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Table 12. Demand System Results - IV no macro

This table shows the IV estimates of our demand system specified in Equation (1). The dependent
variable is the market value of US Treasuries held by sector i in maturity bucket m at time t. The
endogenous variables are: yt(m), which is the value-weighted yield of maturity bucket m, yt(−m),
which is the value-weighted yield of the other maturity buckets excluding maturity bucket m. We
instrument own and other yield using pseudo yields specified in Equation (4). Additional variables
include Coupon rate, Bid-Ask Spread, indicator variable if the holdings are in maturity bucket 2
(1{1Y ≤ τ < 15} ), indicator variable if the holdings are in maturity bucket 3 (1{τ ≥ 15}), and
the Repo Spread. We orthogonalize the coupon and the bid-ask spread with respect to the maturity
fixed effects. The quarterly sample period is from 2011Q3-2022Q4. HAC standard errors with
optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Other US Investors Foreign

(1) (2) (3) (4) (5) (6) (7)
yt(m) 90.027*** 2.433 10.710** 94.762*** 719.878*** 166.869 -261.507**

[23.719] [6.559] [4.754] [30.714] [269.867] [123.217] [130.615]
yt(−m) -97.818*** -4.778 -9.991* -88.024*** -1372.927*** -169.309 195.784

[26.674] [7.875] [5.121] [32.051] [360.334] [145.503] [144.247]
Coupon -211.056*** 1.989 -23.726*** -88.998*** -2997.786*** -153.830 -126.599

[29.789] [9.612] [5.967] [27.749] [847.152] [138.921] [162.769]
Bid-Ask Spread 12.563 9.309*** 3.150* 7.505 720.362*** 28.829 -15.835

[9.284] [2.737] [1.873] [9.958] [278.030] [40.274] [40.735]
1{1Y ≤ τ < 5} 16.416 92.014*** 10.343*** 109.359*** 517.622*** 998.492***

[14.828] [3.062] [2.676] [18.624] [59.785] [79.383]
1{τ ≥ 5} -136.946*** 111.388*** -0.884 10.285 -708.308*** 1421.644***

[46.060] [12.157] [9.500] [58.648] [256.301] [244.401]
Repo Spread -3.837 -19.439** -4.208 22.537 -318.349 -103.738 66.997

[33.789] [8.774] [6.406] [34.030] [583.965] [125.698] [143.605]

Observations 138 138 138 138 46 138 138
Kleibergen-Paap statistic
(first stage): 17.56 17.56 17.56 17.56 5.76 17.56 17.56
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Table 13. Demand System Results - IV no other yield

This table shows the IV estimates of our demand system specified in Equation (1), excluding
other yield. The dependent variable is the market value of US Treasuries held by sector i in
maturity bucket m at time t. The endogenous variable is yt(m), which is the value-weighted yield
of maturity bucket m. We instrument own and other yield using pseudo yields specified in Equation
(4). Additional variables include Coupon rate, Bid-Ask Spread, indicator variable if the holdings
are in maturity bucket 2 (1{1Y ≤ τ < 5} ), indicator variable if the holdings are in maturity bucket
3 (1{τ ≥ 5}), Credit Spread, Supply (measured as Debt/GDP), Credit Spread, GDP gap, Core
Inflation, and the Repo Spread. We orthogonalize the coupon and the bid-ask spread with respect
to the maturity fixed effects. The quarterly sample period is from 2011Q3-2022Q4. HAC standard
errors with optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Other US Investors Foreign

(1) (2) (3) (4) (5) (6) (7)
yt(m) 12.428* 3.869 3.725** 32.362*** 55.119*** 98.381*** -111.519***

[7.545] [3.046] [1.683] [10.998] [17.090] [36.755] [42.923]
Coupon -42.546*** 1.879 -7.835** 3.064 218.783 90.612 -471.718***

[13.644] [8.268] [3.222] [20.031] [200.838] [95.222] [90.384]
Bid-Ask Spread 6.606 7.964*** 0.956 3.380 26.289 -22.897 -2.733

[5.439] [2.678] [1.532] [10.462] [45.160] [37.316] [44.366]
1{1Y ≤ τ < 5} 41.736*** 90.913*** 12.508*** 128.821*** 532.007*** 950.196***

[9.785] [2.522] [1.915] [15.164] [53.010] [79.684]
1{τ ≥ 5} 14.205 111.618*** 13.267*** 136.132*** -536.787*** 1126.406***

[11.778] [5.240] [3.053] [18.583] [80.011] [85.718]
Credit Spread 0.688 -11.568 2.473 -45.633** -207.283*** 134.368 84.391

[12.751] [7.953] [2.442] [22.226] [58.420] [116.356] [125.931]
Supply 518.931*** 42.911 73.228*** 331.050*** 4795.023*** 1572.976*** -1119.765***

[52.662] [28.658] [10.713] [97.921] [187.138] [328.926] [433.022]
GDP Gap 3.851 -1.230 1.122** 5.157* -27.575*** 2.375 -4.304

[2.356] [1.261] [0.517] [3.076] [7.532] [16.329] [14.103]
Core Inflation 9.921* -4.786* -1.184 -13.978** -84.271*** -39.444 -13.376

[5.325] [2.551] [0.922] [6.995] [16.570] [27.196] [34.666]
Repo Spread 14.688 -32.383*** -7.940 -26.426 -414.490*** -139.946 80.570

[19.231] [10.758] [5.693] [30.200] [94.252] [141.619] [175.441]

Observations 138 138 138 138 46 138 138
Kleibergen-Paap statistic
(first stage): 101.34 101.34 101.34 101.34 871.87 101.34 101.34
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B. Model Derivations and Estimation

B.1. Proofs of Results in the Simple Model

Since the simple model is a special case of the main model, we can use the derivations for the main
model to help with proofs in the simple model. In particular, we will rely on the iteration equations
in (47), (48), (49), and (50).

Derivations of Equilibrium Treasury Prices in Equation (30)

First, we note that due to perfect arbitrage, we must have p(1)t =−rt , so that A(1) = 0, Ar(1) =−1,
C(1) = 0, and Au(1)′ = (0,0). The holding return for 2-period Treasury bond as in (38) can be
simplified as

R(2)
t+1 =−A(2) ·βt +C(1)−C(2)− (ρrrt +σrε

r
t+1)−Ar(2)rt +

1
2

σ
2
r −Au(2)′ut (58)

Next, we set τ = 2 in the iteration equation for Ar in (48), which leads to

Ar(1)ρr −Ar(2)−1 = Ar(1)γ
(
σ

2
r Ar(1)α(2)′Ar

)
−ρr −Ar(2)−1 =−γ

(
−σ

2
r (−b,

a
2
)

(
−1

Ar(2)

))

−ρr −Ar(2)−1 = γσ
2
r

(
b+

a
2

Ar(2)
)
.

Therefore,

Ar(2) =−1+ρr + γσ2
r b

1+ 1
2γσ2

r a
.

To obtain A(2), we set τ = 2 in the iteration equation for A in (47),

−A(2) = Ar(1)γ
(
σ

2
r Ar(1)(ζ (2)+α(2)′A+θ(2))

)
=−γ

(
−σ

2
r (ζ (2)+(−b,

a
2
)

(
0

A(2)

)
+θ(2))

)
= γσ

2
r (

a
2

A(2)+ζ (2)+θ(2))

which leads to

A(2) =−γσ2
r (θ(2)+ζ (2))

1+ γσ2
r

a
2

.
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Next, we solve for Au. For τ = 2, equation (49) leads to

−Au(2)′ =−γσ
2
r

(
−α(2)′

(
Au(1)′

Au(2)′

)
− (0,Ar(1))

)

−Au(2)′ =−γσ
2
r

(
−(−b,

a
2
)

(
Au(1)′

Au(2)′

)
− (0,−1)

)

Au(2)′ = γσ
2
r

(
−a

2
Au(2)′− (0,−1)

)
Au(2)′ =

1
1+ γσ2

r
a
2
(0,γσ

2
r )

Consequently, we obtain the Au matrix as

Au =

 0 0

0 γσ2
r

1+γσ2
r

a
2

 .

Then, we solve for C(2) via setting τ = 2 in equation (50),

1
2

σ
2
r +C(1)−C(2) = Ar(1)γ

(
σ

2
r Ar(1)(S̄(2)−θ0(2)+α(2)′C)

)
1
2

σ
2
r −C(2) = γσ

2
r

(
S̄(2)−θ0(2)+(−b,

a
2
)

(
0

C(2)

))

C(2) =
1
2σ2

r − γσ2
r S̄(2)+ γσ2

r θ0(2)
1+ γσ2

r
a
2

=
1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ γ

a
2

Summarizing all the above, we obtain

p(2)t =−1+ρr + γσ2
r b

1+ a
2γσ2

r
rt −

γσ2
r (ζ (2)+θ(2))

1+ a
2γσ2

r
βt +

γσ2
r

1+ a
2γσ2

r
ut(2)+

1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ a

2γ
,

which is identical to equation (30).

Proof of Proposition 1

According to equation (30), p(1)t is entirely explained by rt , while p(2)t are also explained by βt and
ut(2). As a result, macro shocks and latent demand shocks are more important for long-maturity
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Treasuries.

Proof of Proposition 2

To prove Proposition 2, we derive three important sensitivities.

∂ p(2)t

∂βt
=−γσ2

r (ζ (2)+θ(2))
1+ a

2γσ2
r

∂ p(2)t

∂ut
=

γσ2
r

1+ a
2γσ2

r

∂ p(2)t

∂θ0(2)
=

γσ2
r

1+ a
2γσ2

r

These three sensitivities clearly increase in magnitude with γ . To show how price reacts to γ ,
we express the steady state (note that we assume r̄ = 0 at the steady state) as

p(2) =−γσ2
r (ζ (2)+θ(2))

1+ a
2γσ2

r
β̄ +

1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ a

2γ
.

Since the magnitude of the sensitivities over β̄ decrease in γ , a higher γ contributes to lower
psteady(2) through the first two components. If we further have S̄(2) > θ0(2), the last term can be
expressed as

1
2

1
σ2

r
+ a

2γ
− S̄(2)−θ0(2)

1
γσ2

r
+ a

2

,

which decreases with γ . Taken all of them together, we conclude that p(2) decreases with γ and
therefore increases the long-term yield. Since the short rate is fixed at rt , this increase of long-term
yield also implies a higher term spread.

Finally, we did not state the results about interest-rate sensitivity, since the results depend on
parameter cases. The price sensitivity to interest rate is

∂ p(2)t

∂ rt
=−1+ρr + γσ2

r b
1+ a

2γσ2
r

=−

 1
1+ a

2γσ2
r

(1+ρr)︸ ︷︷ ︸
expectation hypothesis

+
a
2γσ2

r

1+ a
2γσ2

r

2b
a︸︷︷︸

pure habitat demand


As a result, whether this increases or decreases with γ depends on the relative magnitude of the
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sensitivity in the expectation hypothesis versus the pure demand case.

Proof of Proposition 3

According to equation (34) and (35), equilibrium portfolio allocations in response to cross elastic-
ity are

∂Z(2)
t

∂b
=− 1

1+ a
2γσ2

r
rt < 0,

∂X (2)
t

∂b
=

1
1+ a

2γσ2
r

rt > 0.

Therefore, a higher cross elasticity in preferred-habitat demand leads to lower preferred-habitat in-
vestor holding and thus higher equilibrium arbitrageur position. he impact on equilibrium Treasury
price according to (30) is

∂ p(2)t

∂b
=− γσ2

r
1+ a

2γσ2
r

rt < 0,

so a higher cross elasticity lowers the equilibrium Treasury price p(2)t .

Next, the interest-rate sensitivity gap between long- and short-maturity Treasuries is

|∂y(2)t

∂ rt
− ∂y(1)t

∂ rt
|=|

∂

(
− p(2)t

2

)
∂ rt

−1|

=|1+ρr + γσ2
r b

2+aγσ2
r

−1|

=|1−ρr + γσ2
r (a−b)

2+aγσ2
r

|

By assumption, 1−ρr + γσ2
r (a−b)> 0, so when b increases, this gap is smaller.

Proof of Proposition 4

The expectation component of the long-term Treasury yield is

ȳ(2)t =
1+ρr

2
rt
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Using y(2)t =−p(2)t /2 and equation (30), we get the term premium expression

y(2)t − ȳ(2)t

=

(
1+ρr + γσ2

r b
2+aγσ2

r
− 1

2
(1+ρr)

)
rt +

γσ2
r (ζ (2)+θ(2))

2+aγσ2
r

βt −
γσ2

r
2+aγσ2

r
ut(2)−

1
2 −

r̄
σ2

r
− γ S̄(2)+ γθ0(2)

2+aγσ2
r

=
b− 1

2(1+ρr)a
2

γσ2
r
+a

rt +
γσ2

r (ζ (2)+θ(2))
2+aγσ2

r
βt −

γσ2
r

2+aγσ2
r

ut(2)−
1
2 −

r̄
σ2

r
− γ S̄(2)+ γθ0(2)

2+aγσ2
r

As a result,
∂ (y(2)t − ȳ(2)t )

∂ rt
=

b− 1
2(1+ρr)a
2

γσ2
r
+a

while the baseline response according to the expectation hypothesis is

∂ ȳ(2)t

∂ rt
=

1+ρr

2
> 0

Consequently, the full response is

∂y(2)t

∂ rt
=

1+ρr

2︸ ︷︷ ︸
expectation hypothesis

+
b− 1

2(1+ρr)a
2

γσ2
r
+a︸ ︷︷ ︸

change of term premium

When 2b > (1+ ρr)a, the term premium component is positive, so that the long-term Treasury
yield over-reacts to monetary policy shock compared to the expectation hypothesis. When 2b <

(1+ρr)a, the term premium component is negative, so that the long-term Treasury yield under-
reacts to monetary policy shock compared to the expectation hypothesis.

Proof of Proposition 5

The impact of QE on Treasury price, as reflected by the increase of the permanent demand θ0(2),
is as follows,

∂ p(2)t

∂θ0(2)
=

γσ2
r

1+ a
2γσ2

r
> 0.

Therefore, Treasury prices increase with QE, which implies a decrease of Treasury yields.
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B.2. Derivations for the Full Model

Wealth thus evolves as

Wt+1 =Wt(1+ rt)+
N

∑
τ=2

X (τ)
t (R(τ)

t+1 − rt)+ X̃t(R̃t,t+1 − rt)

=Wt(1+ rt)+ X̃t(R̃t,t+1 − rt)+
1
2

Au(τ −1)′ΣuAu(τ −1)

+
N

∑
τ=2

X (τ)
t


A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ1/2εt+1)−A(τ)′ ·βt +

1
2 Â(τ −1)′ΣÂ(τ −1)

+Au(τ −1)′ut+1 −Au(τ)
′ut +

1
2Au(τ −1)′ΣuAu(τ −1)

+Ar(τ −1)(r̄+φ ′
r(Φ(βt − β̄ )+Σ1/2εt+1)+ρrrt +σrε

r
t+1)−Ar(τ)rt

+C(τ −1)−C(τ)+ 1
2(Ar(τ −1)σr)

2 − rt


=Wt(1+ rt)+

N

∑
τ=2

X (τ)
t

 A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2 Â(τ −1)′ΣÂ(τ −1)

−Au(τ)
′ut +

1
2Au(τ −1)′ΣuAu(τ −1)+C(τ −1)−C(τ)

+Ar(τ −1)(r̄+φ ′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2(Ar(τ −1)σr)

2 − rt


+

(
N

∑
τ=2

X (τ)
t

(
A(τ −1)′Σ1/2 +Ar(τ −1)φ ′

rΣ
1/2
)
+ X̃t σ̃

′

)
εt+1 +

(
N

∑
τ=2

X (τ)
t Ar(τ −1)σr + X̃t σ̃

′
r

)
ε

r
t+1

+

(
N

∑
τ=2

X (τ)
t Au(τ −1)′

)
ut+1 + X̃t(φ̃

′
βt + φ̃rrt − rt)

(59)

To simplify notatations, it is convenient to define the expected return on Treasuries of maturity τ

as

µ
(τ)
t = A(τ −1)′

(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)−Au(τ)
′ut +C(τ −1)−C(τ)

+
1
2

Au(τ −1)′ΣuAu(τ −1)+Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2.

(60)

In that case, we obtain

Et [Wt+1] =Wt(1+ rt)+
N

∑
τ=2

Xt(τ)
(

µ
(τ)
t − rt

)
+ X̃t(φ̃

′
βt + φ̃rrt − rt),
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and we can write the variance as

Vart(Wt+1) =

(
N

∑
τ=2

Xt(τ)Â(τ −1)′Σ1/2 + X̃t σ̃
′

)(
N

∑
τ=2

Xt(τ)Σ
1/2Â(τ −1)+ X̃t σ̃

)

+

(
N

∑
τ=2

Xt(τ)Ar(τ −1)σr + X̃t σ̃
′
r

)2

+

(
N

∑
τ=2

Xt(τ)Au(τ −1)′(Σu)1/2

)(
(Σu)1/2

N

∑
τ=2

Xt(τ)Au(τ −1)

)

=
N

∑
τ=2

Â(τ −1)′ΣÂ(τ −1)(Xt(τ))
2 +2 ∑

τ̂ ̸=τ

Â(τ −1)′ΣÂ(τ̂ −1)Xt(τ)Xt(τ̂)

+2
N

∑
τ=2

Â(τ −1)′Σ1/2
σ̃ · (Xt(τ)X̃t)+ σ̃

′
σ̃(X̃t)

2 +

(
N

∑
τ=2

Xt(τ)Ar(τ −1)σr + X̃t σ̃
′
r

)2

+
N

∑
τ=2

Au(τ −1)′ΣuAu(τ −1)(Xt(τ))
2 +2 ∑

τ̂ ̸=τ

Au(τ −1)′ΣuAu(τ̂ −1)Xt(τ)Xt(τ̂).

Consequently, we can write the FOC of arbitrageurs as

µ
(τ)
t − rt = γ

(
N

∑
τ̂=2

Â(τ −1)′ΣÂ(τ̂ −1)Xt(τ̂)+ Â(τ −1)′Σ1/2
σ̃ X̃t

)

+ γ

(
N

∑
τ̂=2

Ar(τ −1)σ2
r Ar(τ̂ −1)Xt(τ̂)+Ar(τ −1)′σrσ̃rX̃t

)

+ γ

(
N

∑
τ̂=2

Au(τ −1)′ΣuAu(τ̂ −1)Xt(τ̂)

)

= Â(τ −1)′γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)Xt(τ̂)

)
+Σ

1/2
σ̃ X̃t

)

+Ar(τ −1)′γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)Xt(τ̂)

)
+σrσ̃rX̃t

)

+Au(τ −1)′γ

(
N

∑
τ̂=2

Σ
uAu(τ̂ −1)Xt(τ̂)

)

φ̃
′
βt + φ̃rrt − rt = γ

(
N

∑
τ=2

A(τ −1)′Σ1/2
σ̃ ·Xt(τ)+ σ̃

′
σ̃ +

N

∑
τ=2

Ar(τ −1)′σrσ̃r ·Xt(τ)+(σ̃r)
2

)
(61)
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Defining the prices of risk as

λβ ,t = γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)Xt(τ̂)

)
+Σ

1/2
σ̃ X̃t

)
, (62)

λr,t = γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)Xt(τ̂)

)
+σrσ̃rX̃t

)
, (63)

λu,t = γ

(
N

∑
τ̂=2

Σ
uAu(τ̂ −1)Xt(τ̂)

)
, (64)

We can further simplify the first-order condition by expressing them in terms of matching coeffi-
cients, that is, by replacing the definition of µ

(τ)
t in (60). Accordingly, we have

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2 Â(τ −1)′ΣÂ(τ −1)+Ar(τ −1)(r̄+φ ′

rΦ(βt − β̄ )+ρrrt)

+C(τ −1)−C(τ)−Ar(τ)rt +
1
2(Ar(τ −1)σr)

2 −Au(τ)
′ut +

1
2Au(τ −1)′ΣuAu(τ −1)− rt

= Â(τ −1)′λβ ,t +Ar(τ −1)λr,t +Au(τ −1)′λu,t .
(65)

Ultimately, these coefficients are pinned down in equilibrium, that is, when markets clear. The
market clearing condition is

Zt(τ)+Xt(τ) = St(τ).

As a result, our model implies that the price of risk λt varies over time, and depends on both
the quantity of Treasury supply St(τ) and preferred habitat demand Zt(τ), as well as the outside
portfolio returns X̃t .

As a next step, we plug in the expressions for Zt(τ) in (12) and St(τ) in (17) and can express
the equilibrium arbitrageur holdings as

Xt(τ) =
(
S̄(τ)+ζ (τ)′βt +ζr(τ)

′rt
)
−
(
θ0(τ)−α(τ)′pt −θ(τ)′βt +ut(τ)

)
. (66)

In the main text, we impose the assumption that Au(τ − 1)′λu,t is dominated by the other
two terms, Â(τ − 1)′λβ ,t + Ar(τ − 1)λr,t , which we will verify in Appendix C.4. The idea is
that idiosyncratic latent demand shocks do not affect price of risks. Under this simplification
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assumption, plugging (66) into the pricing equation (65), we obtain

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)+C(τ −1)−C(τ) (67)

Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2 −Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1)− rt

=Â(τ −1)′γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)− (θ0(τ̂)−α(τ̂)′pt −θ(τ̂)′βt +ut(τ̂))
))

+Σ
1/2

σ̃ X̃t

)

+Ar(τ −1)γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)− (θ0(τ̂)−α(τ̂)′pt −θ(τ̂)′βt +ut(τ̂))
))

+σrσ̃rX̃t

)
(68)

With the assumption in (46), and the affine expression of pt in (26), we rewrite the equilibrium
condition in (45) as follows:

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)+C(τ −1)−C(τ)

+Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2 −Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1)− rt

=Â(τ −1)′γ

 ∑
N
τ̂=2

(
ΣÂ(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′ (Aβt +Arrt +Auut +C)−θ(τ̂)′βt)−ut(τ̂)

))
+Ψβt +Λrt +ψ



+Ar(τ −1)γ

 ∑
N
τ̂=2

(
σ2

r Ar(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′ (Aβt +Arrt +Auut +C)−θ(τ̂)′βt)−ut(τ̂)

))
+Ψrβt +Λrrt +ψr


(69)

Matching the coefficients on βt , rt , ut , and the constant term, we obtain an iteration equation
as follows:
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A(τ −1)′Φ−A(τ)′+Ar(τ −1)φ ′
rΦ

= Â(τ −1)′ γ

((
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))
+Ψ

)
︸ ︷︷ ︸

λβ ,β

+Ar(τ −1)γ

((
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))
+Ψr

)
︸ ︷︷ ︸

λβ ,r

(70)

Ar(τ −1)′ρr −Ar(τ)−1 = Â(τ −1)′ γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζr(τ)

′+α(τ̂)′Ar
)
+Λ

)
︸ ︷︷ ︸

λr,β

+Ar(τ −1)′ γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζr(τ)

′+α(τ̂)′Ar
)
+Λr

)
︸ ︷︷ ︸

λr,r

(71)

−Au(τ)
′ = Â(τ −1)′γΣ

((
N

∑
τ̂=2

Â(τ̂ −1)α(τ̂)′Au

)
−
(
0, Â(1), ..., Â(N −1)

))

+Ar(τ −1)′γσ
2
r

((
N

∑
τ̂=2

Ar(τ̂ −1)α(τ̂)′Au

)
− (0,Ar(1), ...,Ar(N −1))

) (72)

A(τ −1)′(I −Φ)β̄ +Ar(τ −1)(r̄−φ
′
rΦβ̄ )+

1
2

Â(τ −1)′ΣÂ(τ −1)

+
1
2
(Ar(τ −1)σr)

2 +
1
2

Au(τ −1)′ΣuAu(τ −1)+C(τ −1)−C(τ)

= Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
S̄(τ̂)−

(
θ0(τ̂)−α(τ̂)′C

))
+ψ

)

+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
S̄(τ̂)−

(
θ0(τ̂)−α(τ̂)′C

))
+ψr

)
.

(73)

B.3. Setting Model Parameters

The model is quite flexible accounting for the rich dependence of investor demand on macroeco-
nomic factors and Treasury prices, as well as dynamics in the state variables. In this subsection,
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we provide details of how we use data to directly inform model parameters.

We take the average duration as the maturity for each maturity bucket, obtaining τ1 = 2, τ2 =

10, and τ3 = 42 (all in quarters). For each maturity bucket, we sum up the coefficients of preferred-
habitat investors’ demand in Table 3 and 4. To convert regression results to the model format, we
express the demand for each maturity bucket separately, and use the intercept term to capture
maturity-bucket fixed effects. We then add the maturity-by-maturity bucket estimates of the Fed
to the preferred habitat investor demand to obtain total non-arbitrageur demand. For simplicity,
our model does not capture characteristic-based demand (i.e., loadings on coupon rate and bid-ask
spread) and the repo spread, so we take the average of these components and add them to the
intercept of preferred-habitat demand. The above leads to the following pooled preferred-habitat
demand:

Table 14. Model inputs

τ < 1Y 1 ≤ τ < 5Y τ ≥ 5Y

θ0(m) -2082 3847 741
yt(m) 305 92 332
yt(−m) -302 -65 -355
Credit Spread -178 253 182
GDP Gap -30 -11 -22
Inflation -43 -81 28
Supply 7372 1176 3791

Moreover, in the model, the demand is expressed as a function of prices, not yields, so we need
to convert the yield sensitivity into price sensitivity, using the chain rule,

∂Z(τ)
∂ pτ

=
∂Z(τ)

∂yτ

∂yτ

∂ pτ
=−1

τ

∂Z(τ)
∂yτ

(74)

Second, we estimate the supply dynamics in Equation (18). We implement a linear regression
of the Treasury total supply in each maturity bucket and then recover the loadings on macro factors,
the short rate, and the intercept S̄. Similar to the demand estimation, we concentrate the supply
into three maturities that represent the average duration of three maturity buckets. In Figure 13, we
illustrate that the model fits the total supply well.

Third, we estimate the monetary policy dynamics in (10). We rewrite the monetary policy
equation as

rt+1 = (r̄−φ
′
rβ̄ )+φ

′
rβt+1 +ρrrt +σrε

r
t+1, (75)
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Figure 13. Treasury Supply: Data versus Model Fitting.

where the intercept term is identified as a whole. To fit the monetary policy rule, we have to use
a longer time period, because monetary policy rate does not have much variation during our main
sample period. In particular, we use the post-Volcker period (1990 to 2024) excluding the zero
lower bound (ZLB) period (2008-2015). We start from 1990 because it is when the Fed gained
credibility in its fight of inflation. The resulting monetary-policy equation is:

rt+1 = 1.9−1.36∗ credit spreadt+1 +0.06∗GDP gapt+1 +0.22∗ core inflationt+1

−1.13∗debt/GDPt+1 +0.78∗ rt +0.75∗ ε
r
t+1

(76)

Equation (76) suggests that the Fed lowers the interest rate if credit spread is high, GDP gap (GDP
deviation from potential GDP) is low and tightens interest rate if inflation is high. The coefficient
on GDP gap and inflation have the same signs as the classical Taylor rule (Taylor 1993) but much
smaller coefficients. Moreover, there is moderate amount of monetary policy inertia reflected by
the coefficient of 0.78 on lagged policy rate. This dependence on lagged policy rate generates an
impact of monetary policy rate on long-term yields from the expectation effect and is critical to
understand how yield curve responds to monetary policy shocks εr

t+1.

Fourth, we estimate the dynamics of macro factors in Equation (9). It is important to get
the long-run average of macroeconomic factors correct. Therefore, we take the sample average
of macro factors directly as β̄ . Denote the demeaned macro factors as β̂t . Then we recover the
coefficients with the following regression:

β̃t+1 = Φβ̃t +Σ
1/2

εt+1. (77)

Alternatively, we could directly run a linear regression with an intercept to uncover β̄ and Φ

simultaneously. We find that the estimations of Φ are similar between the two approaches, but

83



the simultaneous estimation of β̄ and Φ gives unreasonable long-run average of macro variables.
The matrix Σ is estimated as the covariance matrix of the regression residuals in (77).

B.4. Model Estimation

Estimation of the model involves high dimensionality and requires a reasonable initialization of
model parameters. Our high-level idea is to segregate the model into different components and
separately initialize each component.

At the first step, we solve for the following simpler optimization problem with unconstrained
C,

min
{λβ ,β ,λβ ,r,λr,β ,λr,r,C}

E
[
∑
t

∑
τ

(yt(τ)− yo
t (τ))

2
]
, (78)

subject to
A(τ)′ = A(τ −1)′Φ+Ar(τ −1)φ ′

rΦ− Â(τ −1)′λβ ,β −Ar(τ −1)λβ ,r (79)

Ar(τ) = Ar(τ −1)ρr −1− Â(τ −1)′λr,β −Ar(τ −1)λr,r (80)

where Â(τ −1) is a function of A(τ −1) and Ar(τ −1) as defined in (39). The model implies that
yt(τ) = −pt(τ)/τ , where pt(τ) satisfies the pricing equation in (26), with ut being unobservable
with mean 0, variance Σu, and uncorrelated with βt and rt . As a result, we can rewrite the objective
function as

min
{λβ ,β ,λβ ,r,λr,β ,λr,r,C}∑t

∑
τ

(
Aβt +Arrt

τ
+

C
τ
+ yo

t (τ))
2, (81)

We note that this problem does not explicitly involve arbitrageur risk aversion γ , because that is
embedded in the solution of risk premium λβ ,β , λβ ,r, λr,β , λr,r and the intercept C.

In the estimation, the dimension of β is K = 6, and the dimension of rt is 1. The vector C is
120×1 (quarterly frequency of 30 years gives rise to 120 maturities). Therefore, the total degree
of freedom is 7*7+120 = 169. This is a very high dimensional optimization problem. Similar
to a typical affine term structure estimation, it is important to find a good initial point for the
algorithm. We leverage on an important insight from the affine term structure literature, which is
to use regressions to initialize the coefficient matrix.

In particular, we start with a linear regression problem:

min
A,Ar,C

∑
t

∑
τ

(Aβt +Arrt +C+ τyo
t (τ))

2,

Solving this estimation on A, Ar, and C is equivalent to regress the log-price vector

(yo
t (1),2yo

t (2), · · · ,Nyo
t (N))
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on βt and rt , where C serves as the intercept term.

Next, knowing the values of the matrices A, Ar, we can view the iteration equations in (79) and
(80) as another set of regressions. Rewriting (79) and (80) in a regression form,

A(τ)′−A(τ −1)′Φ︸ ︷︷ ︸
left hand side

= Ar(τ −1)︸ ︷︷ ︸
dep var

(φ ′
rΦ−λβ ,r)− Â(τ −1)′︸ ︷︷ ︸

dep var

λβ ,β ,

−Ar(τ)+Ar(τ −1)ρr −1︸ ︷︷ ︸
left hand side

= Â(τ −1)′︸ ︷︷ ︸
dep var

λr,β +Ar(τ −1)︸ ︷︷ ︸
dep var

λr,r.
(82)

where the regression coefficients are φ ′
rΦ−λβ ,r, λβ ,β , λr,β , and λr,r. Note that φr and Φ are directly

estimated in the data. Consequently, we can use regressions to initialize all of the four price of risk
matrices and also the constant term C.

Once we initialize the problem, we use built-in minimization solvers to find the solution to the
optimization problem (81) to find better initial values.

Next, we note that for any given γ , and the solved matrix A, Ar, and Â, we can uniquely pin
down the latent-demand impact matrix Au. Equation (49) can be viewed as a linear matrix equation
for Au. To see that, we denote

Âshift =
(
0, Â(1), ..., Â(N −1)

)′
Ashift

r = (0,Ar(1), ...,Ar(N −1))′
(83)

which are “shifts” of the original Â and Ar matrices. Then we can stack all different τ in equation
(49) to get the matrix equation(

Âshift
γΣ

N

∑
τ̂=2

Â(τ̂ −1)α(τ̂)′+Ashift
r γσ

2
r

N

∑
τ̂=2

Ar(τ̂ −1)α(τ̂)′+ I

)
Au

=Âshift
γΣ(Âshift)′+Ashift

r γσ
2
r (A

shift
r )′

(84)

which is simply a linear equation for Au that can be solved immediately.

To initialize the arbitrageur risk-aversion γ and the intercepts ψ and ψr of arbitrageur’s outside
portfolios, we will solve the subset of the main objective function in (54). Given initializations of
A, Ar, Au, we solve for

min
{γ,ψ,ψr}

E
[
(h−ho)2] , (85)

subject to (50). We find that arbitrageur holding of long-term Treasuries in the model is very
sensitive to γ , so this optimization problem has very high power in identifying γ . Moreover, to
speed up the algorithm and ensure a solution, we express the equation for C as a linear system
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rather than a iterative system. In particular, we rewrite (73) as

A(τ −1)′(I −Φ)β̄ +Ar(τ −1)(r̄−φ
′
rΦβ̄ )+

1
2

Â(τ −1)′ΣÂ(τ −1)

+
1
2
(Ar(τ −1)σr)

2 +
1
2

Au(τ −1)′ΣuAu(τ −1)− Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
S̄(τ̂)−θ0(τ̂)

)
+ψ

)

−Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
S̄(τ̂)−θ0(τ̂)

)
+ψr

)

=Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)α(τ̂)′

)
C+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)α(τ̂)′

)
C+C(τ)−C(τ −1)

(86)

The left-hand side is a single value and denote it as C0(τ). Also denote the vector

Ã(τ)′ = Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)α(τ̂)′

)
+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)α(τ̂)′

)
+(1τ −1τ−1)

′

where 1τ is an N-dimensional vector that is one for element τ but zero otherwise. Then equation
(86) can be simplified as

C0(τ) = Ã(τ)′C

for all τ ∈{2,3, · · · ,N}. For τ = 1, we know that p(1)t =−rt , which implies that C(1)= 0. Stacking
all of the equations for τ ∈ {1,2,3, · · · ,N}, we get

0
C0(2)

...

CN(1)

=


1′1

Ã(2)′

...

Ã(N)′

C,

which is a linear system that can be easily solved.

Finally, with λβ ,r, λβ ,β , λr,β , λr,r, γ , and Au solved, we can recover the intermediary outside
asset risk loadings Ψ, Ψr, Λ, Λr, from the definitions of λβ ,r, λβ ,β , λr,β ,and λr,r in equations (47)
and (48). In particular, we have

Ψ =
1
γ

λβ ,β −
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

)
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Ψr =
1
γ

λβ ,r −

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))

Λ =
1
γ

λr,β −
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζr(τ)

′+α(τ̂)′Ar
)

Λr =
1
γ

λr,r −
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζr(τ)

′+α(τ̂)′Ar
)

C. Additional Quantitative Results

C.1. Calculating Aggregate Treasury Market Elasticity

For comparison with the literature, we will use Treasury market multiplier, which is the inverse
of Treasury market elasticity. We calculate the aggregate Treasury market multiplier in following
steps: First, we construct a "representative demand shock", accounting for the weights of different
maturity buckets. Second, we calculate the total price response in each maturity bucket due to
the demand shock. Finally, we use the weights of different maturity bucket to aggregate bucket-
level price responses to an aggregate Treasury valuation change. The ratio between this valuation
change and the total size of the demand shock is what we define as market multiplier, consistent
with the literature.

Denote the average outstanding (in $ billion amount scaled to the year of 2011) of three
maturity buckets as ω̄ , which is ω̄ = (3998,6103,5389)′. Thus, the weight vector of three maturity
buckets is

ω =
ω̄

∑i ω̄i
= (0.258,0.394,0.348)′.

Next, we construct a representative demand shock, by multiplying $1 billion with the weight ω ,
so that the demand vector is simply ω . Denote the set of durations for three maturity buckets as
T . Then for the three maturity buckets, the log price response matrix is Âu ≡ Au(T ,T ). Thus,
the log price response vector to the representative latent demand shock is Âuω . Finally, we need to
multiply the value of three maturity buckets to get a billion dollar valuation change ω̄ ′Âuω , which
is the aggregate Treasury market multiplier. Using the transpose of Âu matrix as shown in Panel
A of Table 5, we obtain a multiplier of 0.27, i.e., a $1 billion representative demand shock on the
Treasury market increases total Treasury valuation by $0.27 billion.

Following the same procedure, we can use Panel B of Table 5 to calculate the Treasury market
multiplier in the case without arbitrageur, and we find that is 18, which is a very large number.
Therefore, low risk-aversion arbitrageurs are crucial for an elastic Treasury market.
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Next, we show the aggregate multiplier for permanent demand shocks. In Table 15, we show
the price impact of permanent demand shocks in the case with and without arbitrageurs. This table
has the same format as our main Table 5. Using Panel A of 15, we can calculate the Treasury
market multiplier for permanent demand shock as 1.00, which is higher than the case of latent
demand shock, because permanent demand shocks significantly change the risk premium.

Panel B of Table 15 is identical to Panel B of Table 5, because absent from arbitrageurs, latent
demand shocks and permanent demand shocks are treated the same by preferred-habitat investors.
Consequently, in the case without arbitrageurs, Treasury market multipliers to permanent demand
shock and to latent demand shock are identical.

Table 15. Impact of Permanent Demand Shocks on Treasury Prices with and without
Arbitrageurs.

We illustrate the impact of permanent demand shocks with and without arbitrageurs. A value of 1
indicates that $100 billion extra permanent demand of Treasuries increases the price by 1%.

Panel A: With Arbitrageur

Price change (%) of
short maturity medium maturity long maturity

shock on short maturity 0.0007 0.0051 0.0093
shock on medium maturity 0.0235 0.1741 0.3481
shock on long maturity 0.1284 1.0586 3.3735

Panel B: Without Arbitrageur

shock on short maturity 0.5921 1.8907 10.3854
shock on medium maturity 2.2033 10.7307 48.6644
shock on long maturity 0.4988 2.0057 13.0317

Panel C: Price Impact Ratio (Panel B/Panel A)

shock on short maturity 830.32 369.30 1112.04
shock on medium maturity 93.82 61.62 139.81
shock on long maturity 3.88 1.89 3.86

C.2. Dissecting Arbitrageur’s Outside Portfolio

In Figure 14, we show how changes in arbitrageur’s outside portfolio affect equilibrium Treasury
pricing, in a similar way as Figure 7. We view this exercise as illustrating how other markets
that arbitrageurs participate in can transmit to the Treasury market via arbitrageurs. In particular,
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we increase all the outside-portfolio exposures, Ψ, Ψr, Λ, Λr, ψ , ψr by 1%, and we analyze the
percentage changes of various yields and sensitivities.

C.3. The Impact of Fed’s Cross Elasticity

We evaluate the role of cross elasticity in the Fed’s demand function. As shown by Table 4,
the Fed has a strong cross-substitution especially on long-maturity Treasuries. Given the long-
term Treasury yield, if short-term Treasury yield becomes higher, Table 4 indicates that the Fed
will significantly reduce long-term Treasury holdings. This response can also be interpreted as a
coherent monetary tightening, when the Fed both increases the short-term interest rate and shrinks
its long-term Treasury holdings.

With the above intuitions, we will analyze what will happen to the Treasury market if the Fed
does not tighten its long-term Treasury holding when short-term yield goes up, i.e., we set the
cross-elasticity coefficients of Fed’s demand to zero and estimate the model again following the
same setup in equation (51). With this alternative model, we calculate how sector-level portfolio
adjusts to a permanent demand shock similar to the exercise in Table 8, and we show the results in
Table 16. We find that a permanent demand shock on short-term Treasuries leads to similar results
as in Table 4, but results are significantly different in response to a permanent demand shock on
long-term Treasuries, with the Fed increasing its long-term Treasuries holdings by about $100
billion, at par with the primary sell shock size of $100 billion. Due to a more accommodation Fed,
arbitrageurs do not need to expand its balance sheet aggressively, so the expansion of arbitrageur’s
balance sheet becomes smaller.

C.4. Latent Demand and Risk Premium

In our quantitative analysis, we assume that the risk premium by latent demand shocks ut , as
in (64), is negligible compared to that of macroeconomic factors βt and monetary policy rate
rt . This assumption greatly simplifies model estimation. To evaluate whether this assumption is
reasonable, we calculate the contribution of each components of the risk premium to expected
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Figure 14. Impact of Outside Portfolio Exposure.

We illustrate how outside portfolio exposure affects the equilibrium. We increase arbitrageur outside
portfolio risk exposures (Ψ, Ψr, Λ, Λr, ψ , ψr) all by 1%, and illustrate the percentage changes of various
yields and sensitivities. Panel (a) shows ∂ log(ysteady)

∂ log(γ) , the sensitivity of steady state yield curve. Panel (b)

illustrates ∂ log(Ar)
∂ log(γ) , the price elasticity to interest rate r. Panel (c) shows ∂

∂ log(γ) log( 1
N Au · 1), the price

elasticity to latent demand averaged across latent demand shocks of different maturities. Panel (d) shows
∂

∂ log(γ) log( 1
N

∂ p
∂θ0

·1), the price elasticity to permanent demand averaged across permanent demand shocks of
different maturities.
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Table 16. Model-Implied Sector-Level Portfolio Adjustment to Permanent Demand Shocks
without Fed Cross Elasticity.

This table shows the same counterfactual results as Table 8, but shutting off the cross elasticity of
Fed’s demand.

Panel A: A $100 billion Sell Shock of τ < 1 Treasuries

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks -0.5 0.0 0.3 -0.2
ICPF 0.0 0.0 0.1 0.1
MF ROW 0.0 0.0 0.1 0.1
MF U.S. -1.1 0.1 0.7 -0.3
MMF -3.0 0.0 0.0 -3.0
Other U.S. 3.0 0.9 0.0 3.9
Foreign -1.9 -0.8 -0.4 -3.1
Fed 0.0 0.3 5.3 5.7
Arbitrageurs 103.5 -0.6 -6.0 96.9

Panel B: A $100 billion Sell Shock of τ ≥ 15 Treasuries

Banks -6.5 -3.0 7.6 -1.9
ICPF -0.2 0.2 1.2 1.2
MF ROW -0.6 0.0 1.4 0.8
MF U.S. -16.1 -7.3 19.3 -4.1
MMF -41.9 0.0 0.0 -41.9
Other U.S. 40.6 27.5 -18.0 50.2
Foreign -25.6 -19.3 4.8 -40.1
Fed 0.3 2.3 95.0 97.6
Arbitrageurs 50.1 -0.4 -11.4 38.3
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returns as follows. Define

µβ ,t(τ) = Â(τ −1)′γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)X (τ̂)

t

)
+Σ

1/2
σ̃ X̃t

)

µr,t(τ) = Ar(τ −1)′γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)X (τ̂)

t

)
+σrσ̃ X̃t

)

µu,t(τ) = Au(τ −1)′γ

(
N

∑
τ̂=2

Σ
uAu(τ̂ −1)X (τ̂)

t

)

Then the expected excess return of Treasuries of maturity τ is

µ
(τ)
t − rt = µβ ,t(τ)+µβ ,t(τ)+µu,t(τ)

Next, we calculate the contribution to the average risk premium by ut as

F (τ) = |
1
T ∑

T
t=1 µu,t(τ)

1
T ∑

T
t=1
(
µu,t(τ)+µβ ,t(τ)+µr,t(τ)

) |
For the three maturity buckets, this ratio is 0.47%, 0.89%, and 1.34%. As a result, we conclude
that the contribution of the latent demand shock to risk premium on average is small, confirming
our simplification assumption.
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