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Abstract
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Introduction Central banks have historically played an important role in stabilizing govern-
ment debt markets.1 Following a recent series of disruptions in Treasury markets,2 the Federal
Reserve (the Fed) has once more reclaimed prominence in Treasury markets through a combina-
tion of direct interventions—such as large-scale asset purchase programs—and indirect support
through Treasury funding markets—such as discretionary lending following the repo market dis-
ruption in September 2019 and the establishment of a standing repo facility in July 2021. Those
developments unfold against a backdrop of stricter bank regulations and a growing involvement
of non-bank financial institutions in Treasury markets (Duffie, Geithner, Parkinson, and Stein,
2022).

In this paper, we present a dynamic model of Treasury and repo markets that accounts for
those developments and study the role of the balance sheet of the central bank in Treasury
markets under actual institutional and regulatory settings. Our model generates endogenous
disruptions in Treasury and repo markets as a consequence of the combination of three institu-
tional frictions: (i) banks’ balance sheet space is costly for traditional banks (Andersen, Duffie,
and Song, 2019); (ii) banks are subject to an intraday reserves requirement that limits repo
lending to a portion of available reserves (Copeland, Duffie, and Yang, 2021; d’Avernas, Han,
and Vandeweyer, 2023a); and (iii) repo and deposits are imperfect-substitute money-like assets
for households (Krishnamurthy and Li, 2022). In equilibrium, unregulated shadow banks hold
Treasuries funded with leverage in repo to exploit regulatory arbitrage opportunities. However,
these positions are not riskless because they entail liquidity risk stemming from shocks that
affect repo markets. When repo rates increase, levered shadow banks face significant losses
and may optimally choose to liquidate their Treasury portfolio, despite associated transaction
costs. We study how various commonly observed shocks to repo markets—flight-to-deposits, re-
duced intermediation capacity, tax payments, and Treasury issuances—interact with the central
bank’s balance sheet to generate disruptions to Treasury markets. We empirically validate the
mechanisms of our model using observed price and portfolio flow responses to these shocks.

The main novelty of our approach is that we consider a model of repo and Treasury markets
that is both dynamic—agents anticipate shocks and policy—and general equilibrium—every
financial asset is a liability of another sector—and thus allows for meaningful analysis of the
aggregate impact of dynamic sectoral balance sheet adjustments. By modeling those adjustments
explicitly, we can explore at a granular level the economic forces that drive these disruptions

1Historical examples include, among others, the Banque de France, which was created by Napoleon
I with a mandate to purchase government debt; the Bank of England’s extensive purchase of bills of
exchange to stabilize gilt markets at the onset of World War I; the Federal Reserve’s purchase of short-
term Treasury bills from its origination and intervening daily in Treasury bond markets at the start of
World War II in 1939, and the Treasury-Federal Reserve Accord in 1951. Additional Treasury purchases
from the Federal Reserve took place in 1958, 1961, and 1970 (Garbade and Keane, 2020).

2Notable episodes include quarter-end disruptions (Aldasoro, Ehlers, and Eren, 2022; Munyan, 2015);
the September 2019 overnight Treasury repo rate surge (Afonso, Cipriani, Copeland, Kovner, La Spada,
and Martin, 2020; Avalos, Ehlers, and Eren, 2019; Copeland, Duffie, and Yang, 2021; Correa, Du, and
Liao, 2020); the March 2020 Treasury yield increase (He, Nagel, and Song, 2022; Vissing-Jorgensen,
2021); and the September 2022 turmoil in the UK sovereign bond market (Bank of England, 2022).
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and inform policy discussions on the optimal design of central bank facilities, discretionary
interventions, and the effects of reforming banks’ and non-bank financial institutions’ regulations.

The first contribution of our work is to explain several salient developments in the repo and
Treasury markets within a single tractable framework and shed light on their underlying eco-
nomic mechanisms. First, in our model, shadow banks allocate a large portion of their portfolio
to Treasuries, taking advantage of low balance sheet costs through high leverage. This mech-
anism corresponds to the increased participation of hedge funds in Treasury markets since the
introduction of Basel III regulation (Barth and Kahn, 2023). Those non-bank market partici-
pants exploit the existence of various Treasury bases, which are deviations from the law-of-one-
price between Treasuries and exposure to the underlying through derivatives.3 In our model,
as in practice, such a trade is risky because it entails liquidity risk for shadow banks that roll
over their repo funding overnight. The equilibrium Treasury basis is, therefore, pinned down by
the required compensation for this liquidity risk from shadow banks. This observation explains
the puzzling observation that the Treasury basis remains open despite the presence of a largely
unconstrained and competitive hedge fund sector.

Second, our model accounts for the behavior of banks acting as “lender-of-next-to-last-resort”
(Pozsar, 2019). As documented by Correa, Du, and Liao (2020), banks increase repo lending
while running down reserves during recurring dislocations of repo markets such as quarter-ends,
tax deadlines, and Treasury issuances. In the model, banks’ ability to lend in repo to shadow
banks is key to preventing repo rates from deviating from the interest paid on reserves and
ensuring that liquidity services are at their optimum. However, because of the existence of the
two regulatory frictions, bank repo lending capacity can be impaired and depends on adjustments
to the central bank’s balance sheet. As a result, shadow banks end up paying a high interest rate
on their repo funding and, when the shock is large enough, liquidate their portfolio of Treasuries
with significant losses, as seen in September 2019 and March 2020.4

Third, our model provides an intuitive interpretation of the observation that Treasury fire
sales absorbed most of the shock in March 2020 at the outset of the Covid-19 outbreak, while
repo rates spiked to 400 bps in September 2019. In the model, the presence of trading costs
implies that the market predominantly impacted depends on agents’ expectations regarding the
duration of the shock. Specifically, short-lived shocks have a greater impact on the repo market
than on the Treasury market because shadow banks are willing to pay a high repo rate for a brief
period to avoid incurring the transaction fixed costs associated with liquidating their positions.

3An example of such a trade is the Treasury cash-future, which can be exploited through the strategy
of financing large Treasury holdings in repo while selling the same Treasury forward in the futures market
and thereby hedging duration risk. The cash-future basis was a large and popular trade around 2018-
2019 but came down in popularity after the expansion of the Fed balance sheet in March 2020. As the
Fed is normalizing its balance sheet, the basis started increasing again in 2023 (Avalos and Sushko, 2023;
Barth, Kahn, and Mann, 2023).

4These losses were widely reported in the financial press: e.g., “Hedge Funds Hit by Losses in
Basis Trade”, The Wall Street Journal, March 19, 2020, accessible at https://www.wsj.com/articles/
hedge-funds-hit-by-losses-in-basis-trade-11584661202.
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In contrast, when shadow banks anticipate a long-lasting shock, it becomes optimal to pay the
fixed transaction costs once and liquidate their Treasury portfolio rather than face a high repo
funding rate over an extended period. Observed dynamics in September 2019 and March 2020
are consistent with this result to the extent that the tax deadline shock of mid-September 2019
was perceived as temporary, while the flight-to-deposit shock caused by the Covid-19 disruption
was anticipated to be long-lasting.

Our second contribution is to exploit the granularity of our model to provide a precise account
of the economic mechanisms that link specific shocks to disruptions in repo and Treasury mar-
kets, with implications for stabilization policy. An important insight from the model is that both
sides of the central bank’s balance sheet are independent determinants of market disruptions.
On the asset side, a larger portfolio of Treasury securities held by the central bank diminishes
the demand for repo financing from shadow banks, which relaxes the balance sheet cost fric-
tion, and subsequently reduces the likelihood of a Treasury disruption. On the liability side,
a larger central bank balance sheet with a large supply of reserves enables banks to lend more
in repo following a liquidity shock. Consequently, a reduction in the size of the central bank
balance sheet exerts simultaneous pressure on both the demand and supply of repos, increasing
the likelihood of disruptions. Conversely, net purchases of Treasuries financed through reserves
by the central bank can alleviate pressures on repo and Treasury markets, as documented by
Vissing-Jorgensen (2021) in March 2020. In addition, our model contributes an important gen-
eral equilibrium insight into the question of assessing the minimum level of reserves necessary
to ensure the stability of repo and Treasury markets (Afonso, Cipriani, Copeland, Kovner,
La Spada, and Martin, 2020; Afonso, La Spada, Mertens, and Williams, 2023; Lopez-Salido and
Vissing-Jorgensen, 2023): With an intraday liquidity constraint, it needs to be considered in
proportion to total Treasuries outstanding.

In addition to the size of the central bank balance sheet, endogenous adjustments to its
composition following shocks also have important consequences for Treasury market dynamics.
A prevalent case of this mechanism can be observed following an intermediation shock, modeled
as the contraction of an unregulated repo dealer balance sheet without balance sheet cost. This
type of shock corresponds to the disruptions observed at quarter-ends when foreign dealers
window-dress their balance sheets (Munyan, 2015). As observed in the data, contractions by
foreign dealers put pressure on domestic dealers, and thereby increase the intermediation spread
between the (bilateral) repo rate paid by hedge funds and the (triparty) repo rate received by
households. For small shocks, because banks are unconstrained in their repo lending capacity,
this adjustment needs to occur through a decrease in the household repo rate, until it reaches
the policy rate at the reverse repo facility. The triparty repo rate is then bounded below, and the
shock is absorbed with a supply adjustment by swapping reserves into repos within the central
bank balance sheet, rather than an increase in the repo rates spread.

The model helps shed light on a subtle general equilibrium arithmetic: Under normal con-
ditions, the reverse repo facility not only provides a floor to the triparty repo rate but also
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prevents the bilateral repo rate from spiking up. The induced reduction in reserves opens the
space on banks’ assets required to lend in repo without expanding their balance sheets. This
adjustment corresponds to the “reserves-draining” intermediation documented by Correa, Du,
and Liao (2020) and is consistent with Diamond, Jiang, and Ma’s (2023) finding that large
reserves balances crowd out banking lending. An important insight from our model, however, is
that such a drawdown of reserves is only stabilizing if banks have enough reserves to fulfill their
intraday requirements and settle new repo transactions. Once the intraday reserves constraint
binds, any further decrease in reserves restricts bank repo lending capacity and exacerbates the
shortage of repo. The bilateral repo rate then spikes above the interest paid on reserves to reflect
this scarcity of repo supply, as observed in September 2019.

Our model is also informative regarding several ongoing policy discussions to readjust the post-
GFC regulatory apparatus. First, the model addresses the prospect of implementing a standing
repo facility, as introduced by the Fed and the Bank of England in 2022. An implication of the
model in support of standing facilities is the existence of a “volatility paradox” (Brunnermeier
and Sannikov, 2014) in Treasury markets: As the probability of disruption becomes lower (e.g.,
through the perception of a more interventionist central bank), shadow banks increase their
leverage, which results in a higher-intensity shock conditional on a disruption taking place. A
well-designed facility that provides systematic intervention may, therefore, be needed to avoid
the large disruptions that discretionary interventions may generate.

Furthermore, the model speaks to the design of standing repo facilities and the policy debate
as to whether its access should be restricted to banks or available to shadow banks (Duffie,
Geithner, Parkinson, and Stein, 2022).5 Our model shows that a repo facility accessible to
banks helps prevent Treasury market disruptions caused by tax deadlines and issuance shocks
but not intermediation shocks. In the latter case, the shock impacts repo and Treasury markets
by reducing aggregate balance sheet capacities. As a result, a repo facility proves helpful only
if directly accessible by shadow banks. In that case, the central bank stabilizes markets by
simultaneously borrowing from households at the reverse repo facility and lending to shadow
banks at the repo facility. Conversely, because tax deadlines are net repo supply contractions,6

dealer-banks have spare balance sheet capacity they can mobilize to intermediate repo lending
from the central bank to shadow banks. Direct access to shadow banks is therefore not needed
to prevent disruptions brought about by tax deadline and Treasury issuance shocks.

Lastly, we make use of the model to understand how reforming the regulatory framework would
affect Treasury market dynamics. The model shows that relaxing the regulation of traditional

5The financial press has echoed those concerns about the effectiveness of narrow-access facilities.
E.g., “What is the new Bank of England short-term lending facility?”, Financial Times, October 10,
2022, accessible at https://www.ft.com/content/2aaea9cc-0458-4a12-ad9e-42ed8328d4dc.

6Tax deadline shocks, representing money market fund outflows around tax deadlines such as the
middle of September, have the potential to trigger Treasury disruptions through a different mechanism:
Tax deadlines simultaneously reduce the supply of repos from households while reducing the quantities
of reserves available to banks as those are flowing to the Treasury General Account.
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banks by removing reserves from leverage ratio calculations alone does not change Treasury
market dynamics, unlike removing both reserves and Treasuries. In addition, our model shows
that subjecting shadow banks to some leverage constraints, as is currently proposed by the SEC,
would help stabilize Treasury markets but at the expense of increasing government steady-state
financing costs.

Related Literature Our paper complements the literature on frictions and disruptions in
financial markets post-Basel III regulations by providing a comprehensive framework to under-
stand the underlying economic forces at play. Munyan (2015) and Du, Tepper, and Verdelhan
(2018) demonstrate that these frictions manifest as quarter-end effects in repo and FX swap
rates because foreign dealers reduce balance sheet size to comply with leverage ratio regulations.
Andersen, Duffie, and Song (2019) reveal the implications of such regulations on funding value
adjustments for major dealers and identify debt overhang costs for shareholders. Correa, Du, and
Liao (2020) illustrate how banks engage in “reserves-draining” intermediation to lend in money
markets following quarter-end shocks to bypass these constraints. Klingler and Syrstad (2021)
provide a comprehensive empirical inquiry across the many factors that influence repo rates.
These constraints have also been empirically documented to impact Treasury arbitrage trades,
as seen in cash-future basis (Barth and Kahn, 2023); swap spreads (Jermann, 2019); and CIP
violations (Du, Tepper, and Verdelhan, 2018). Boyarchenko, Eisenbach, Gupta, Shachar, and
Van Tassel (2018) show how dealer balance sheet costs affect repo pricing and arbitrage fund-
ing for non-banks—a finding that our model rationalizes. He, Nagel, and Song (2022) connect
these findings to the extraordinary increase in Treasury yields observed in March 2020 through
a preferred habitat model in which dealers incur an increased cost of holding Treasuries when
absorbing fire sales from other sectors. Our model highlights the general equilibrium conditions
under which those dynamics may or may not occur and economic mechanism underpinning those
disruptions. Ma, Xiao, and Zeng (2022) study the role of fire sales from mutual funds in the
March 2020 episode. Eisenbach and Phelan (2023) further endogenize Treasury sales in a global
game in which investors anticipate dealer balance sheet bottlenecks.

In particular, our work is connected to studies that relate the supply of central bank reserves
to repo markets through banks’ ability to serve as a stabilizing force in repo markets or “lender-
of-next-to-last-resort” and effectively increase the financial system’s reliance on reserves. Close
to our paper, Bianchi and Bigio (2022), Piazzesi and Schneider (2021), and De Fiore, Hoerova,
and Uhlig (2018) include interbank markets in macroeconomic models and study the effect of
lender-of-last-resort monetary policy on macroeconomic variables. Copeland, Duffie, and Yang
(2021) and Pozsar (2019) identify potential liquidity concerns related to Treasury settlements
and excess balance sheet normalization. Gagnon and Sack (2019) discuss policy options to
address these issues, such as a standing repo facility, higher reserve levels, and explicit directives
to control the repo rate. In particular, the repo turmoil of September 2019 has been partially
attributed to hedge funds’ use of repo to finance Treasury holdings by Avalos, Ehlers, and Eren
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(2019). Afonso, Cipriani, Copeland, Kovner, La Spada, and Martin (2020) provide a detailed
account of the event, highlighting the role of reserves and interbank market frictions, while Anbil,
Anderson, and Senyuz (2021) emphasize the role of trading relationships. D’Avernas, Han, and
Vandeweyer (2023a) and Yang (2022) model the impact of intraday liquidity constraints on
money market dislocations, and find that nonlinearities can generate significant spikes in repo
rates. Acharya and Rajan (2022) and Acharya, Chauhan, Rajan, and Steffen (2023) identify
a ratchet effect on banks’ liquidity, which implies that removing reserves during quantitative
tightening exposes banks to increased liquidity risk. Consistent with our result whereby reserves
can crowd out repo lending, Diamond, Jiang, and Ma (2023) find that large reserve balances may
hinder banks’ ability to lend. Focusing on the slow-moving dynamics of rates rather than high-
frequency shocks, d’Avernas and Vandeweyer (forthcoming) and Anbil, Anderson, Cohen, and
Ruprecht (2022) highlight the importance of the demand for liquidity from non-bank financial
institutions and reverse repo facilities as a tool to provide this liquidity and provide a floor
to triparty repo rates. Complementary to this work, Ma, Eisenschmidt, and Zhang (2024) and
Huber (2023) study the role of imperfect competition in explaining a part of repo market spreads
with implications for monetary policy.

Our paper further contributes to the literature that assesses the role of a growing non-bank
sector that performs liquidity transformation tasks. In particular, the notion that shadow banks’
existence (and the negative effect on financial stability) is an unintended consequence of regula-
tory arbitrage is related to Huang (2018); Luck and Schempp (2014); Moreira and Savov (2017);
Plantin (2015); and Begenau and Landvoigt (2021), while the fact that traditional banks benefit
from insuring shadow banks against negative shocks is related to Lyonnet and Chretien (2023)
and d’Avernas, Vandeweyer, and Darracq-Pariès (2023b).

Our study distinguishes itself from previous literature by providing a detailed account of
general equilibrium adjustments to sectoral balance sheets in a dynamic setting, which allows
us to study the particular role of the central bank in shaping Treasury market dynamics. This
framework enables us to shed light on the mechanisms that connect institutional frictions to
market disruptions and offers a unique set of implications absent in prior work. In particular,
our framework highlights the important role of both sides of the central bank balance sheet as a
stabilizing force in Treasury markets. Despite the complexity of a setting in which anticipation
about shocks impacts portfolio allocations, which renders the threshold for binding constraints
endogenous, all results are proven analytically.

Our paper is organized as follows: Section 1 discusses recent evolutions to the Fed balance
sheet. Section 2 presents our dynamic asset pricing model with financial frictions. Section 3
presents the main theoretical results. Section 4 compares the model predictions to empirical
observations across three heterogeneous shocks and discusses policy implications, and Section 5
concludes.
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1 Post-GFC Evolution of the Fed’s Balance Sheet
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Figure 1: Evolution of the Fed’s Balance Sheet. The figure displays the evolution of the Fed’s
balance sheet between 2003 and 2024. The left panel shows the evolution of the asset side, decomposed
into its main categories: crisis lending facilities, loans, mortgage-backed securities, US Treasury securities,
and unamortized premium on securities, where crisis lending facilities are composed of liquidity swaps,
repo facility balances, term auction credit, and commercial paper funding facility balances. The right
panel shows the evolution of the liability side, decomposed into its main categories: Treasury general
account, foreign reverse repo facility balances, domestic reverse repo balances, reserves, and currency in
circulation. Source: Federal Reserve Economic Data, Federal Reserve Bank of St. Louis.

Figure 1 displays both sides of the Federal Reserve System’s balance sheet, highlighting a
significant uptick in both its size and complexity between 2008 and 2024. Responding to the
financial turmoil, in 2008 the Fed started to purchase large amounts of long-term securities—a
policy instrument commonly referred to as quantitative easing (QE) or large-scale asset purchase
program. As a consequence, the volume of reserves held by banks has increased by a factor of
40, leading to a doubling of the total size of the Fed’s balance sheet. In November 2010, the Fed
announced the second round of QE and further increased its balance sheet by $600 bn by the
end of the second quarter of 2011. The third round of QE was then announced in September
2012, leading to an additional increase in the Fed’s balance sheet of over $1.5 tn by 2015.
Until October 2017, the Fed kept its balance sheet at a stable size. At this point, it started
to “normalize” its balance sheet by not reinvesting a part of its maturing securities and letting
its balance sheet reduce. In September 2019—as repo rates suddenly hiked to more than 600
bps—the Fed reversed course and started to increase its balance sheet again, initially by lending
in the repo market and eventually through direct purchases of Treasury bills. The Covid-19
crisis, starting in March 2020, led to an additional round of QE and resulted in the Fed doubling
its balance sheet once more, mostly through Treasury and agency MBS purchases. The peak
size was reached in 2022 at more than $8 tn. From this point, the Fed again started normalizing.
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This evolution of the size of the Fed’s balance sheet was accompanied by a change in the
composition of its liabilities. After the 2008 financial crisis, the Fed started offering overnight
liquidity services to a growing number of non-bank institutions, which allows for endogenous
changes in the supply of reserves or “sterilization” (Pozsar, 2017) given a fixed Fed’s balance
sheet size. A first key institution impacting the supply of reserves available to banks is the
US Treasury, which, since 2008, no longer keeps its cash balances with private banks but rather
entirely with the Fed in its Treasury General Account (TGA) (Santoro, 2012). These balances ran
as high as $1.8 tn in Summer 2020 and are highly volatile—particularly during tax payment and
debt issuance periods and around quarter-end, year-end, and debt-ceiling events. For instance,
in September 2019, TGA balances increased by more than $150 bn within 2 weeks and thereby
removed a similar amount of reserves from the stock available to banks. Second, the Fed allowed
some foreign central banks to move their short-term balances to its balance sheet within the
Foreign Reverse Repo Facility (FRRP). In September 2019, the FRRP reached a peak of $300
bn. Third, in 2014, the Fed let money market funds access its balance sheet through the
Domestic Reverse Repo Facility (DRRP). The DRRP became an important element in the
Fed’s monetary policy implementation strategy by creating a floor below which money market
funds would not lend to the repo market. The DRRP was heavily used by money market funds,
which would deposit an average of $150 bn with the Fed per day up to 2018, when a large
supply of Treasury bills pushed repo rates above the DRRP rate (d’Avernas and Vandeweyer,
forthcoming). Since the Covid-19 crisis and the subsequent large increase in the Fed’s balance
sheet size, the DRRP has reached unprecedented levels, peaking at close to $2.4 tn between 2022
and 2023. Importantly, all of those new items on the liability side of the Fed’s balance sheet are
not under its direct control. The Fed decides how much it remunerates the different accounts
but does not control the quantities that institutions, including the Treasury, deposit at these
facilities.7 The model we develop in the following sections examines how these adjustments to
the Fed’s balance sheets turn out to be key variables in post-GFC Treasury market dynamics.

2 Model

Let (⌦,F,P) be a probability space that satisfies the usual conditions and assume that all
stochastic processes are adapted. The economy evolves in continuous time with t 2 [0, 1) and
is populated by a representative traditional bank (with a dealer subsidiary), shadow bank, and
household, as well as the Treasury and a central bank. To fix ideas about sectorial portfolio
holdings in the model, Figure 2 depicts an example of the balance sheets of the different sectors
in the economy. The Treasury issues Treasury bonds against future tax liabilities and maintains
a balance in the TGA; the central bank holds outstanding Treasury bonds, issues reserves to
the banking sector, lends repo at its standing repo facility, and borrows repo at its reverse repo

7Although some limits were initially imposed at the reverse repo facility, they have always been
increased or lifted to accommodate any uptick in demand.
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facility; and households invest their wealth and future tax liabilities in deposits and repos through
the domestic and foreign dealers. Traditional banks hold securities, reserves, and Treasury bonds
funded by issuing deposits. Traditional banks can also either lend or borrow in repo. Shadow
banks hold Treasury bonds leveraged with repo borrowing. In the model, positions are the result
of endogenous portfolio optimization under institutional constraints from the various sectors and
vary according to shocks.
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TreasuryFuture
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Figure 2: Chart of Sectors’ Balance Sheets
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The time-varying parameter 0 < ↵t < 1 corresponds to the preference of households for holding
deposits relative to repos.

Financial Assets Each asset held by an institution in the economy represents a liability
of another institution, and all institutions are owned by households. Additionally, households

12



cannot raise equity, and their consumption can potentially be negative.8 These assumptions
enable us to abstract from several general equilibrium forces that are not the focus of this
article, such as sectoral wealth dynamics, consumption-saving decisions, or productive capital
misallocation resulting from the balance sheet and transaction costs. Since we do not solve
for the consumption-saving problem, the model does not determine the level of rates, but only
equilibrium spreads between rates. To establish a benchmark rate, we introduce an illiquid risk-
free capital in zero net supply, only accessible to traditional banks, yielding a constant return
rk.

Treasury The Treasury issues bonds against the future tax liabilities of households and is
responsible for administering redistributive lump-sum tax policies. The net present value of
future tax liabilities must equal the outstanding amount of Treasuries:

⌧h
t + at = bt, (3)

where bt is the quantity of bonds issued, at is the size of the TGA account, and ⌧h
t is the future

tax liability of households.

Central Bank The central bank holds Treasury bonds, b, financed by reserves held by banks
mt and in the TGA at. The underlined notation differentiates the central bank’s holdings of
Treasury bonds bt from the bonds issued by the Treasury bt. The central bank can also lend repo
at the repo facility, rpt, and borrow repo at the reverse repo facility, rrpt. Thus, the balance
sheet constraint for the central bank is given by

bt + rpt = mt + at + rrpt. (4)

The central bank determines the interest rates at which the central bank lends at the repo
facility and at which it borrows at the reverse repo facility. These rates are denoted by rrp >

rm
t and rrrp < rm

t , respectively. In addition, for simplicity, we assume that the central bank
always operates with zero net worth and instantaneously transfers all seigniorage revenues to
the Treasury. The budget constraint for the Treasury is therefore given by

rb
tbt = r⌧

t + rb
tbt + rrp

t rpt � rm
t mt � rrrp

t rrpt, (5)

To pay interest on Treasury bonds, the Treasury collects taxes r⌧
t from households and seignior-

age revenues rebated from the central bank.

8Negative consumption can be interpreted as the negative disutility of providing labor with a linear
productivity function.
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Dealers and Repo Markets The repo market is assumed to be fully intermediated so
that households exclusively invest in repos through dealers rather than directly with traditional
or shadow banks.9 Because of costly balance sheet space (see below), dealers require a spread
between their borrowing and lending rates. We denote the rate at which dealers borrow from
households as the triparty repo rate rpt

t and the rate at which they lend to shadow banks as the
bilateral repo rate rp

t .10 The intermediation spread is therefore given by rpt
t � rp

t . To account for
fluctuations in intermediation capacities and match quarter-end dynamics, our model includes
two types of dealers. The first type is a foreign dealer with a balance sheet size denoted by
ft and treated as a parameter subject to shocks.11 The second type is a (domestic) dealer-
subsidiary, which is part of a traditional bank. Domestic intermediation volumes are therefore
an endogenous variable.

Shocks Liquidity preference parameter ↵t, intermediation by foreign dealers ft, TGA account
at, Treasuries bt, and the central bank’s balance sheet bt are subject to aggregate shocks. The
vector of time-varying parameters, denoted by xt ⌘ {↵t, ft, at, bt, bt}, follows

dxt =

8
<

:
(xs � xt)dNt if xt 6= xs,

(x0 � xt)dNt if xt = xs,
(6)

where dNt is a Poisson process with intensity �t > 0 and x0 is a random variable independently
and identically distributed. We specify the exact distribution of x0 in the following sections
when we study shocks to different parameters. As shown in equation (6), the economy features
a steady state xs. Upon the arrival of a Poisson shock in state xt = xs, the state xt takes on
a new random value x0. Upon the arrival of a Poisson shock in state xt 6= xs, xt reverts to xs.
The Poisson intensity �t is equal to � if xt = xs and equal to �0 otherwise. Hence, � represents
the likelihood of an aggregate shock while 1/�0 determines the expected duration of the shock.

2.2 Agents’ Problems

Traditional Banks Traditional banks face a Merton’s (1969) portfolio choice problem aug-
mented by transaction costs and a balance sheet cost. Traditional banks maximize their lifetime

9This assumption aligns with the actual institutional framework in the US, where the vast majority
of repo transactions are effectively intermediated by securities dealers. For further institutional details
on repo markets, we refer to the work of Copeland, Martin, and Walker (2014).

10We adopt these terminologies to match the US institutional practice whereby money market funds
(here abstracted from) lend in triparty repo, in which a third-party clearing bank handles the management
of the collateral, while hedge funds tend to borrow in direct bilateral repo markets.

11Variations in the foreign dealer’s balance sheet size primarily correspond to quarter-end window-
dressing (Munyan, 2015) but can also be interpreted as any event that negatively affects aggregate dealer
balance sheet capacity. For instance, the increasingly popular practice of FICC-sponsored cleared repo,
which allows netting for regulatory purposes, could be interpreted in our setting as equivalent to an
increase in the foreign dealer repo capacity.
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expected profits:

max
{wk

u�0,wb
u�0,wm

u �0,wp
u,wx

u�0,wd
u�0}1u=t

Et

Z 1

t
e�⇢(u�t)d⇡u

�
, (7)

subject to the budget constraint:

d⇡t =
�
wk

t rk
t + wb

tr
b
t + wm

t rm
t + wp

t r
p
t + wx

t (rp
t � rpt

t ) � wd
t r

d
t

�
dt

� �

2
`2t dt � ⌫|dwb

t |, (8)

the balance sheet constraint:

wk
t + wb

t + wm
t + wp

t = wd
t , (9)

and the intraday liquidity (IL) constraint:

wp
t  wm

t . (10)

Traditional bankers choose their portfolio weights for capital wk
t , Treasury bonds wb

t , reserves
wm

t , and deposits wd
t given their respective interest rates rk, rb

t , r
m
t , and rd

t .12 Traditional banks
also either lend or borrow in bilateral repo wp

t given the interest rates in this market rp
t . In

addition, traditional banks select the size of their dealer balance sheet wx
t and profit from the

spread between the bilateral (post-intermediation) and triparty repo rates (pre-intermediation).
In making these decisions, traditional banks incur a balance sheet cost that is quadratic in their
balance sheet size `t, defined as

`t ⌘ wd
t � min{0, wp

t } + wx
t . (11)

Note that through the minimum function, the portfolio weight for repos is added to deposits
only when traditional banks are net borrowers (wp

t < 0). Importantly, the dealer subsidiary
balance sheet wx

t is added to the consolidated traditional bank balance sheet. The latter follows
from the practice whereby internal repos between a bank and a dealer subsidiary are not netted
under existing regulatory practices.

Additionally, traditional banks consider the existence of transaction costs when trading Trea-
sury bonds: �⌫|wt � wt-|, where ⌫ is the transaction cost and t- is the time prior to the

12Although Treasury bonds are long-duration assets, we assume they have an instantaneous return
because we are interested in the liquidity risk of shadow banks rather than their interest rate risk
exposures. A straightforward interpretation of a Treasury holding in our model is the combination of
holding a Treasury together with a futures contract selling that Treasury in the future, thereby hedging
its duration risk. For this reason, the spread between the Treasury yield and the repo rate is to be
interpreted as the cash-future basis (see Barth and Kahn (2023) for an in-depth account of this trade
by hedge funds in the post-Basel III environment and Du, Hébert, and Li (2023) for the effect of dealer
balance sheet costs on the yield curve).
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transaction. Lastly, traditional banks are subject to the (IL) constraint (10), which limits repo
lending to a fraction  of reserve holdings.

Shadow Banks Shadow banks13 face a similar problem to traditional banks but without bal-
ance sheet costs, the intraday liquidity constraint, and the ability to hold central bank reserves.
Shadow banks maximize their expected profits:

max
{wb

u�0,wp
u}1u=t

Z 1

t
e�⇢(u�t)d⇡u

�
, (12)

subject to the budget constraint:

d⇡t =
⇣
wb

tr
b
t � wp

t r
p
t

⌘
dt � ⌫|dwb

t |, (13)

and the balance sheet constraint:

wb
t = wp

t . (14)

Shadow banks choose their holdings of Treasury bonds wb
t and repo financing wp

t given the re-
spective interest rates rb

t and rp
t . Like traditional banks, shadow banks incur a similar transaction

cost when purchasing or selling Treasury bonds.

Households Households maximize their lifetime expected utility of consumption and liquid-
ity benefits:

max
{wh,d

u �0,wh,p
u �0}1u=t

Et

Z 1

t
e�⇢(u�t)dch

u

�
+ Et

Z 1

t
e�⇢(u�t)� log(h(wh,p

u , wh,d
u , ↵u))du

�
, (15)

subject to the budget constraint:

dch
t = (wh,p

t rp,t
t + wh,d

t rd
t � r⌧

t + ⇡f
t )dt + d⇡t + d⇡t, (16)

and the balance sheet constraint:

wh,p
t + wh,d

t = ⌧h
t . (17)

Households choose their portfolio holdings of deposits wh,d
t and repos wh,p

t , given their liquidity
preference ↵t. They receive profits from traditional and shadow banks, ⇡t and ⇡t, and foreign

13Although our primary interpretation for shadow banks is relative-value hedge funds, it can also
incorporate any institution involved in Treasury arbitrage trades with repo leverage. This includes some
securities dealers themselves, which renders the assumption that dealers are exclusively intermediating
repos and do not hold Treasuries without loss of generality. A dealer holding Treasuries directly is to be
interpreted as a combination of a repo dealer and a shadow bank.

16



dealers, ⇡f
t ⌘ (rp

t � rpt
t )ft, and pay lump-sum taxes, r⌧

t .14

2.3 Discussion of Assumptions

We discuss the three key frictions in our framework: the balance sheet cost, the intraday liquidity
requirement, and households’ demand for repos and deposits.

Balance Sheet Cost Through equation (8), traditional banks and their dealer subsidiaries
are subject to a convex cost in the size of their balance sheet. This assumption captures in
reduced form the implication of subjecting traditional banks to non-risk-weighted regulations
that restrict their leverage, such as a supplementary leverage ratio (SLR) of 5% on large and
systemic banks in the US. For micro-foundations, we refer to the modified-CAPM model of
Frazzini and Pedersen (2014), in which a leverage constraint pushes investors to penalize low-
beta investments, such as low-yield risk-free arbitrage, in favor of a high-beta asset tilt needed
to achieve an optimal risk exposure. Alternatively, Andersen, Duffie, and Song (2019) show
that a leverage ratio constraint creates a debt-overhang cost, which generates increased hurdle
rates for shareholders for funding an arbitrage trade, referred to as funding value adjustments.
Irrespective of the specific microfoundation, the convexity of the balance sheet cost is to be
interpreted as the cost for banks to use an additional unit of balance sheet space to fund an
arbitrage rather than some higher-yielding trade, and thereby captures banks’ demand elasticity
for on-balance-sheet arbitrage trades.

Intraday Liquidity Requirement Following inequality (10), the intraday liquidity con-
straint restricts traditional banks’ ability to lend in repo to a multiple of their reserve balances.
This constraint stems from new regulations such as resolution liquidity execution need (RLEN)
which penalizes banks for using the Fed’s intraday overdraft and thereby causes the quantity of
reserves available to limit the capacity for intraday settlement that is required for repo trans-
actions. We refer to d’Avernas, Han, and Vandeweyer (2023a); Correa, Du, and Liao (2020);
Copeland, Duffie, and Yang (2021); and Pozsar (2019) for further details on this intraday liquid-
ity constraint and how it differs from traditional bank reserve requirements, which were revoked
in the US in February 2023.

Imperfect Substitution Between Repo and Deposit In practice, households and
firms hold cash-like assets largely in the form of bank deposits and money market fund shares.
Since the reform of money markets in 2016, most money market fund shares have been invested in
either triparty repos with dealers or in short-duration Treasury securities and close substitutes

14To facilitate exposition, we assume that households do not invest directly in Treasuries. This
condition would be guaranteed in equilibrium for a parameter � that is high enough. Our results are
qualitatively robust to relaxing this assumption as long as households have a strong preference for money-
like assets over Treasuries.
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(Cipriani and La Spada, 2021). In our model, we abstract from money market funds and
assume a perfect pass-through for money market fund share demand to repo.15 The imperfect
substitutability between repo and deposits captures the fact that deposits and money market
fund shares have important diverging characteristics. For instance, deposits are more liquid, have
lower interest, and are riskier when held above FDIC insurance quantity limits and safer below
this limit. Empirically, Krishnamurthy and Li (2022) estimate this elasticity of substitution to
be smaller than one on average, consistent with our imperfect substitute assumption.

2.4 Solving

Equilibrium Definition Given the assumptions on the aggregate shocks, the state space
of the economy is given by the vector of time-varying parameters xt.16

Definition 1. Given central bank policies {rrp, rrrp} and the return on capital rk
, a Markov

equilibrium M in xt is a set of functions gt = g(xt) for (i) interest rates {rb
t , r

m
t , rp

t , r
pt
t , rd

t } and

(ii) individual controls for traditional banks {wk
t , wb

t , w
m
t , wp

t , w
x
t , wd

t }, shadow banks {wb
t , w

p
t },

and households {wh,p
t , wh,d

t } such that:

1. Agents’ optimal controls (ii) solve their respective problems given prices (i).

2. The balance sheet constraint of the central bank is satisfied.

3. The balance sheet constraint and budget constraint of the Treasury are satisfied.

4. Markets clear:

(a) capital: wk
t = 0,

(b) Treasury bonds: wb
t + wb

t = bt � bt,

(c) reserves: wm
t = mt,

(d) triparty repo: wh,p
t = wx

t + rrpt + ft,

(e) bilateral repo: wx
t + wp

t + rpt + ft = wp
t ,

(f) deposits: wd
t = wh,d

t .

5. The law of motion for xt is consistent with agents’ expectations.

15d’Avernas and Vandeweyer (forthcoming) investigate the role of the supply of Treasury bills in
driving triparty repo rates when banks face balance sheet costs, which is abstracted from in this work
by assuming that households do not hold Treasuries directly.

16Aggregate Treasury portfolio weights are not aggregate state variables because the marginal cost
of transactions is constant and not a function of the size of the transaction. Thus, if it is profitable
to fire-sell Treasuries when entering state {xt, wb

t-, w
b
t-}, it is also profitable to fire-sell Treasuries when

entering state {xt, wb0
t-, w

b0
t-}, for wb0

t- 6= wb
t- and wb0

t- 6= wb
t-. Therefore, the Markov functions are such

that g(xt, wb0
t-, w

b0
t-) = g(xt) and the equilibrium is entirely determined by xt. See Appendix Section A.
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Equilibrium Restrictions Because the aim of this article is the study of Treasury market
disruptions, we simplify the exposition17 by focusing our analysis on a subset of relevant equilib-
ria, and thereby implicitly restrict the set of parameters and policies considered. First, we focus
on equilibria in which the traditional bank dealer subsidiary has a positive balance sheet size:
wx

t > 0; and reserves are in strict positive supply: mt > 0. Furthermore, in the steady state xs,
traditional banks hold some Treasuries: wb(xs) > 0. Finally, the household balance sheet must
be larger than the quantity of repo available from traditional banks: ⌧h

t > mt.

Value Functions In Appendix A, we guess and verify that the value functions for traditional
and shadow banks take the following form:

V (wb;x) = ⇠(x) + ✓(x)wb, V (wb;x) = ⇠(x) + ✓(x)wb. (18)

To solve for the marginal value of holding Treasuries, Vw(wb;x) = ✓(x) and V w(wb;x) = ✓(x),
we apply the envelope theorem to the Hamilton-Jacobi-Bellman equations:

(⇢ + �0)✓(x0) = rb(x0) � rd(x0) � �`(x0) + �0⌫ sign(wb(xs) � wb(x0)), (19)

(⇢ + �0)✓(x0) = rb(x0) � rp(x0) + �0⌫ sign(wb(xs) � wb(x0)), (20)

for x0 such that wb(x0) 6= wb(xs).18 This condition implies that, following a shock large enough
to trigger a fire sale, the marginal value of holding more Treasuries for shadow banks equals the
Treasury-repo spread plus expected transaction costs when returning to the steady state. For
traditional banks, the relevant spread is the Treasury-deposit spread, adjusted for the marginal
balance sheet cost.

First-order Conditions The first-order conditions for deposits, reserves, bilateral repo,
and triparty repo of traditional banks are given by

rk � rd(x) = �`(x), (21)

rk � rm(x) = #m(x), (22)

rk � rp(x)

8
>>><

>>>:

= �#m(x) if wp(x) > 0,

2 [�#m(x), �`(x)] if wp(x) = 0,

= �`(x) if wp(x) < 0,

(23)

rp(x) � rpt(x) = �`(x), (24)

17These restrictions do not change our main results, but limit the number of different cases we need
to consider in the proofs.

18See Appendix A for the remaining cases.
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where #m(x) is the shadow price of the IL constraint (10). In equation (21), traditional banks
equalize the marginal benefits of issuing deposits (spread to capital return) to their marginal
cost (marginal increase in the balance sheet cost). In equation (22), the marginal cost of holding
an additional unit of reserves must equal the marginal benefit of loosening the IL constraint.
Similarly, in equation (23), if a traditional bank invests in repos, the bilateral repo rate needs
to compensate for the tightening of the IL constraint. If a traditional bank funds itself in repo,
the repo rate must be sufficiently low to compensate for the increase in the balance sheet cost,
similar to deposits. Finally, in equation (24), traditional banks require a spread between bilateral
and triparty repo to compensate for the balance sheet cost incurred by intermediating repo at
the dealer subsidiary.

In addition, the households’ first-order condition for their relative holdings of triparty repo
and deposit is given by

rpt(x) � rd(x) = �

✓
↵

wh,d(x)
� 1 � ↵

wh,p(x)

◆
. (25)

Households equalize the marginal benefit of investing in triparty repo over deposits, as given by
the spread between the rates on these two assets, to the marginal convenience cost of reallocating
one unit of wealth from deposits to repo on the right-hand side of equation (25).

Lastly, the first-order condition for Treasury portfolio weights yields

⌫ sign(wb(x) � wb(x-)) = ✓(x) if wb(x) 6= wb(x-), (26)

⌫ sign(wb(x) � wb(x-)) = ✓(x) if wb(x) 6= wb(x-). (27)

Both traditional and shadow banks trade off the marginal cost of a transaction, on the left-hand
side, against the marginal benefit of purchasing or selling Treasury bonds, on the right-hand
side. The value functions depend on current and future rates and the stochastic process for
the state variables. For example, as we show below, the marginal value of holding Treasuries
for shadow banks increases when the Treasury-repo spread rb(x) � rp(x) is larger or when the
arrival intensity of a disruption � is lower. The sign function reflects the fact that to sell bonds,
the marginal value of an additional bond needs to be negative (and larger than the marginal
transaction cost), and vice-versa for purchases.

3 Main Results

In this section, we derive the main theoretical results of the paper. We focus on a specific shock
to the liquidity preference parameter ↵t and relegate the discussion of additional shocks to the
next section when comparing the model predictions to the data. That is, we assume that ↵t

is the only parameter that varies after an aggregate Poisson shock: xs = {↵s, f, a, b, b} and
x0 = {↵0, f, a, b, b}, where ↵0 is independently and identically distributed according to a uniform
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distribution on (↵s, 1). Following this “flight-to-deposit” shock, ↵ increases, and households seek
to reduce their repo holdings relative to deposits. We further assume that repo and reverse repo
facilities are inactive and relegate the study of adjustments of the central bank balance sheet to
the next section. Finally, in this section, we confine our analysis to the parameter space such
that, if ↵0 is sufficiently high, it becomes optimal for shadow banks to sell Treasuries.19 We
relegate all proofs of propositions to the Online Appendix.

Uniqueness and Inaction Region First, we demonstrate in Proposition 1 that the equi-
librium is unique in all quantities and prices except for the rate on Treasuries rb

t . This rate rb
t

can take a continuum of values within the boundaries defined below because of the presence
of transaction costs, which creates an inaction region within which no Treasuries are traded.
Within these bounds, a deviation in the Treasury rate is not sufficient to compensate for the
transaction cost, so agents do not rebalance their portfolios.

Proposition 1. If the equilibrium exists, it is unique in prices {rm, rp, rpt, rd} and quantities

{wk, wb, wm, wp, wx, wd, wb, wp, wh,p, wh,d} as functions of ↵ 2 [↵s, 1).

Also, the interest rate on Treasuries is bounded by rb(↵)  rb(↵)  rb(↵), where

rb(↵0) ⌘ max{rd(↵0) + �`(↵0) � ⇢⌫, rp(↵0) � (⇢ + 2�0)⌫} (28)

rb(↵0) ⌘ min{rd(↵0) + �`(↵0) + (⇢ + 2�0)⌫, rp(↵0) + ⇢⌫} (29)

for ↵0 2 (↵s, 1).20

The boundaries of the inaction region in Proposition 1 capture the opportunity costs of buying
and selling Treasuries for either traditional or shadow banks. The max and min operators are
such that, in equilibrium, both traditional and shadow banks are not willing to sell (lower
bound) or purchase (upper bound) Treasuries outside of the fire-sale region.21 For example, if
the Treasury rate goes below rp(↵) � (⇢ + 2�0)⌫, then shadow banks would prefer to sell their
Treasuries, as it considers the benefits of sparing the repo funding rate rp(↵) and compares it
to paying transaction costs a first time upon arrival of the shock (⇢ + �0)⌫ (time-discounted in
the shock state) and then once more when returning to the steady state with expectation �0⌫.

Inelastic Benchmark To gain intuition about the model, we first consider a benchmark case
in which the portfolios of both traditional and shadow banks’ balance sheets are set constant. In
this case, the banking sector does not provide any elasticity, and all adjustments occur entirely
through changes in prices. Combining equations (21), (22), (24), and (25), the repo-to-reserves

19That is, the set of parameters ✓ ⌘ {⇢, ⌫, �, �, �, �0,xs} is such that 9x0 : wb(x0) < wb(xs).
20See the proof in Online Appendix A.1 for the boundaries at ↵ = ↵s.
21When ↵0 is sufficiently large to trigger sales by shadow banks, rb(↵0) = rb(↵0) = rb(↵0).

21



↵ ↵
IL

↵
F 1

0

r
p
(↵

0 )
�

r
m

(↵
0 )

Repo Spread

↵ ↵
IL

↵
F 1

0

w
p
(↵

0 )

Traditional Bank Repo

↵ ↵
IL

↵
F 1

h
(w

p
,
w

d
;↵

0 )
/
h

⇤ (
↵

0 )

Liquidity Services

Inelastic Benchmark IL Constraint

Figure 3: Inelastic Benchmark and Crisis State Dynamics. This figure shows equilibrium repo
spreads rp(↵0) � rm(↵0), traditional banks’ repo lending wp(↵0), and the ratio of liquidity services to
its optimum h(wp, wd; ↵0)/h?(↵0) where h?(↵0) ⌘ maxw h(w, ⌧h � w; ↵0). We plot these variables under
two different settings. In red, we provide an inelastic benchmark with no repo lending or borrowing by
traditional banks or Treasury sales. In blue, we provide the solution of the full model, in which banks
can adjust their balance sheets.

spread can be written in the inelastic benchmark as

rp(↵0) � rm(↵0) = �

✓
↵0

wh,d
� 1 � ↵0

wh,p

◆
, (30)

where the allocations wh,d and wh,p are held constant. That is, the repo-to-reserves spread
reflects households’ relative preferences for repos: When repos are less preferred than deposits,
as captured by an increase in parameter ↵0, repo rates have to increase to induce households to
hold repos rather than deposits. This scenario is illustrated with red lines in the three panels
of Figure 3. Since banks do not adjust their repo lending (middle panel), repo spreads have
to increase as a function of the size of the shock ↵0 (left panel) to compensate households for
maintaining the fixed composition of repos and deposits following equation (30) (right panel). We
next examine the model’s reaction to liquidity shocks when balance sheets have some flexibility,
but traditional banks are subject to both the balance sheet costs and the IL constraint.

Shock Dynamics under both Regulations When banks’ portfolio allocations are flex-
ible, the dynamics of price and quantity adjustments are more complex because they depend on
whether the shock is large enough for the IL constraint to bind or Treasury sales to be optimal.
The blue lines in Figure 3 depict these dynamics upon entering the shock state. As long as the
IL constraint is slack (↵0 < ↵IL), the repo-to-reserves spread rp(↵0) � rm(↵0) remains bounded
above at zero (left panel) since banks would otherwise arbitrage any positive spread by swapping
reserves for repo. Banks’ ability to lend in repo markets (middle panel) results in households
receiving their preferred mix of reduced repo and increased deposits (right panel) until the IL
constraint is reached. At this threshold, banks cannot lend in repo further, and equilibrium
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requires households to absorb a suboptimal mix of repos and deposits (right panel), which leads
to an increase in repo spreads. Because the IL constraint is binding, the repo-to-reserves spread
increases at a faster rate compared to the inelastic benchmark, reflecting a positive value for
reserves’ shadow cost from the IL constraint #m(↵0) in equation (22). For some shock with a
magnitude beyond ↵F , it becomes optimal for shadow banks to pay the transaction cost and
sell Treasuries to traditional banks rather than to fund these positions in repo. These Treasury
sales provide an outside option for shadow banks and cap how high the repo rate can spike (left
panel).

Regulatory Arbitrage and Treasury Holdings We next characterize how the steady
state holdings of Treasuries and endogenous risk are affected by changes in the balance sheet
cost through Proposition 2.

Proposition 2. Higher balance sheet costs � correspond to higher steady-state shadow banks’

Treasury holdings wb(↵s) and probability of fire sales. That is,

@wb(↵s)

@�
> 0 and

@P[wb(↵0) < wb(↵s)]

@�
> 0.

Proposition 2 highlights an unintended consequence of leverage regulations: Increasing banks’
balance sheet costs pushes equilibrium Treasury holdings to the unregulated shadow banking
sector and generates liquidity risk.22 Shadow banks have a comparative advantage in holding
Treasuries financed by repo, in that they are not subject to the balance sheet cost. Proposition 2
shows that this comparative advantage is increasing in banks’ balance sheet costs, leading to
an increase in equilibrium shadow banks’ bond holdings. However, this comparative advantage
is not absolute. Because shadow banks finance Treasuries with repos from households, they
are exposed to liquidity risk. Upon the arrival of the Poisson shock (↵ jumps to ↵0), shadow
banks have to pay a higher repo rate for the duration of the shock or sell Treasuries and incur
the transaction cost. The balance between regulatory arbitrage and liquidity risk determines
Treasury holdings allocation in equilibrium. As the probability of fire sales P[wb(↵0) < wb(↵s)]

is increasing in shadow banks’ bond holdings, it is also increasing in the balance sheet cost.

Volatility Paradox in Treasury Markets We next characterize how equilibrium portfo-
lio allocations and endogenous risk are affected by a change in the likelihood of a flight-to-deposit
shock.

Proposition 3. A lower shock arrival intensity � corresponds to larger shadow banks’ Treasury

portfolio holdings wb
t in the steady state, a higher probability of fire sales, and higher expected

22Such a mechanism corresponds to empirical findings by Allahrakha, Cetina, and Munyan (2018)
and Barth and Kahn (2023).
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Figure 4: Shock Frequency and Intensity. This figure shows equilibrium repo spreads rp(↵0) �
rm(↵0), traditional banks’ repo lending wp(↵0), and traditional banks’ bond holdings wb(↵0) for low (red)
and high (blue) Poisson arrival intensity � (probability of a flight-to-deposit shock).

repo rates. That is,

@wb(↵s)

@�
< 0,

@P[wb(↵0) < wb(↵s)]

@�
< 0, and

@E[rp(↵0)]

@�
< 0. (31)

Proposition 3 underscores the implication of shadow banks trading off the spread between
Treasury and repo rates with potential losses upon the arrival of a flight-to-deposit shock. A
decrease in the likelihood of a shock (lower �) amplifies the incentives for shadow banks to
acquire additional repo-financed Treasuries, which in turn leads to a higher probability of fire
sales conditional on a shock and higher expected repo spikes, as shown in Figure 4. This result
is similar to the “volatility paradox” in Brunnermeier and Sannikov (2014), with the additional
trade-off between risk frequency and risk intensity. As the frequency of shocks decreases (lower
�), their intensity increases through the endogenous take up in shadow bank risk-taking. This
insight underscores the drawbacks of depending on discretionary interventions in the repo mar-
ket. When investors anticipate interventions with a high likelihood, the few times a negative
shock happens without intervention, it does so with an outsized magnitude. Hence, a standing
repo facility that provides systematic intervention may, therefore, be necessary to avoid this
paradox of volatility.

Crisis Duration and Dynamics Next, we study how expectations about the duration of
the shock affect equilibrium prices and portfolio allocations in repo and Treasury markets.

Proposition 4. A lower shock duration (a higher �0
) corresponds to larger shadow banks’

Treasury portfolio holdings in the steady state, higher expected repo rates, and lower expected

Treasury-repo spreads. That is,

@wb(↵s)

@�0 > 0,
@E[rp(↵0)]

@�0 > 0, and
@E[rb(↵0) � rp(↵0)]

@�0 < 0. (32)
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Proposition 4 demonstrates that long-lived shocks result in lower repo rate spikes and higher
Treasury yield surges. To understand this result, we recall the envelope theorem for shadow
banks’ holdings of Treasuries in the shock states in equation (20). This equation implies that in
the shock state, the marginal value of holding Treasuries equals the Treasury-repo spread plus
the expected transaction costs when returning to the steady state. In the fire-sale region, from
the optimality condition (27), it must be that ✓(↵0) = �⌫ in equilibrium if shadow banks sell
Treasuries, so that we can rewrite equation (20) as

⌫ =
rp(↵0) � rb(↵0)

(⇢ + 2�0)
. (33)

Shadow banks equalize the transaction cost of Treasuries ⌫ to their expected losses from the
position in the crisis state. The latter is simply the loss from having to pay a repo rate rp(↵0)

above the received Treasury rate rb(↵0) discounted at the time discount rate ⇢ and the likelihood
of exiting the shock state (2�0). In equilibrium, this equation pins down how large the shock
needs to be to enter the fire-sale region. As can be observed in Figure 5, a higher likelihood of
exiting the shock (high �0)—i.e., lower expected duration of the shock—results in an increase in
the (negative) spread that shadow banks are willing to tolerate before selling their Treasuries to
traditional banks. Therefore, when a repo supply shock is expected to be short-lived (high �0),
shadow banks are willing to pay a higher repo rate for a short period of time to avoid paying costly
transaction fees, which reduces the likelihood of a fire sale. In contrast, if a shock is expected to
last for a long period (low �0), shadow banks prefer to sell Treasuries rather than pay high repo
rates for a potentially long time.23 Overall, when �0 is higher, repo funding is less fragile and
shadow banks can take on more leverage and tolerate higher funding rates during these short-
lived disruptions.24 This asymmetry helps explain why repo rates experienced a dramatic spike
in September 2019 while Treasury markets remained relatively stable, as opposed to the events
of 2020. In 2020, Treasury yields rose sharply but repo rates did not surge significantly, which
our model would explain to the extent that the latter event was anticipated to be longer-lasting
than the liquidity shortage event of 2019.

Central Bank Balance Sheet and Disruption Likelihood We next consider how
the overall size of the central bank balance sheet affects market dynamics.

23In practice, although costs on Treasuries may appear relatively small, they ought to be com-
pared with annualized interest rates on repos. For instance, a 2.5 bps trading cost corresponds to
(1 + 0.00025)360 � 1 ⇡ 950 bps annualized loss in return for a single trip trade. In addition, those trans-
actions are more significant for less liquid “off-the-run" issues typically held by hedge funds arbitraging
Treasury basis (Barth and Kahn, 2023) and significantly increase during adverse events. To allow for
tractable analytical results, our model does not feature fire-sale spirals, as in Brunnermeier and Pedersen
(2009).

24We also derive in the Online Appendix a sufficient condition for the probability of a fire sale to be
decreasing in �0.
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Figure 5: Shock Duration and Shock State Dynamics. This figure shows equilibrium repo spreads
rp(↵0) � rm(↵0), traditional banks’ repo lending wp(↵0), and traditional banks’ bond holdings wb(↵0) for
low (red) and high (blue) Poisson arrival intensity �0 (probability of exiting the shock state and returning
to steady state).

Lemma 1. In the absence of repo and reverse repo facilities, rp
t > rm

t if and only if

b � b � wb
t| {z }

shadow banks’ repo demand

> (1 � ↵t)⌧
h + m| {z }

largest possible repo supply

. (34)

Proposition 5. A smaller central bank balance sheet b results in a larger probability of a fire

sale and larger repo spikes. That is,

@P[wb(↵0) < wb(↵s)]

@b
< 0 and

@E[rp(↵0)]

@b
< 0. (35)

Lemma 1 first provides the necessary and sufficient conditions to observe the bilateral repo rate
spiking above the interest on reserves when shadow banks’ equilibrium repo demand is above the
maximum possible combined repo supply from households and traditional banks. As described
above, a large demand for repo from shadow banks, b�b�wb

t , can be met by traditional banks up
to the IL constraint (wp

t = m) and complement household supply when the liquidity aggregator
is at its optimum arg maxw h(w, ⌧h�w; ↵t) = (1�↵t)⌧h. When the condition in Lemma 1 holds,
the IL constraint is binding, and repo rates must increase to incentivize households to provide
more repo than their optimal portfolio allocation. Importantly, both sides of the inequality (34)
depend on the central bank’s balance sheet. On the asset side, an increase in the central bank’s
Treasury holdings b relaxes the balance sheet cost and reduces shadow banks’ repo demand, as
appears on the left-hand side of condition (34). On the liability side, an increase in reserves
m allows banks to lend more in the repo market and support a larger flight-to-deposit shock,
as appears on the right-hand side of condition (34). A contraction in the size of the central
bank’s balance sheet, therefore, unambiguously increases both the size of repo spikes and the
probability of Treasury liquidations, as shown in Proposition 5.
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Repo-IOR Spread Interm. Spread RRP vol. TGA vol.

Quarter-End + + + +

Tax Deadline + 0 0 +

Treasury Issuance + + 0 +

Table 1: Qualitative Summary of Empirical Evidence The table provides a qualitative summary
of the empirically observed relationship between the following three salient shocks: Quarter-Ends, Tax
Deadlines, and Treasury Issuance. The GC Repo-IOR Spread is the spread between the inter-dealer
rate—the GCF rate for Treasuries—and the IOR. The intermediation spread is measured as the spread
between GCF and the dealer-to-money fund rate—the tri-party general collateral rate (TGCR). RRP
vol. represents reverse repo volumes at the Fed and TGA vol. represents TGA volumes at the Fed. See
the Online Appendix for the table of coefficient estimates.

4 Empirical Validation and Policy Implications

In this section, we use our model to study the reaction of repo and Treasury markets to three
shocks known to cause disruptions in repo markets: (i) a reduction in foreign repo intermediation
during quarter ends, (ii) the payment of tax liabilities from households to the Treasury around
tax deadlines, and (iii) the issuance of new Treasury bonds. This exercise serves three purposes.
First, we validate the empirical relevance of our model. Second, we examine the mechanisms at
play for each shock. Third, we investigate how altering some policy parameters in the model,
such as introducing repo facilities with various designs or changing regulations, affects Treasury
market dynamics.

4.1 Empirical Evidence on Repo Funding Shocks

An extensive literature has empirically investigated the instability of repo markets in the post-
GFC institutional environment. As a prelude to our analysis, we provide a summary of this
literature and characterize the relationship between various shocks found to affect repo and
Treasury markets. Table 1 summarizes the qualitative reaction of repo markets to the most
salient shocks in the general collateral financing (GCF) repo25 to IOR (corresponding to rp

t �rm
t

in the model); repo intermediation spreads (rp
t � rpt

t in the model); RRP volumes (rrpt in the
model); and TGA balances (at in the model). This qualitative table is informed by previous
studies and is consistent with the results of a linear regression replication exercise, which we
report in Appendix B.26

25Bilateral repo rates between hedge funds and dealers are unfortunately not directly observed, but
can be proxied by an index of inter-dealer repo rates that represents the rate at which dealers are willing
to lend, referred to as GCF. We further follow He, Nagel, and Song (2022) and Correa, Du, and Liao
(2020) and measure the intermediation spread as the difference between GCF and TGCR—an index of
repo rates based on dealer-to-money-fund transactions, corresponding to the rate at which dealers are
willing to borrow. Hence, this difference is considered a good indicator for repo intermediation margins.

26We relegate these regression tables to the Online Appendix and focus on a qualitative summary
due to the highly nonlinear nature of the dynamic system we study which, combined with the limited
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As documented by Munyan (2015); Du, Tepper, and Verdelhan (2018); Klingler and Syrstad
(2021); Correa, Du, and Liao (2020); Paddrik, Young, Kahn, McCormick, and Nguyen (2023);
and Bassi, Behn, Grill, and Waibel (2023), quarter-ends represent an important source of dis-
ruptions in repo markets because foreign dealer intermediation contracts on those days following
window-dressing practices. Contrarily to the US, most foreign jurisdictions calculate the Basel
III-mandated leverage ratios based on a snapshot of banks’ balance sheets at quarter-ends rather
than an average over all days of the quarter, as is the practice in the US. Foreign dealer banks
tend to contract their balance sheets and cut back on low-yielding activities such as repo inter-
mediation on those days to account for increased funding value adjustments (Andersen, Duffie,
and Song, 2019). Accordingly, the first row of Table 1 shows that quarter-ends are associated
with an increase in repo rates relative to the interest on reserves, as well as an increase in
intermediation spreads, an increase in the Fed’s reverse repo facility usage (RRP), and an in-
crease in the TGA. Although Klingler and Syrstad (2021) find a consistent upward response
for the US benchmark SOFR, they show that the pattern is reversed for the UK and the euro
area, in which the central bank does not offer a reverse repo facility. Our model provides a
natural explanation for this fact, which we discuss below. In addition, Correa, Du, and Liao
(2020) makes use of confidential regulatory data to document that, at quarter ends, globally
systemic banks engage in both matched-book intermediation—simultaneously increasing repo
borrowing and repo lending—and reserves-draining intermediation—replacing reserves by repo
lending. Those patterns also align with the observation of Pozsar (2019) that large banks act as
“lender-of-next-to-last-resort” in repo markets by “fracking” reserves.

Several papers (Copeland, Duffie, and Yang, 2021; Correa, Du, and Liao, 2020; d’Avernas, Han,
and Vandeweyer, 2023a) also point to tax deadlines as an important driver of market disruptions.
In particular, as noted by Anbil, Anderson, and Senyuz (2021), the largest spike in repo rates on
record took place on September 16 and 17, 2019, at the same time as a corporate tax deadline.
On those dates, corporations withdraw cash from their money market accounts and credit the
TGA to extinguish their tax obligations. These flows generate both a net decrease in repo
supply and a decrease in reserves available to banks. The third row of Table 1 correspondingly
shows larger repo rates near tax deadlines (Column 1) that are not accompanied by a significant
increase in intermediation spread (Column 2) nor in volumes at the reverse repo facility (Column
3). As anticipated, the TGA balance increases on tax deadline days (Column 4).

Lastly, Treasury issuance has also been shown to be associated with repo market stresses
(Correa, Du, and Liao, 2020; Klingler and Syrstad, 2021; Paddrik, Young, Kahn, McCormick,
and Nguyen, 2023). When the Treasury issues additional debt securities, dealers and asset
managers tend to purchase and finance those purchases in the repo market, thereby increasing
the demand for repo. As can be seen in the fifth row of Table 1, the issuance of Treasuries is

number of observations for large shocks, does not allow for meaningful quantitative estimates. For the
same reasons, we also abstain from attempting to calibrate our model. Rather, we focus on the qualitative
heterogeneity in the reactions of spreads and volumes to various shocks to discipline our model.

28



indeed associated with increased repo rates (Column 1), increased repo intermediation spreads
(Column 2), and larger balances in the TGA (Column 3). Consistent with our replication
exercise, Correa, Du, and Liao (2020) find the variations of TGA balances driven by Treasury
issuance to be positively associated with increased intermediation spreads whereas it is not the
case for changes in TGA balances originating from other sources, such as tax payments.

In the next subsections, we compare model predictions with these empirical observations and
discuss the mechanisms behind the heterogeneous patterns across shocks.

4.2 Theoretical Preliminaries

To study those shocks in the current institutional setting, we allow for endogenous adjustments
to the central bank’s balance sheet through reverse and standing repo facilities. To do so, we
first provide some useful preliminary theoretical results.

Lemma 2. In an economy without facilities, liquidity services are maximized if and only if

traditional banks are marginal lenders of repo; that is, h(wp(x), wd(x); ↵) = maxw h(w, ⌧h(x) �
w; ↵) if and only if rp(x) = rm(x).

Lemma 2 shows that whenever traditional banks are net borrowers of repos or the IL constraint
is binding, households deviate from their optimal allocation of liquid assets. In that case, repo
rates diverge from the interest on reserves to compensate households for having to provide
more or less repo funding than their optimal portfolio composition. This result is akin to
the discussion of repo spikes in Section 3 but generalized beyond the flight-to-deposit shock
↵. Lemma 2 highlights that persistent deviations of repo rates from interest on reserves are a
signal of suboptimal liquidity provision in the economy. In addition, we note that Lemma 1,
which provides a threshold for the disconnection of repo rates from interest on reserves, does
not depend on the type of shock studied and also applies to the general setting. In Lemma 3,
we further characterize the effect of opening repo and reverse repo facilities. To allow for a
detailed discussion of the design of facilities, we consider two types of standing repo facilities:
a broad-access facility open to all agents (including shadow banks) and a narrow-access facility
only open to traditional banks and their dealers.

Lemma 3. A reverse repo facility with rate rrrp
acts as a floor in the triparty repo market:

rpt(x) � rrrp
. A repo facility with rate rrp

that is open only to traditional banks acts as a ceiling

in the triparty repo market: rpt(x)  rrp
. A broad-access repo facility open to both traditional

and shadow banks acts as a ceiling in the bilateral repo market: rp(x)  rrp
.

Lemma 3 presents specific results for various central bank facility designs. First, a reverse
repo facility offers a fixed-rate outside option rrrp for households when investing in repos. Since
the dealers’ funding rate (triparty repo rate rpt

t ) is consistently lower than the dealers’ lending
rate (bilateral rate: rp

t ) to compensate for balance sheet costs, this outside option functions
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as a floor for the triparty repo rate. Second, a narrow-access repo facility accessible only to
traditional banks serves as a ceiling on the dealers’ funding rate (triparty rate rpt

t ) as dealers
would never borrow from households at a higher rate. Similarly, a broad-access repo facility
that is available to shadow banks serves as a ceiling directly on the bilateral repo rate as shadow
banks borrowing in the bilateral repo market would never borrow at a higher rate than the
facility rate. We further discuss the implication of those Lemmas in the context of specific
shocks below.

Below, we study shocks to (i) intermediation capacity ft, (ii) tax payments at, or (iii) Treasury
issuances bt. As in the analysis of liquidity shocks ↵t, for each shock, we solve for the equilibrium
assuming that either ft, at, or bt is the only parameter that varies after an aggregate Poisson
shock. We then display in Figure 7, 8, and 9 the equilibrium variables after such shocks away
from the steady state. We relegate details regarding the solution method to Appendix C.

4.3 Intermediation Shocks

We begin by studying the effect of variations in foreign dealer intermediation volumes ft. This
exercise aims to capture the contraction of foreign dealer intermediaries at quarter ends (corre-
sponding to the first row of Table 1) but also represent any outright increase in repo interme-
diation costs, which could arise from changes in regulation or negative shocks to bank equity.
Figure 7 displays the mapping between key variables of the model and the level of foreign dealer
intermediation shocks under three scenarios.

Baseline The red lines in Figure 8 correspond to a baseline scenario without repo facilities.
As the foreign dealer sector contracts—i.e., moving leftward on the graphs—the triparty repo
spread to IOR, rpt

t �rm
t , declines, which allows for an increase in intermediation spread, rp

t �rpt
t ,

as compensation for a larger marginal balance sheet cost for banks �`t, while maintaining the
bilateral repo rate equal to IOR, rp

t = rm
t . This no-arbitrage condition is driven by equation

(24) when the IL constraint is not binding (#m
t = 0). In this baseline case, all other variables

remain constant, including households’ liquidity benefits, because the shock does not prompt
any portfolio adjustment from non-dealer agents.

Reverse Repo Facility The blue lines in Figure 8 illustrate the scenario with a reverse
repo facility as introduced by the Fed in 2014. Following Lemma 3, the reverse repo facility
establishes a lower bound on the triparty repo to IOR spread, rpt

t � rm
t . Upon reaching this

floor, households start to lend repo directly to the Fed through the reverse repo facility at rate
rrrp (see RRP Quantity panel). When the triparty repo rate reaches the RRP floor, traditional
banks begin lending in repo to shadow banks, thereby preventing bilateral repo rates from rising
above IOR (see Traditional Bank Repo panel). This adjustment is made possible by the shift of
households’ portfolio into reverse repos with the Fed, consequently diminishing the quantity of
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reserves on traditional banks’ balance sheets and generating room for repo lending. As noted by
Diamond, Jiang, and Ma (2023), by occupying space on banks’ balance sheets, reserves crowd out
potential lending opportunities. In our model, the decrease in reserves allows traditional banks
to lend in repos and prevents repo spikes. The model thereby underscores that the “reserves-
draining” repo lending from banks observed at quarter ends by Correa, Du, and Liao (2020) is
a side-product of the concurrent surge in reverse repo facility volumes, as reserves cannot leave
traditional banks’ balance sheets otherwise. However, traditional banks can lend in repo only
until the IL constraint becomes binding—the treshold f IL (see Traditional Bank Repo panel).
Beyond that point, the reserve quantity on banks’ balance sheets restricts their repo lending
capacity, resulting in the bilateral repo rate rp

t rising above IOR as compensation to households
for having to lend more in repo (see Bilateral Repo Spread panel). In this situation, it is the
bilateral repo rate that rises above the IOR because traditional banks can no longer arbitrage
the repo to IOR spread rp

t � rm
t , while the triparty rate rpt

t is bounded below by the reverse
repo facility rate rrrp. In comparison to the baseline scenario without a reverse repo facility,
this finding is consistent with the fact that upward repo spikes only started appearing after the
introduction of the facility in the US (row 1 of Table 1) and that other jurisdictions without such
a facility are observing downward, rather than upward, shocks to repo spreads at quarter ends
(Corradin, Eisenschmidt, Hoerova, Linzert, Schepens, and Sigaux, 2020; Klingler and Syrstad,
2021).

Following this reasoning, Proposition 6 demonstrates that an intermediation shock requires
the strict combination of three frictions to generate a repo spike: a binding IL, a positive balance
sheet cost, and a reverse repo facility.

Proposition 6. Given

b � (1 + )b + a � wb
t  (1 � ↵)⌧h, (36)

the bilateral repo rate is above the interest on reserves, rp
t > rm

t , if and only if (i) the IL constraint

is binding #m
t > 0, (ii) balance sheet costs are positive � > 0, and (iii) the RRP facility rate is

binding rrpt > 0.

Condition (36) guarantees that the baseline demand for repos by shadow banks (when rpt
t = rd

t

and liquidity services to households are at their optimum) is not already above the capacity
of the system unrestricted by the IL constraint. The role of the reverse repo facility as a
necessary condition for upward bilateral repo spikes is particularly noteworthy. In its absence,
the intermediation shock is absorbed by a continuous decrease in triparty rates. By establishing
a lower bound on triparty rates, the central bank introduces a market distortion by subsidizing
triparty repo markets through the direct provision of repo assets. This subsidy is a necessary
condition for causing excessive household portfolio allocation to repo when the IL constraint
becomes binding, as seen in the Liquidity Services panel. Overall, the model matches and
rationalizes the empirical pattern documented in the first row of Table 1. The only exception
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is to TGA balances, which is due to our model orthogonalizing the effect of a change in the
TGA.27

Standing Repo Facility Last, the yellow lines in Figure 8 illustrate a scenario with both
a reverse repo and a broad-access standing repo facility. Following Lemma 3, the design of a
standing repo facility is key to its efficacy in preventing repo spikes. With broad access, the
bilateral repo rate does not surge above the repo facility rate (see Bilateral Repo Spread panel).
This result requires the central bank to effectively act as dealer of last resort by simultaneously
borrowing from households in triparty repo markets and lending to shadow banks in the bilateral
repo, thereby economizing on dealers’ balance sheets. Notably, in that case, both the ceiling
and the floor on repo market rates are active simultaneously (see RRP Quantity, RP Quantity,
Bilateral Repo Spread, and Triparty Repo Spread panels). In contrast, a repo facility that is
inaccessible to shadow banks is not effective in preventing repo spikes following an intermediation
shock. This result follows from the nature of the intermediation shock as an encumbrance of
dealers’ balance sheets. In that case, the narrow-access repo facility cannot alleviate the shock
as repos borrowed from the central bank still need to be intermediated by dealers and require
the same amount of balance sheet space. This finding echoes arguments by Duffie, Geithner,
Parkinson, and Stein (2022) in favor of broadening access to the Fed’s standing repo facility.28

4.4 Tax Payment Shocks

We now study the effect of a tax payment shock that simultaneously reduces households’ tax
liabilities ⌧h

t and increases TGA at (corresponding to tax deadlines in the second row of Table 1).
The dynamics of tax deadline adjustments are illustrated in Figure 8.

Baseline We start with a baseline case without facilities (red lines in Figure 8). In contrast to
a repo intermediation shock, a tax deadline shock is a net repo supply contraction that does not
lead to an increase in the repo intermediation spread (rp

t � rpt
t ). Indeed, balance sheet costs are

decreasing in TGA balances. The reduction in repo supply from households exerts simultaneous
upward pressure on both bilateral and triparty repo rates up until reaching the threshold aF at
which shadow banks prefer to fire-sell their Treasuries. As for the flight-to-deposit shock, this
outside option limits how high the repo rate can spike.

27In practice, quarter ends also correspond to high Treasury issuance periods and result in surges in
TGA balances with the additional effect discussed in section 4.4 below.

28“Without direct access, central bank liquidity support for the US Treasury market, which relies
heavily on nonbank financial intermediaries for market liquidity, has been excessively dependent on the
willingness and ability of the primary dealers to intermediate between the Federal Reserve and those
other nonbank financial intermediaries. In principle, banks and the primary dealers can obtain liquidity
from the Fed and on-lend it to others. But in a crisis, the willingness of those firms to intermediate has
tended to be constrained by a combination of regulations and internal limits on the firms’ risk-taking,
both of which have tended to tighten under stress.” Duffie, Geithner, Parkinson, and Stein (2022, pp.7)
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Concomitantly to the reduction of repo supply, the payment of taxes by households into
the TGA reduces the supply of reserves to banks. Similar to the intermediation shock, the
sterilization of the reserves (here, in the TGA) initially allows banks to lend more to shadow
banks through “reserves-draining” intermediation (Correa, Du, and Liao, 2020). This draw-
down of reserves however becomes problematic once reaching the threshold aIL at which the IL
constraint becomes binding. From that point onward, tighter intraday regulations restrict tradi-
tional banks’ capacity to lend in repo and exacerbate the repo supply shock, causing an upward
spike in bilateral repo rates (see Bilateral Repo Spread panel). This mechanism corresponds to
the events of September 2019, which took place during a tax deadline (Anbil, Anderson, and
Senyuz, 2021). In addition, note that in this scenario, due to the net reduction in repo supply
from households and the subsequent increase in triparty repo rates, the reverse repo facility does
not come into play.

Standing Repo Facility In contrast to the intermediation shock, we find that a narrow-
access repo facility that is not available directly to shadow banks is effective in preventing sharp
repo rate spikes (yellow lines in Figure 8). This discrepancy arises because, during a tax deadline
shock, when traditional banks borrow from the central bank to lend to shadow banks in repo,
they simply replace the loss in repo funding stemming from households having paid their taxes.
Therefore, they are able to lend to shadow banks without expanding their balance sheets. With
a broad-access repo facility, shadow banks can directly borrow from the central bank instead,
and thereby economize traditional banks’ balance sheets, which renders it a more efficient tool
(blue lines in Figure 8). Because the broad-access facility is directly accessible to shadow banks,
it becomes active earlier than a narrow-access facility, which sets a ceiling on the triparty repo
rate rather than on bilateral rates.

4.5 Treasury Issuance Shocks

We next investigate the impact of fiscal expansion shocks on repo and Treasury markets, with the
proceeds of Treasury issuance entirely absorbed by the TGA account, as illustrated in Figure 9.
For this shock, we further assume that shadow banks purchasing from the Treasury in primary
markets are not subject to transaction costs to account for the special relationship between
primary dealers and the Treasury in the US.

Baseline In the baseline case without facilities (red lines), an increase in outstanding Trea-
suries increases repo demand since, in equilibrium, additional Treasuries are purchased by
shadow banks and financed with repos (see Shadow Bank Treasuries panel). Similarly to the tax
deadline shocks, the increase in Treasury issuance increases the TGA, resulting in a reduction
of the reserves available to traditional banks (see Reserves panel). As for the previous shocks,
this drawdown in reserves is initially helpful as it allows banks to increase repo lending without
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impacting their balance sheet costs. However, once reaching the IL threshold bIL, the increasing
demand for repo financing from shadow banks exerts upward pressure on both bilateral and
triparty repo rates. Indeed, the market clearing conditions now require households to supply
more repo and deviate from their optimal portfolio allocation. Lastly, the reverse repo facility
never comes into play following a fiscal shock (see RRP Quantity panel). Taken together, these
predictions correspond to the third row of Table 1 and the empirical observations of Klingler
and Syrstad (2021) and Correa, Du, and Liao (2020).

An important difference between fiscal shocks and both intermediation and tax deadlines
shocks, however, is that a fiscal expansion shock (absorbed entirely in the TGA) does not
increase the balance sheet cost of banks because the increase in the repo dealer subsidiary’s
balance sheet is entirely compensated by a reduction in the traditional bank’s balance sheet.
This result is a side-product of the adjustment to the TGA account that is assumed in this
subsection. In contrast, we provide in Figure 10, a graphical representation of the case in which
the newly issued Treasuries result in an increase in tax liabilities from households rather than an
increase in the TGA account. This scenario corresponds to longer-term adjustments when the
Treasury uses the proceeds of the Treasury issuances to pay for public spending and the salary
of public servants and other public spending. In this second case, the fiscal shock also results in
an increase in the balance sheet cost as the requirement for repo intermediation is increased.

Standing Repo Facility As with the previous shocks, the presence of a broad-access repo
facility effectively caps repo rate spikes and prevents fire sales of Treasuries (blue lines in Fig-
ure 9). For a Treasury issuance shock beyond bBRP , shadow banks fund their new Treasury
purchases with repo loans from the central bank (see RP Quantity panel). Consequently, house-
holds do not need to make further adjustments to their repo supply, thereby stabilizing both the
bilateral and triparty repo rates. With a narrow-access repo facility only available to traditional
banks (yellow lines in Figure 9), dealers can borrow at the repo facility rate rnrp, imposing an
upper bound on the triparty repo spread as dealers would refuse to borrow at a higher rate
from households (see Triparty Repo Spread panel). However, two main drawbacks render the
narrow-access repo facility less effective compared to the broad-access facility. First, for the
same facility rate, the narrow-access facility only comes into play for a larger shock as it acts as
a ceiling on the triparty rate and not directly on the bilateral rate, similar to the tax deadline
shock. Second, because the narrow-access facility requires the intermediation of dealers to reach
shadow banks, it is accompanied by an increase in balance sheet costs. Thus, the bilateral repo
rate is not bounded by the facility rate because the increase in balance sheet costs requires a
corresponding surge in the intermediation spread. The facility is nonetheless useful in slowing
down the rate of increase in the bilateral repo rate and delaying the point at which the system
enters the fire-sale region (see Bilateral Repo Spread and Liquidity Services panels).
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Figure 6: Increased Shadow Banks’ Regulatory Balance Sheet Costs. Panel A displays steady-
state shadow banks’ Treasury holdings wb(↵s), Treasury basis rb(↵s) � rp(↵s), and fire-sale probability
P[wb(↵0) < wb(↵s)] as a function of shadow banks’ regulatory balance sheet cost parameter �. Panel B
displays the bilateral repo spread rp(↵0) � rm(↵0), liquidity services to its optimum h(wp, wd; ↵0)/h?(↵0)
where h?(↵0) ⌘ maxw h(w, ⌧h � w; ↵0), and shadow banks’ treasury holdings wb(↵0) for the unregulated
(� = 0) and regulated (� > 0) equilibria.

4.6 Counterfactual Exercise

In this section, we make use of the model to derive the counterfactual reaction of the repo and
Treasury markets to shocks under alternative regulatory frameworks.

Excluding Treasuries and Reserves from Balance Sheet Cost We first study
the effect of removing both reserves and Treasuries from banks’ balance sheet costs. In our
model, removing both reserves and Treasuries from the balance sheet cost amounts to setting
the balance sheet cost parameter � to zero. In that case, shadow banks do not have any
comparative advantage for holding Treasuries, which means that traditional banks become the
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marginal holders of Treasuries and both repo and Treasury markets become fully stable. Such
a policy of removing both Treasuries and Reserves from SLR calculations was implemented by
the Fed in the US between April 2020 and March 2021. Consistently with our model, a series
of empirical works have investigated the impact of the measure and found a positive impact
on repo and Treasury market stability (Favara, Infante, and Rezende, 2022; Koont and Walz,
2021; Kroen, 2022). Although this policy appears unambiguously positive in our model, it is not
equipped to tackle the full normative question, as the regulation is modeled in a reduced form
to focus on the positive questions relating Treasury market disruptions to the central bank’s
balance sheet.

Proposition 7. When there is no balance sheet cost, � = 0, shadow banks never fire sell their

Treasuries: wb(x0) � wb(xs) for all x0
.

Regulating Shadow Banks Next, we consider counterfactual regulatory changes accord-
ing to which hedge funds involved in Treasury basis trades are more heavily regulated. Two
additional proposals for regulation are currently being discussed by regulators: requiring hedge
funds involved in Treasury bases trades to be classified as dealers (and thereby be regulated as
such) or requiring that hedge funds borrow in centrally cleared repo. Because centrally cleared
repos have stricter margin requirements,29 both regulatory proposals amount to limiting hedge
funds’ ability to leverage, albeit to different magnitudes. Such regulatory changes are captured
in our model by adding a quadratic balance sheet cost with modulating parameter � to shadow
banks. Figure 6 Panel A displays comparative statics results for various values of � and Figure
6 Panel B displays liquidity shock equilibria with (� > 0) and without (� = 0) shadow bank
regulation. An increase in shadow banks’ regulation results in shadow banks’ reducing their
leveraged holdings of Treasury bonds, an increased steady-state Treasury basis, and increases
expectations of Treasury fire sales in the crisis state. In other words, by regulating shadow
banks, the government reduces the likelihood of fire sales during liquidity events at the cost of
increasing the Treasury basis in the steady state. Our model suggests that the policy discussions
on this topic should consider this trade off between financial stability and government financing
costs.

29Barth, Kahn, and Mann (2023) find that most uncleared repos are applied zero margins, which
renders leverage virtually unconstrained. Note that under current regulations, cleared repos can be
netted for regulatory metrics purposes. This would amount to reducing the balance sheet cost from
dealer intermediation. However, the fact that most hedge funds choose not to rely on this option if not
mandated to is suggestive that they find the zero margins to be more attractive than borrowing at a
lower repo cost. We consider this as evidence that such a requirement would result in a net increase in
the balance sheet cost of the shadow banks, even accounting for reduced intermediation spreads.
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5 Conclusion

This article proposes a dynamic model of the Treasury market that captures disruptions observed
over recent years. It emphasizes the role of the central bank’s balance sheet, portfolio allocations,
and regulatory frictions in Treasury market stability. In particular, our framework identifies
the frictions to explain these disruptions, stresses the key role of both sides of the central bank
balance sheet, highlights the dual nature of reserve drawdowns, and investigates the effectiveness
of repo facilities. To allow for tractable exposition, our framework nonetheless abstracts from
potential interactions with other markets. Exploring those interactions is left to future research.
For instance, our model could serve as a starting point to study the financing of international
investors of dollar assets through FX derivatives, also subject to intermittent disruptions as
pointed out by Correa, Du, and Liao (2020). Overall, this work provides theoretical foundations
for research on the sources of capital market instability stemming from money market disruptions
with implications for the optimal design of regulation and monetary policy implementation
frameworks.
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6 Relegated Figures
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Figure 7: Intermediation Shock. The top panels illustrate the impact of an intermediation shock,
such as foreign dealer window-dressing at quarter-ends, on the balance sheets of the economy. T denotes
the present value of future taxes, A the TGA, B Treasury bonds, M reserves, P repo, and D deposits.
A negative shock to intermediation corresponds to a reduction in f on the x-axis of the figures. On the
x-axis of the figures, fRRP refers to the threshold at which the reverse facility rate is binding, f IL refers
to the threshold at which the IL constraint is binding, and fRP refers to the threshold at which the repo
facility rate is binding. We show the dynamics for three scenarios: without facilities (red), with a reverse
repo facility (blue), and with a reverse repo facility and a broad-access repo facility (yellow).
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Figure 8: Tax Deadline Shock. The top panels illustrate the impact of a tax deadline shock. T
denotes the present value of future taxes, A the TGA, B Treasury bonds, M reserves, P repo, and D
deposits. A positive shock to the Treasury General Account (TGA) corresponds to an increase in a
on the x-axis of the figures. On the x-axis of the figures, aIL refers to the threshold at which the IL
constraint is binding, aBRP refers to the threshold at which the broad-access repo facility rate is binding,
aNRP refers to the threshold at which the narrow-access repo facility rate is binding, and aF refers to the
threshold at which shadow banks start selling Treasuries in the baseline scenario. We show the dynamics
for three scenarios: without a repo facility (red), with a broad-access repo facility (blue), and with a
narrow-access repo facility (yellow).
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Figure 9: Fiscal Shock. The top panels illustrate the impact of a fiscal shock (issuance of Treasury
bonds). T denotes the present value of future tax, B denotes Treasury bonds, N denotes net worth, M
denotes reserves, K denotes capital, P denotes repo, and D denotes deposits. An increase in Treasuries
corresponds to an increase in b on the x-axis of the figures. On the x-axis of the figures, bIL refers to the
threshold at which the IL constraint is binding, bBRP refers to the threshold at which the broad-access
repo facility rate is binding, bNRP refers to the threshold at which the narrow-access repo facility rate is
binding, and bF refers to the threshold at which traditional banks begin purchasing Treasury bonds. We
show the dynamics for three scenarios: without a repo facility (red), with a broad-access repo facility
(blue), and with a narrow-access repo facility (yellow).
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banks begin purchasing Treasuries. Only the baseline (no central bank facilities) is displayed.
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Appendices

A Solving the Model
Notation and State Space Given our assumption on the law of motion of xt, the functional
form of the transaction cost, and aggregate wealth dynamics, equilibrium prices are only a
function of xt. In the following proofs, we rewrite agents’ problems in recursive form and drop
the time subscript for ease of notation. We denote by f(·) the distribution of x0 given the arrival
of a Poisson shock from the steady state xs.

First, we guess and verify that the value functions have the following form:

V (wb;x) = ⇠(x) + ✓(x)wb, (37)

V (wb;x) = ⇠(x) + ✓(x)wb, (38)

V h(x) = ⇠h(x). (39)

Shadow Banks We can write the HJB for shadow banks as

V (wb
-;x) = max

wb

⇢
wb
-(r

b(x) � rp(x))dt + (1 � ⇢dt)(1 � �dt)Et
⇥
V (wb;x + dx)|dN = 0

⇤

+ (1 � ⇢dt)�(x)dtE
⇥
V (wb;x + dx)|dN = 1

⇤�
. (40)

Using Ito’s lemma, the law of motion for x, and the law of motion for ⇡, we can rewrite the
HJB in equation (40) as

(⇢ + �(x))V (wb(x);x) =wb(x)(rb(x) � rp(x))

+ �(x)

Z ⇣
V (wb(x0);x0) � ⌫|wb(x0) � wb(x)|

⌘
f(x0)dx0. (41)

Substituting with the guess for V obtains

(⇢ + �(x))V (wb(x);x) =wb(x)(rb(x) � rp(x))

+ �(x)

Z ⇣
⇠(x0) + ✓(x0)wb(x0) � ⌫|wb(x0) � wb(x)|

⌘
f(x0)dx0. (42)

As banks can adjust their holdings of Treasuries instantaneously by paying the transaction cost,
the value function given wb

- must be equal to the value that would obtain by changing the debt
level to the optimum, which we denote wb?(wb

-;x):

V (wb
-;x) = max

wb

n
V (wb;x) � ⌫|wb � wb

-|
o

(43)

= V (wb?(wb
-;x);x) � ⌫|wb?(wb

-;x) � wb
-|. (44)

For ease of notation, we sometimes use the short notation wb? ⌘ wb?(wb
-;x). Thus, wb? is

determined by

V w(wb?;x) = ⌫ sign(wb? � wb
-) if wb? 6= �wb

-, (45)
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where we use the notation fx = @f/@x for partial derivatives. Substituting for the guess for V ,
we get

✓(x) = ⌫ sign(wb? � wb
-) if wb? 6= wb

-. (46)

Then, we can write the optimal weight on Treasuries as follows:

wb?(wb
-;x) =

8
>>>><

>>>>:

0 if ✓(x) < �⌫

[0, wb
-] if ✓(x) = �⌫,

wb
- if � ⌫ < ✓(x) < ⌫,

[wb
-, 1] if ✓(x) = ⌫.

(47)

We omit the case for ✓(x) > ⌫, as this would lead to an infinite holding of Treasuries, which is
infeasible in equilibrium.

Using the envelope theorem with respect to wb, we get

(⇢ + �(x))✓(x) =rb(x) � rp(x)

+ �(x)
@

@wb(x)

Z ⇣
✓(x0)wb(x0) � ⌫|wb(x0) � wb(x)|

⌘
f(x0)dx0. (48)

For x = xs, this becomes

(⇢ + �)✓(xs) =rb(xs) � rp(xs)

+ �⌫

Z

wb(x0) 6=wb(xs)
sign(wb(x0) � wb(xs))f(x0)dx0

+ �

Z

wb(x0)=wb(xs)
✓(x0)f(x0)dx0. (49)

For x 6= xs, since after a Poisson shock we return to the steady state xs, we get

(⇢ + �0)✓(x) =rb(x) � rp(x)

+ �0⌫ sign(wb(xs) � wb(x)) {wb(xs) 6= wb(x)}
+ �0✓(xs) {wb(xs) = wb(x)}. (50)

Traditional Banks Similarly, we can write the HJB for traditional banks as

V (wb
-(x);x) = max

wk,wb,wm,wd,wp

⇢
µ(x)dt

+ (1 � ⇢dt)(1 � �(x)dt)Et
⇥
V (wb;x + dx)|dN = 0

⇤

+ (1 � ⇢dt)�(x)dtE
⇥
V (wb;x + dx)|dN = 1

⇤�
(51)

where

µ(x) ⌘wk(x)rk + wb(x)rb(x) + wm(x)rm(x) + wp(x)rp(x) � wd(x)rd(x)

+ wx(rp(x) � rpt(x)) � �

2
`(x)2 (52)
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and such that wk + wb + wm + wp = wd and

wp  wm, (53)

where

` ⌘ wd + wx � min{0, wp}. (54)

As before, the value function given wb
- must be equal to the value that would obtain by

changing the Treasury bond holdings to the optimum, which we denote wb?(wb
-;x). For ease of

notation, we sometimes use the short notation wb? ⌘ wb?(wb
-;x). That is,

V (wb
-;x) = max

wb�0

n
V (wb;x) � ⌫|wb � wb

-|
o

(55)

= V (wb?;x) � ⌫|wb? � wb
-|. (56)

Thus, substituting for the guess for V , we get

✓(x) = ⌫ sign(wb? � wb
-) if wb? 6= wb

-. (57)

Thus,

wb?(wb
-;x) =

8
>>>><

>>>>:

0 if ✓(x) < �⌫

[0, wb
-] if ✓(x) = �⌫,

wb
- if � ⌫ < ✓(x) < ⌫,

[wb
-, 1] if ✓(x) = ⌫.

(58)

Using the same steps as for the shadow banks and substitute with the guess for V obtains

(⇢ + �(x))V (wb(x);x) = µ(x)

+ �(x)

Z ⇣
⇠(x0) + ✓(x0)wb(x0) � ⌫|wb(x0) � wb(x)|

⌘
f(x0)dx0

+ #m(x)(wm(x) � wp(x)), (59)

where #m(x) is the Lagrange multiplier on the constraint wm(x) � wp(x). Thus, given that in
equilibrium wd > 0, the first-order condition for c, wk, wm, wx, and wp are given by

rk � rd(x) = �`(x), (60)

rm(x) � rd(x) = �`(x) � #m(x), (61)
rp(x) � rpt(x) = �`(x), (62)

rp(x) � rd(x) =

(
�`(x) + #m(x) if wp(x) > 0,

0 if wp(x) < 0.
(63)
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Thus,

wp(x) =

8
>>>><

>>>>:

2 (�1, 0] if rp(x) � rd(x) = 0

0 if 0 < rp(x) � rd(x) < �`(x)

2 [0, wm(x)] if rp(x) � rd(x) = �`(x)

= wm(x) if rp(x) � rd(x) > �`(x).

(64)

As before, the envelope theorem yields

(⇢ + �(x))✓(x) =rb(x) � rd(x) � �`(x) (65)

+ �(x)
@

@wb(x)

Z ⇣
✓(x0)wb(x0) � ⌫|wb(x0) � wb(x)|

⌘
f(x0)dx0. (66)

For x = xs, this becomes

(⇢ + �)✓(xs) =rb(xs) � rd(xs) � �`(xs)

+ �⌫

Z

wb(x0) 6=wb(xs)
sign(wb(x0) � wb(xs))f(x0)dx0

+ �

Z

wb(x0)=wb(xs)
✓(x0)f(x0)dx0. (67)

For x 6= xs, since after a Poisson shock we return to the steady state xs, we get

(⇢ + �0)✓(x) =rb(x) � rd(x) � �`(x)

+ �0⌫ sign(wb(xs) � wb(x)) {wb(xs) 6= wb(x)}
+ �0✓(xs) {wb(xs) = wb(x)}. (68)

Households Similarly, we can write the HJB for households as

V h(x) = max
wh,d,wh,p

⇢
ch(x)dt + � log(h(wh,p, wh,d; ↵))dt

+ (1 � ⇢dt)(1 � �(x)dt)Et
⇥
V h(x + dx)|dN = 0

⇤

+ (1 � ⇢dt)�(x)dtE
⇥
V h(x + dx)|dN = 1

⇤�
(69)

where

h(wh,p, wh,d; ↵) = (wh,d)↵(wh,p)1�↵ (70)

and such that wh,p + wh,d = ⌧h and

ch(x) = wh,drd(x) + wh,prpt(x) + ⇡(x) + ⇡(x) � r⌧ (x). (71)

We can rewrite the HJB as follows:

(⇢ + �(x))V h(x) = max
wh,p,wh,d

⇢
⇡h(x) + � log(h(wh,p

u , wh,d
u ; ↵)) + �(x)

Z
⇠h(x0)f(x0)dx0

�
. (72)
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The first-order condition for households is given by

rpt(x) � rd(x) = �

✓
↵

wh,d(x)
� 1 � ↵

wh,p(x)

◆
. (73)
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B Relegated Table

Table 2: Impact of Common Shock to Repo Markets. This table presents results from
daily regressions of the first-difference repo to interest on reserves spreads (�GCF � IOR),
the repo intermediation spreads between inter-dealer repo and dealer-to-money-fund repo
(�GCF � TGCR), as well as volumes at the reverse repo facility (�RRP ), and balance in
the Treasury General Account (�TGA) on dummy variables indicating if the day is the last day
of a quarter (Quarter-End), the first day of a quarter (Quarter-End + 1), a tax deadline day
(Tax Deadline), or a day following a tax deadline day (Tax Deadline+1), as well as a continuous
variable indicating the daily change in Treasury outstanding (� Treasury). Data for GCF rates
are from DTCC, TGCR from the Federal Reserve Bank of New York, the TGA balance from
the US Treasury Department, the RRP volumes from the Federal Reserve Bank of New York,
the IOR from the Federal Reserve Bank of St Louis FRED. Tax deadlines for companies and
individuals are retrieved from the Treasury Department website. Newey-West Standard Errors
with a maximum lag of seven days are reported with significant levels: *p < 0.05, **p < 0.01,
***p < 0.001.

Dependent Variables

�GCF � IOR �GCF � TGCR �RRP �TGA

Quarter-End 9.625⇤⇤⇤ 0.069⇤⇤⇤ 102.4⇤⇤⇤ 29.53⇤⇤⇤

(1.967) (0.017) (12.117) (4.732)
Quarter-End +1 �5.940 �0.046 �118.7⇤⇤⇤ �40.93⇤⇤⇤

(4.111) (0.028) (18.006) (5.245)
Tax Deadline 2.739⇤⇤⇤ 0.009 �0.304 47.10⇤⇤⇤

(0.446) (0.006) (3.002) (6.614)
Tax Deadline +1 4.547 �0.010 11.02⇤⇤⇤ 14.57⇤⇤⇤

(6.230) (0.012) (2.544) (3.066)
� Treasury 1.646⇤⇤⇤ 0.009⇤⇤⇤ 0.256 4.176⇤⇤⇤

(0.300) (0.001) (0.804) (0.7)
Constant �0.275 0.00 �0.511 �4.056⇤⇤⇤

(0.210) (0.001) (0.499) (0.363)

Observations 2,010 1,971 1,277 2,010
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C Solution Method
We use the following algorithm to numerically solve for steady state (xs) and shock states (x0)
equilibrium variables:30

1. Select guess values for (M(x0) 2 F) and
R
M(x0) 62F (✓(x0) � ✓(x0))f(x0)dx0.

2. Using guesses from Step 1, solve for steady state allocations
{wb(xs), wm(xs), wp(xs), wx(xs), wd(xs)}, {wb(xs), wp(xs)},
{wh,p(xs), wh,d(xs)} and rates {rb(xs), rm(xs), rp(xs), rpt(xs), rd(xs)}.

3. Calculate shock state allocations and rates for all shocks x0 conditional on the steady-state
allocations and rates computed in the previous step.

4. Compute (M(x0) 2 F) and
R
M(x0) 62F (✓(x0) � ✓(x0))f(x0)dx0 from the shock state equi-

libria in the previous step. Update the guesses with these values.

5. Repeat steps 2-4 until convergence.

We evaluate Step 3 on a grid of x0 spanning the sample space. Since {A, S, U , C \ F , F}
forms a partition of the state space of x0, for each x0 in Step 3 we can sequentially compute the
equilibrium for each partition subset and halt when the equilibrium is feasible as one and only
one partition subset has a feasible equilibrium for each x0. We use numerical integration in Step
4.

Importantly, we assume that steady-state allocations in cases for which central bank interven-
tion choices result in F = ; are given by the baseline steady-state allocations.

30The sets used below are defined in the Online Appendix.
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Online Appendix

State Space Partitioning We define four disjoint sets of equilibria that correspond to
different dynamics in the pricing of the bilateral repo. Our analysis below characterizes how
shocks to state variables x are shifting equilibrium across those sets.

Definition 2. Let A be the set of arbitraged repo market equilibria, defined as {M(x) 2
A | wp(x) < 0}.

Definition 3. Let S be the set of segmented repo market states, defined as {M(x) 2 S | wp(x) =
0 and rp(x) < rm(x)}.

Definition 4. Let U be the set of unconstrained repo market states, defined as {M(x) 2
U | rp(x) = rm(x)}.

Definition 5. Let C be the set of constrained repo market states, defined as {M(x) 2 C | rp(x) >
rm(x) }.

Definition 6. Let F be the set of fire-sale states, a subset of constrained repo market states C,

defined as {M(x) 2 F | wb(x) 6= wb(xs)}.

We define as arbitraged the set of equilibria in which traditional banks are borrowing in
bilateral repos; as segmented the ones in which traditional banks are not marginal in bilateral
repos due to the balance sheet cost; as unconstrained equilibria in which the IL constraint is
not binding for traditional banks and bilateral repo rates equal to the interest on reserves; as
constrained the ones in which traditional banks are constrained by the IL regulation, and where
bank repo rates are above the interest on reserves; and as fire sale, the ones in which traditional
banks adjust their Treasury bonds holdings when entering the shock state.

A Proofs of Section 3
In Section 3, we focus on the specific shock to the liquidity preference parameter ↵t. Hence,
we write variables as functions of the state variable ↵t instead of xt. We begin with a set of
intermediate results before providing the proofs of our propositions.

Below, we take stock of the assumptions made in the main text for the case in which the only
time-varying parameter is ↵.

Assumption 1. There is always a state in which shadow banks fire-sell treasuries to traditional

banks: 9↵0 2 (↵s, 1), wb(↵0) < wb(↵s).

Assumption 2. In the steady state, traditional banks hold some Treasuries: wb(↵s) > 0.

Assumption 3. The traditional bank dealer subsidiary has a positive balance sheet size: wx(↵) >
0.

Assumption 4. The household balance sheet is larger than the quantity of repo available from

traditional banks: ⌧h > m.

Lemma A1. If there exists ↵0
such that 0 < wb(↵s) < wb(↵0), then ✓(↵s) = �✓(↵s) = �⌫,

✓(↵0) = �✓(↵0) = ⌫, wb(↵s) > wb(↵0), and there does not exist a shock state ↵0
such that

wb(↵0) < wb(↵s) or wb(↵s) < wb(↵0).
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Proof. From the envelope theorem for wb in equation (58), we have that for the traditional
bank to be incentivized to increase its holding of Treasuries and pay the adjustment cost when
moving from ↵s to ↵0 and vice versa, then it must be that ✓(↵0) = ⌫ and ✓(↵s)  �⌫. Thus,
there cannot exist another state such that wb(↵0) < wb(↵s).

The market-clearing condition for the Treasury market is given by

wb(↵) + wb(↵) + b = b 8↵. (74)

Thus, the reverse must be true for wb(↵) and ✓(↵). In addition, given that wb(↵s) > 0 in
Assumption 2, we have ✓(↵s) = �⌫. This further implies that

rp(↵0) � rd(↵0) = �`(↵)0 + (⇢ + �0)(⌫ � ✓(↵0)) + 2�0⌫ (75)

from the envelope theorem for traditional and shadow banks. Given ✓(↵0) < �⌫, rp(↵0)�rd(↵0) >
�`(↵)0. By the traditional bank first-order conditions, we have wp(↵0) > 0. Combining the
triparty and bilateral repo market clearing conditions, we have wp(↵0) = wh,p(↵0) + wp(↵0) > 0.
Hence, ✓(↵0) = �⌫.

Lemma A1 pins down ✓(↵s) = �✓(↵s) = ⌫ in the steady state and ✓(↵0) = �✓(↵0) = �⌫ in
the fire sale region under Assumption 1. Below, we formalize what happens in each state.

Steady State: ↵ = ↵
s
. Given Lemma A1, the envelope theorem for traditional and shadow

banks leads to the following expressions for rates relative to rd(↵s):

rb(↵s) � rd(↵s) = �`(↵s) � (⇢ + �)⌫ � �⌫P(M(↵) 2 F) � �

Z

M(↵0) 62F
✓(↵0)f(↵0)d↵0, (76)

rb(↵s) � rp(↵s) = (⇢ + �)⌫ + �⌫P(M(↵) 2 F) � �

Z

M(↵0) 62F
✓(↵0)f(↵0)d↵0. (77)

Thus,

rp(↵s) � rd(↵s) = �`(↵s) � 2⌫(⇢ + �) � 2�⌫P(M(↵) 2 F) + �

Z

M(↵0) 62F
(✓(↵0) � ✓(↵0))f(↵0)d↵0.

(78)

Thus, 0  rp(↵s) � rd(↵s) < �`(↵s) as ✓(↵0) � ✓(↵0)  2⌫. This further implies that wp(↵s)  0
from the first-order condition for wp. Hence, #m(↵s) = 0 and the IL constraint is not binding
in the steady state. From the first-order condition for wx(↵s), we get

rpt(↵s) � rd(↵s) = �2⌫(⇢ + �) � 2�⌫P(M(↵) 2 F) + �

Z

M(↵0) 62F
(✓(↵0) � ✓(↵0))f(↵0)d↵0. (79)

For ease of notation, define ⇥s ⌘ rpt(↵s) � rd(↵s). We have two cases.

• Case wp(↵s) < 0, thus M(↵s) 2 A. Then ⇥s = rpt(↵s)�rd(↵s) = ��`(↵s) by traditional
bank first-order condition. We also have that `(↵s) = wd(↵s) + wx(↵s) � wp(↵s) =
⌧h � f � wp(↵s) by the market-clearing conditions for triparty repo and deposits. Hence,
wp(↵s) is pinned down by �(⌧h � f � wp(↵s)) = �⇥s.

• Case wp(↵s) = 0, thus M(↵s) 2 S.
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In both cases, we can pin down the value of traditional banks’ repo holdings in the steady state
with ⇥s. Households’ holdings of repo in the steady state wh,p(↵s) is also determined by ⇥s.
For ease of notation, we define W as

W(s, ↵) ⌘
(

s⌧h��+G(s,↵)
2s if s 6= 0,

⌧h(1 � ↵) if s = 0.
(80)

where

G(s, ↵) ⌘
q

�2 + s2(⌧h)2 + 2�s⌧h(1 � 2↵). (81)

Then W(rpt � rd, ↵) is the solution31 of equation (73) for wh,p in terms of a spread rpt � rd and
a liquidity preference parameter ↵. We have wh,p(↵s) = W(⇥s, ↵s).

Then, combined with the shadow bank balance sheet constraint, repo markets clearing condi-
tions, and the Treasury bond market-clearing condition, we get

wb(↵s) = W(⇥s, ↵s) + wp(↵s) (82)

and

wb(↵s) = b � b � W(⇥s, ↵s) � wp(↵s). (83)

Shock States: ↵
0 2 (↵s

, 1). Given Lemma A1, the envelope theorem for traditional and
shadow banks leads to the following expressions for rates relative to rb(↵0):

(⇢ + �0)✓(↵0) = rb(↵0) � rd(↵0) � �`(↵0) � �0⌫, (84)

(⇢ + �0)✓(↵0) = rb(↵0) � rp(↵0) + �0⌫, (85)

and

(⇢ + �0)(✓(↵0) � ✓(↵0)) = rp(↵0) � rd(↵0) � �`(↵0) � 2�0⌫. (86)

From the first-order condition for wx(↵0), we get

rpt(↵0) � rd(↵0) = (⇢ + �0)(✓(↵0) � ✓(↵0)) + 2�0⌫. (87)

For ease of notation, define ⇥0 ⌘ rpt(↵0) � rd(↵0). Since ✓(↵0) � ✓(↵0)  2⌫, we have ⇥0 
2⇢⌫ +4�0⌫, and ⇥0 = 2⇢⌫ +4�0⌫ when there is a fire sale. There is no discontinuity in the range
of possible values for ⇥0.

States with the IL Constraint Not Binding: ↵
0|#m(↵0) = 0. Consider some shock

↵0 2 (↵s, 1) such that the IL constraint does not bind. From the traditional bank first-order
conditions, we get ⇥0 = rpt(↵0) � rd(↵0)  0. Hence, it is impossible that ✓(↵0) = �✓(↵0) = ⌫.
By Lemma A1, there is no fire sale: wb(↵0) = wb(↵s) and wb(↵0) = wb(↵s). We get

wp(↵0) = W(⇥s, ↵s) + wp(↵s), (88)

wh,p(↵0) = W(⇥0, ↵0). (89)

31Only this root is relevant, since the other root implies that either wh,p or wh,d is negative.
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Combining the bilateral and triparty repo market-clearing conditions then yields

wp(↵0) = W(⇥s, ↵s) � W(⇥0, ↵0) + wp(↵s). (90)

We have three cases.

• Case wp(↵0) < 0, thus M(↵0) 2 A. Then ⇥0 = rpt(↵0) � rd(↵0) = ��`(↵0) < 0 by
traditional bank first-order condition. We also have that `(↵0) = wd(↵0) + wx(↵0) �
wp(↵0) = ⌧h �f �wp(↵0) by the market-clearing conditions for triparty repo and deposits.
Hence, �(⌧h � f � wp(↵0)) = �⇥0. Together with equations (73) and (90), we can solve
for the three unknowns wp(↵0), W(⇥0, ↵0), and ⇥0. Combining the three equations, we get

�
h
⌧h � f � W(⇥s, ↵s) + W(⇥0, ↵0) � wp(↵s)

i

= ��

✓
↵0

⌧h � W(⇥0, ↵0)
� 1 � ↵0

W(⇥0, ↵0)

◆
. (91)

The left-hand side increases in W(⇥0, ↵0) and the rigt-hand side decreases in W(⇥0, ↵0).
Also, the left-hand side is bounded when W(⇥0, ↵0) 2 (0, ⌧h), while the RHS approaches
+1 when W(⇥0, ↵0) ! 0 and approaches �1 when W(⇥0, ↵0) ! ⌧h. Hence, there exists
a unique solution of W(⇥0, ↵0) between 0 and ⌧h. By the household first-order condition
we get ⇥0, and by equation (90), we get wp(↵0).

• Case ⇥0 < 0 and wp(↵0) � 0. Then rpt(↵0) < rd(↵0) and wp(↵0) = 0 by traditional bank
first-order condition. Thus, M(↵0) 2 S. We can also pin down W(⇥0, ↵0) by equation
(90).

• Case ⇥0 = 0, thus M(↵0) 2 U . By equation (80), W(⇥0, ↵0) = ⌧h(1 � ↵0). We can also
pin down wp(↵0) by equation (90).

In every case, we can pin down wh,p(↵0) = W(⇥0, ↵0) and wp(↵0) using the equilibrium outcome
in the steady state. Then, by the household first-order conditions, we get ⇥0.

States with the IL Constraint Binding: ↵
0|#m(↵0) > 0. Consider some shock ↵0 2

(↵s, 1) such that the IL constraint binds. Then we have wp(↵0) = wm(↵0) and #m > 0.
Therefore, from the first-order conditions of the traditional banks, it must be that rp(↵0) �
rd(↵0) > �`(↵0) and ⇥0 = rpt(↵0) � rd(↵0) > 0.

We first consider the case when no fire sale occurs: wb(↵0) = wb(↵s). We get

wp(↵0)n = W(⇥s, ↵s) + wp(↵s), (92)

wh,p(↵0) = W(⇥0, ↵0). (93)

which, combined with the bilateral and triparty repo market clearing conditions, yields

wp(↵0) = W(⇥s, ↵s) � W(⇥0, ↵0) + wp(↵s). (94)

Since wp(↵0) = wm(↵0) = m from the reserve market clearing condition, we can solve for
W(⇥0, ↵0) using the equilibrium outcome in the steady state. Then, by the household first-order
conditions, we get ⇥0.

If the solution gives ⇥0 > 2⌫⇢ + 4�0⌫, then this contradicts with ✓ � ✓  2⌫. A fire sale must
occur. In this case, we have ⇥0 = 2⌫⇢+4�0⌫ and we can further pin down W(⇥0, ↵0) by equation
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(80). Together with wp(↵0) = m, we pin down shadow banks repo holdings by the bilateral
and triparty repo market-clearing conditions

wp(↵0) = W(⇥0, ↵0) + m. (95)

In all, the threshold of a fire sale is that ⇥0 = 2⌫(⇢+�0)+ 2�0⌫, and we can pin down W(⇥0, ↵0)
and wp(↵0) using the equilibrium outcome in the steady state whether or not there is a fire sale.

Lemma A2. For all ↵0
such that wp(↵0) � 0, `(↵0) = ⌧h � f .

Proof. From the triparty repo market-clearing, we get wx(↵0) = wh,p(↵0) � f . From the deposit
market-clearing condition and the household balance sheet constraint, we obtain wd(↵0) = ⌧h �
wh,p(↵0). By definition, `(↵0) = wd(↵0) + wx(↵0) � [wp(↵0)]�. Hence, when wp(↵0) � 0, we get
`(↵0) = wx(↵0) + wd(↵0) = ⌧h � f .

When wp(↵0) < 0, we have `(↵0) = wx(↵0) + wd(↵0) � wp(↵0) > ⌧h � f . Define ` = ⌧h � f .
Also, note that we only have wp(↵0) < 0 on A. Given Lemma A2, we can now write ` instead
of `(↵) when M(↵) /2 A.

Lemma A3. A, S, U , and C are intervals. Furthermore, A, S, U , and C form a partition of

(↵s, 1) and F is an interval subset of C. Finally, we can write

8M(↵0) 2 A, M(↵00) 2 S [ U [ C : ↵0 < ↵00; (96)
8M(↵0) 2 S, M(↵00) 2 U [ C : ↵0 < ↵00; (97)
8M(↵0) 2 U , M(↵00) 2 C : ↵0 < ↵00; (98)
8M(↵0) 2 C \ F , M(↵00) 2 F : ↵0 < ↵00. (99)

Proof. We first take a look at the rate spread between the triparty repo and deposits. Define

g(x, y) ⌘ x

⌧h � y
� 1 � x

y
, where x 2 (0, 1) and y 2 (0, ⌧h). (100)

Then g(x, y) increases in both x and y. By the household first-order condition, rpt(↵)� rd(↵) =
� · g(↵, wh,p(↵)). Given that � > 0, if ↵0 � ↵00 and wh,p(↵0) � wh,p(↵00), then it must be that
rpt(↵0) � rd(↵0) � rpt(↵00) � rd(↵00). If ↵0 � ↵00 and wh,p(↵0) > wh,p(↵00), then it must be that
rpt(↵0) � rd(↵0) > rpt(↵00) � rd(↵00)

Next, We prove every statement sequentially.

• Statement 96. Consider arbitrary M(↵0) 2 A and M(↵00) 2 S. From the first-order
conditions of traditional banks, ⇥0 = rpt(↵0) � rd(↵0) = ��`(↵0) and ⇥00 = rpt(↵00) �
rd(↵00) � ��`. We also have that `(↵0) > `. Hence, ⇥0 < ⇥00. By definition, we
have that wp(↵0) < 0 and wp(↵00) = 0. Also, since there are no fire sales in A and S,
wp(↵0) = wp(↵00) = wp(↵s). Thus, combining the bilateral and triparty repo market-
clearing conditions, we must have wh,p(↵00) < wh,p(↵0). Assume by way of contradiction
that ↵00  ↵0. This implies that rpt(↵00) � rd(↵00)  rpt(↵0) � rd(↵0), a contradiction with
⇥0 < ⇥00 we derived earlier. Therefore ↵0 < ↵00 for any M(↵0) 2 A and M(↵00) 2 S.

• Statement 97. Consider arbitrary M(↵0) 2 S and M(↵00) 2 U . Then, ⇥0 = rpt(↵0) �
rd(↵0) < 0 and ⇥00 = rpt(↵00) � rd(↵00) = 0. We have that wp(↵0) = 0 and by the
traditional bank first-order condition wp(↵00) � 0. Since there are no fire sales in S and
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U , wp(↵0) = wp(↵00) = wp(↵s). Thus, combining the bilateral and triparty repo market-
clearing conditions, we must have wh,p(↵00)  wh,p(↵0). Assume by way of contradiction
that ↵00  ↵0. This implies that rpt(↵00) � rd(↵00)  rpt(↵0) � rd(↵0), a contradiction with
⇥0 < 0 = ⇥00. Therefore ↵0 < ↵00 for any M(↵0) 2 S and M(↵00) 2 U .

• Statement 98. Next, consider arbitrary M(↵0) 2 U and M(↵00) 2 C \ F . Then, ⇥0 =
rpt(↵0) � rd(↵0) = 0 and ⇥00 = rpt(↵00) � rd(↵00) > 0. We have that wp(↵0) 2 [0, m]
and wp(↵00) = m by the traditional bank first-order condition for wp. Since there are no
fire sales in U and C \ F , wp(↵0) = wp(↵00) = wp(↵s). Thus, combining the bilateral and
triparty repo market-clearing conditions, we must have wh,p(↵00)  wh,p(↵0). Assume by
way of contradiction that ↵00  ↵0. This implies that rpt(↵00) � rd(↵00)  rpt(↵0) � rd(↵0),
a contradiction with ⇥0 = 0 < ⇥00. Therefore ↵0 < ↵00 for any M(↵0) 2 U and M(↵00) 2
C \ F .

• Statement 99. Finally, consider arbitrary M(↵0) 2 C \ F and M(↵00) 2 F . We have that
wp(↵0) = wp(↵00) = m. Given that there is a firesale in F , wp(↵0) = wp(↵s) > wp(↵00).
Thus, combining the bilateral and triparty repo market-clearing conditions, we must have
wh,p(↵00) < wh,p(↵0). Assume by way of contradiction that ↵00  ↵0. This implies that
rpt(↵00) � rd(↵00) < rpt(↵0) � rd(↵0). We have shown that wp(↵s)  0. Hence, both ↵0 and
↵00 are in shock states. Then, it must be that ⇥0 = rpt(↵0) � rd(↵0)  2⇢⌫ + 4�0⌫ and
⇥00 = rpt(↵00) � rd(↵00) = 2⇢⌫ + 4�0⌫, a contradiction with ⇥00 < ⇥0. Therefore ↵0 < ↵00

for any M(↵0) 2 C \ F and M(↵00) 2 F .

Given Lemma A3, we can show that wp(↵s) < 0. Assume by way of contradiction wp(↵s) = 0.
Then, ⇥0 ! ⇥s when ↵0 ! ↵s from the household first-order condition

⇥0 = �

✓
↵0

⌧ � wh,p(↵0)
� 1 � ↵0

wh,p(↵0)

◆
(101)

where wh,p(↵0) = Ws = wp(↵s) when ↵0 ! ↵s. However, we know that the steady state spread
is

⇥s = �2⌫(⇢ + �) � 2�⌫P(M(↵) 2 F) + �

Z

M(↵0) 62F
(✓(↵0) � ✓(↵0))f(↵0)d↵0

= �2⌫⇢ � 4�⌫P(M(↵) 2 F) + �

Z

M(↵0) 62F
(✓(↵0) � ✓(↵0) � 2⌫)f(↵0)d↵0

 �2⌫⇢ � 4�⌫P(M(↵) 2 F) (102)

given ✓ � ✓  2⌫. Also, we have that

⇥0 = (⇢ + �0)(✓(↵0) � ✓(↵0)) + 2�0⌫ � �2⌫⇢ (103)

So long as P(M(↵) 2 F) > 0, ⇥0 ! ⇥s when ↵0 ! ↵s does not hold, a contradiction. Hence,
wp(↵s) < 0 and we can define the thresholds of each partition as follows:

A = [↵s, ↵A), S = [↵A, ↵U ), U = [↵U , ↵C ], C = (↵C , 1), F = (↵F , 1) (104)

and ↵s < ↵A  ↵U  ↵C  ↵F . We also have that ⇥s < ��`.
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Define ⇥(↵0) ⌘ rpt(↵0) � rd(↵0), Ws ⌘ W(⇥s, ↵s) = wh,p(↵s), WU ⌘ W(⇥(↵U ), ↵U ) =
wh,p(↵U ), and WF ⌘ W(⇥F , ↵F ) = wh,p(↵F ) where ⇥F ⌘ rpt(↵F ) � rd(↵F ) and W(⇥, ↵) is
defined in equation (80).

Lemma A4. The thresholds solve for

WU = W
�
��`, ↵A� , (105)

↵U =
⌧h � WU

⌧h
, (106)

↵C =
⌧h � WF

⌧h
. (107)

Furthermore,

WU = Ws + ` + ⇥s/�, (108)
WF = WU � m, (109)
⇥F = 2⌫(⇢ + �0) + 2�0⌫. (110)

Proof. We have that wp(↵A) = wp(↵U ) = 0 and wp(↵C) = wp(↵F ) = m. By the market-
clearing conditions for repo markets, we further obtain that

W(⇥(↵A), ↵A) = WU = W(⇥(↵C), ↵C) + m = WF + m (111)

given that wp(↵) remains constant when ↵  ↵F . This yields equation (109).
By definition of A and S, ↵A is such that ⇥(↵A) = ��` and W(⇥(↵A), ↵A) = WU . These

two conditions together yield equation (105).
By definition of S and U , ↵U is such that ⇥(↵U ) = 0 and W(⇥(↵U ), ↵U ) = WU . These two

conditions together yield equation (106).
By definition of U and C, ↵C is such that ⇥(↵C) = 0 and WU � W(⇥(↵C), ↵C) = m. These

two conditions together yield equation (107).
We also have that ⇥s = ��`(↵s) = �� (` � wp(↵s)). By equation (90), we have that

0 = wp(↵U ) = Ws � WU + wp(↵s) = Ws � WU + ` + ⇥s/� (112)

This yields equation (108).

A.1 Proof of Proposition 1

Given Lemma A3, we get that for ↵0 2 [↵s, ↵F ], wb(↵0) = wb(↵s) and wb(↵0) = wb(↵s), and for
↵00 2 (↵F , 1], wb(↵00) < wb(↵s) and wb(↵00) > wb(↵s). Note that f(↵) = 1/(1�↵s). Thus, given
⇥0 = (⇢ + �0)(✓(↵0) � ✓(↵0)) + 2�0⌫, we can rewrite equation (79) as

⇥s = �2⌫(⇢ + �) � 2�⌫
1 � ↵F

1 � ↵s
+

2��0⌫(↵F � ↵s)

(1 � ↵s)(⇢ + �0)
� �

(1 � ↵s)(⇢ + �0)

Z ↵F

↵s
⇥0d↵0. (113)
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Thus, the equilibrium is characterized by a system of equations

WF = Ws + ` + ⇥s/� � m, (114)

⇥s = �

✓
↵s

⌧h � Ws
� 1 � ↵s

Ws

◆
, (115)

⇥F = �

✓
↵F

⌧h � WF � 1 � ↵F

WF

◆
= 2�0⌫ + 2⌫(⇢ + �0), (116)

⇥s = �2⌫(⇢ + �) � 2�⌫
1 � ↵F

1 � ↵s
+

2��0⌫(↵F � ↵s)

(1 � ↵s)(⇢ + �0)
� �

(1 � ↵s)(⇢ + �0)

Z ↵F

↵s
⇥0d↵0. (117)

where ⇥0 for ↵0 2 (↵s, 1) is given by

⇥0 =

8
><

>:

��`(↵0) if M(↵0) 2 A,

0 if M(↵0) 2 U ,

2⌫(⇢ + �0) + 2�0⌫ if M(↵0) 2 F ,

(118)

and

Ws + wp(↵s) = W(⇥0, ↵0) (119)

if M(↵0) 2 S and

m = Ws � W(⇥0, ↵0) + wp(↵s) (120)

if M(↵0) 2 C\F .
The first equation is given by definition of WF in (109). The second equation is the household

first-order condition in the steady state. The third equation is the household first-order condition
at ↵0 = ↵F . The fourth equation is derived above. Finally, the values for ⇥0 come from the
above discussion of states with the IL constraint not binding and states with the IL constraint
binding. We have already solved for wp(↵s) given ⇥s and ⇥0 when M(↵0) 2 A in the discussion
around equation (91). Hence, there are only four unknowns (⇥s, Ws, WF , ↵F ).

Note that if we find the solution for Ws, then from equation (115), we get ⇥s. Subsequently,
equation (114) yields WF , and equation (116) yields ↵F . Thus, to prove that this nonlinear
system of equations has a unique solution, we just need to show that equation (117) gives a
unique solution for Ws.

Rearranging (117), we get

⇥s +
�

(1 � ↵s)(⇢ + �0)

Z ↵U

↵s
⇥0d↵0 + 2⌫(⇢ + �) +

2�⌫

1 � ↵s
+

2��0⌫↵s

(1 � ↵s)(⇢ + �0)

=
�(↵F + ↵C)⇥F

2(1 � ↵s)(⇢ + �0)
(121)

Next, we show that the term
R ↵U

↵s ⇥0d↵0 is increasing with respect to Ws.

Z ↵U

↵s
⇥0d↵0 =

Z ↵A

↵s
(��`(↵0))d↵0 +

Z ↵U

↵A
⇥0d↵0 = �

Z ↵A

↵s
wp(↵0)d↵0 � �`

✓
↵U + ↵A

2
� ↵s

◆

(122)
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By household first-order conditions and market-clearing conditions, we have

� �
�
` � wp(↵0)

�
= ⇥0 = �

✓
↵0

⌧h � wh,p(↵0)
� 1 � ↵0

wh,p(↵0)

◆
(123)

wh,p(↵0) + wp(↵0) = WU (124)

From equation (123), for any given level of ↵0, wh,p(↵0) increases with wp(↵0). Hence, by equation
(124), when WU increases, both wh,p(↵0) and wp(↵0) must increase. We can then denote wp(↵0)
as an increasing function gw(WU , ↵0) of WU . Also, by equation (105), ↵A is a decreasing function
of WU . We denote it as g↵(WU ). Then for x1 > x2, g↵(x1) < g↵(x2) and gw(x1, ↵0) > gw(x2, ↵0).
Given that gw(x, ↵0)  0 when ↵0 2 [↵s, ↵A], we get that

Z g↵(x1)

↵s
gw(x1, ↵

0)d↵0 �
Z g↵(x2)

↵s
gw(x2, ↵

0)d↵0 (125)

=

Z g↵(x1)

↵s
(gw(x1, ↵

0) � gw(x2, ↵
0))d↵0 �

Z g↵(x2)

g↵(x1)
gw(x2, ↵

0)d↵0 > 0 (126)

Hence,
R ↵A

↵s wp(↵0)d↵0 increases with WU .

Given that ⇥s increases with Ws, WU increases with Ws by equation (108). Then
R ↵A

↵s wp(↵0)d↵0

increases with Ws. By equation (106) ↵U decreases with Ws and by equation (105) ↵A decreases
with Ws. These together yield that

R ↵U

↵s ⇥0d↵0 increases with Ws.
Together with ⇥s increasing with Ws, we get that the left-hand side of (121) increases with

Ws. On the other hand, given that ⇥s increases with Ws, we further get that WF increases
with Ws by equation (114). Hence, by equations (107) and (116), ↵C and ↵F decrease with Ws.
Thus, the right-hand side of (121) decreases with Ws. So equation (117) gives a unique solution
Ws.

We now consider the bounds on ✓. Note that ✓ and ✓ are between �⌫ and ⌫ and that

✓(↵0) � ✓(↵0) =
⇥0 � 2�0⌫

⇢ + �0 . (127)

We can write the bounds of ✓ as follows:

✓(↵0) 2

�⌫ � ⇥0 � 2�0⌫

⇢ + �0 , ⌫

�
if ↵0  ↵⇥, (128)

and

✓(↵0) 2

�⌫, ⌫ � ⇥0 � 2�0⌫

⇢ + �0

�
if ↵0 > ↵⇥, (129)

where ↵⇥ is defined as the solution to ⇥(↵⇥) = 2�0⌫. Since 0 < ⇥(↵⇥) < ⇥F , we have
↵⇥ 2 [↵C , ↵F ). Given that ⇥0 is increasing in ↵0 when M(↵0) 2 C\F from equation (120), it is
well-defined and given by

2�0⌫ = �

✓
↵⇥

⌧h � WF � 1 � ↵⇥

WF

◆
. (130)
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By the shadow bank first-order conditions, we have

rb(↵0) = rp(↵0) + (⇢ + �0)✓(↵0) � �0⌫. (131)

Using the definition of ✓ and ✓ and first-order conditions, we get that the interest rate on
Treasuries is bounded by rb(↵)  rb(↵)  rb(↵), where

rb(↵) ⌘ max{rd(↵) + �`(↵) � ⇢⌫, rp(↵) � (⇢ + 2�0)⌫}, (132)

and

rb(↵) ⌘ min{rd(↵) + �`(↵) + (⇢ + 2�0)⌫, rp(↵) + ⇢⌫}. (133)

for ↵ 2 (↵s, 1). When M(↵) 2 F , the interest rate on Treasuries is pinned down by rb(↵) =
rk + (⇢ + 2�0)⌫.

The normal state envelope theorem (from s-banks) gives

rb(↵s) � rp(↵s) = (⇢ + �)⌫ + �⌫P(M(↵0) 2 F) � �

1 � ↵s

Z ↵F

↵s
✓(↵0)d↵0 (134)

We can then integrate over min{✓(↵0)} and max{✓(↵0)} to get the bounds for the spreads in the
normal state.

A.2 Proof of Proposition 2

we first introduce a number of intermediate values as follows:

P(↵0) ⌘ ↵0

(⌧h � wh,p(↵0))2
+

1 � ↵0

(wh,p(↵0))2
8↵0 2 [↵s, 1)

D ⌘ 1

⌧h � WF +
1

WF

E ⌘ 2�⌫

1 � ↵s

G ⌘ (⇢ + �0)(1 � ↵s)

H ⌘ �`

2

(P(↵A) + P(↵U ))(⌧h � WU )WU

⌧h

I ⌘ ���

2G

✓
(↵F )2

(⌧h � WF )2
� (↵F � 1)2

(WF )2

◆

J ⌘ ���

G

✓
↵F

⌧h � WF � 1 � ↵F

WF

◆

K ⌘ 2��0⌫

G

and we denote A ⌘ P(↵s), C ⌘ P(↵F ), and

B ⌘
Z ↵A

↵s

�P(↵0)�

�P(↵0) + �
d↵0.

Since ↵0 2 (0, 1) for all ↵0 2 [↵s, 1), P(↵0) > 0. Together with �, � > 0, we have B > 0. Since
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wh,p(↵) 2 (0, ⌧h) for any ↵, D > 0. Together with `, ⌧h > 0, H > 0. In addition, ↵s 2 (0, 1)
and ⇢, �, �0, ⌫ > 0 imply that E, G, K > 0. Also, we can simplify J as J = ��⇥F/G. Since
⇥F = 2⌫(⇢ + �0) + 2�0⌫ > 0 and �, G > 0, J < 0. In addition, we have that

E + K + J =
1

G

�
2�⌫(⇢ + �0) + 2��0⌫ � �(2⌫(⇢ + �0) + 2�0⌫)

�
= 0

We can use algebraic factorization and rewrite I as

I = ��⇥F

2G

✓
↵F

⌧h � WF +
1 � ↵F

WF

◆
. (135)

Since �, G, ⇥F > 0, WF 2 (0, ⌧h) and ↵F 2 (0, 1), we have I < 0.
Next, we show the proof of Proposition 2. We have that ↵s  ↵A  ↵U  ↵C  ↵F . This

further implies that ⇥(↵0) = 0 on [↵U , ↵C ], ⇥(↵0) = �
⇣

↵0

⌧h�WU � 1�↵0

WU

⌘
for ↵0 2 [↵A, ↵U ), and

⇥(↵0) = �
⇣

↵0

⌧h�WF � 1�↵0

WF

⌘
for ↵0 2 (↵C , ↵F ]. Hence, equation (117) can be written as

⇥s = � 2⌫(⇢ + �) � 2�⌫
1 � ↵F

1 � ↵s
+

2��0⌫(↵F � ↵s)

(1 � ↵s)(⇢ + �0)

� �

(1 � ↵s)(⇢ + �0)

 Z ↵A

↵s
⇥0d↵0 +

(↵U � ↵A)⇥(↵A)

2
+

(↵F � ↵C)⇥F

2

!
(136)

We then take a look at ⇥(↵0) when ↵0 2 [↵s, ↵A). If ↵0 2 [↵s, ↵A), we have wp(↵0) < 0 and

� �
�
` � wp(↵0)

�
= �

✓
↵0

⌧h � wh,p(↵0)
� 1 � ↵0

wh,p(↵0)

◆
= ⇥(↵0), (137)

wh,p(↵0) + wp(↵0) = wp(↵0) = wp(↵s) = Ws + wp(↵s) = WU . (138)

Taking derivatives with respect to �, we get

�P(↵0)
@wh,p(↵0)

@�
= �

�
` � wp(↵0)

�
+ �

@wp(↵0)

@�
(139)

@wh,p(↵0)

@�
+

@wp(↵0)

@�
=

@Ws

@�
+

@wp(↵s)

@�
=

@WU

@�
(140)

Combining, we obtain

@wp(↵0)

@�
=

�P(↵0)@WU

@� + ` � wp(↵0)

�P(↵0) + �
(141)

This implies that

@⇥(↵0)

@�
= �P(↵0)

�@WU

@� � (` � wp(↵0))

�P(↵0) + �
(142)

Plugging in ↵0 = ↵s, we get

@⇥s

@�
= A�

�@WU

@� � (` � wp(↵s))

A� + �
(143)
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Taking derivatives with respect to � for equation (105) and (106), we have

�` = �

✓
P(↵A)

@WU

@�
+

✓
1

⌧h � WU +
1

WU

◆
@↵A

@�

◆
, (144)

0 = �

✓
P(↵U )

@WU

@�
+

✓
1

⌧h � WU +
1

WU

◆
@↵U

@�

◆
. (145)

Hence,

@↵A

@�
= �`(⌧h � WU )WU

�⌧h
� P(↵A)(⌧h � WU )WU

⌧h

@WU

@�
, (146)

@↵U

@�
= �P(↵U )(⌧h � WU )WU

⌧h

@WU

@�
. (147)

We now go back to equation (136). Note that @WF/@� = @WU/@�. Taking derivatives of both
sides

@⇥s

@�
=(E + K + J)

@↵F

@�
+ I

@WU

@�

� �

(1 � ↵s)(⇢ + �0)

 
@

@�

Z ↵A

↵s
⇥0d↵0 � (↵U � ↵A)`

2
� �`

2

✓
@↵U

@�
� @↵A

@�

◆!

=I
@WU

@�
+

�

(1 � ↵s)(⇢ + �0)

✓
(↵U � ↵A)`

2
+

�`

2

✓
@↵U

@�
� @↵A

@�

◆◆

� �

(1 � ↵s)(⇢ + �0)

 
��`

@↵A

@�
+

Z ↵A

↵s

@⇥(↵0)

@�
d↵0

!
. (148)

Plugging in equations (142), (143), @↵A/@� and @↵U/@�, we get
✓

A��

A� + �
� I +

�H

G
+

�B

G

◆
@WU

@�

=
�`

2G

✓
↵U � ↵A � �`(⌧h � WU )WU

�⌧h

◆
+

�

G

Z ↵A

↵s

�P(↵0) (` � wp(↵0))

�P(↵0) + �
d↵0 +

A� (` � wp(↵s))

A� + �
.

(149)

Note that

↵U � ↵A � �`(⌧h � WU )WU

�⌧h
= 0. (150)

Hence, equation (149) can be simplified as
✓

A��

A� + �
� I +

�H

G
+

�B

G

◆
@WU

@�

=
�

G

Z ↵A

↵s

�P(↵0) (` � wp(↵0))

�P(↵0) + �
d↵0 +

A� (` � wp(↵s))

A� + �
(151)

Since A, B, �, G, H, `, �, � > 0, I < 0, WU 2 (0, ⌧h), 8↵0 2 (0, 1), P(↵0) > 0, and 8↵0 2
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[↵s, ↵A), wp(↵0) < 0, we have

A��

A� + �
� I +

�H

G
+

�B

G
> 0, (152)

�

G

Z ↵A

↵s

�P(↵0) (` � wp(↵0))

�P(↵0) + �
d↵0 +

A� (` � wp(↵s))

A� + �
> 0. (153)

Hence, @WU/@� > 0. We also have that wb(↵s) = wp(↵s) = WU . Hence, @wb(↵s)/@� =
@WU/@� > 0.

From equation (109), we know that WF = WU � m. Hence, @WF/@� = @WU/@� > 0.
Taking derivatives with respect to � for equation (116), we get that

0 = �

✓
C

@WF

@�
+ D

@↵F

@�

◆
. (154)

Given that �, C, D > 0, we have @↵F/@� = �(D/C)(@WF/@�) < 0. This further implies that

@P[M(↵0) 2 F ]

@�
=

@(1 � ↵F )

@�
= �@↵F

@�
> 0. (155)

A.3 Proof of Proposition 3

Lemma A5.

@↵F

@�
> 0 and

@wb(↵s)

@�
< 0

Proof. Taking derivatives of equations (115)-(117), we get

@⇥s

@�
= A�

@Ws

@�
= A�

✓
@WU

@�
� 1

�

@⇥s

@�

◆

0 = �


C

@WF

@�
+ D

@↵F

@�

�

@⇥s

@�
= F + (E + K + J)

@↵F

@�
+ I

@WF

@�
� �

G
(B + H)

@WU

@�
(156)

where F is another intermediate value given by

F ⌘ �2⌫

✓
1 +

1 � ↵F

1 � ↵s

◆
+

2�0⌫(↵F � ↵s)

(1 � ↵s)(⇢ + �0)
� 1

(1 � ↵s)(⇢ + �0)

Z ↵F

↵s
⇥0d↵0

This is a system with only three unknowns, @WU/@�, @⇥s/@�, and @↵F/@�, because @WF/@� =
@WU/@�, which derives from WF = WU � m. We can solve @↵F/@� as

@↵F

@�
=

F⇣
I � �

G(B + H) � A��
A�+�

⌘
(D/C) � (E + K + J)

. (157)
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To recap, we have

I < 0 (158)
A, B, C, D, G, H > 0 (159)

E + K + J = 0 (160)

Note that �F = ⇥s + 2⇢⌫ < 0. Hence, given � > 0, we have F < 0. Together with �, � > 0, we
have @↵F/@� > 0.

Since 0 = C ·@WU/@�+D ·@↵F/@� and C, D, @↵F/@� > 0, then @WU/@� = @wh,p(↵U )/@� <
0. By definition, wp(↵U ) = 0. Combining the triparty and bilateral repo market clearing
conditions, we arrive at wh,p(↵U ) = wp(↵U ) = wp(↵s). Noting the shadow bank balance sheet
constraint, we have wb(↵s) = wp(↵s). Hence, @wb(↵s)/@� = @WU/@� < 0.

Lemma A6.

@

@�
[rp(↵0)] < 0

Proof. From the traditional bank first-order conditions, we get that

rp(↵0) = rp(↵0) � rpt(↵0) + rpt(↵0) � rd(↵0) + rd(↵0) � rk + rk = ⇥0 + rk (161)

This can be further written as

rp(↵0) =

8
>>>>>>><

>>>>>>>:

��(` � wp(↵0)) + rk if ↵0 2 (↵s, ↵A)

�
⇣

↵0

⌧h�Ws � 1�↵0

Ws

⌘
+ rk if ↵0 2 [↵A, ↵U )

rk if ↵0 2 [↵U , ↵C ]

�
⇣

↵0

⌧h�WF � 1�↵0

WF

⌘
+ rk if ↵0 2 (↵C , ↵F )

4�0⌫ + 2⇢⌫ + rk if ↵0 2 [↵F , 1)

It can be seen that rp(↵0) is a non-decreasing function of ↵0. We have @WU/@� = @WF/@� < 0
from Lemma A5. This further implies

@

@�

h
��(` � wp(↵0)) + rk

i
=

�P(↵0)�

�P(↵0) + �

@WU

@�
< 0, (162)

@

@�


�

✓
↵0

⌧h � WU � 1 � ↵0

WU

◆
+ rk

�
= �

✓
↵0

(⌧h � WU )2
+

1 � ↵0

(WU )2

◆
@WU

@�
< 0, (163)

@

@�


�

✓
↵0

⌧h � WF � 1 � ↵0

WF

◆
+ rk

�
= �

✓
↵0

(⌧h � WF )2
+

1 � ↵0

(WF )2

◆
@WF

@�
< 0, (164)

@↵A

@�
= �P(↵A)(⌧h � WU )WU

⌧h

@WU

@�
> 0, (165)

@↵U

@�
=

@

@�


⌧h � WU

⌧h

�
= � 1

⌧h

@WU

@�
> 0, (166)

@↵C

@�
=

@

@�


⌧h � WF

⌧h

�
= � 1

⌧h

@WF

@�
> 0. (167)

Together with @↵F/@� > 0 and rp(↵A) = ��` + rk and 4�0⌫ + 2⇢⌫ + rk irrelevant with �,
we have that @rp(↵0)/@� < 0 when ↵ 2 (↵s, ↵U ) or ↵ 2 (↵C , ↵F ), and @rp(↵0)/@� = 0 when
↵ 2 [↵U , ↵C ] or ↵ 2 [↵F , 1).
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This further implies that

@E[rp(↵0)]

@�
< 0. (168)

Proposition 3 then directly follows from Lemmas A5 and A6.

A.4 Proof of Proposition 4

Lemma A7.

@wb(↵s)

@�0 > 0 and
@E[rp(↵0)]

@�0 > 0

Proof. Taking derivatives of equations (115)-(117), we get

@⇥s

@�0 = A�
@Ws

@�0 = A�

✓
@WU

@�0 � 1

�

@⇥s

@�0

◆

4⌫

�
= C

@WU

@�0 + D
@↵F

@�0

@⇥s

@�0 = L + (E + K + J)
@↵F

@�0 +

✓
I � �

G
(B + H)

◆
@WU

@�0

where the new intermediate L is defined as

L ⌘ 2�⌫⇢(↵F � ↵s)

(1 � ↵s)(⇢ + �0)2
+

�

(⇢ + �0)2(1 � ↵s)

Z ↵F

↵s
⇥0d↵0

Given E + K + J = 0, we can solve for @WU/@�0 as

@WU

@�0 =
L

A��
A�+� + �

G(B + H) � I
. (169)

Note that ⇥0 � 0 when ↵0 2 [↵U , ↵F ]. This implies

L =
�

(⇢ + �0)2(1 � ↵s)

 
2⌫⇢(↵F � ↵s) +

Z ↵F

↵s
⇥0d↵0

!

� �

(⇢ + �0)2(1 � ↵s)

 
2⌫⇢(↵F � ↵s) +

Z ↵U

↵s
⇥0d↵0

!

� �

(⇢ + �0)2(1 � ↵s)

�
2⌫⇢(↵F � ↵s) � 2⌫⇢(↵U � ↵s)

�
(170)

The last inequality stems from the fact that ⇥0 = (⇢ + �0)(✓(↵0) � ✓(↵0)) + 2�0⌫ where ✓ � ✓ �
�2⌫. Hence, L > 0 given that ↵F > ↵U . Together with A, B, G, H, �, �, � > 0 and I < 0,
@WU/@�0 > 0. By definition, wp(↵U ) = 0. Combining the triparty and bilateral repo market
clearing conditions, we arrive at WU = wh,p(↵U ) = wp(↵U ) = wp(↵s). Noting the shadow bank
balance sheet constraint, we have wb(↵s) = wp(↵s). Hence, @wb(↵s)/@�0 = @WU/@�0 > 0.
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From the proof of Lemma A6, we have that

E[rp(↵0)] =

Z 1

↵s
⇥0f(↵0)d↵0 + rk (171)

Taking derivatives with respect to �0, we get

@E[rp(↵0)]

@�0 =
1

1 � ↵s

✓
4⌫(1 � ↵F ) +

✓
B + H � GI

�

◆
@WU

@�0

◆

�
✓

⇥F

1 � ↵s
+

⇢ + �0

�
J

◆
@↵F

@�0 . (172)

Given that J = ��⇥F/G, we get

@E[rp(↵0)]

@�0 =
1

1 � ↵s

✓
4⌫(1 � ↵F ) +

✓
B + H � GI

�

◆
@WU

@�0

◆
(173)

Given that B, G, H, ⌫, �, @WU/@�0 > 0, ↵s, ↵F 2 (0, 1), and I < 0, we have @E[rp(↵0)]/@�0 >
0.

Lemma A8.

@E[rb(↵0) � rp(↵0)]

@�0 < 0. (174)

Proof. From equation (132), we get that

rb(↵0) � rp(↵0) = max{rd(↵0) � rp(↵0) + �`(↵0) � ⇢⌫, �(⇢ + 2�0)⌫}, (175)

By the traditional bank first-order conditions, we have that

rb(↵0) � rp(↵0) = max{�⇥0 � ⇢⌫, �(⇢ + 2�0)⌫}. (176)

This can be further written as

rb(↵0) � rp(↵0) =

8
>>>>>>><

>>>>>>>:

�(` � wp(↵0)) � ⇢⌫ if ↵0 2 (↵s, ↵A)

��
⇣

↵0

⌧h�WU � 1�↵0

WU

⌘
� ⇢⌫ if ↵0 2 [↵A, ↵U )

�⇢⌫ if ↵0 2 [↵U , ↵C ]

��
⇣

↵0

⌧h�WF � 1�↵0

WF

⌘
� ⇢⌫ if ↵0 2 (↵C , ↵⇥)

�(⇢ + 2�0)⌫ if ↵0 2 [↵⇥, 1).

(177)

It can be seen that rb(↵0) � rp(↵0) is a non-increasing function of ↵0. We also have @WU/@�0 =
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@WF/@�0 > 0 from Lemma A7. This further implies

@

@�0
⇥
�(` � wp(↵0)) � ⇢⌫

⇤
= � �P(↵0)�

�P(↵0) + �

@WU

@�0 < 0, (178)

@

@�0


��

✓
↵0

⌧h � WU � 1 � ↵0

WU

◆
� ⇢⌫

�
= ��

✓
↵0

(⌧h � WU )2
+

1 � ↵0

(WU )2

◆
@WU

@�0 < 0, (179)

@

@�0


��

✓
↵0

⌧h � WF � 1 � ↵0

WF

◆
� ⇢⌫

�
= ��

✓
↵0

(⌧h � WF )2
+

1 � ↵0

(WF )2

◆
@WF

@�0 < 0, (180)

@↵A

@�0 = �P(↵A)(⌧h � WU )WU

⌧h

@WU

@�0 < 0, (181)

@↵U

@�0 =
@

@�0


⌧h � WU

⌧h

�
= � 1

⌧h

@WU

@�0 < 0, (182)

@↵C

@�0 =
@

@�0


⌧h � WF

⌧h

�
= � 1

⌧h

@WF

@�0 < 0. (183)

Together with �(⇢ + 2�0)⌫ decreasing with �0, we have that @(rb(↵0) � rp(↵0))/@�0 < 0 when
↵ 2 (↵s, ↵U ) or ↵ 2 (↵C , 1), and @(rb(↵0) � rp(↵0))/@�0 = 0 when ↵ 2 [↵U , ↵C ].

This further implies that

@E[rb(↵0) � rp(↵0)]

@�0 < 0. (184)

Proposition 4 then directly follows from Lemmas A7 and A8.
We also provide a lemma regarding how the probability of a fire sale changes with �0 here.

Lemma A9. Under the restriction that

@⇥(↵F , WF )

@WF

�
@⇥s

@WU <
⇢ + �0

�
, (185)

we have

@ (M(↵0) 2 F)

@�0 < 0. (186)

Proof. We can also solve for @↵F/@�0 as

@↵F

@�0 =
1

D

 
4⌫

�
� C

L
A��

A�+� + �
G(B + H) � I

!

Given that A, B, C, D, G, H, L, �, � > 0 and I < 0, we have

@↵F

@�0 >
1

�D

 
4⌫ � C

A�
A�+�

L

!
(187)
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Let’s next put an upper bound on L:

L =
�

(1 � ↵s)(⇢ + �0)2

 
2⌫⇢(↵F � ↵s) +

Z ↵F

↵s
⇥0d↵0

!

 �

(1 � ↵s)(⇢ + �0)2

 
2⌫⇢(↵F � ↵s) +

Z ↵F

↵C
⇥0d↵0

!

=
�⌫

(1 � ↵s)(⇢ + �0)2
�
2⇢(↵F � ↵s) + (⇢ + 2�0)(↵F � ↵C)

�

<
�⌫

(1 � ↵s)(⇢ + �0)2
(3⇢ + 2�0)(↵F � ↵s) <

3�⌫(↵F � ↵s)

(1 � ↵s)(⇢ + �0)
<

3�⌫

⇢ + �0 . (188)

Also, the additional restriction (185) simply implies that

C
A�

A�+�

<
⇢ + �0

�
(189)

Hence, we have

@↵F

@�0 >
1

�D

✓
4⌫ � ⇢ + �0

�

3�⌫

⇢ + �0

◆
> 0 (190)

which further implies that

@ (M(↵0) 2 F)

@�0 =
@

@�0 (1 � ↵F ) = �@↵F

@�0 < 0. (191)

A.5 Proof of Lemma 1

Lemma A10. In the absence of repo and reverse repo facilities, the IL constraint binds (#m
t > 0)

if and only if b � b � wb
t > (1 � ↵t)⌧h + m.

Proof. Assume that b � b � wb
t > (1 � ↵t)⌧h + m. Combining the market-clearing conditions,

we get wh,p
t = b � b � wb

t � wp
t . Thus, wh,p

t > (1 � ↵t)⌧h + mt � wp
t � (1 � ↵t)⌧h. Then, by the

household first-order condition, rpt
t > rd

t and by equations (21), (22), (23), and (24), #m
t > 0.

If #m
t > 0, then, wp

t = wm
t = m > 0 and by equations (21), (23), and (24), rpt

t > rd
t .

Thus, by the household first-order condition, wh,p
t > (1�↵t)⌧h. Combining the market-clearing

conditions, we get b � b � wb
t � m = wh,p

t > (1 � ↵t)⌧h.

The proof of Lemma 1 then follows.
If #m

t > 0, then wp
t = wm

t = m > 0. Thus, by equations (22) and (23), rp
t > rm

t . If rp
t > rm

t ,
by equation (22) and (23), #m

t > 0.
Thus, given Lemma A10, rp

t > rm
t if and only if b � b � wb

t > (1 � ↵t)⌧h + m.
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A.6 Proof of Proposition 5

Lemma A11.

@ (M(↵0) 2 F)

@m
< 0 and

@wb(↵s)

@m
> 0. (192)

Proof. Taking derivatives of equations (115)-(117), we get

@⇥s

@m
= A�

@Ws

@m
= A�

✓
@WU

@m
� 1

�

@⇥s

@m

◆

0 = C
@WU

@m
� C + D

@↵F

@m
@⇥s

@m
= (E + K + J)

@↵F

@m
+

✓
I � �

G
(B + H)

◆
@WU

@m
� I

We combine these expressions to solve for @↵F/@m:

@↵F

@m
=


⇣

A��
A�+� + �

G(B + H)
⌘

(E + K + J) + D
C

⇣
A��

A�+� + �
G(B + H) � I

⌘ .

Since A, B, C, D, G, H, �, �, �,  > 0, E + K + J = 0 and I < 0, then @↵F/@m > 0 and
@ (M(↵0) 2 F)/@m < 0.

We can also solve for @WU/@m as

@WU

@m
=  � D

C


⇣

A��
A�+� + �

G(B + H)
⌘

(E + K + J) + D
C

⇣
A��

A�+� + �
G(B + H) � I

⌘

=
�I

A��
A�+� + �

G(B + H) � I
> 0. (193)

Given wp(↵U ) = 0, combining the triparty and bilateral repo market clearing conditions, we
arrive at wh,p(↵U ) = wp(↵U ) = wp(↵s). Then, from the shadow bank balance sheet constraint
we have wb(↵s) = wp(↵s). Hence, @wb(↵s)/@m = @WU/@m > 0.

Lemma A12.

@

@m
[rp(↵0)] < 0

Proof. From Lemma A6, we have

E[rp(↵0))] =
1

1 � ↵s

✓Z 1

↵s
⇥(↵0)d↵0

◆
+ rk. (194)

Taking the partial derivative with respect to m and noting that @WU/@m = @WF/@m � , we
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get

@

@m
E[rp(↵0)] =

⇢ + �0

�

✓✓
�

G
(B + H) � I

◆
@WU

@m
+ I

◆

�
✓

⇥F

1 � ↵s
+

⇢ + �0

�
J

◆
@↵F

@m
. (195)

Given that J = ��⇥F/G and together with equation (193), we get

@

@m
E[rp(↵0)] =

⇢ + �0

�


 
�

�
�
G(B + H) � I

�
I

A��
A�+� + �

G(B + H) � I
+ I

!

=
⇢ + �0

�

A��
A�+�I

A��
A�+� + �

G(B + H) � I
. (196)

Since , ⇢, �0, �, A, B, G, H, �, � > 0 and I < 0, then

@

@m
E[rp(↵0)] < 0. (197)

When there are no facilities, b = m + a. Hence, @b/@m = 1. This further implies that
@ (M(↵0) 2 F)/@b = @ (M(↵0) 2 F)/@m < 0 from Lemma A11, and @E[rp(↵0)]/@b =
@E[rp(↵0)]/@m < 0 from Lemma A12. This concludes the proof for Proposition 5.

B Proofs of Section 4

B.1 Proof of Lemma 2

Liquidity services h(wh,p
t , wh,d

t , ↵t), given the budget constraint (17), are maximized when wh,p
t =

(1�↵t)⌧h and wh,d
t = ↵t⌧h. Given households’ first-order condition for triparty repo in equation

(25), this occurs if and only if rpt
t = rd

t . Combining equations (21) and (24) obtains rp
t � rk =

rpt
t � rd

t . Thus, rpt
t = rd

t if and only if rp
t = rk.

If #m
t > 0, then wp

t = wm
t > 0 since mt > 0 and rp

t > rk given the first-order condition
for bilateral repo of traditional banks in equation (23). Thus, if rp

t = rk, then #m
t = 0 and

M(xt) 2 U .
If M(xt) 2 U , then #m

t = 0. Assume the contrary: #m
t > 0. Then wp

t = wm
t > 0 since

mt > 0 and rk = rm
t + #m

t = rp
t � #m

t . Thus, rm
t < rp

t , a contradiction. Thus, rk = rm
t = rp

t .
Therefore, liquidity services are at the optimum if and only if M(xt) 2 U .

B.2 Proof of Lemma 3

Assume by way of contradiction that rrrp > rpt. Then households have a better investment
opportunity than the market rate for triparty repo.

Assume by way of contradiction that rrp < rpt with a repo facility open only to traditional
banks. Then traditional bank dealers have a cheaper funding option available than the triparty
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repo rate.
Assume by way of contradiction that rrp < rp with a broad-access repo facility. Then shadow

banks have a better funding rate available than the market rate of bilateral repo.

B.3 Proof of Proposition 6

From the traditional bank first-order conditions, we have that

rp
t =

8
><

>:

rm
t + #m

t � �`t if wp
t < 0,

2 [rm
t + #m

t � �`t, rm
t + (1 + )#m

t ] if wp
t = 0,

rm
t + (1 + )#m

t if wp
t > 0.

(198)

If #m
t = 0, then rp

t  rm
t . Hence, if rp

t > rm
t , then #m

t > 0.
Assume � = 0. From the traditional bank first-order conditions, we have rp

t = rpt
t = rd

t +#m
t >

rd
t = rk = rm

t + #m
t . Thus, rpt

t > rm
t > rrrp and rrpt = 0. For markets to clear, we need

W(rpt
t �rd

t , ↵) = b�b�wb
t�(b�a)�(1+)rpt. Since rpt � 0, W(rpt

t �rd
t , ↵)  b�b�wb

t�(b�a).
Given that rpt

t > rd
t , W(rpt

t � rd
t , ↵) > W(0, ↵) = (1 � ↵)⌧h, and we have a contradiction.

Assume rrpt = 0. Then, mt + a � b. Furthermore, rd
t = rk � �`t = rp

t � #m
t � �`t = rpt

t � #m
t

and rpt
t > rd

t . For markets to clear, we need W(rpt
t � rd

t , ↵) = b � b � wb
t � (b � a) � (1 + )rpt.

Since rpt � 0, W(rpt
t � rd

t , ↵)nh  b � b � wb
t � (b � a). Given that rpt

t > rd
t , W(rpt

t � rd
t , ↵) >

W(0, ↵) = (1 � ↵)⌧h, we have a contradiction.
Thus, under Condition (36), if rp

t > rm
t , then #m

t > 0, � > 0, and rrpt > 0.
Finally, if #m

t > 0 (and � > 0, rrpt > 0)—i.e., the IL constraint binds—the traditional bank
has positive repo supply wp

t > 0 and rp
t > rm

t . This concludes the proof.

B.4 Proof of Proposition 7

Assume by way of contradiction that 9x0 such that wb(x0) < wb(xs). Then from the optimal
weight for wb, we have that for the shadow bank to be incentivized to decrease its holding of
Treasuries and pay the adjustment cost when moving from xs to x0 and vice versa, then it
must be that ✓(x0)  �⌫ and ✓(xs) = ⌫. Thus, there cannot exist another state x00 such that
wb(xs) < wb(x00). Given the market-clearing condition for the Treasury market

wb
t + wb

t = bt � bt (199)

the reverse must be true for wb(x) and ✓(x)32. In addition, given the assumption that wb(xs) > 0,
we have ✓(xs) = �⌫ and ✓(x00) � �⌫ for all shock states x00.

Then, the envelope theorem for shadow banks and traditional banks at the steady state implies

32For shock on ↵, f , and a, b and b do not change. For issuance shock, b increases, but this still
implies that wb(xs) < wb(x0).
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that

rp(xs) � rd(xs) =�`(xs) � 2⌫(⇢ + �)

� �⌫

Z

wb(x0)<wb(xs)
f(x0)dx0 + �

Z

wb(x0)=wb(xs)
✓(x0)f(x0)dx0

� �⌫

Z

wb(x0)>wb(xs)
f(x0)dx0 � �

Z

wb(x0)=wb(xs)
✓(x0)f(x0)dx0

Since ✓  ⌫ and ✓ � �⌫, rp(xs) � rd(xs)  �`(xs) � 2⌫⇢. When � = 0, this further implies
that rp(xs) � rd(xs)  �2⌫⇢ < 0. However, by traditional bank first-order condition, we always
have that rp

t � rd
t � 0, a contradiction with rp(xs) � rd(xs) < 0. Hence, if � = 0, shadow banks

never sell their treasuries. This concludes the proof.
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