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Abstract. Algorithm designers increasingly optimize not only for accuracy, but also for the
fairness of the algorithm across pre-defined groups. We study the tradeoff between fairness
and accuracy for any given set of inputs to the algorithm. We propose and characterize
a fairness-accuracy frontier, which consists of the optimal points across a broad range of
preferences over fairness and accuracy. Our results identify a simple property of the inputs,
group-balance, which determines the shape of the frontier. We further study an information
design problem where the designer flexibly regulates the inputs (e.g., by coarsening an input
or banning its use) but the algorithm is chosen by another agent. Whether it is optimal
to ban an input generally depends on the designer’s preferences. But when inputs are
group-balanced, then excluding group identity is strictly suboptimal for all designers, and
when the designer has access to group identity, then it is strictly suboptimal to exclude any
informative input.

1. Introduction

Suppose a hospital uses a machine learning algorithm to aid in the diagnosis of a medical

condition, where the algorithm makes the correct diagnosis 90% of the time for Red patients

but only 50% of the time for Blue patients. Such an outcome—where the consequences of

a policy differ systematically across two groups—is known as disparate impact. Across a

wide range of applications, algorithms have been shown to have disparate impact (Arnold,

Dobbie, and Hull, 2021; Fuster, Goldsmith-Pinkham, Ramadorai, and Walther, 2021). For

example, patients assigned the same risk score by a healthcare algorithm were shown to

have substantially different actual health risks depending on their race (Obermeyer, Powers,

We thank Nageeb Ali, Eric Auerbach, Simon Board, Krishna Dasaratha, Will Dobbie, Alex Frankel, Ben
Golub, Sergiu Hart, Peter Hull, Navin Kartik, Yair Livne, Sendhil Mullainathan, Derek Neal, Jose Montiel
Olea, Larry Samuelson, and Max Tabord-Meehan for helpful comments, and National Science Foundation
Grant SES-1851629 for financial support. We also thank Andrei Iakovlev and Aristotle Magganas for valuable
research assistance on this project.
†Northwestern University.
§UCLA.
‡Princeton University.

1



2 ANNIE LIANG, JAY LU, XIAOSHENG MU, AND KYOHEI OKUMURA

Vogeli, and Mullainathan, 2019); the false-positive rate of an algorithm used to predict crim-

inal reoffense was shown to be twice as high for Black defendants as for White defendants

(Angwin and Larson, 2016); and the accuracies of facial-recognition technologies vary sub-

stantially across demographic groups (Klare et al., 2012). These findings have led designers

to impose group-based fairness constraints on algorithms in settings ranging from healthcare

to bail evaluation to lending (Roth and Kearns, 2019; Hardt et al., 2016).

Policymakers prefer algorithms that have lower disparate impact but also prefer algorithms

that are more accurate. In an ideal world, both goals could be achieved together; in practice,

there may be an intrinsic tradeoff between accuracy (the overall error rate of the algorithm)

and fairness (how similar the error rates are across pre-defined groups).1 What this tradeoff

looks like depends on the inputs to the algorithm, which can be observed, manipulated, and

regulated—raising the following questions: How does the tradeoff between fairness and accu-

racy depend on the information available for prediction? Which informational environments

create a tension between fairness and accuracy, and which ameliorate it? While the tradeoff

between fairness and accuracy has been empirically computed in specific applications (Wei

and Niethammer, 2020; Chohlas-Wood et al., 2021; Little et al., 2022), we know substantially

less about how the available information shapes the tension between these two objectives in

general.

In this paper, we address these questions by defining and studying a fairness-accuracy

frontier. This frontier consists of all outcomes that are optimal for some objective function

in a broad class that spans different views on how to trade off fairness and accuracy. We

prove two types of results about the frontier. First, we identify simple properties of the

algorithmic inputs that determine the shape of this frontier. Second, we take an informa-

tion design perspective on understanding how constraints on information can induce certain

desired outcomes. Specifically, we consider an interaction between a policymaker flexibly

constraining the inputs and an agent setting the algorithm. We characterize what part of

the fairness-accuracy frontier the designer can achieve through appropriate design of the in-

puts and examine whether it might be optimal for the designer to exclude an input altogether

(e.g., excluding group identity in the context of medical predictions).

1Equity-efficiency tradeoffs such as this have been studied in settings as diverse as taxation (Saez and
Stantcheva, 2016; Dworczak, Kominers, and Akbarpour, 2021), policing (Persico, 2002; Jung, Kannan, Lee,
Pai, Roth, and Vohra, 2020), and college admissions (Chan and Eyster, 2003; Ellison and Pathak, 2021).
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In our model, a designer chooses an algorithm that takes observed covariates as inputs

(e.g., medical scans, lab tests, records of prior hospital visits) and outputs a decision (e.g.,

whether to recommend a medical procedure). The algorithm’s consequences for any given

individual are evaluated using a loss function, which can be interpreted as the inaccuracy

or harm of the decision. We aggregate losses within two groups, group r (Red) and group b

(Blue). Each group’s error is the expected loss for individuals of that group. An algorithm

is understood to be more accurate if it implies lower errors for both groups, and more fair if

it implies a smaller absolute difference between the two groups’ errors.

To understand the tradeoff between fairness and accuracy, we define the class of fairness-

accuracy (FA) preferences to be all preferences over group errors that are consistent with the

following order: one pair of group errors FA-dominates another if the former involves smaller

errors for both groups (greater accuracy) and also a smaller difference between group errors

(greater fairness).2 This strict order is consistent with a broad range of designer preferences,

including Utilitarian designers (who minimize the aggregate error in the population), Rawl-

sian designers (who minimize the greater of the two group errors), and Egalitarian designers

(who minimize the absolute difference between group errors) among others. Some of these

preferences also correspond directly to optimization problems that have been proposed for

use in practice.3 We define the fairness-accuracy frontier to be the set of all group error pairs

that are feasible (i.e., can be implemented by some algorithm given the observed covariates),

and moreover FA-undominated within the feasible set. That is, these error pairs cannot be

improved upon simultaneously in accuracy and fairness.

A simple property of the algorithm’s inputs turns out to be critical for determining the

shape of the fairness-accuracy frontier. Say that a covariate vector is group-balanced if a

group’s optimal algorithm (i.e., the one that gives that group the smallest error over all

feasible algorithms) yields a lower error for that group than for the other group. Otherwise,

say that the covariate vector is group-skewed. While it may be difficult to anticipate in

advance of a comprehensive empirical analysis whether group-balance or group-skew is more

typical in practice, one scenario in which the latter may arise is if covariates have the same

2We do not take a stance on the normative desirability of these preferences, instead interpreting our class as
encompassing the broad range of designer preferences that could be relevant in practice.
3For example, optimizing a Rawlsian preference is equivalent to implementing group distributionally robust
optimization (Sagawa et al., 2020), and optimizing an Egalitarian preference is equivalent (on a restricted
domain) to maximizing accuracy subject to equality of error rates (as considered in Hardt et al. (2016)
among others).
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implications for both groups but are measured more accurately for one group than the other

(e.g., medical data is recorded more accurately for high-income patients than low-income

patients).
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Figure 1. The Fairness-Accuracy Frontier.

We provide three complementary characterizations of the fairness-accuracy frontier. Our

first and main characterization says that the fairness-accuracy frontier takes either of two

possible forms depending on whether the covariate vector is group-balanced or group-skewed

(see Figure 1 above). When inputs are group-balanced, the fairness-accuracy frontier is

exactly the standard Pareto frontier, i.e. the set of all feasible error pairs that cannot be

simultaneously reduced in both coordinates. This is the part of the lower boundary that

begins at the point that is best for group Red (labeled r) and ends at the point that is best

for group Blue (labeled b). Here, the tradeoff is between the accuracy for one group and the

accuracy for the other group. On the other hand, when inputs are group-skewed, the fairness-

accuracy frontier includes not only the standard Pareto frontier but additionally a positively-

sloped part (the segment from b to the fairness-maximizing point f in Figure 1) along which

both groups’ errors increase but the gap between them decreases. Here, the tradeoff is

between the accuracy of both groups and fairness, signifying a strong conflict between the

two objectives. We can conclude from this characterization that a policy proposal that

increases errors for both groups, but decreases their gap, can never be justified by fairness

considerations if the covariate vector is group-balanced; in contrast, such a policy could

potentially be justified were the covariate vector group-skewed.
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Our second characterization shows that the fairness-accuracy frontier can be completely

recovered as the optimal points for a class of “simple” preferences that linearly trade off

fairness with accuracy for each group. By varying the weights on fairness versus accuracy,

we can trace out the entire fairness-accuracy frontier, and we exploit this parametrization in

subsequent comparative static exercises.

Our third and final characterization describes the algorithms that implement the error

pairs along the fairness-accuracy frontier. These algorithms turn out to possess a simple

threshold structure. Loosely speaking, we can order covariate vectors by how much the

decision at each covariate vector impacts group r’s error relative to that of group b. The

algorithms that implement the fairness-accuracy frontier have the property of assigning all

early covariate vectors in this sequence to the worst decision for group g (for some group

g that we identify), and all the later covariate vectors to the best decision for group g.

Moving along the fairness-accuracy frontier corresponds to successively swapping the next

covariate vector in this sequence from the best decision to the worst decision for group g.

Our characterization shows that these algorithms (and mixtures between any neighboring

algorithms) exactly describe the fairness-accuracy frontier.

In the second part of the paper, we investigate what happens if the designer does not

choose the algorithm, but instead regulates the inputs of the algorithm. This question is

motivated by settings where a designer has fairness concerns, but another agent setting

the algorithm does not. For example, a healthcare provider (agent) determining treatment

may seek to maximize the number of correct diagnoses, while a policymaker (designer) may

additionally prefer that the accuracy of the provider’s treatments be equitable across certain

social groups. In these cases, the policymaker can impose regulation that restricts the inputs

available to the algorithm, for example by banning the use of a specific input.

We model this as an information design problem (Kamenica and Gentzkow, 2011) where

the designer chooses a garbling of the available inputs, and an agent chooses an algorithm

(based on the garbling) to maximize accuracy. Under weak conditions, it turns out to be

without loss for the designer to only control the algorithm’s inputs. That is, any error pair

that a designer would choose to implement given full control of the algorithm can also be

achieved by appropriately garbling the inputs.

Might the optimal garbling involve completely excluding a covariate from use in the algo-

rithm? We demonstrate two results: First, excluding group identity as an algorithmic input



6 ANNIE LIANG, JAY LU, XIAOSHENG MU, AND KYOHEI OKUMURA

is strictly welfare-reducing for all designers (with FA preferences) if and only if the permitted

covariates are group-balanced. Second, when group identity is permitted as an input, then

completely excluding any other covariate makes every designer strictly worse off, so long as

that covariate satisfies a mild condition that we call decision-relevance. This result can be

applied, for instance, to thinking through the relationship between banning group identity

and excluding standardized test scores in university admissions decisions. It suggests that

when group identity is a permissible input in admission decisions, then excluding test scores

is welfare-reducing for all designers with the power to flexibly garble covariates. On the

other hand, when group identity is not permitted as an input in college admissions decisions

(as is now the case in the United States following the Supreme Court decision in Students

for Fair Admissions, Inc. v. President and Fellows of Harvard College), then the optimal

garbling of covariates for some designer preference may indeed involve completely excluding

test scores, and we provide a simple example to illustrate this effect (Section 4.3.1).

Finally, we conclude by illustrating our key definitions and results on two popular health-

care datasets from the algorithmic fairness literature. We conduct two analyses: First, we

evaluate whether the covariates in these datasets are group-balanced or group-skewed (find-

ing that one is group-skewed and the other is an interesting case of group-balance in which

the group-optimal points lie on the 45 degree line). Second, we depict the fairness-accuracy

frontier. This allows us to study the limits of input design for each of the datasets (it

turns out to be without loss for the designer in one dataset and with loss in the other)

and also to study how the frontier changes when group-specific algorithms are permitted.

These empirical illustrations of our framework speak to its potential relevance for assessing

fairness-accuracy tradeoffs in practical algorithm design problems.

1.1. Related Literature. Our paper is motivated by recent problems regarding algorithmic

bias (Section 1.1.3), but adopts a novel perspective on these questions based on approaches

from two literatures in economic theory: the literature on information design (Section 1.1.1)

and the literature on social preferences and inequality (Section 1.1.2). Building on the former,

we model the interaction between a designer flexibly regulating inputs and an agent setting

the algorithm. Building on the latter, we focus on understanding equity-efficiency tradeoffs,

and consider a wide class of preferences that reflects heterogeneity in social preferences.

1.1.1. Information Design. One contribution of our paper is the modeling of the design of

algorithmic inputs as an information design problem (see Kamenica (2019) and Bergemann
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and Morris (2019) for recent surveys). This approach complements previous frameworks for

modeling the regulation of algorithms, in which policymakers communicate information via

cheap talk (Cowgill and Stevenson, 2020) or impose restrictions directly on the algorithm

(Yang and Dobbie, 2020; Rambachan, Kleinberg, Mullainathan, and Ludwig, 2021; Blattner,

Nelson, and Spiess, 2022). Our focus on the strategic interaction between an information

designer and an agent choosing the algorithm also complements Doval and Smolin (2023)’s

characterization of the feasible set across different information policies.4 We view the garbling

of inputs as a potentially effective policy tool, which can be implemented through a variety of

technological or legal commitments,5 and which deserves further attention within the context

of algorithmic fairness.

Conversely, problems regarding algorithmic fairness motivate analyses that depart from

typical information design problems in a few interesting ways. For example, the Sender

in our framework cannot choose a completely flexible information structure, but is instead

constrained to garblings of a primitive covariate vector. Additionally, motivated by hetero-

geneous attitudes toward fairness (Section 1.1.2), we focus on a frontier of solutions with

respect to a wide class of Sender preferences. Our results in Section 4.3 describe how the

frontier of solutions responds to changes in the underlying information. We focus on spe-

cial cases of this comparative static that are of interest given our motivation (e.g., adding

or removing a covariate), but a more general solution (analogous to Curello and Sinander

(2022)’s work on comparative statics with respect to the Sender’s utility function) would be

an interesting avenue for future work.

Finally, at the broader intersection of information design and algorithms, Ichihashi (2023)

considers optimal information acquisition for crime deterrence, and Caplin, Martin, and

Marx (2023) draws a connection between different machine learning objectives and costly

information design.

1.1.2. Social Preferences and Inequality. The literature on social preferences documents sub-

stantial heterogeneity in how individuals assess efficiency-equity tradeoffs (Andreoni and

4For example, Doval and Smolin (2023) show that excluding inputs is suboptimal in the sense that more
information necessarily increases the feasible set of payoffs. In contrast, in our model it may be strictly opti-
mal for the designer to exclude an input, since a different agent chooses which payoff vector is implemented
from among our feasible set.
5For example, organizations such as the US Census Bureau, Google, Apple, and Microsoft are committed
to differential privacy initiatives (Dwork and Roth, 2014), which take various forms of adding noise to user
inputs. Yang and Dobbie (2020) summarizes the existing law on algorithmic regulation and proposes new
legal policies for mitigating algorithmic bias.
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Miller, 2002; Fehr and Schmidt, 1999; Fisman, Kariv, and Markovits, 2007; Sullivan, 2022),

which is reflected in our broad class of FA-preferences. In this literature, social preferences

are preferences over individual payoffs rather than preferences over group errors, but most

have analogues in our setting. For example, the “social welfare approach” aggregates indi-

vidual payoffs using differential weights (Charness and Rabin, 2002; Saez and Stantcheva,

2016; Dworczak, Kominers, and Akbarpour, 2021), and is nested in our class of FA prefer-

ences (if we interpret individual payoffs as group errors). We additionally allow for a direct

penalty for unequal outcomes, as in the models of “difference aversion” or “inequity aversion”

(Loewenstein et al., 1989; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000).6

There is a separate literature studying the equity-efficiency tradeoffs of affirmative action

programs. Specifically, Lundberg (1991) and Chan and Eyster (2003) model affirmative

action as a ban on the use of group identity in admissions decisions, and show that this can

lead organizations to condition on proxies in a way that reduces both efficiency and equity.7

(A similar point is made in Agan and Starr (2018) regarding the use of prior criminal history

in hiring decisions in “ban-the-box” policies.) Ellison and Pathak (2021) empirically quantify

the equity and efficiency losses of race-neutral affirmative action (based on geographic proxies

for race) as compared to plans that explicitly consider race. These papers are related to our

study of the impact of excluding group identity, but focus on how a designer’s optimal

algorithm given group identity compares to the optimal algorithm without. We instead

examine how the frontier of feasible outcomes changes when the designer can design a group-

dependent garbling versus when the designer must choose a group-independent garbling.

These analyses are not nested; see Section 4.3.2 for more detail.

1.1.3. Algorithmic Bias. The recent literature on algorithmic bias has emerged around the

concern that algorithms have error rates that differ substantially across social and demo-

graphic groups (see Kleinberg et al. (2018) and Cowgill and Tucker (2020) for overviews). In

this literature and in the accompanying policy discussion (e.g, Angwin and Larson (2016)),

algorithms are often considered to be “less fair” if the harms of the algorithm are more

6Another part of this literature is concerned with intentions and reciprocity (Rabin, 1993; Charness and
Rabin, 2002) and is outside of our model.
7Another set of papers shows that access to group identity must weakly improve the designer’s payoffs when
the designer has control of the algorithm (see for example Menon and Williamson (2018), Agarwal et al.
(2018), Lipton et al. (2018), Manski et al. (2022), and Rambachan et al. (2021)), as adding group identity
is a Blackwell improvement in information. This is no longer generally the case when the designer cannot
choose the algorithm, as in our model in Section 4.
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unequally borne across groups, with this comparison formalized as a larger disparity in error

rates across groups (Hardt et al., 2016; Kleinberg et al., 2017; Chouldechova, 2017).8 A grow-

ing body of empirical work documents and quantifies these disparate impacts (Obermeyer

et al., 2019; Arnold et al., 2021; Fuster et al., 2021).

The tradeoff between accuracy (error rates of the algorithm for each group) and fairness

(discrepancy between error rates across groups) is a special kind of equity-efficiency tradeoff.

A common approach for resolving this tradeoff is to posit a particular objective criterion

(Hardt et al., 2016; Diana et al., 2021). Other papers identify improvements with respect

to both objectives simultaneously (Rose, 2021; Feigenberg and Miller, 2021). Our paper is

closest to a smaller part of this literature, which engages with the tension between fairness

and accuracy by quantifying fairness-accuracy tradeoffs for specific loss functions (Menon

and Williamson, 2018) or for specific empirical applications (Wei and Niethammer, 2020;

Chohlas-Wood et al., 2021; Little et al., 2022). We are interested in how this fairness-

accuracy tradeoff is moderated by the inputs to the algorithm in general, and provide simple

conditions on the inputs that qualitatively govern this tradeoff independently of other details

of the loss function or informational environment.

2. Framework

2.1. Setup and Notation. There is a population of individuals, where each individual is

described by a covariate vector X taking values in a finite set X , a type Y taking values

in a finite set Y ,9 and a group identity G taking values r or b.10 Throughout we think of

G,X, Y as random variables with joint distribution P, and use pg := P(G = g) > 0 to denote

the fraction of the population that belongs to group g ∈ {r, b}. We impose no additional

assumptions on the joint distribution,11 permitting for example each of the following:

8A notable exception is the concept of individual fairness proposed in Dwork et al. (2012).
9We make the assumption of finiteness to simplify various notations in the exposition. Most of our results
generalize to infinite covariate values and/or infinite types.
10Throughout, we assume the definition of the relevant groups to be a primitive of the setting, determined
by sociopolitical precedent and outside the scope of our model.
11We view P as the population distribution on which the algorithm is both trained and tested. An interesting
direction for future work would be to consider training data that differs in distribution from the data on
which the algorithm’s errors are evaluated. For example, one could study the optimal sampling of data on
which to train the algorithm, or to study feedback loops when the algorithm is trained on data determined
by previous algorithms (as in Jung et al. (2020) and Che et al. (2019)).
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Example 1 (X reveals or closely proxies for G). The group identity may be an input in

the covariate vector X, or predictable from inputs in the covariate vector X. For example,

Bertrand and Kamenica (2020) show that data on consumption patterns permits near perfect

classification of gender and a fairly accurate prediction of other group identities such as

income bracket, race, and political ideology.

Example 2 (Biased Covariates). The value of an input in X may be systematically biased

depending on group identity. For example, if G is income bracket, Y is ability, and X is a test

score that can be improved through better access to test prep, the distribution P may have

the property that at every ability level, the conditional distribution of test scores is shifted

higher for students in the high-income bracket (i.e., the distribution of X | Y = y,G = r

first-order stochastically dominates X | Y = y,G = b at every y ∈ Y).

Example 3 (Asymmetrically Informative Covariates). The inputs in X may be more infor-

mative about Y for one group than the other. For example, in Obermeyer et al. (2019), a

patient’s health care costs are more predictive of their health care needs for White patients

than for Black patients, and Rothstein (2004) shows that SAT scores are more informative

about future college grades for high-income students than low-income students.

An algorithm is a mapping a : X → D from realizations of the covariate vector into

decisions in D = {0, 1}. There is a primitive set of algorithms A (for example, the set of

all linear algorithms) and the designer chooses from ∆A, the set of all randomizations over

A. We refer to these randomizations as “algorithms” whenever there is no risk of confusion.

Most of our subsequent results hold for arbitrary choices of A; some of our results hold

specifically for the leading special case where A is the set of all possible algorithms, denoted

by A, and we are explicit when this is the case.12

Some motivating examples of types, group identities, covariate vectors, and decisions are

given below:

Healthcare. Y is need of treatment, G is socioeconomic class, and the decision is whether

the individual receives treatment. The covariate vector X includes possible attributes such

as image scans, number of past hospital visits, family history of illness, and blood tests.

12Although we refer to X as a covariate vector and a as an algorithm, one can equivalently interpret X
as a standard Blackwell signal and a as a decision rule. In this case a restricted class of algorithms would
correspond to restrictions on permissible decision rules.
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Credit scoring. Y is creditworthiness, G is gender, and the decision is whether the bor-

rower’s loan request is approved. The covariate vector X includes possible attributes such

as purchase histories, social network data, income level, and past defaults.

Bail. Y is whether an individual is high-risk or low-risk of criminal reoffense, G is race, and

the decision is whether the individual is released on bail. The covariate vector X includes

possible attributes such as the individual’s past criminal record, psychological evaluations,

family criminal background, frequency of moves, or drug use as a child.

Job hiring. Y is whether a job applicant is high or low quality, G is citizenship, and the

decision is whether the applicant is hired. The covariate vector X includes possible attributes

such as past work history, resume, and references.

The consequence of choosing decision d for an individual whose true type is y is evaluated

using a loss function ` : D×Y → R, which we view as a measure of inaccuracy independent

of fairness.13 We further aggregate these losses across individuals within each group:

Definition 1. For any algorithm a ∈ ∆A and group g ∈ {r, b}, the group g error is

eg(a) := ED∼a(X) [`(D, Y ) | G = g] .

That is, group g’s error is the average loss for members of group g. For example, if the

type Y is binary and we consider the misclassification loss function `(d, y) = 1(d 6= y), then

eg(a) is the total probability of a type I or type II error. Other loss functions may put

different weights on different kinds of errors. We view the choice of the right loss function

as application-specific, and demonstrate results that hold for arbitrary `.

Each algorithm a implies a pair of group errors (er(a), eb(a)), and we denote this vector

by e(a). Throughout this paper, we use an improvement in accuracy to mean a reduction

in both group errors, and an improvement in fairness to mean a reduction in the absolute

difference between the group errors.14 This approach nests many of the fairness criteria that

13All the main results of the paper extend if we allow the loss function to also depend on group identity, i.e.
` : D × Y × G → R. This generalization accommodates additional fairness metrics from the literature, such
as equalized odds—see Appendix O.5.3 for details.
14This formulation is consistent with much of the literature on algorithmic fairness, but does not take into
account all important fairness considerations. For example, perfect prediction of criminal offense (Y ) by the
algorithm for both groups does not address historical inequities that have shaped differential base rates of
Y across groups. Moreover, as Kasy and Abebe (2021) point out, an algorithm that is fair in the narrow
context of one decision may perpetuate or exacerbate inequalities within a larger context. We leave to future
work the interesting question of how these algorithmic design decisions might impact decisions in a larger
dynamic game.
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have been proposed in the literature by adopting a particular choice of a loss function (see

Mehrabi et al. (2022) for a recent survey of these criteria). For example, if the type Y is

binary and `(d, y) = 1(d 6= y), then er(g) = eb(g) corresponds to equality of misclassification

rates. See Appendix O.5 for further details and examples.15

Section 6 discusses several extensions of this framework, including generalizing to fairness

criteria of the form |φ(er)− φ(eb)| (which includes the ratio of error rates as a special case),

and allowing for fairness and accuracy to be defined using different loss functions.

2.2. Fairness-Accuracy Preferences. The designer has a preference ordering over group

error pairs e = (er, eb) ∈ R2. First, recall the usual Pareto dominance order.

Definition 2. The Pareto dominance (PD) relation >PD is the strict order on R2 where

e >PD e′ if er ≤ e′r and eb ≤ e′b with at least one inequality strict.

We now modify this order to include fairness considerations.

Definition 3. The fairness-accuracy (FA) dominance relation >FA is the strict order on R2

where e >FA e
′ if er ≤ e′r, eb ≤ e′b and |er−eb| ≤ |e′r−e′b| with at least one inequality strict.16

That is, if it is possible to simultaneously increase accuracy (reducing errors for both

groups) and also increase fairness (reducing the gap between these errors), then all design-

ers must prefer this. We call any preference consistent with this order a fairness-accuracy

preference.

Definition 4. A fairness-accuracy (FA) preference � is any total order on R2 such that e � e′

whenever e >FA e
′.17

The class of FA preferences reflects a broad range of views on how to trade off fairness and

accuracy, including the following special cases that have been proposed in the literature.

15For instance, we can accommodate equality of false positive/negative rates (Kleinberg et al., 2017; Choulde-
chova, 2017) by letting the loss function depend on group identity.
16Kleinberg and Mullainathan (2019) define an admissions rule to be a strict improvement over another if
it improves both efficiency (the average type of an admitted applicant) and equity (the fraction of admitted
students who belong to the disadvantaged group), which is similar to our FA dominance relation but non-
nested, as it involves two loss functions. The FA-dominance relation in Online Appendix O.1 generalizes
both orders.
17It is straightforward to see that these orders are unchanged if our measure of fairness, |er − eb|, is replaced
with φ(|er − eb|) where φ is a strictly increasing function.
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Example 4 (Utilitarian). The designer evaluates errors e = (er, eb) according to the weighted

sum in the population. That is, let wu(e) = −prer − pbeb, and let �u be the ordering

represented by wu, so that e �u e′ if and only if wu(e) ≥ wu(e
′). (Note that the minority

population, which has a lower weight by definition, will be naturally discounted as a group

in this evaluation.) A designer with preferences �u is called Utilitarian (Harsanyi, 1953,

1955). There is also a generalization of the Utilitarian rule which evaluates errors e using

wγ(e) = −γrer− γbeb for arbitrary positive constants γr, γb (Charness and Rabin, 2002; Saez

and Stantcheva, 2016; Dworczak, Kominers, and Akbarpour, 2021; Rambachan, Kleinberg,

Mullainathan, and Ludwig, 2021).

Example 5 (Rawlsian). The designer evaluates errors e = (er, eb) according to the greater

error. That is, let wr(e) = −max {er, eb}, and consider a preference order represented by

wr. A designer with such preferences is called Rawlsian (Rawls, 1971).18

Example 6 (Egalitarian). The designer evaluates errors e = (er, eb) according to their differ-

ence. That is, let we(e) = − |er − eb|, and consider the lexicographic preference order that

first evaluates errors according to we and then breaks ties using the Utilitarian utility wu. A

designer with such preferences is called Egalitarian.

Example 7 (Constrained Optimization). The designer evaluates errors e = (er, eb) by first

determining if they satisfy the fairness constraint |er − eb| ≤ c. If so, then the designer

uses the Utilitarian criterion. If instead |er − eb| > c, then the designer uses the Egalitarian

criterion.19

Example 8 (Accuracy then Fairness). The designer evaluates errors e = (er, eb) by first

evaluating accuracy and then fairness. That is, e � e′ if e >PD e′, and if not, they are then

compared using we. This is the approach recently proposed by Viviano and Bradic (2023).

Our consideration of this wide class of preferences is motivated in part by the experimental

literature on social preferences, which documents substantial heterogeneity across individu-

als’ equity-efficiency preferences. For example, when given the choice between different allo-

cations of payoffs across individuals, some experimental subjects choose Pareto-dominated

18This approach is also known as group distributionally robust optimization (Sagawa et al., 2020; Hansen
et al., 2022).
19This is a common approach in the algorithmic fairness literature (Ferry et al., 2022; Menon and Williamson,
2018; Corbett-Davis et al., 2017; Agarwal et al., 2018; Hardt et al., 2016).
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allocations that are more equal (corresponding in our setting to choice of e = (er, eb) over

e′ = (e′r, e
′
b) where e′ >PD e but |er − eb| < |e′r − e′b|). These are minority preferences in the

population (Andreoni and Miller, 2002; Charness and Rabin, 2002), but constitute 31% of

subjects in an experiment in Fisman et al. (2007). We do not take a normative stance on

which FA preferences are more appropriate, instead viewing the class of FA preferences as

encompassing a broad range of designer preferences that may be relevant in practice.

2.3. The Fairness-Accuracy Frontier. Fixing any covariate vector X, we define the fea-

sible set of group error pairs to be those pairs that can be implemented by some algorithm

that takes X as input.

Definition 5. The feasible set given covariate vector X is

EX := {e(a) : a ∈ ∆A}.

We first define the standard Pareto frontier with respect to accuracy for the two groups.

Definition 6. The Pareto frontier given X is

PX := {e ∈ EX : there is no e′ ∈ EX such that e′ >PD e}.

Our fairness-accuracy frontier is the set of all group error pairs that are FA-undominated

in the feasible set.

Definition 7. The fairness-accuracy (FA) frontier given X is

FX := {e ∈ EX : there is no e′ ∈ EX such that e′ >FA e}.

The FA frontier can also be interpreted as the set of group error pairs that are optimal for

some FA preference. Moreover, every point in the FA frontier is uniquely optimal for some

FA preference, so we cannot exclude any points from the set without hurting some designer

(see Appendix A.5 for details).

3. The Fairness-Accuracy Frontier

This section presents three complementary characterizations of the fairness-accuracy fron-

tier. Section 3.1 defines the properties of group-balance and group-skew that will play a key

role in many of our results. Section 3.2 presents our main characterization of the FA frontier,

which says that whether the covariate vector is group-balanced or group-skewed determines
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what kinds of fairness-accuracy tradeoffs are relevant. Section 3.3 presents two additional

characterizations of the FA frontier: The first shows that the fairness-accuracy frontier can

be completely characterized by considering a class of “simple” utility functions, and the

second describes a class of algorithms that implements the fairness-accuracy frontier.

3.1. Key Property: Group-Balance vs Group-Skew. For all covariate vectors X, the

feasible set EX is closed and convex (Lemma A.1). Two special feasible points are the

following.

Definition 8 (Group Optimal Points). For any covariate vector X, define

rX := arg min
e∈EX

er bX := arg min
e∈EX

eb

to be the feasible points that minimize group r’s error and group b’s error respectively, where

ties are broken by minimizing the other group’s error.

Group optimal points characterize the Pareto frontier (Definition 6).

Observation 1. The Pareto frontier PX is the lower boundary of EX between rX and bX .20

We similarly define the fairness optimal point.

Definition 9 (Fairness Optimal Point). For any covariate vector X, define

fX := arg min
e∈EX

|er − eb|

to be the point that minimizes the absolute difference between group errors, where ties are

broken by minimizing either group’s error.21

While rX and bX respectively denote the points that minimize group r and b’s errors, the

group whose error is minimized need not have the lower error. Whether this is the case turns

out to be the key property determining the nature of the fairness-accuracy tradeoff given X.

Definition 10. Covariate vector X is:

• r-skewed if er < eb at rX and er ≤ eb at bX

• b-skewed if eb < er at bX and eb ≤ er at rX

20We use lower boundary between two points to mean the part of the boundary of the set that lies between
the two points and below the line segment connecting the two.
21This point is the same regardless of which group is used to break ties.
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• group-balanced otherwise

If X is g-skewed for either group g, then we say it is group-skewed.22

In words, X is r-skewed if group r’s error is smaller than group b’s error not only at the

r-optimal point rX , but also at the b-optimal point bX . Geometrically, this means that rX

and bX fall to the same side of the 45 degree line. (The feasible set may still intersect the 45

degree line, as in Figure 4.) In contrast, the covariate vector X is group-balanced if at each

group’s optimal point, its error is lower than that of the other group, implying that rX and

bX fall to opposite sides of the 45 degree line.

Loosely speaking, a covariate vector is group-balanced if it is possible to separate accurate

predictions for one group from accurate predictions for another, and it is group-skewed if

this is not feasible. We provide several examples below in which the covariate vector is either

group-balanced or group-skewed (all supporting arguments are contained in Appendix A.1).

Example 9 (Strong Independence). Suppose G ⊥⊥ (X, Y ). Then X is group-balanced.

Example 10 (Unequal Means). Suppose there are two functions ar, ab ∈ A such that Y =

ag(X) + ε for members of group g where ε is a mean-zero random variable independent of

X. If the loss function is l(d, y) = (d− y)2, then X is group-balanced.

Example 11 (Asymmetric Predictive Power). Suppose there is a function a0 ∈ A such that

Y = a0(X) + εg for members of group g, where εr and εb are mean-zero random variables

independent of X. If the loss function is l(d, y) = (d − y)2 and εb has larger variance than

εr, then X is r-skewed.

Example 12 (Conditional Independence). Suppose A = A (all algorithms are feasible) and

G ⊥⊥ Y | X,23 i.e., once X is observed there is no additional predictive value to knowing a

subject’s group identity.24 Then either rX = bX = fX or X is group-skewed.

22Group-balance/group-skew additionally depends on the joint distribution (X,Y,G) and the loss function.
Since we are primarily interested in studying how tradeoffs are affected by changes in the covariate vector X
(e.g. adding/banning a covariate), we treat the other random variables (and loss function) as fixed primitives
of our model.
23Equivalently, Y = a0(X) + εX for both groups, where the noise term is possibly dependent on X.
24This kind of conditional independence appears for example when the coefficient on group identity is zero
in a regression of Y on observables, e.g. Ludwig and Mullainathan (2021) find that race (G) is not predictive
of a criminal’s risk (Y ) conditional on arrest (X) in their data.
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3.2. Geometric Characterization of the FA Frontier. We now provide our main char-

acterization of the FA frontier. Theorem 1 shows that whether the covariate vector X is

group-balanced or group-skewed determines the shape of the frontier.

Theorem 1.

(a) If X is group-balanced, then FX = PX .

(b) If X is g-skewed, then FX is the boundary of EX between gX and fX containing PX .

45

eb

er

eb

45

er

E⇤(X)

(a) X is group-balanced (b) X is r-skewed

rX

fX

bX

EX

EXrX

bX
fX

Figure 2. Example feasible set and fairness-accuracy frontier for (a) a group-balanced
covariate vector X and (b) an r-skewed covariate vector X.

These two cases are depicted in Figure 2. When X is group-balanced and rX and bX

are distinct, the two points fall on opposite sides of the 45-degree line (Panel (a)), and the

fairness-accuracy frontier is the standard Pareto frontier, i.e. the lower boundary of the

feasible set connecting these two points. Here, the only tradeoffs are between the accuracy

of one group and the accuracy of the other group. When X is r-skewed (Panel (b)), then

both rX and bX fall on the same side of the 45-degree line, and the fairness-accuracy fron-

tier consists not only of the usual Pareto frontier connecting rX to bX , but additionally a

positively sloped line segment connecting the Pareto frontier to fX (depicted in Figure 2 in

red). This positively sloped line segment is novel; here, tradeoffs are between fairness and

the accuracy of both groups. This is a case where there is a strong conflict between fairness

and accuracy. We summarize these observations in the following corollary.

Corollary 1. Suppose fX is distinct from rX and bX . Then X is group-skewed if and only

if there are points e, e′ ∈ FX such that e >PD e′ but |er − eb| > |e′r − e′b|.
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The corollary implies that if the covariate vector is group-skewed (and the fairness op-

timal point is distinct from the group optimal points), then the FA frontier must consist

of a positively-sloped segment along which every pair of points can be Pareto-ranked. In

practice, one way in which designers may end up at these Pareto-dominated outcomes is

by choosing to ignore certain available covariates. For example, some medical practitioners

recommend removing race-based covariates from healthcare prediction algorithms, even as

they acknowledge the predictive value of those covariates for both groups (Vyas et al., 2020;

Cerdeña et al., 2020; Delgado et al., 2021). Similarly, some university admissions committees

have elected to exclude consideration of test scores from admissions decisions.25 Corollary

1 says that if the covariate vectors in these settings are group-skewed, then disagreements

over whether to implement Pareto-dominated errors can be explained by different fairness

preferences. On the other hand, if inputs are group-balanced, then a policy proposal that

implements Pareto-dominated errors cannot be rationalized by any fairness-accuracy prefer-

ence, no matter how strong the designer’s weight on fairness.

3.3. Alternate Characterizations of the FA Frontier. We now provide two additional

characterizations of the FA frontier. Proposition 1 shows that the FA frontier can be fully

recovered from the smaller class of parameterized utility functions that linearly trade off

accuracy and fairness. Specifically consider the class of functions

w (e) = −γrer − γbeb − γf |er − eb|

where γr, γb > 0 and γf ≥ 0 are (respectively) the designer’s weights on accuracy for each

group and on fairness. A preference � is simple if it can be represented by a utility of this

form, i.e. e � e′ if and only if w(e) ≥ w(e′). All simple preferences are FA preferences, but

not all FA preferences are simple. For example, both Utilitarian and Rawlsian preferences

are simple but Egalitarian preferences are not.26 Given any preference � on error pairs, let

CX(�) := {e ∈ EX : e � e′ for all e′ ∈ EX}

25Test scores are predictive of college grades for all of the relevant demographic groups (see Section A.5 of
Systemwide Academic Senate (2020)), but are more predictive for applicants in some groups than others
(Rothstein, 2004). In Section 4.3.3 we return to this application, interpreting the exclusion of test scores
slightly differently—not as a choice made by the agent setting the algorithm, but as an informational regu-
lation imposed by a designer whose preferences are different from those of the agent.
26To see this for the Utilitarian designer, set γr = pr, γb = pb and γf = 0. To see this for the Rawlsian
designer, set γr = γb = γf = 1. Egalitarian preferences are not simple as they are not continuous.
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denote the set of �-optimal points.

Proposition 1. FX is the union of CX(�) over all simple preferences �.

This result is in the spirit of Wald and Wolfowitz (1951)’s complete class theorem, and

provides a class of utility functions which is sufficient for generating the FA frontier. Recalling

that the usual Pareto frontier can be characterized as the set of optimal points for designers

with utility functions of the form γrer + γbeb, our characterization differs in additionally

including the term γf |er − eb|, which captures a concern for inequity across groups. As it

turns out, the addition of this term is sufficient to characterize the entire FA frontier, so the

frontier can be traced out simply by shifting the parameter weights γr, γb and γf .

Our third and final characterization tells us how the design of the optimal algorithm varies

along the frontier when the set of algorithms is unconstrained. For each realization x of the

covariate vector, let

∆x
g := P (X = x | G = g) · E[`(1, Y )− `(0, Y ) | X = x,G = g]

denote the change in group g’s expected error when the decision at x is moved from a(x) = 0

to a(x) = 1. The g-optimal decision at x is d = 1 if ∆x
g ≥ 0, and otherwise it is d = 0.27

Define

h(x) =
∆x
b

∆x
r

to be the ratio of the relative impact of the decision at x on group r’s error to group b’s

error. Then order the realizations x1, . . . , xn of X so that h(x1) ≤ h(x2) ≤ · · · ≤ h(xn), with

ties broken arbitrarily. Let a∗r denote the r-optimal algorithm, which assigns the optimal

decision for group r to each x, and consider the following class of algorithms

ai(xj) :=

{
a∗r(xj) if j ≥ i

1− a∗r(xj) if j < i

In words, a0 is the algorithm that (deterministically) assigns to every covariate vector the

decision that is best for group r; that is a0 = a∗r, the r-optimal algorithm. Moving along the

sequence a1, a2, . . . entails successively switching the assignment at the next realization in

the order x1, x2, . . . . The following proposition says that the FA frontier is exactly the set

of outcomes generated by algorithms of this form.

27It is immaterial how we break the tie here.
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Figure 3. In this example, the point rX is implemented by the algorithm a0 = a∗r .
The next extreme point is implemented by a1, which satisfies a1(x1) = 1 − a∗r(x1), and
a1(xi) = a∗r(xi) for all i > 1. The point bX is implemented by the algorithm a2, which
satisfies a2(xi) = 1 − a∗r(xi) for i = 1, 2, and a2(xi) = a∗r(xi) for all i > 2. Finally, fX is
implemented by the algorithm a3, which satisfies a3(xi) = 1 − a∗r(xi) for i = 1, 2, 3, and
a3(xi) = a∗r(xi) for all i > 3. In this example, n0 = 2 (i.e., groups r and b have different
optimal decisions for covariate vectors x1, x2), while n∗ = n1 = 3.

Proposition 2. Suppose A = A, and let nc := maxi{h(xi) < c} for c ∈ {0, 1}. Then FX is

the set of errors generated by the algorithms βai−1 + (1− β)ai for all (β, i) ∈ Ψ where

(a) if X is group-balanced, then Ψ = [0, 1]× {1, . . . , n0}, and

(b) if X is r-skewed, then Ψ = ([0, 1]× {1, . . . , n∗ − 1}) ∪
(
[0, β]× {n∗}

)
for some β ∈

[0, 1] and n∗ ∈ {n0, . . . n1}. Moreover, if er < eb at fX , then (β, n∗) = (1, n1).

The proposition is illustrated in Figure 3. The two groups disagree over the optimal

decision at the realizations x1, . . . , xn0 , since one group prefers d = 1 while the other group

prefers d = 0. (In the figure, n0 = 2.) Here, the tradeoff is between the accuracy of one

group and that of the other, and these realizations are ordered so that the relative error

impact on group b compared to group r is maximized at x1, and decreases as we progress

along the sequence. When the assignments for all of these disagreement covariate vectors

have been swapped from the r-optimal assignment to the b-optimal assignment, we obtain

an algorithm that implements the b-optimal point bX . Part (a) of Proposition 2 says that

when X is group-balanced, the algorithms (ai)0≤i≤n0 implement the extreme points of the FA
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frontier (which is also the Pareto frontier by Theorem 1), and mixing between neighboring

algorithms of this form yields the entire FA frontier.

When X is group-skewed, the FA frontier continues further by swapping the assignment

at covariate vectors xn0+1, xn0+2, . . . . The two groups agree on the preferred decision at

these covariate vectors, so swapping the assignment hurts both groups. Here, the tradeoff

is between the accuracy of both groups and fairness; the realizations are ordered so that

the relative payoff impact on group r to group b is largest at xn0+1, and decreases as we

progress along the sequence. These swaps continue until we reach the fairness-optimal point

fX , which is either the extreme point implemented by the algorithm an∗ as in Figure 3 (in

which case β = 1), or an interior point on the line segment ending on this extreme point (in

which case β < 1).

3.4. Special Cases. In some applications, the designer may be able to explicitly condition

the algorithm on group identity.28 That is, the designer’s choice set may be all pairs of

algorithms (ar, ab) ∈ A = Ar ×Ab, where the algorithm ag ∈ Ag is applied for members of

group g. (As before, we permit randomizations over pairs of this form.) When there are no

constraints on the algorithm, i.e. A = A, then it is equivalent to assume that group identity

is included as a covariate in X. In this case, the feasible set and fairness-accuracy frontier

simplify as follows.

er

eb

45

rX = bX fX

EX

Figure 4. Group-Specific Algorithms

28Use of such algorithms is illegal in certain contexts. For example, the Equal Opportunity Act prohibits
(among other things) lending decisions that condition explicitly on race or gender.
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Proposition 3. Suppose the algorithm can be conditioned on group identity. Then EX is a

rectangle whose sides are parallel to the axes, and FX is the line from rX = bX to fX .

Figure 4 depicts such a feasible set and fairness-accuracy frontier. One endpoint, the

Utilitarian-optimal point labeled rX = bX , gives both groups their minimal feasible error.

The other endpoint, the Egalitarian-optimal point fX , maximizes fairness. Everywhere along

the fairness-accuracy frontier FX , the worse-off (higher error) group receives its minimal

feasible error. Thus when group-specific algorithms are permitted, the fairness-accuracy

tradeoff simply becomes a tradeoff between fairness and the welfare of the advantaged group

(i.e., the group that the covariate vector is skewed towards). It is also straightforward to see

from this result that the error for the disadvantaged group under X must decrease regardless

of which FA preference the designer holds.

When the joint distribution P relating (X, Y,G) satisfies certain independence properties,

the FA frontier again simplifies. Specifically, under the assumptions of our previous Examples

9 and 12 we obtain the following result.

Proposition 4. (a) Suppose G ⊥⊥ (X, Y ). Then EX is a line segment on the 45-degree

line, and FX is a single point.

(b) Suppose G ⊥⊥ Y | X and A = A. Then FX is that part of the lower boundary of the

feasible set EX from the point bX = rX to the point fX .

These cases are depicted in Figure 5. In Panel (a), the FA frontier is a singleton,

and fairness-accuracy preferences are irrelevant: All designers who agree on the basic FA-

dominance principle outlined in Definition 6 prefer the same algorithm. In Panel (b), the

left point is the (shared) group optimal point rX = bX , and the right endpoint is the fairness

optimal point fX . From rX = bX to fX , the fairness-accuracy frontier consists entirely of

positively sloped line segments. Thus, everywhere along the frontier, the two groups’ errors

move in the same direction, implying that the only way to improve fairness is to decrease

accuracy uniformly across groups. The only relevant difference across designers, then, is

how they choose to resolve strong fairness-accuracy conflicts of this form. As we will see

in Section 5, although these conditions are strong and unlikely to be exactly satisfied, the

fairness-accuracy tradeoffs they describe are relevant to real data.
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(a) Strong Independence: G ⊥⊥ (X,Y )

er
45

eb

EX
rX = bX

fX

(b) Conditional Independence: G ⊥⊥ Y | X

Figure 5. Special Cases

4. Input Design

We have so far assumed that the designer directly chooses the best algorithm to maximize

a preference that (weakly) responds to both fairness and accuracy. This is a good description

of some settings; for example, a company may internalize both fairness and accuracy concerns

in its hiring algorithm. But often the algorithm is set by an agent who does not care about

fairness across groups, while the inputs used by the algorithm are constrained by a designer

who does. For example, a healthcare provider (agent) determining treatment may seek to

maximize the number of correct diagnoses, while a policymaker (designer) may additionally

prefer that the accuracy of the provider’s treatments be similar across social groups. Or, a

bank (agent) may seek to maximize profit from loan issuance, while a regulator (designer)

may require that the rate at which individuals are incorrectly denied loans does not differ

too sharply across groups. In these settings, the designer can often influence the algorithm

indirectly by implementing policies that constrain the algorithm’s inputs. For example,

Chan and Eyster (2003) report that as part of an effort to influence Berkeley law school’s

admissions policy in 1997, UC Berkeley administrators coarsened candidates’ LSAT scores

into intervals and reported this coarsened variable to the law school admissions committee.

In Section 4.1, we model this interaction as an information design problem in which the

designer constrains the inputs of the algorithm, while the algorithm is chosen by an accuracy-

minded agent. In Section 4.2, we provide conditions under which the designer is nevertheless

able to implement his favorite point on the fairness-accuracy frontier. In Section 4.3, we
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study whether the designer’s optimal regulation of inputs may involve completely banning a

covariate such as group identity or a test score.

4.1. Input Design Model. A designer chooses a garbling of the covariate vector X, which

is represented as a mapping T : X → ∆T taking realizations of X into distributions over

the possible realizations of T (assumed without loss to be finite).29 Examples of garblings

include the following.

Example 13 (Banning an Input). Suppose X = (X1, X2, X3) and the designer wants to

ban the last coordinate X3. The corresponding garbling is T (x1, x2, x3) = (x1, x2) with

probability 1.

Example 14 (Coarsening the Input). The set of realizations X = {1, 2, 3, 4} is partitioned

into {{1, 2}, {3, 4}}, and T (x) reports (with probability 1) the partition element to which x

belongs.

Example 15 (Adding Noise). T (x) = x+ ε where the noise term ε takes value +1 or −1 with

equal probability.

We view these garblings as information policies that the designer can possibly commit

to by law. Real examples of garblings are abundant: The “ban-the-box” campaign (Agan

and Starr, 2018) restricted employers from using criminal history as an input into hiring

decisions (similar to Example 13); the College Board coarsens a test-taker’s answers into an

integer-valued score between 400 and 1600 (similar to Example 14); and organizations such

as the US Census Bureau, Apple, and Google add noise to users’ inputs under differential

privacy initiatives (similar to Example 15).30

The agent chooses an algorithm a : T → D that takes as input the garbled variable chosen

by the designer. For simplicity in this section, we assume that the full set of algorithms A is

available; as before, we allow for randomizations over algorithms. The agent evaluates errors

according to

(1) w(e) = −αrer (a)− αbeb (a)

29An interesting direction for future research would be to impose “procedural fairness” requirements on the
garbling (such as requiring the garbling to be deterministic, or to be monotone in certain covariates), and
ask what is achievable under those constraints. In the present paper we maintain throughout full flexibility
to garble covariates.
30See Garfinkel et al. (2018) for an example reference.
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for some constants αr, αb > 0 that are known to the designer.31,32 When αg = pg, the agent is

Utilitarian and exclusively cares about aggregate accuracy; otherwise, the agent’s preference

falls in the broader class of generalized Utilitarian preferences mentioned in Example 4.33

We can rewrite (1) as

w(e) =−
∑
g

αgE [` (a (T ) , Y ) | G = g]

=−
∑
t∈T

pt
∑
y,g

αg
pg
· P (Y = y,G = g | T = t) · ` (a(t), y) ,

where pt is the probability of T = t. Thus the agent’s problem of minimizing ex-ante error

is equivalent to the following ex-post problem34

(2) a (t) ∈ arg min
d∈D

∑
y,g

αg
pg
· P (Y = y,G = g | T = t) · ` (d, y) .

Definition 11. An error pair e = (er, eb) is implemented by T if there exists an algorithm aT

satisfying (2) such that e = e(aT ).

Fixing any covariate vector X, we define the input-design feasible set to be all error pairs

that can be implemented by some garbling T , and the input-design fairness-accuracy frontier

to be the set of group error pairs that are FA-undominated in the input-design feasible set.

Definition 12. The input-design feasible set given covariate vector X is

E∗X := {e(aT ) : T is a garbling of X}.

Definition 13. The input-design FA frontier given X is

F∗X := {e ∈ E∗X : there exists no e′ ∈ E∗X such that e′ >FA e}.
31In Appendix O.4, we prove additional results for the case when a coefficient αg is negative so the agent
is adversarial or biased against group g and prefers to increase error for that group. This could reflect
taste-based discrimination by the agent. Note that this falls outside of our class of FA preferences.
32We view the typical setting as one in which the policymaker has fairness concerns that the agent does not
share, but the reverse case (in which the agent has fairness concerns that the policymaker does not share) is
also interesting. See Section 6 for a brief discussion of some technical complications that arise in this case.
33The agent’s utility may involve weights different from Utilitarian weights if errors for the two groups
are differentially costly for the agent. For example, suppose the agent is a bank manager and group b is
wealthier than group r. In this case, loans for group b may be of higher value, so that incorrectly classifying
creditworthy individuals in group b is more costly. This corresponds to scaling the loss ` for group b by
αb/pb > 1.
34When the agent’s utility is non-linear in group errors, the ex-ante and ex-post problems are not equivalent
in general.



26 ANNIE LIANG, JAY LU, XIAOSHENG MU, AND KYOHEI OKUMURA

4.2. Comparing Input Design and Algorithm Design. The following proposition says

that under relatively weak conditions, it is without loss to have control only of the algorithm’s

inputs: Any error pair that a designer would choose to implement in the unconstrained

problem (i.e., given control of the algorithm) can also be achieved under input design. To

state the result, we define

e0 := min
d∈D

(αr · E[`(d, Y ) | G = r] + αb · E[`(d, Y ) | G = b])(3)

to be the best payoff that the agent can achieve given no information, and

(4) H := {(er, eb) : αrer + αbeb ≤ e0}

to be the halfspace including all error pairs that improve the agent’s payoff relative to no

information.

Proposition 5 (When Input Design is Without Loss). The following hold:

(a) Suppose X is group-balanced. Then, F∗X = FX if and only if rX , bX ∈ H.

(b) Suppose X is g-skewed. Then, F∗X = FX if and only if gX , fX ∈ H.

This result follows from the subsequent lemma, which says that the input-design feasible

set is equal to the intersection of the unconstrained feasible set and H, with an analo-

gous statement relating the fairness-accuracy frontiers. Related results appear in Alonso

and Câmara (2016) and Ichihashi (2019), although we provide an independent argument in

Appendix 1 for completeness.

Lemma 1. For every covariate vector X, the input-design feasible set is E∗X = EX ∩H and

the input-design FA frontier is F∗X = FX ∩H.

Clearly the designer cannot hold the agent to a payoff lower than what the agent can

guarantee with no information, so E∗X ⊆ EX ∩ H. In the other direction, we need to show

that every point in EX ∩ H can be implemented by a garbling of X. The proof is by

construction: If the designer garbles X into recommendations of the decision, then the

obedience constraints reduce precisely to the condition that the agent’s payoff is improved

relative to no information, i.e., the error pair belongs to H. This yields the lemma, and

Figure 6 illustrates how Proposition 5 is implied by Lemma 1.

These results tell us that input design is always sufficient to recover part of the original

fairness-accuracy frontier. Moreover, so long as certain points (rX and bX in the case of
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a group-balanced X, rX and fX in the case of an r-skewed X, or bX and fX in the case

of a b-skewed X) improve the agent’s payoffs relative to no information, then the designer

can induce the agent to choose the designer’s most preferred outcome even without explicit

control of the algorithm. Conversely, when these conditions do not hold, then input design

is limiting for some designers.
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Figure 6. Depiction of an example input-design fairness-accuracy frontier for (a) a
group-balanced covariate vector X and (b) an r-skewed covariate vector X. In Panel (a),
it is sufficient to check rX , bX ∈ H to determine whether the entire unconstrained fairness-
accuracy frontier belongs to H. This condition is satisfied in the figure, so every designer
can implement his favorite unconstrained outcome using input design. In Panel (b), it is
sufficient to check whether rX , fX ∈ H. This condition is failed in the figure, so some
designer cannot implement his favorite unconstrained outcome using input design.

4.3. Excluding a Covariate. We next turn to the question of whether the optimal garbling

may involve a complete ban on the use of a specific covariate. For example, healthcare

providers disagree over whether race should be a permitted input into clinical prediction

algorithms (Vyas et al., 2020; Manski, 2022; Manski et al., 2022), and universities differ in

whether they choose to exclude consideration of standardized test scores.35

Since the designer and agent have (potentially) misaligned preferences, banning an input

can be optimal, and we demonstrate this in a simple example in Section 4.3.1. But as we

show in Sections 4.3.2 and 4.3.3, there are two important classes of inputs for which bans are

strictly worse for all designers. We formalize “strictly worse for all designers” by comparing

the fairness-accuracy frontier with and without the input under consideration.

Definition 14. For any pair of non-empty sets S, S ′ ⊂ R2, write S >FA S
′ if every e′ ∈ S ′ is

FA-dominated by some e ∈ S.

35See https://www.nytimes.com/2021/05/15/us/SAT-scores-uc-university-of-california.html.
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When F∗X,X′ >FA F∗X , then a complete ban on the covariates in X ′ is not optimal for any

designer with a FA-preference. That is, every designer can achieve a strictly higher payoff by

garbling (X,X ′) rather than by garbling X alone. This comparison is distinct from earlier

work that considers fully disclosing (X,X ′) versus fully disclosing X.36 However, in some

cases it will be optimal to disclose (X,X ′) fully; Propositions 7 and 9 characterize when this

is the case for designers with simple preferences.

4.3.1. Example. We start with an example to demonstrate that banning an input can be

optimal for the designer. Suppose Y = {0, 1} and Y and G are independently and uniformly

distributed, i.e., P(Y = y,G = g) = 1/4 for any y ∈ {0, 1} and g ∈ {r, b}. Let X be a null

signal; that is, X = x0 with probability one. Further let X ′ be a binary signal with the

following conditional probabilities P(X ′ | Y,G):37

X ′ = 1 X ′ = 0

Y = 1 1 0

Y = 0 0 1

X ′ = 1 X ′ = 0

Y = 1 0.6 0.4

Y = 0 0.4 0.6

G = r G = b

That is, X ′ is perfectly informative about the individuals in group r, and imperfectly infor-

mative about those in group b. Suppose the loss function is `(d, y) = 1(d 6= y), the agent is

Utilitarian (αr = pr = 1/2 and αb = pb = 1/2), and the designer is Egalitarian.

The input-design feasible set given X only is the singleton {(0.5, 0.5)}, and the Egalitarian

designer’s payoff at this point is zero. But if the designer chooses any garbling of (X,X ′) that

provides information about X ′, his payoff will be strictly negative. Intuitively, the Utilitarian

agent uses what he learns about X ′ to maximize aggregate accuracy. Since this information

is necessarily more informative about group r than about group b, decisions based on this

information increase the gap between the two group errors, reducing the designer’s payoff.38

Thus, it is strictly optimal for the designer to exclude all information about X ′.

36Our property of FA dominance does not in general rank the information policy of fully revealing X versus
fully revealing (X,X ′). That is, it may be that F∗X,X′ FA-dominates F∗X , but the designer’s payoff is higher

from revealing X than from revealing (X,X ′).
37In this example, neither X nor X ′ reveals group identity. Thus, this example falls outside of the settings
considered in the previous two subsections.
38While we assume an Egalitarian designer here for simplicity, a similar construction is possible for any
designer who places sufficient weight on fairness considerations.
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Figure 7. The fairness-accuracy frontier given (X,X ′) is the line segment connecting
(0, 0.4) with (0.5, 0.5). Every nontrivial garbling of (X,X ′) leads to a point on this frontier
that is different from (0.5, 0.5), and hence yields a strictly negative payoff for the designer.

4.3.2. Excluding Group Identity. We next consider the special case in which X ′ = G. The

property of group balance (suitably strengthened) turns out to imply that banning group

identity is never optimal.

Definition 15. Say that X is strictly group-balanced if er < eb at rX and eb < er at bX .

Relative to group-balance, strict group-balance rules out covariate vectors X for which rX =

bX = fX .

Proposition 6. Suppose rX , bX ∈ H. Then F∗X,G >FA F∗X if and only if X is strictly

group-balanced.39

That is, if (and only if) X is strictly group-balanced, every error pair on the fairness-

accuracy frontier given X is FA-dominated by an error pair on the fairness-accuracy frontier

given (X,G). This result builds on previous findings that disparate treatment (using different

rules for individuals in different groups) may be necessary to preclude disparate impact

(effecting disparate harms across groups).40 Specifically, Proposition 6 implies that to reduce

disparate impact, it may be necessary to impose information policies that are asymmetric

across groups. Interestingly, this may not involve fully revealing G, so the algorithm may

39The assumption rX , bX ∈ H makes the above result easier to state as an if-and-only-if condition. But
it follows from our proof of Proposition 6 that even when this assumption fails, strict group-balance is a
sufficient condition for the frontier to uniformly worsen when excluding G.
40This tension between disparate treatment and disparate impact is noted in explicitly in works such as
Chouldechova (2017) and Rambachan et al. (2021), and is implied by results in Chan and Eyster (2003).
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be formally group-blind (thus not exhibiting disparate treatment).41 Nevertheless, if we

consider the total procedure—taking into account both information design and algorithm

design—then two individuals who are otherwise identical but belong to different groups

may receive different distributions of outcomes. This distinction brings up an interesting

question regarding how disparate treatment should be conceptualized in settings where both

information design and algorithm design are present.

For restricted classes of preferences, we can further characterize how the variable G is used

in the designer’s optimal garbling. For example, take the class of simple utility functions

introduced in Section 3.3, which are of the form

−γrer − γbeb − γf |er − eb|

where γr, γb > 0 and γf ≥ 0. We will show that every designer with a utility function of this

form can achieve their optimal payoff using either of two garblings of (X,G) that we now

define.

First, for any (X,G), let the fully revealing garbling TX,G be the garbling that directly

reveals (X,G), i.e., every (x, g) is mapped to itself with probability 1.

Second, recall that a∗g denotes the g-optimal algorithm (which assigns to each covariate

vector x the decision that minimizes group g’s error). Let ar denote the algorithm that

instead assigns to each covariate vector x the action 1− a∗r(x) (i.e., the action which is not

optimal for group r), and let er denote the group r error under ar. Further let (eRr , e
R
b )

denote the pair of group errors at the r-optimal point rX . The r-shaded garbling, denoted

T rX,G, maps each (x, b) to the message a∗b(x) with probability 1, and maps each (x, r) to the

message a∗r(x) with probability

β = max

{
er − eRb
er − eRr

, 0

}
and to the message 1− a∗r(x) otherwise. Intuitively, the r-shaded garbling preserves all the

information in X for members of group b, but adds noise to this information for members of

group r. Fixing any value of er, the amount of weight on the message a∗r(x) (i.e., the “right”

action) is increasing in eRr and decreasing in eRb . That is, the better off group r is (and the

41The algorithm exhibits disparate treatment if, holding all other covariates equal, it yields different outputs
depending on the individual’s group identity. See https://www.justice.gov/crt/book/file/1364106/

download for definitions of disparate treatment and impact.
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worse off group b is) at group r’s optimal point, the more noise the r-shaded garbling adds

to group r’s covariates.

Proposition 7. Suppose the designer has a simple preference with parameters (γr, γb, γf ).

Fix any X for which fX,G ∈ H. Suppose (without loss) that (X,G) is either group-balanced

or r-skewed. Then:

(a) The fully revealing garbling TX,G is optimal if γr ≥ γf .

(b) The r-shaded garbling T rX,G is optimal if γr ≤ γf .

That is, if the designer’s weight on the inequity term |er− eb| is sufficiently strong, he will

prefer the r-shaded garbling. Otherwise, he achieves his optimal point by revealing all of the

information in (X,G) un-garbled. In the knife-edge case γr = γf , the designer is indifferent

between these garblings (both are optimal).

This result complements papers that compare choice between decision rules based on

(X,G) to choice between decision rules based on X alone (e.g., Chan and Eyster (2003) and

Rambachan et al. (2021)). We find that under certain conditions, disclosing (X,G) is not

only superior to disclosing X, but is in fact optimal over the class of all possible garblings

of (X,G).

4.3.3. Excluding a Covariate When Group Identity is Known. Next compare the frontier

implemented by garblings of (X,G) with the frontier implemented by garblings of (X,G,X ′),

where X and X ′ are arbitrary covariate vectors.

Definition 16. Say that X ′ is decision-relevant over X if for each group g, there are realiza-

tions (x, x′) and (x, x̃′) of (X,X ′) such that

{1} = arg min
d∈D

E[`(d, Y ) | (X,X ′, G) = (x, x′, g)]

while

{0} = arg min
d∈D

E[`(d, Y ) | (X,X ′, G) = (x, x̃′, g)]

where each of (x, x′, g) and (x, x̃′, g) has strictly positive probability.

This weak condition requires only that there is some individual in each group g for whom

the decision that maximizes (expected) accuracy is different given X and given (X,X ′). For

example, if X ′ is a test score and X is high school GPA, then X ′ is decision-relevant for
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group g if taking the test score into consideration reverses the admission decision for at least

one individual in group g relative to the decision based on GPA alone.

Proposition 8. Suppose rX , bX ∈ H. For any covariate vector X and any covariate vector

X ′ that is decision-relevant over X, F∗X,X′,G >FA F∗X,G.

This result says that so long as the designer has access to group identity, then bans cannot

be justified for any minimally informative covariate. If we restrict to the class of simple

preferences, we can again characterize how that covariate should be used in the designer’s

optimal garbling.

Proposition 9. Suppose the designer has a simple preference with parameters (γr, γb, γf ).

Fix any (X,X ′), and suppose without loss that (X,X ′, G) is either group-balanced or r-

skewed. Then:

(a) The fully revealing garbling TX,X′,G is optimal when γr ≥ γf .

(b) The r-shaded garbling T rX,X′,G is optimal when γr ≤ γf .

We can apply these results to comment on the question of whether to ban test scores in

college admissions decisions. College entrance exams are decision-relevant for admissions,

even given the rest of the application (Systemwide Academic Senate, 2020).42 Thus Propo-

sition 8 implies that so long as group identities are permissible inputs for college admission

decisions, then excluding test scores is welfare-reducing for all designers with the ability to

garble available covariates. On the other hand, if group identity is not permitted as an input

into college admissions decisions, then a sufficiently fairness-minded designer may find it

optimal to completely exclude test scores. With regards to the recent Supreme Court case

Students for Fair Admissions, Inc. v. President and Fellows of Harvard College, our result

suggests that banning affirmative action nationwide may give universities with certain FA

preferences reason to ban the use of test scores in admissions decisions.43 Proposition 9 fur-

ther says that among designers with simple preferences, those who sufficiently value accuracy

will prefer to reveal test scores for all students, while those who sufficiently value fairness will

42Specifically, Section A of Systemwide Academic Senate (2020) finds that test scores are predictive of college
success, predictive above other covariates (such as GPA), and and predictive for all demographic groups that
they consider (with individuals disaggregated by factors such as parental education, family income, and
racial/ethnic identity).
43Dessein et al. (2022) demonstrate a similar finding in a model in which universities experience costs when
making decisions that differ from the preferences of a broader society.
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prefer to use the full informational content of test scores for students in the disadvantaged

group, but to add noise to this information for students in the advantaged group. This latter

garbling is consistent with Systemwide Academic Senate (2020)’s report that one use of test

scores at UC Berkeley (prior to the university’s move to test-blind admissions in 2021) was

to identify otherwise ineligible applicants from relatively disadvantaged backgrounds.

While our framework abstracts away from many important features of the college admis-

sions process—including capacity constraints (see Subsection 6.4), access to testing (Garg

et al., 2021) and test-optional admissions (Dessein et al., 2022))—the link between the avail-

ability of group identity and the value of additional information, such as test scores, is one

that we believe holds more generally. The crucial point is that when group identity is avail-

able, the designer can tailor how the additional information is used for each group separately.

In this sense, access to group identity has a positive spillover effect for the value of other

covariates, guaranteeing that there is some (possibly group-dependent) garbling of the other

information that aligns the agent’s and designer’s incentives.

We conclude by returning to our example in Section 4.3.1, and illustrating how our previous

observations change when group identity is available as a covariate.
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Figure 8. (a) A comparison of the input-design fairness-accuracy frontiers
given X versus given (X,X ′); (b) A comparison of the input-design fairness-
accuracy frontiers given (X,G) versus given (X,G,X ′)

.

Panel (a) reproduces the previous Figure 7 (which compares the frontiers F∗X and F∗X,X′),
while Panel (b) compares the fairness-accuracy frontiers F∗X,G and F∗X,G,X′ . Without access

to group identity, we argued that the Egalitarian designer preferred to ban the covariate X ′.

With access to group identity, we see that the Egalitarian designer is able to achieve the

superior outcome (0.4, 0.4) by garbling (X,G,X ′). Thus while making information about X ′
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available to the agent is strictly harmful for the designer when group identity is not available,

this ceases to be true once the designer can garble X ′ in different ways depending on G.

5. Empirical Application

We have so far focused on general conceptual findings that hold across settings, but our

framework can also be used to better understand the fairness-accuracy tradeoffs in specific

datasets. In this final section, we empirically illustrate some of our key definitions on two

popular healthcare datasets from the algorithmic fairness literature. This analysis demon-

strates that our framework is amenable to computation, and speaks to the potential relevance

of our framework for empirical evaluations of algorithms.

Section 5.1 describes the two datasets. Section 5.2 evaluates group-balance and group-

skew, finding that the first dataset is group-skewed, while the second is an interesting case

of group-balance in which the group-optimal points approximately lie on the 45 degree line.

Section 5.3 depicts the fairness-accuracy frontier for both datasets, setting A to be the set

of linear algorithms. We find that in one dataset, the fairness-accuracy frontier consists

primarily of strong fairness-accuracy conflicts (where the designer can only increase fairness

by decreasing accuracy for both groups), while in the other there is nearly no conflict between

fairness and accuracy.

Having estimated these frontiers, we apply Proposition 5 to study the effectiveness of

input design for each of the datasets. We find that for one of the datasets, input design is

sufficient to recover the entire frontier, while in the other there are designers who cannot

implement their favorite point using input design. Finally, we apply Proposition 3 to study

how the fairness-accuracy frontier changes when the designer is permitted group-specific

algorithms. We find that for both datasets, neither Utilitarian nor Egalitarian designers

have substantially improved payoffs, but designers with moderate fairness and accuracy

preferences do benefit.

5.1. Data. Our first healthcare dataset consists of the 48,784 patient observations reported

in Obermeyer et al. (2019). The covariate vector X includes 8 demographic variables, 34

indicators of specific chronic illnesses, 13 healthcare cost variables, and 94 biomarker and

medication variables. We take as the two group identities whether the patient self-reported

as Black or White, denoted g ∈ {b, w}.
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As described in Obermeyer et al. (2019), a large academic hospital used the covariates in

X to identify high-risk patients to enroll in an intensive health care program, automatically

enrolling those top 3% “highest risk” patients into this program. In the data, “true health

needs” are reported as each patient’s total number of active chronic illnesses in the subsequent

year, where the 97% percentile is 6 health conditions. We thus define the patient’s type Y

to be an indicator for whether their true health needs are strictly larger than the 97%

percentile, and consider algorithms a : X → {0, 1} that predict Y . We use `(d, y) = 1(d 6=
y) as our loss function, implying that algorithms are more accurate if they have a lower

misclassification rate for each group, and more fair if they have a smaller disparity between

the misclassification rates for the two groups.

Our second dataset is from Strack et al. (2014) and contains 101,766 clinical care obser-

vations for patients with diabetes diagnoses. The covariate vector X includes 25 variables,

including demographic data (e.g., age) and medical information (e.g., diabetic medications

and number of inpatient days). We take gender (woman or man) to be the group identi-

ties, denoted g ∈ {w,m}. The patient’s type Y is whether the patient was readmitted to

the hospital after release. This variable is reported in the data. We consider algorithms

a : X → {0, 1} that predict whether patients will be readmitted upon release, and again use

`(d, y) = 1(d 6= y) as our loss function.

For both datasets, we suppose that the designer chooses a single algorithm for both groups

and does not have access to group identity. (This is consistent with the analysis of Obermeyer

et al. (2019).) We subsequently consider how the fairness-accuracy frontier changes when

group-specific algorithms are permitted.

5.2. Estimating Group-Balance versus Group-Skew. For each group g, let (egr , e
g
b) de-

note the group-g optimal point. We will first provide point estimates of these group-optimal

points, given which we will form conjectures for whether the data are group-balanced or

group-skewed. Subsequently we will formulate suitable statistical tests of those conjectures.

Figure 9 reports five-fold cross-validated estimates of the group-optimal points in each

dataset.44 In the Obermeyer et al. (2019) data, the classification error for Black patients is

44We randomly split the data into five equally sized subsets. In each step of the procedure, we designate
one of these subsets to be the test set. We then split the remaining data (the training set) into group-r
and group-b observations, and train a random forest algorithm on each part separately, thus obtaining a
classifier for each group. We apply group g’s classifier to the test set and evaluate each group’s error under
this classifier, obtaining an estimate of the group-g optimal point gX = (eGr , e

G
b ). Finally, we average these

estimates across the five choices of which subset to use as the training data.
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Figure 9. The group-optimal points for the Obermeyer et al. (2019) data are estimated
to be bX = (êbb, ê

b
w) = (0.042, 0.019) and wX = (êwb , ê

w
w) = (0.049, 0.018), suggesting group-

skew. The group-optimal points for the Strack et al. (2014) data are estimated to be
wX = (êww, ê

w
m) = (0.393, 0.394) and mX = (êmw , ê

m
m) = (0.393, 0.393), suggesting group-

balance.

higher than for White patients at both groups’ optimal points, suggesting that the covariate

vector X is w-skewed. In contrast, for the Strack et al. (2014) data, the two group-optimal

points are nearly on the 45 degree line—that is, the consequences for the two groups are

nearly the same regardless of whether the algorithm designer minimizes error for female

patients or male patients. This suggests that that the covariate vector satisfies a special case

of group-balance.45

We now evaluate these conjectures with suitable statistical tests. To assess whether the

Obermeyer et al. (2019) dataset is w-skewed, we test the null hypothesis

(5) H0 : ebw ≥ ebb

against the alternative H1 : ebw < ebb. (Since eww ≤ ebw and ebb ≤ ewb , the inequality ebw < ebb

implies eww ≤ ewb ; thus, we only need to verify this part of the definition of group-skew.) We

will conclude that the data is w-skewed if we can reject this null hypothesis at the desired

significance level.

45The substantially larger errors for the latter dataset are due to a more difficult prediction problem: In
the Strack et al. (2014) data, the outcome variable is roughly equally likely to be 1 or 0 (respectively, 0.46
versus 0.54), whereas in Obermeyer et al. (2019) data, the outcome variable takes the value 0 for almost
all patients. Thus, for example, the naive rule that classifies all patients as 0 in the first data achieves a
misclassification rate of 0.06 for Black patients and 0.02 for White patients, but these misclassification rates
are not feasible for the second dataset.
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For the Strack et al. (2014) data, because Figure 9 suggests that the knife-edge condition

eww = ewm = emw = emm is approximately met, we need to be more careful with our formulation

of the null and alternative.46 We test a relaxed notion of group-balance corresponding

to whether eww, ewm, emw , and emm are located within a small neighborhood of one another.

Specifically, we test

(6) H0 : |eww − ewm| ≥ δ OR |emw − emm| ≥ δ

against the alternative H1 : |ewf − ewm| < δ AND |emf − emm| < δ for δ = 0.01. Under the

alternative, both group-optimal points have the property that each group’s misclassification

rate is within 1 percentage point of the other. (For a sense of whether 0.01 is “small,”

recall that our estimate for the misclassification rates at the group-optimal points are about

0.40.) When the two group-optimal points are nearly on the 45-degree line, they must nearly

coincide. We will thus conclude (approximate) group-balance if (6) is rejected at the desired

significance level.

Following Auerbach et al. (2024), we implement the following procedure to test these null

hypotheses: In each of K = 5 iterations, we randomly split the data into a training set

(consisting of two-thirds of the observations) and a test set (consisting of the remaining

observations). On the training subset, we search for the algorithm that minimizes group g’s

error on the group g observations. Then we evaluate each group’s error under this algorithm

on the test data, and compute a p-value for the suitable null hypothesis via bootstrap (see

Appendix C.1 for details). A valid test is obtained by rejecting the null hypothesis whenever

the median p-value across these iterations falls below half of the desired significance level

(Auerbach et al., 2024). For a 5% significance level, this corresponds to rejecting whenever

the median p-value falls below 0.025.

We report the outcome of this test for each dataset under two possible specifications of

the set of algorithms A: the set of unconstrained algorithms A and the set of all linear

algorithms. For the former specification, we employ a random forest algorithm to search

for each group’s optimal algorithm among the class of unconstrained algorithms. For the

latter, we use logistic regression to look for the linear classifier that minimizes each group’s

error on the training data. Table 1 reports the output of this analysis. We reject the null

46For example, a natural test for strict group-balance (Definition 15) would be to formulate the null H0 :
ebw ≤ ebb OR eww ≥ ewb against the alternative H1 : ebw > ebb AND eww < ebb, but Figure 9 does not suggest the
data is strictly group-balanced. Thus we do not expect to reject this null.
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in (5) at a 5% significance level for both specifications of A, suggesting that the covariates

in the Obermeyer et al. (2019) data are group-skewed. (Recall that we reject at a 5%

significance level if the median p-value is less than 0.025.) We reject the null in (6) at a 10%

significance level for the unconstrained set of algorithms and at a 5% significance level for

the set of linear algorithms, suggesting that the covariates in the Strack et al. (2014) dataset

are (approximately) group-balanced with group-optimal points on the 45 degree line.

Dataset 1 Dataset 2

Group-Balance/Skew median p-value Group-Balance/Skew median p-value

Unconstrained w-skewed < 0.0001 group-balanced 0.0437
Linear w-skewed < 0.0001 group-balanced < 0.0001

Table 1. We report whether each dataset is group-balanced or group-skewed for the two
specifications of A. Reported p-values are computed via bootstrap with size 10,000.

Thus, by Corollary 1, the first dataset involves a potentially strong conflict between fair-

ness and accuracy, where designers who put sufficient weight on reducing disparities across

Black and White patients may prefer to increase errors for both groups. In contrast, fair-

ness considerations across male and female patients do not rationalize implementing Pareto-

dominated error rates for the second dataset, regardless of how much weight the designer

puts on fairness.

5.3. The Fairness-Accuracy Frontier. We next depict the feasible set EX and FA frontier

FX for each of these datasets, setting A to be the set of linear algorithms, which we will

subsequently denote by A`. First observe that the extreme points of the feasible set can

be found by solving the optimization problem min {αrer(a) + αbeb(a) : a ∈ A`} for different

choices of (αr, αb) ∈ R2. We consider the empirical analogue of this optimization problem,

in which eg(a) is replaced by its sample analogue:

(7) min

{
αrêr(a) + αbêb(a) : ∀g, êg(a) =

1

ng

∑
i : Gi=g

` (a(Xi), Yi) , a ∈ A`
}
,

with ng denoting the number of group-g observations in the dataset.
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Any linear classifier a ∈ A` can be represented as a(x) = 1
{
x>β ≥ 0

}
for some β ∈

Rdim(X ).47 Thus, we can recast the optimization problem in (7) as the following mixed-

integer linear program (MILP):

(MILP)



min
β,êr≥0,êb≥0,Ŷ

αrêr + αbêb

s.t. êr =
1

nr

∑
i : Gi=r

1

{
Ŷi 6= Yi

}
êb =

1

nb

∑
i : Gi=b

1

{
Ŷi 6= Yi

}
X>i β

Ci
< Ŷi ≤ 1 +

X>i β

Ci
and Ŷi ∈ {0, 1} for all i

where Ci is chosen to satisfy Ci > supβ∈B |X>i β|, with B some compact set such that we re-

strict β ∈ B.48 In principle, we could use this MILP to estimate all the extreme points of the

feasible set by varying the normal vector (αr, αb) within [0, 2π)×[0, 2π). Since this program is

computationally burdensome, we instead employ a standard relaxation of the MILP to a lin-

ear program (LP) by eliminating the integer constraints using a hinge surrogate loss function

(see Appendix C.2 for details).49 We solve this LP for (αr, αb) ∈ [0, π/72, 2π/72, . . . , 2π)2,

estimate (êr, êb) via five-fold cross-validation for each (αr, αb), and finally take the convex

hull of the estimated error pairs.50

Panels (A) and (B) of Figure 10 depict the estimated feasible set and FA frontier for the

Obermeyer et al. (2019) data. Panel (A) shows the entire feasible set, while Panel (B) zooms

in on the FA frontier. Consistent with our previous hypothesis test, the group-optimal points

bX and wX lie on the same side of the 45 degree line. Additionally, we find that bX and wX are

very similar—indeed, we cannot reject that bX and wX are different points at any reasonable

47We assume that X includes a constant term, so it is without loss to set the threshold to zero.
48The third constraint is equivalent to Ŷi = 1

{
X>i β ≥ 0

}
for all i since if X>i β is weakly positive then the

constraint Ŷi ∈ {0, 1} implies Ŷi = 1, while if X>i β is strictly negative then the constraint Ŷi ∈ {0, 1} implies

Ŷi = 0.
49The same reduction underlies the construction of support vector machines for linear classification. See
Hastie et al. (2009) for a textbook reference.
50For each pair (αr, αb), execute the following steps: Partition the dataset into five subsets of equal size. In

each of the five iterations, use one subset for testing and the remaining four for training. Determine β̂(k) by
solving the LP with the training data, which establishes a linear classifier a(k). Compute the estimates of

group errors (ê
(k)
r , ê

(k)
b ) for classifier a(k) by sample analogues using test data. Finally, calculate the average

group error êg for each group g across all five folds: êg = 1
5

∑5
k=1 ê

(k)
g .
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Obermeyer et al.’s dataset

(a) (b)
Strack et al.’s dataset

(c) (d)

Figure 10. Estimated feasible set for the class of linear algorithms

Panels (A) and (C) display the estimated feasible sets for the datasets from Obermeyer et al. and Strack et
al., respectively. In these panels, the black solid lines define the boundaries of the feasible sets EX , and the
gray dotted lines serve as 45-degree reference lines. Panel (A) identifies bX and wX as the optimal points
for Black and White patients, while Panel (C) marks wX and mX as the optimal points for women and

men. Both panels highlight fX as the fairness-optimal point. Panels (B) and (D) examine the augmented
feasible sets EX,G for the same datasets with covariate (X,G), represented by blue solid lines. In these

panels, fX,G indicates the fairness-optimal point for each dataset with (X,G). The point uX indicates the
error pair chosen by the Utilitarian agent given no information, and the gray solid line in Panel (B) and

(D) represents the Utilitarian’s indifference curve through uX .
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significance level.51 Thus the main tradeoff between fairness and accuracy is whether the

designer is willing to increase errors for both groups in return for a decrease in the disparity

between group errors. The depicted FA frontier qualitatively resembles Panel (B) of Figure 5

(Conditional Independence), and is consistent with a setting in which the optimal algorithm

is the same for both groups, but the measured covariates are more predictive of the outcome

for one group (White patients) than the other (Black patients).52

Panels (C) and (D) depict the analogous figures for the Strack et al. (2014) data. Consis-

tent with the result of our earlier hypothesis test, the estimated group-optimal points are very

close to the 45-degree line (and consequently are also close to the estimated fairness-optimal

point fX). For this dataset, there is almost no tradeoff between fairness and accuracy. In

fact, the depicted feasible set and FA frontier qualitatively resemble Panel (A) of Figure 5

(Strong Independence), and are consistent with a setting in which the joint distributions of

covariates and outcomes are nearly identical for the two groups.

The two datasets also differ in their implications for the limits of input design. In Panels

(B) and (D), we plot the error pair corresponding to the best payoff that a utilitarian agent

can achieve with no information (labeled uX), as well as the agent’s indifference curve at this

point.53 In Panel (B), the fairness-optimal point fX falls outside the halfspace H of error

pairs that the utilitarian agent prefers over uX . Thus, by Proposition 5, input design is with

loss for some designers. Specifically, sufficiently fairness-motivated designers cannot induce

a utilitarian agent to implement their favorite error outcome, regardless of which garbling of

the available covariates they choose. In contrast, in Panel (D) the points wX , mX , and fX all

belong to the corresponding halfspace H, implying that every designer with a FA preference

can achieve his most preferred outcome.

Finally, we can apply Proposition 3 to quantify the possible fairness-accuracy improve-

ments when different algorithms are used to make predictions for each group. Panels (B) and

(D) of Figure 10 illustrate the change in the fairness-accuracy frontier when group-specific

linear algorithms are permitted. In both datasets, neither the Utilitarian designer, nor the

51Specifically, we test the null hypothesis

H0 : |ebb − ewb | ≥ δ OR |ebw − eww| ≥ δ
against the alternative H1 : |ebb − ewb | < δ and |ebr − ewr | < δ, with δ = 0.01. The resulting median p-value is
less than 0.0001, indicating insufficient evidence to assert a significant difference in the group-optimal points.
52We cannot directly test the assumptions of Example 12 in our data, due to an insufficient number of
observations per covariate vector.
53The payoff of the Utilitarian on the indifference curve is e0 defined in equation (3), setting (αr, αb) :=
(pr, pb). Point uX = (eUr , e

U
b ) satisfies pre

U
r + pbe

U
b = e0.
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designer whose payoff is −|er − eb|, benefit from using group-specific algorithms: The Util-

itarian designer’s payoff remains approximately the same, since the group-optimal points

change very little when group-specific algorithms are permitted. The designer whose payoff

is −|er − eb| does not benefit either, as both fX and fX,G lie on the 45 degree line (and thus

yield an identical payoff of zero for this designer).

This finding is especially interesting when juxtaposed with a recent debate over whether

to use race-blind healthcare algorithms. Advocates for race-aware algorithms often adopt a

Utilitarian perspective (e.g., Manski et al. (2022)), while proponents of race-blind healthcare

algorithms typically argue from the perspective of minimizing healthcare inequalities across

groups (e.g., Vyas et al. (2020)). But for these two datasets, it is intermediate designers

who value both fairness and accuracy, rather than these two extremes, that benefit the most

from use of group-specific algorithms.54 Whether this particular finding extends to other

datasets will depend on specific details of their FA frontiers, but our framework provides

a general methodology that can be applied case-by-case to study the particular fairness-

accuracy implications of different datasets and algorithmic constraints.

6. Extensions

6.1. Different loss functions for evaluating fairness and accuracy. When defining

the strict order >FA, we used the same loss function to evaluate both accuracy and fairness.

This is suitable, for example, for healthcare decisions where both the healthcare provider

(designer) and patients agree that more accurate decisions are better, and so fairness can be

reasonably evaluated as the disparity in accuracy across groups. In other cases where the

subjects’ utility function is different from the designer’s, policymakers sometimes evaluate

accuracy using one loss function and fairness using another. For example, if the algorithm

guides hiring decisions, then fairness may be evaluated as the difference in hiring rates

across groups, even while accuracy is evaluated based on whether suitable candidates are

hired. In Appendix O.1 we develop a more general version of our framework that allows for

different loss functions, and extends Theorem 1 and Corollary 1 under a generalization of

group-balance.

54If we consider the class of simple preferences for these two datasets, then for any fixed values of αr and αb,
the increase in the designer’s payoff from use of group-specific algorithms is concave in αf with an interior
maximum.
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6.2. Beyond absolute difference for evaluating fairness. Our main analysis assumes

that (un)fairness is evaluated according to the absolute difference of errors between the two

groups, i.e. |er − eb|. A natural extension is to consider |φ(er) − φ(eb)| where φ is some

continuous strictly increasing function. For instance, if φ is log, then this corresponds to

evaluating fairness using the ratio of errors rather than their difference. Theorem 1 holds for

any such φ with the fairness optimal point fX suitably defined.55 We further demonstrate

that the frontier becomes larger (smaller) whenever φ is concave (convex). Thus, for example,

evaluating fairness using ratios instead of absolute difference results in a larger frontier,

although the qualitative properties of this frontier are unchanged.

6.3. Other agent preferences in the input design problem. Section 4 considers mis-

aligned incentives between a designer controlling inputs and an agent setting the algorithm.

There, we assume that the agent cares about accuracy and prefers for both group errors

to be lower. In Appendix O.4, we consider what happens when this misalignment is more

extreme and the agent is adversarial (i.e. negatively biased) towards one of the two groups,

preferring that group’s error to be higher. We generalize several results from Section 4 and

show that even if the agent is negatively biased, it can still be optimal for the designer to

provide information about group identity (so long as the bias is not too extreme).

Two other potential generalizations would permit the agent and designer to have different

loss functions, or permit the agent to care about fairness. In both cases, the set of points

that the agent prefers over the prior (what we defined to be H) is no longer a halfspace

from the designer’s perspective. Moreover, non-linearities in the agent’s objective function

imply that the agent’s ex-ante and ex-post problems may be different, and so it is relevant

whether the agent commits to the algorithm or chooses the decision after the realization of

the garbling. We consider these problems beyond the scope of the present paper, and leave

them as open questions for future work.

6.4. Capacity constraints. In our main model, we allow the designer unconstrained choice

of any algorithm. In a few of the applications of interest, there may be an additional capacity

constraint on the algorithm, e.g., if only a fixed number of students can be admitted in

admissions decisions. One way to formulate a capacity constraint is a restriction on the

55To see why, first note that no interior point can be on the frontier. Otherwise, we can always find some
ε1, ε2 > 0 such that |φ (er − ε1)− φ (eb − ε2)| ≤ |φ (er)− φ (eb)| so (er − ε1, eb − ε1) >FA (er, eb) yielding a
contradiction. The rest of the proof follows as in Theorem 1.
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ex-ante probability of assignment of decision d = 1 (e.g., admit). In this case, the set of

error pairs satisfying the constraint can be shown to be a convex set, so the feasible set is

simply the intersection between the feasible set (as we have defined) and the convex set of

error pairs that satisfy this capacity constraint. Our Theorem 1 then applies for this new

feasible set, although the fairness-accuracy frontier as characterized in Proposition 3 may no

longer be a horizontal line.

6.5. More than two groups or two decisions. We have assumed that there are two

groups G = {r, b}. Some of our results, such as Proposition 5, can be shown to directly

extend for any finite G. However, in order to extend our other results, we would first have

to specify a definition of fairness for multiple groups. One possible generalization of the FA-

dominance relationship is to say that a vector of group errors (eg)g∈G FA-dominates another

vector (e′g)g∈G if eg ≤ e′g for every group g, and also |eg − 1
|G|
∑

g∈G eg| ≤ |e′g − 1
|G|
∑

g∈G e
′
g|

for every g ∈ G, with at least one inequality holding strictly. That is, fairness is improved

if each group’s error is closer to the average group error. We expect our characterization in

Theorem 1 to extend qualitatively in this case.

We have also assumed that there are two decisions D = {0, 1}. All of our results in Sec-

tion 3 about the unconstrained problem directly extend for any finite D. However, Lemma 1

(the relationship between the input-design fairness-accuracy frontier and the unconstrained

fairness-accuracy frontier) relies on the assumption of a binary decision. We leave a charac-

terization of the input design frontier for this more general case to future work.

7. Conclusion

We conclude with possible directions for future work, and some mention of recent work in

these directions.

First, our proposed fairness-accuracy frontier is defined with respect to the true underlying

population distribution P. In practice, analysts may instead have access to a sample of

observations from this distribution. A natural question is whether, and how, the analyst can

estimate the FA frontier (or deduce its properties) from such a sample. Liu and Molinari

(2024) provides an approach for nonparametrically estimating our fairness-accuracy frontier.

They characterize the asymptotic distribution of their estimator (showing that it converges

to a tight Gaussian process as the sample size grows large). Thus, under certain conditions,

it is possible to nonparametrically estimate the FA frontier (i.e., for the unconstrained set
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of algorithms A). Auerbach et al. (2024) focus on the related question of how we can tell

whether a given algorithm produces group errors that are on the FA frontier. This question

is especially important in light of disparate impact claims, since algorithms that are shown

to have disparate impact can sometimes be justified if that disparate impact is shown to

be necessary to achieve other business objectives, such as accuracy. Auerbach et al. (2024)

propose a sample-splitting approach, which among other things can be used to discern from

a sample of observations whether a given algorithm is simultaneously fairness- and accuracy-

improvable.

Second, our paper takes the population distribution P as exogenously given. An interesting

direction for follow-up work is the question of how to optimally acquire information with

fairness-accuracy objectives in mind. In such a framework, P would be endogenous to the

information acquisition choices of the designer. Our results shed some light on certain aspects

of this design. For example, suppose it were possible to acquire new covariates that turned

a group-skewed covariate vector into a group-balanced covariate vector. Corollary 1 implies

that such a change would change the nature of the fairness-accuracy conflict, eliminating the

need to consider Pareto-dominated outcomes as a means to improve fairness. We leave to

future work a more detailed exploration of endogenously chosen covariates and their fairness-

accuracy consequences.

Finally, in our input design problem we have assumed that the designer has knowledge

of the agent’s preferences. In practice, the designer may not know the agent’s preferences

precisely, or may face a problem of designing regulation for many agents simultaneously,

where these agents hold different preferences. An interesting direction would thus be to

consider optimal garblings given uncertainty over the agent’s preferences, or garblings that

optimize a worst-case criterion over a set of agent preferences.

Appendix A. Proofs and Supporting Materials for Section 3.2

A.1. Supplementary Material to Section 3.1. Examples 9 and 12 respectively follow

from Parts (a) and (b) of Proposition 4. Suppose the assumptions in Example 10 are satisfied.

Given this loss function, the group-optimal point gX is implemented by the algorithm ag.

Moreover, we have

E[l(ab(X), Y ) | G = b] = V ar(ε) = E[l(ar(X), Y ) | G = r] ≤ E[l(ab(X), Y ) | G = r].
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Symmetrically E[l(ar(X), Y ) | G = r] ≤ E[l(ar(X), Y ) | G = b]. Note that if ar 6= ag then

both inequalities are strict and X is strictly group-balanced. Otherwise, rX and bX are on

the 45 degree line and X is group-balanced.

Finally, suppose the assumptions in Example 11 are satisfied. Given this loss function,

the group-optimal points gX coincide, and they are implemented by the algorithm a0. We

have

E[l(a0(X), Y ) | G = b] =
∑

V ar(Y | X = x,G = b)dP (x | G = b)

= V ar(εb) > V ar(εr)

=
∑

V ar(Y | X = x,G = r)dP (x | G = r) = E[l(a0(X), Y ) | G = r]

so the covariate vector is r-skewed.

A.2. Characterization of the Feasible Set.

Lemma A.1. EX is a closed and convex polygon.

Proof. Given a (randomized) algorithm a, we slightly abuse notation and let a(x) denote

the probability of choosing decision d = 1 at covariate vector x. We further let xy,g denote

the conditional probability that Y = y and G = g given X = x. Finally, let px denote the

probability of X = x. Then the group errors can be written as follows:

eg(a) = E [a (X) ` (1, Y ) + (1− a (X)) ` (0, Y ) : G = g]

=
∑
x

px

(
a (x)

∑
y

xy,g
pg

` (1, y) + (1− a (x))
∑
y

xy,g
pg

` (0, y)

)
,

where pg is the prior probability that G = g. Note that this is linear in the algorithm

a ∈ [0, 1]X . Since ∆A is closed and convex with a finite number of extreme points,

EX = {e(a) : a ∈ ∆A}.

is also closed and convex. Moreover, it is a polygon. �

A.3. Proof of Theorem 1. First, note that since e >FA e′ implies e >PD e′, PX ⊂ FX .

Define the points

j̄ := arg max
e∈EX

(eb − er)
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j := arg min
e∈EX

(eb − er)

where ties are broken in favor accuracy (either lower er or eb). Note that j̄ and j are well-

defined points in EX . Let JX ⊂ EX denote the boundary of EX between j̄ and j (if EX is

a line segment, then JX = EX unless EX has slope 1 in which case JX =
{
j
}

= {j̄} is the

left-most point of the line). Note that PX ⊂ JX (see Figure 11).

er

eb

45

E⇤(X)EXrX

bX

j

j

Figure 11. The points j̄ and j in the feasible set EX

We will first show that FX ⊂ JX . Note that this is trivial if EX is line segment so suppose

otherwise, and let e ∈ FX but e 6∈ JX . This means that we can find e′ = (er − δ, eb − δ) ∈ EX
for small δ > 0 and note that e′ < e and |er − eb| = |e′r − e′b|. Thus, e′ >FA e so e 6∈ FX
yielding a contradiction.

Now, consider the group-balanced case where eb < er at bX and er < eb at rX . We will

show that FX ⊂ PX . Let e ∈ FX and since FX ⊂ JX , e ∈ JX . First, suppose e is on the

boundary between j̄ and rX (not including rX). In this case, we can find small δ > 0 such

that (er, eb − δ) ∈ EX but (er, eb − δ) >FA e yielding a contradiction. The case for e is on

the boundary between bX and j is symmetric. This implies e ∈ PX as desired so FX = PX .

Note that this same argument applies to the group-balanced case where er = eb at rX and

bX so rX = bX .

Next, consider the r-skewed case where er < eb at rX and er ≤ eb at bX . Let e ∈ FX ⊂ JX
and by the same argument above, we can rule out e being on the boundary between j̄ and

rX (not including rX). Moreover, we can also rule out e being on the boundary between fX

and j (not including fX) since (er − δ, eb) ∈ EX but (er − δ, eb) >FA e for small δ (if EX is a
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line segment, then just note that fX >FA e). Thus, what remains to be shown is that all the

boundary points between bX and fX must be in FX . Let e be any such point. Since e is on

the boundary of EX between bX and fX , we can find some line with slope between 0 and 1

such that all of EX lies above this line. If e 6∈ FX , then there exists some e′ ∈ EX such that

e′ >FA e. But this implies that e′ must lie strictly beneath this line, yielding a contradiction.

This establishes that FX is exactly the boundary between rX and fX containing PX . The

proof for the b-skewed case is symmetric.

A.4. Proof of Corollary 1. First, suppose X is group-balanced, so by Theorem 1 FX =

PX , so there cannot be two points e, e′ ∈ FX such that e >PD e′. Now, suppose X is

r-skewed. Note that in this case, bX and fX must both be weakly above the 45-degree line.

Let e = bX and e′ = fX . By definition, we have eb ≤ e′b and eb − er > e′b − e′r (where the

strict inequality follows from the fact that bX 6= fX). This implies that

er − e′r < eb − e′b ≤ 0

so er < e′r. Thus, e >PD e′ but |eb − er| > |e′b − e′r| as desired.

A.5. Proof of Proposition 1. We prove the following stronger result where the equivalence

between (1) and (2) is the content of Proposition 1.

Proposition A.1. The following are equivalent:

(1) e ∈ FX
(2) e ∈ CX(�) for some FA preference �
(3) {e} = CX(�) for some FA preference �
(4) e ∈ CX(�) for some simple FA preference �

This is stronger than Proposition 1 in that it additionally shows that FX is minimal in the

sense that we cannot exclude any points from FX without hurting some designer. This is

because for every point e ∈ FX , there exists some FA preference � such that e is the unique

optimal error pair given � within the feasible set EX .

Proof. We will first show that (3) implies (2) implies (1) implies (3). Note that (3) implies

(2) is trivial. To see why (2) implies (1), suppose e ∈ CX(�) for some FA preference � but

e 6∈ FX . Thus, there exists some e′ >FA e so e′ � e yielding a contradiction.
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We now prove that (1) implies (3). Fix some e∗ ∈ FX and let ψ : R→ (0, 1) be a strictly

decreasing function. Define

w (e) =

1 + ψ (er + eb) if e = e∗ or e >FA e
∗

ψ (er + eb) otherwise

and let � be the corresponding preference. We will show that � is an FA preference. Suppose

e >FA e
′ so e >PD e′ which implies ψ (er + eb) > ψ (e′r + e′b). If both points FA-dominate e∗

or neither do, then w (e) > w (e′). The only remaining case is when e >FA e∗ but e′ does

not FA-dominate e∗, in which case

w (e) = 1 + ψ (er + eb) > 1 > ψ (e′r + e′b) = w (e′)

Thus, � is an FA preference. Now, since e∗ ∈ FX , there exists no other e ∈ EX such that

e >FA e∗. That means that for all e ∈ EX\ {e∗}, w (e∗) > w (e) so {e∗} = CX(�). This

proves (3).

Finally, we show the equivalence of (1) and (4). Note that (4) implies (2) which implies

(1) from above. We now show that (1) implies (4). Fix some e∗ ∈ FX , so by Theorem 1,

e∗ must either belong to the lower boundary from rX to bX or the lower boundary from

bX to fX , where the latter case only happens when X is r-skewed (we omit the symmetric

situation when X is b-skewed). If e∗ belongs to the boundary from rX to bX , then from the

proof of Theorem 1 we know that e∗ belongs to an edge of this boundary that has negative

slope. Thus there exists a vector (γr, γb) that is normal to this edge, such that e∗ maximizes

γrer +γbeb among all feasible points. Since this edge has negative slope, it is straightforward

to see that γr, γb < 0. So e maximizes the simple utility γrer + γbeb as desired.

If instead X is r-skewed and e∗ belongs to the boundary from bX to fX , then again e∗

belongs to an edge of this boundary. But now this edge must have weakly positive slope

(since the edge starting from bX has weakly positive slope by the definition of bX , and since

the boundary is convex). In addition, this slope must be strictly smaller than 1 because

otherwise fX would be farther away from the 45-degree line compared to its adjacent vertex

on this boundary. It follows that the outward normal vector (βr, βb) to the edge that e∗

belongs to satisfies βr ≥ 0 ≥ −βr > βb. The point e∗ of interest maximizes βrer + βbeb

among all feasible points. Now let us choose any γf to belong to the interval (βb,−βr),
which is in particular negative. Further define γr = βr + γf < 0 and γb = βb− γf < 0. Then
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βrer + βbeb can be rewritten as γrer + γbeb + γf (eb − er). If we consider the simple utility

γrer + γbeb + γf |eb − er|, then for any other feasible point e∗∗ it holds that

γre
∗∗
r + γbe

∗∗
b + γf |e∗∗b − e∗∗r | ≤ γre

∗∗
r + γbe

∗∗
b + γf (e

∗∗
b − e∗∗r )

= βre
∗∗
r + βbe

∗∗
b

≤ βre
∗
r + βbe

∗
b

= γre
∗
r + γbe

∗
b + γf (e

∗
b − e∗r)

= γre
∗
r + γbe

∗
b + γf |e∗b − e∗r|,

where the first inequality holds since γf ≤ 0 and the last equality holds because e∗ ∈ FX must

be weakly above the 45-degree line. Hence the above inequality shows that e∗ maximizes the

simple utility we have constructed, completing the proof. �

A.6. Proof of Proposition 2. Recall the proof of Lemma A.1 where we showed that the

group errors can be written as

eg (a) =
∑
x

px

(
a (x)

∑
y

xy,g
pg

` (1, y) + (1− a (x))
∑
y

xy,g
pg

` (0, y)

)
Letting

ci (x) :=

(∑
y

xy,r
pr

` (i, y) ,
∑
y

xy,b
pb
` (i, y)

)
∈ R2

for i ∈ {0, 1}, we can write the group error pair as

e (a) =
∑
x

px (a (x) c1 (x) + (1− a (x)) c0 (x))

If we let Ex ⊂ R2 denote the line segment from c0 (x) to c1 (x), then since A = Ā, we have

EX =
{
e (a) : a ∈ ∆Ā

}
=
∑
x

pxEx

In other words, the feasible set is the Minkowski mixture of the line segments Ex. Moreover,

if we let S (E , z) denote the support functional for any closed convex set E ⊂ R2 and unit

vector from the origin z ∈ R2, then by the linearity of the support functional (see Theorem

1.7.5 of Schneider (1993)),

S (EX , z) = S

(∑
x

pxEx, z

)
=
∑
x

pxS (Ex, z) .(A.1)
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Consider the case where X is group-balanced so FX = PX . Order the (non-singleton) line

segments L1, L2, . . . in FX as we trace out FX = L1 ∪L2 ∪ · · · from rX to bX . Note that the

slopes of Li are increasing in i.

First let z0 denote the vector from the origin to (−1, 0). Then by equation (A.1), e(a∗r) ∈
S (EX , z0) =

∑
x pxS (Ex, z0) so e(a∗r) is a mixture of the left-most point of Ex for all x ∈ X .

In other words, the r-optimal algorithm corresponds to minimizing group r’s error for each

realization x ∈ X .

Next, consider the first segment L1 and without loss, assume it is non-singleton. Let

z1 ∈ R2 be the unit vector from the origin such that L1 = S (EX , z1). Then again by

equation (A.1), there must exist some x ∈ X such that S (Ex, z1) is not a singleton (as

otherwise L1 would be a singleton). Moreover, the slope of any such Ex must be the same

as the slope of L1. We now argue that Ex must have the most negative slope among all

Ex′ , x
′ ∈ X . To see why, suppose towards contradiction that some other Ex′ has a strictly

more negative slope. This implies that S (Ex′ , z1) is the right-most point of the segment Ex′

(recall that the vector z1 is orthogonal to the segment Ex). Now e (a∗r) ∈ L1 = S (EX , z1)
so by equation (A.1), a∗r (x′) must correspond to the right-most point of Ex′ . However, this

contradicts with our observation above that a∗r has support only on the left-most points of

(Ex)x∈X . This shows that L1 corresponds to Ex1 (i.e. the most negative slope) and thus is

the segment from rX = e (a∗r) to e (a1).

We now prove the result by induction, paralleling the argument above. Consider two

consecutive line segments Li and Li+1 and let e (ai) be the shared point between the two

segments. Let zi and zi+1 be the unit vectors from the origin such that Li = S (EX , zi) and

Li+1 = S (EX , zi+1). As before, there must exist x ∈ X such that the slope of Ex is the

same as the slope of Li+1. Moreover, we will now show that the slope of Ex must be the

most negative slope out of the remaining E (xi+1) , E (xi+2) , . . . . Suppose otherwise so there

exists some Ex′ with an even more negative slope. By the induction argument, the slope of

Ex′ must be strictly between E (xi) and E (xi+1). Now, e (ai) ∈ Li+1 = S (EX , zi+1) so by

equation (A.1), ai (x
′) corresponds to the right-most point of Ex′ . However, we also have

e (ai) ∈ Li1 = S (EX , zi) by induction, so ai (x
′) corresponds to the left-most point of Ex′ .

This yields a contradiction. By induction, a1, a2, . . . are exactly the algorithms that generate

FX = L1 ∪ L2 ∪ · · · .
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Finally, consider the case where X is r-skewed and let FX = L1 ∪L2 ∪ · · · which starts at

rX and ends at fX . By the same argument as above, a1, a2, . . . are exactly the algorithms

that generate FX = L1 ∪ L2 ∪ · · · bearing in mind that the point fX may correspond to an

interior point of some Li. This concludes the proof.

A.7. Proof of Proposition 3. Recall that we showed in the proof of Lemma A.1 that

group errors can be written as

eg (a) =
∑
x

px

(
a (x)

∑
y

xy,g
pg

` (1, y) + (1− a (x))
∑
y

xy,g
pg

` (0, y)

)
Letting

ci (x) :=

(∑
y

xy,r
pr

` (i, y) ,
∑
y

xy,b
pb
` (i, y)

)
∈ R2

for i ∈ {0, 1}, we can write the group error pair as

e (a) =
∑
x

px (a (x) c1 (x) + (1− a (x)) c0 (x))

Let Xg ⊂ X be the realizations of the covariate that reveal group identity g. We thus have

EX = {e (a) : a ∈ ∆A}

=

{∑
x∈Xr

px (ar (x) c1 (x) + (1− ar (x)) c0 (x))

+
∑
x∈Xb

px (ab (x) c1 (x) + (1− ab (x)) c0 (x)) : ar ∈ ∆Ar, ab ∈ ∆Ab
}

Note that this is the Minkowski addition of two sets. Since xy,b = 0 for all x ∈ Xr, c1 (x)

and c0 (x) are all points on the vertical axis for all x ∈ Xr. By symmetric reasoning, c1 (x)

and c0 (x) are all points on the horizonal axis for all x ∈ Xb. Since EX is the Minkowski

addition of a set on the vertical axis and a set on the horizonal axis, it must be a rectangle.

Moreover, rX = bX must be its bottom-left vertex.

Finally, suppose without loss of generality that rX = bX lies above the 45-degree line. If

the rectangle EX does not intersect the 45-degree line, then it is easy to see that fX must

be the bottom-right vertex of EX . In this case the fairness-accuracy frontier is the entire

bottom edge of the rectangle, which is a horizontal line segment. If instead the rectangle EX
intersects the 45-degree line, then fX is the intersection between the bottom edge of EX and
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the 45-degree line. Again the fairness-accuracy frontier is the horizontal line segment from

rX = bX to fX . This proves the result.

A.8. Proof of Proposition 4. Part (a): We continue to follow the notation laid out in the

proof of Lemma A.1. Note that under strong independence,

xy,r
xy,b

=
P(Y = y,G = r | X = x)

P(Y = y,G = b | X = x)

=
P(G = r | Y = y,X = x)

P(G = b | Y = y,X = x)
=
pr
pb
.

Thus xy,r
pr

=
xy,b
pb

for all x, y. It follows that the line segment E(x), which connects the

two points
(∑

y
xy,r
pr
` (1, y) ,

∑
y
xy,b
pb
` (1, y)

)
and

(∑
y
xy,r
pr
` (0, y) ,

∑
y
xy,b
pb
` (0, y)

)
, lies on the

45-degree line. Therefore EX =
∑

xEx · px is also on the 45-degree line.

Part (b): We will show that bX = rX under conditional independence, and the result then

follows from Theorem 1. Recall from the proof of Lemma A.1 that

EX =
∑
x∈X

Expx

where

Ex =

{
λ

(∑
y

xy,r
pr

` (1, y) ,
∑
y

xy,b
pb
` (1, y)

)

+ (1− λ)

(∑
y

xy,r
pr

` (0, y) ,
∑
y

xy,b
pb
` (0, y)

)
: λ ∈ [0, 1]

}

Under conditional independence, xy,g = xyxg (with xy := P (Y = y | X = x) and xg :=

P (G = g | X = x)) so we have

Ex =

{(
λ
∑
y

xy` (1, y) + (1− λ)
∑
y

xy` (0, y)

)(
xr
pr
,
xb
pb

)
: λ ∈ [0, 1]

}

This means that for each realization x ∈ X , the outcome that gives the lower error

for group r also gives the lower error for group b. In other words, when
∑

y xy` (1, y) ≤∑
y xy` (0, y), then the decision d = 1 is optimal for both groups (and vice-versa if the

inequality is reversed). Consider the following algorithm:

a (x) =

1 if
∑

y xy` (1, y) ≤∑y xy` (0, y)

0 if
∑

y xy` (1, y) >
∑

y xy` (0, y)
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This algorithm will deliver the lowest error for both groups and

(er (a) , eb (a)) = rX = bX

as desired.

Appendix B. Proofs and Supporting Materials to Section 4

B.1. Proof of Lemma 1. We first characterize the input-design feasible set, and later study

the input-design fairness-accuracy frontier. It is clear that regardless of what garbling the

designer gives the agent, the agent’s payoff will be weakly better than what can be achieved

under no information. Thus any error pair that is implementable by input-design must

belong to the halfspace H. Such an error pair must also belong to the feasible set EX , so we

obtain the easy direction E∗X ⊆ EX ∩H in the lemma.

Conversely, we need to show that a feasible error pair (er, eb) ∈ EX that satisfies αrer +

αbeb ≤ e0 can be implemented by some garbling T . Consider a garbling T that maps X to

∆(D), with the interpretation that the realization of T (x) is the recommended decision for

the agent. If we abuse notation to let a(x) denote the probability that the recommendation

is d = 1 at covariate vector x, then this algorithm a needs to satisfy the following obedience

constraint for d = 1:56∑
y,g

αg
pg

∑
x

px,y,g · a(x) · `(1, y) ≤
∑
y,g

αg
pg

∑
x

px,y,g · a(x) · `(0, y).

The above is just equation (2) adapted to the current setting with the observation that given

the recommendation T = 1, the conditional probability of Y = y and G = g is proportional

to the recommendation probability
∑

x px,y,g · a(x), where we use px,y,g as a shorthand for

P(X = x, Y = y,G = g).

Let us rewrite the above displayed inequality as∑
x,y,g

px,y,g
αg
pg
· a(x)`(1, y) ≤

∑
x,y,g

px,y,g
αg
pg
· a(x)`(0, y).

If we add px,y,g
αg
pg

(1− a(x))`(0, y) to each summand above, we obtain

(B.1)
∑
x,y,g

px,y,g
αg
pg
· (a(x)`(1, y) + (1− a(x))`(0, y)) ≤

∑
x,y,g

px,y,g
αg
pg
· `(0, y).

56By a version of the revelation principle, such garblings together with the following obedience constraints
are without loss for studying the feasible decisions, in a general setting.
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Now, the LHS above can be rewritten as
∑

x,y,g px,y,g
αg
pg
·ED∼a(x)[`(D, y) | X = x, Y = y,G =

g], which is also equal to
∑

g αg · ED∼a(x)[`(D, Y ) | G = g]. This is precisely the agent’s

expected loss when following the designer’s recommended decisions.

On the other hand, the RHS in (B.1) can be seen to be the agent’s expected loss when

taking the decision d = 0 regardless of the designer’s recommendation. Thus, we deduce

that the obedience constraint for the recommendation d = 1 is equivalent to (B.1), which

simply says that the agent’s payoff under the designer’s recommendation should be weakly

better than the constant decision d = 0 ignoring the recommendation. Symmetrically, the

other obedience constraint for the recommendation d = 0 is equivalent to the agent’s payoff

being better than the constant decision d = 1. Put together, these obedience constraints

thus reduce to the requirement that the designer’s recommendation gives the agent a payoff

that exceeds what can be achieved with no information.

For any error pair (er, eb) that is feasible under unconstrained design, we can construct a

garbling T that implements it by recommending the desired decision. If (er, eb) belongs to

the halfspace H, then by the previous analysis we know that obedience is satisfied. Thus

(er, eb) is implementable under input-design, showing that EX ∩H = E∗X as desired.

Finally we turn to the fairness-accuracy frontier and argue that F∗X = FX ∩ H. In one

direction, if an error pair is FA-undominated in EX and implementable under input design,

then it is also FA-undominated in the smaller set E∗X . This proves FX ∩ H ⊆ F∗X . In the

opposite direction, suppose for contradiction that a certain point (er, eb) ∈ F∗X does not

belong to FX ∩ H. Since F∗X ⊆ E∗X ⊆ H, we know that (er, eb) must not belong to FX .

Thus by definition of FX , (er, eb) is FA-dominated by some other error pair (êr, êb) ∈ EX . In

particular, we must have êr ≤ er and êb ≤ eb, which implies αrêr + αbêb ≤ αrer + αbeb ≤ e0

(the first inequality uses αr, αb > 0 and the second uses (er, eb) ∈ F∗X ⊆ E∗X). It follows

that the FA-dominant point (êr, êb) also belongs to H and thus E∗X . But this contradicts

the assumption that (er, eb) is FA-undominated in E∗X . Such a contradiction completes the

proof.

B.2. Supplementary Material to Section 4.3.1. In this section, we compute the input-

design feasible set and fairness-accuracy frontier for the example in Section 4.3.1. Since X

is a null signal, garblings of (X,X ′) are the same as garblings of X ′. Without loss, we can

restrict attention to garblings of X ′ that take two values, d = 1 and d = 0, which correspond

to the designer’s decisions for the agent. Any such garbling can be identified with a pair



56 ANNIE LIANG, JAY LU, XIAOSHENG MU, AND KYOHEI OKUMURA

(α, β), where α is the probability with which X ′ = 1 is mapped into d = 1, and β is the

probability with which X ′ = 0 is mapped into d = 1. It is easy to check that the agent’s

obedience constraint reduces to the simple inequality α ≥ β, which intuitively requires the

agent to choose d = 1 more often when X ′ = 1.

For any pair (α, β), the two groups’ errors can be calculated as

er(α, β) =
1

2
(1− α) +

1

2
β = 0.5− 0.5(α− β),

eb(α, β) =
1

2
· 0.6(1− α) +

1

2
· 0.4(1− β) +

1

2
· 0.4α +

1

2
· 0.6β = 0.5− 0.1(α− β).

So as α− β ranges from 0 to 1, the implementable group errors constitute the line segment

connecting (0, 0.4) with (0.5, 0.5). This entire line segment is also the fairness-accuracy

frontier F∗X,X′ , as illustrated in Figure 7 in the main text.

For an Egalitarian designer, sending the null signalX leads to the point (0.5, 0.5) and yields

a payoff of 0. In contrast, we say that the designer “makes use of X ′ over X” if the garbling

T is not independent of X ′ conditional on X (in this example the conditioning is irrelevant

since X is null). Whenever T is not independent of X ′, then for some realizations of T the

agent believes X ′ = 1 is more likely, which makes d = 1 strictly optimal. Thus, whenever

the designer makes use of X ′ in the garbling, the agent is strictly better off compared to

the null signal, and the resulting error pair must be distinct from (0.5, 0.5). But given the

shape of the implementable set, this means that the designer is strictly worse off when any

information about X ′ is provided to the agent.

B.3. Proof of Proposition 5. We now deduce Proposition 5 from Lemma 1. If X is

group-balanced, then by Theorem 1 we know that FX is the part of the boundary of EX that

connects rX to bX from below. Clearly, F∗X = FX can only hold if rX , bX ∈ F∗X ⊆ H, so we

focus on the “if” direction of the result. Suppose rX , bX ∈ H, then we claim that the entire

lower boundary of EX from rX to bX belongs to H. Indeed, let mX be the point that has

the same er as rX and the same eb as bX . Geometrically, mX is such that the line segments

mXrX and mXbX are parallel to the axes. Because rX , bX have respectively minimal group

errors in the feasible set EX , and because we are considering the lower boundary, any point

on this lower boundary FX must belong to the triangle with vertices rX , bX and mX . Since

rX , bX ,mX all belong to the halfspace H (mX ∈ H because the agent’s payoff weights αr, αb
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are non-negative), we deduce that FX ⊆ H. Hence whenever rX , bX ∈ H, we have by Lemma

1 that F∗X = FX ∩H = FX . This argument proves Proposition 5 in the group-balanced case.

Suppose instead that X is r-skewed (a symmetric argument applies to the b-skewed case).

To generalize the above argument, we need to show that whenever rX , fX belong to H,

then so does the entire lower boundary connecting these points. To see this, note that

by the definition of bX and fX , the lower boundary connecting these two points consists

of positively sloped edges.57 So across all points on this part of the lower boundary, fX

maximizes αrer + αbeb. Thus the assumption fX ∈ H implies that the lower boundary from

bX to fX belongs to H. In particular bX ∈ H, which together with rX ∈ H implies that the

lower boundary from rX to bX also belongs to H (by the same argument as in the group-

balanced case before). Hence the entire lower boundary from rX to fX belongs to H, as we

desire to show.

B.4. Proof of Proposition 6. We first present a simple lemma which conveniently restates

the property of FA-dominance for frontiers:

Lemma B.1. F∗X,X′ >FA F∗X if and only if F∗X does not intersect with F∗X,X′.

The proof of this lemma is straightforward: If there exists a point in F∗X that also belongs

to F∗X,X′ , then this point is not FA-dominated by any point in F∗X,X′ . On the other hand,

suppose no point in F∗X belongs to F∗X,X′ . Note that any point in F∗X is implementable

via a garbling of X and thus implementable via a garbling of X,X ′. Thus any such point

belongs to E∗X,X′ , and since it is not FA-optimal in this set, it must be FA-dominated by

some FA-optimal point in this (compact) set, as we desire to show.

Below we use Lemma B.1 to deduce Proposition 6. The key observation is that whether

or not G is excluded does not affect the minimal (or maximal) feasible error for either group.

This is because if we want to minimize the error of a particular group g using an algorithm

that depends on X, then we essentially condition on G = g anyways.

With this observation, suppose X is strictly group-balanced. Then rX lies strictly above

the 45-degree line and bX lies strictly below. Since we assume rX , bX ∈ H, Proposition 5

tells us that the input-design fairness-accuracy frontier F∗X is the same as the unconstrained

57If we start from bX and traverse the lower boundary to the right until fX , then the first edge of this
boundary must be positively sloped because bX has minimum eb. The final edge of this boundary must also
be positively sloped, since otherwise the starting vertex of this edge would be closer to the 45-degree line
than fX . It follows by convexity that the entire boundary from bX to fX has positive slopes.
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fairness-accuracy frontier FX , and by Theorem 1 this frontier is the lower boundary of the

feasible set EX connecting rX to bX . By Lemma B.1, we just need to show that in this case

the lower boundary of EX from rX to bX does not intersect with the input-design fairness-

accuracy frontier F∗X,G given (X,G). To characterize the latter frontier, letmX = rX,G = bX,G

denote the error pair that has the same er as rX and the same eb as bX . Without loss of

generality assume mX lies weakly above the 45-degree line. Then from Proposition 3 we

know that the unconstrained fairness-accuracy frontier FX,G is the horizontal line segment

from mX to fX,G. This point fX,G is the intersection between the line segment mXbX and

the 45-degree line (here we use the fact that mX lies above the 45-degree line and bX lies

below). As bX ∈ H, the points mX and fX,G also belong to H because they have equal eb

and smaller er compared to bX . Hence the input-design fairness-accuracy frontier F∗X,G is

also the line segment from mX to fX,G. To see that this horizontal line segment does not

intersect the boundary of EX from rX to bX , just note that bX is the only point on that

boundary with the same (minimal) eb as any point on the horizontal line segment. But bX

does not belong to that line segment because it is strictly below the 45-degree line. This

proves the result when X is strictly group-balanced.

Now suppose X is not strictly group-balanced. Then rX and bX lie weakly on the same

side of the 45-degree line, and without loss of generality let us assume they lie weakly above.

It is still the case that the unconstrained fairness-accuracy frontier FX,G is the horizontal

line segment from mX to fX,G. But in the current setting fX,G must be weakly closer to the

45-degree line than bX , which means that bX now lies in between mX and fX,G. In other

words, bX ∈ FX and bX ∈ FX,G. But by assumption, bX also belongs to H. So Lemma 1

tells us that bX belongs to the input-design fairness-accuracy frontiers F∗X and F∗X,G. This

shows that the two frontiers F∗X and F∗X,G intersect, which completes the proof by Lemma

B.1.

B.5. Proof of Proposition 7. By Proposition 3, the fairness-accuracy frontier FX,G is a

line segment whose left endpoint is rX,G = bX,G and right endpoint is fX,G, with eb being

constant on this frontier. We will first identify the optimal points for the designer in the

unconstrained problem (i.e., if the designer were given full control over the algorithm, as in

our Section 2.1), and then show that the garblings indicated in the result implement these

points.
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Suppose first that (X,G) is group-balanced. Then FX,G is the singleton rX,G = bX,G =

fX,G, which is optimal for all FA preferences. So clearly this point is the designer’s preferred

point given any simple preference.

Now suppose (X,G) is r-skewed. Then the frontier FX,G consists entirely of points (er, eb)

satisfying eb ≥ er. So maximizing the designer’s payoff −γrer − γbeb − γf |er − eb| over error

pairs on the FA frontier is equivalent to solving

max
(er,eb)∈FX,G

(γf − γr)er − (γb + γf )eb.

Since eb is constant on FX,G, the designer simply maximizes (γf −γr)er. If γf < γr, then the

designer minimizes er and thus rX,G = bX,G is the uniquely optimal point for the designer. If

γf = γr, then all points on FX,G are optimal. Finally if γf > γr, then the designer’s weight

on er is strictly positive, so that fX,G is the uniquely optimal point for the designer.

It remains to determine how the designer can implement these points with garblings.

Again start with the group-balanced case. Sending the agent the fully revealing garbling

means that the agent’s feasible set is EX,G. Since by assumption the agent’s preferences can

be written as −αrer−αbeb for αr, αb > 0, the agent optimally chooses rX,G = bX,G as desired

by the designer. This yields part (a) of the result. Moreover, when (X,G) is group-balanced,

β = max

{
er − eRb
er − eRr

, 0

}
= 1

since eRr = eRb at rX,G = bX,G = fX,G. Thus the r-shaded garbling maps each (x, g) to the

message a∗g(x) with probability 1, which the agent optimally obeys. Thus again the agent

optimally chooses rX,G.

Now consider the r-skewed case. By the same logic as for the group-balanced case, sending

the agent the fully revealing signal leads the agent to choose rX,G, which is optimal for

the designer when γf ≤ γr. This yields part (a) of the result. Part (b) of the result

follows by noticing that the r-shaded garbling is precisely the garbling constructed in the

proof of Lemma 1, which recommends an action to the agent and leads to the error pair

(eRb ,min{eRb , er}) assuming that the agent follows the recommendation. By Proposition 3

this error pair is the point fX,G, which we assume belongs to H. So by the proof of Lemma

1, the agent optimally follows the recommendation and chooses fX,G, which is optimal for

designers with γf ≥ γr. This completes the proof.
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B.6. Proof of Proposition 8. Let eg = min{eg | e ∈ EX,G} and eg = max{eg | e ∈ EX,G}
be the minimal and maximal feasible errors for group g given covariate vector (X,G), and

define e∗g = min{eg | e ∈ EX,G,X′} and e∗g = max{eg | e ∈ EX,G,X′} to be the corresponding

quantities given (X,G,X ′). The following lemma says that additional access to X ′ reduces

the minimal feasible error for group g relative to (X,G) if and only if X ′ is decision-relevant

over X for group g.

Lemma B.2. e∗g < eg if X ′ is decision-relevant over X for group g, and e∗g = eg if it is not.

Proof. Let ag : X → {0, 1} be any strategy mapping each realization of X into an optimal

outcome for group g, i.e.,

ag(x) ∈ arg min
d∈{0,1}

E [`(d, Y ) | G = g,X = x)] ∀x ∈ X .

Likewise let a∗g : X × X ′ → {0, 1} satisfy

a∗g(x, x
′) ∈ arg min

d∈{0,1}
E [`(d, Y ) | G = g,X = x,X ′ = x′)] ∀x ∈ X , ∀x′ ∈ X ′.

By optimality of a∗g, for all x ∈ X and x′ ∈ X ′,

E
[
`(a∗g(x, x

′), Y ) | G = g,X = x,X ′ = x′] ≤ E [`(ag(x), Y ) | G = g,X = x,X = x′](B.2)

Suppose X ′ is decision-relevant over X for group g. Then there exist x ∈ X and x′, x̃′ ∈ X ′

such that the optimal assignment for group g is uniquely equal to 1 at (x, x′) and 0 at (x, x̃′),

where both (x, x′) and (x, x̃′) have positive probability conditional on G = g. But then (B.2)

must hold strictly at either (x, x′) or (x, x̃′). By taking the expectation of (B.2) conditional

on G = g, we obtain

e∗g = E
[
`(a∗g(X,X

′), Y ) | G = g
]
< E [`(ag(X), Y ) | G = g] = eg.

If X ′ is not decision-relevant over X for group g, then (B.2) holds with equality at every

x, x′, and the equivalence e∗g = eg follows. �

We now use Lemma B.1 and B.2 to prove Proposition 8. First suppose (X,G) is r-

skewed, in which case rX = bX lies strictly above the 45-degree line. By Proposition 3,

the unconstrained fairness-accuracy frontier FX,G is then the horizontal line segment from

rX,G = bX,G to fX,G.
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If X ′ is not decision-relevant over X for group b, then from Lemma B.2 we know that

the minimal feasible error for group b is the same given (X,G,X ′) as given (X,G). By

assumption that (X,G) is r-skewed, group b’s minimal error given (X,G) exceeds group r’s

minimal error given (X,G). Since group b’s minimal error is the same given (X,G) and

(X,G,X ′), while group r’s minimal error is weakly smaller given (X,G,X ′) compared to

(X,G), it must be that group b minimal error given (X,G,X ′) also exceeds the group r

minimal error given (X,G,X ′). In other words, rX,G,X′ = bX,G,X′ also lies strictly above

the 45-degree line, and the fairness-accuracy frontier FX,G,X′ is the horizontal line segment

from rX,G,X′ = bX,G,X′ to fX,G,X′ . Crucially, this line segment shares the same eb as the

line segment from rX,G = bX,G to fX,G. In addition, as rX,G,X′ must have weakly smaller

er than rX,G, and fX,G,X′ must be weakly closer to the 45-degree line than fX,G, we deduce

that the unconstrained fairness-accuracy frontier FX,G,X′ is a horizontal line segment that

is a superset of the line segment FX,G. Thus, in particular, rX,G = bX,G belongs to both

of these frontiers. Lemma 1 thus imply that rX,G = bX,G also belongs to the input-design

fairness-accuracy frontiers F∗X,G and F∗X,G,X′ (rX,G = bX,G belongs to H because this point

can be implemented by giving (X,G) to the agent, who will then minimize both groups’

errors given this information). The result then follows from Lemma B.1.

If X ′ is decision-relevant over X for group b, then Lemma B.2 tells us that e∗b < eb with

strict inequality. There are two cases to consider here. One case involves e∗b > e∗r, so that

(X,G,X ′) is r-skewed just as (X,G) is. Then the unconstrained fairness-accuracy frontier

FX,G,X′ is again a horizontal line segment, but with eb equal to e∗b . Since e∗b < eb, this frontier

is parallel but lower than the fairness-accuracy frontier FX,G. Thus FX,G does not intersect

FX,G,X′ . As their subsets, the input-design fairness-accuracy frontiers F∗X,G and F∗X,G,X′ also

do not intersect. Thus the result follows from Lemma B.1. In the remaining case we have

e∗b ≤ e∗r, so that (X,G,X ′) is b-skewed. Then the unconstrained fairness-accuracy frontier

FX,G,X′ is now a vertical line segment with er = e∗r. The points on this frontier have varying

eb, but any of the eb does not exceed e∗r because these points are below the 45-degree line.

Because e∗r ≤ er < eb, we thus know that any point on the frontier FX,G,X′ has strictly

smaller eb compared to any point on FX,G. Once again these two unconstrained frontiers do

not intersect, and nor do the input-design frontiers. This proves Proposition 8 when (X,G)

is r-skewed.
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A symmetric argument applies when (X,G) is b-skewed, so below we focus on the case

where (X,G) is group-balanced. That is, rX,G = bX,G lies on the 45-degree line. In this case

the fairness-accuracy frontiers FX,G and F∗X,G are both this singleton point. If X ′ is not

decision-relevant over X for group b, then Lemma B.2 tells us that e∗b = eb = er ≥ e∗r. When

equality holds the fairness-accuracy frontiers FX,G,X′ and F∗X,G,X′ are also the singleton point

rX,G = bX,G, and the result trivially holds. If we instead have strict inequality e∗b = eb > e∗r,

then (X,G,X ′) is r-skewed and the unconstrained fairness-accuracy frontier FX,G,X′ is a

horizontal line segment with one of the endpoints being fX,G,X′ = rX,G = bX,G. Thus

rX,G = bX,G belongs also to the input-design fairness-accuracy frontier F∗X,G,X′ , showing that

F∗X,G and F∗X,G,X′ intersect. The result again follows from Lemma B.1.

Conversely, suppose X ′ is decision-relevant over X for both groups. Then by Proposition

3, the unconstrained frontier FX,X′ is either a horizontal line segment with eb = e∗b < eb = eb,

or a vertical line segment with er = e∗r < er = eb. Either way the point rX = bX does not

belong to this frontier, showing that FX does not intersect with FX,X′ . Hence F∗X and F∗X,X′
also do not intersect, and Lemma B.1 concludes the proof. This completes the proof of

Proposition 8.

B.7. Proof of Proposition 9. Omitted since it is nearly identical to the proof of Proposi-

tion 7.

Appendix C. Supplementary Material to Section 5

C.1. Bootstrap Algorithm. Let (Yi, Xi, Gi)
`
i=1 be the test data and P̂ be its empirical

distribution. Fix a sample split and any algorithm obtained from the training data. To

test the null hypothesis (5) against its alternative, we first compute the test statistic T̂ :=

êbb − êbw, where êbg := 1
ng

∑
i : Gi=g

`(a(Xi), Yi) is the sample estimate of ebg on the test data.

Let (Y ∗i , X
∗
i , G

∗
i )
`
i=1 be a bootstrap sample drawn i.i.d. from the test data and denote the

bootstrap analogue of T̂ by T̂ ∗. The critical value for the test is based on the quantile

of the bootstrap distribution of the test statistics. Specifically, let Ψ be the (conditional)

cumulative distribution function of T̂ ∗− T̂ given P̂ . In practice, these are not known exactly,

but can be approximated via Monte-Carlo by taking B independent bootstrap samples from

P̂ and computing the empirical distribution

Ψ̂(x) :=
1

B

B∑
b=1

1{T̂ ∗b − T̂ ≤ x},



ALGORITHM DESIGN: A FAIRNESS-ACCURACY FRONTIER 63

where T̂ ∗b denotes the bootstrap test statistic computed on the bth sample. The p-value is

given by 1− Ψ̂(T̂ ).

To test the null hypothesis (6) against its alternative, let T̂W and T̂M be the empirical

analogues of |eww− ewm|− δ and |emw − ewm|− δ, respectively. The bootstrap analogues T̂W∗ and

T̂M∗ and the cdfs Ψ̂W and Ψ̂M are defined in the same way as before. The p-value is then

given by max{Ψ̂W (T̂W ), Ψ̂M(T̂M)}.

C.2. Estimation of Feasible Sets via Linear Programming. First, let us examine the

case where αr and αb are nonnegative. When we compute the group errors, we substitute

the classification loss 1
{
1{β>x ≥ 0} 6= y

}
= 1 − 1

{
(2y − 1)β>x > 0

}
(for β>x 6= 0) with

the hinge surrogate loss max
{

1− (2y − 1)β>x, 0
}

(see also Figure 12.) This allows us to

formulate the following alternative LP with linear constraints (without integer constraints):

(LP)



min
β,êr,êb,w

αrêr + αbêb

s.t. êr =
1

nr

∑
i : Gi=r

wi + λ‖β‖1

êb =
1

nb

∑
i : Gi=b

wi + λ‖β‖1

wi ≥ 1− (2Yi − 1)X>i β (for all i)

wi ≥ 0 (for all i)

β ∈ RdimX , êr ≥ 0, êb ≥ 0

Note that we also allow for the option of adding L1 regularization into the definition of the

sample error rates eb and er in the definition of LP. Such regularization could be important

to avoid over-fitting to the training data when X is high-dimensional. We set λ := 0.001 for

the Obermeyer et al. (2019) dataset, and λ := 0 for the Strack et al. (2014) dataset.

When either αr or αb is strictly negative, we need a slight adjustment to the above LP.

Suppose that αr < 0 and αb ≥ 0 (other cases can be considered analogously.) The LP

defined above becomes unbounded and has no optimal solution: for any M ∈ R, there exists

a feasible solution (β, êr, êb, w) such that αrêr + αbêb < M . To see this is possible, observe

that we can make the value of the objective function arbitrarily small by increasing wi for

some i with Gi = r, which increases êr (note that wi is not bounded from above).

To address the issue, we perform a change of variables before defining LP: let α̃r := −αr >
0 and ẽr := 1− êr. Then, we have αrêr +αbêb = α̃rẽr +αbêb + α̃r. Since α̃r is a constant, the
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Figure 12. Classification and surrogate loss

original optimization problem

min

{
αrêr(a) + αbêb(a) : ∀g, êg(a) =

1

ng

∑
i : Gi=g

`(a(Xi), Yi), a ∈ A
}
,

is equivalent to the following: 58

min

{
α̃rẽr(a) + αbêb(a) : ∀g, êg(a) =

1

ng

∑
i : Gi=g

`(a(Xi), Yi), ẽr(a) = 1− êr(a), a ∈ A
}
,

As before, since we consider the class of linear algorithms, the latter optimization problem

can be written as an MILP, which is the same as the previous MILP except for the contraint

regarding êr: the constraint regarding êr in the previous MILP is replaced by the following:

ẽr = 1− êr =
1

nr

∑
i : Gi=r

(
1− 1

{
Ŷi 6= Yi

})
=

1

nr

∑
i : Gi=r

1

{
Ŷi = Yi

}
=

1

nr

∑
i : Gi=r

1

{
Ŷi 6= Ỹi

}
,

where Ỹi := 1{Yi = 0} (the label is flipped.) This means that the new MILP has exactly the

same form as the previous MILP if we flip the labels of group r. Then, the new MILP can

be reduced to the LP by the same procedure as before.

In general, we can derive the LP by the following procedure:

(1) Formulate the LP as in the original case where αb > 0 and αr > 0;

(2) For group g with αg < 0, flip the labels of group-g observations, i.e., use Ỹi := 1{Yi =

0} for group g as if it were the true outcome variable;

(3) Replace αg in the objective function with |αg| for each g.

58The two problems are equivalent in the sense that the solutions of the two optimization problem have a
clear one-to-one mapping: 1− êr = ẽr.
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O.1. Different Loss Functions. In this section, we generalize Theorem 1 to cover cases

where fairness and accuracy are evaluated using different loss functions.

Assume the set of covariate vectors X is finite, and let a : X → ∆(D) describe a generic

algorithm and A denote the set of all algorithms. As in the main text, there is a loss

function ` : Y × D → R such that each group g’s error rate under algorithm a is eg =

ED∼a(X) [`(D, Y ) | G = g]. Different from the main text, the unfairness of algorithm a ∈ A
is measured by |h (a)| where h : A → R+ is any linear function. This includes as a special

case

(O.1) h (a) = ED∼a(X)

[
˜̀(D, Y ) |G = r

]
− ED∼a(X)

[
˜̀(D, Y ) |G = b

]
where ˜̀ : Y ×D → R is a “fairness” loss function. Our previous approach is returned when

h takes the formulation in (O.1) and ˜̀ is identical to `.

For each pair of error rates e ∈ EX , we define

d (e) := min
e(a)=e

|h (a)|

to be the minimal unfairness that can be achieved using an algorithm that yields error pair

e. This is well defined since |h (·)| is continuous and the set of algorithms {a : e (a) = e} is

compact.

We now extend the definitions of FA-dominance and the FA frontier.

Definition O.1. Let >FA be the strict order on EX where e >FA e
′ if e < e′ and d (e) ≤ d (e′).

Definition O.2. The FA frontier is FX := {e ∈ EX : no e′ ∈ EX such that e′ >FA e}.

When h(a) has the formulation (O.1) and the accuracy and fairness loss functions ˜̀ = `

coincide, then d (e) = |er − eb|, and so these definitions reduce to Definitions 6, 4 and 7.

Define

δ = min
e∈E

d (e)
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to be the minimal level of unfairness that is achievable by a feasible algorithm. For any

δ ≥ δ,

Eδ := {e ∈ EX : d (e) ≤ δ}

is the set of errors achievable by an algorithm whose unfairness is weakly less than δ.

Definition O.3. For each δ ≥ δ, define rX (δ) = arg mine∈Eδ er and bX (δ) = arg mine∈Eδ eb to

be the group-optimal points within each set Eδ, where we break ties by choosing the point that

minimizes the other group’s error. Further define RX = (rX (δ))δ≥δ and BX = (bX (δ))δ≥δ to

be the set of group-optimal points as we vary over the level of unfairness.

Definition O.4. For any convex set E ⊂ R×R, let P (E) denote the usual Pareto frontier of

E, i.e., all points e ∈ E where no other e′ ∈ E is weakly smaller in each entry and strictly

smaller in at least one.

Definition O.5. The fairness-optimal set is FX := P (Eδ).

We now characterize the FA frontier for this general case.

Theorem O.1. FX is the closed set bounded by RX , BX , PX and FX .

The property of group-balance generalizes as follows.

Definition O.6 (Generalized Group-Balance). Say that X is generalized group-balanced if

FX ⊆ PX .

That is, X is generalized group-balanced if the fairness-optimal set belongs to the usual

Pareto frontier. This reduces to the condition in the main text when h takes the form given

in (O.1) and ˜̀= `. Several of our previous results extend under this generalization of group-

balance. For example, group-balance again identifies when the fairness-accuracy frontier is

equivalent to the usual Pareto frontier.

Proposition O.1. If X is generalized group-balanced, then FX = PX .

The related Corollary 1 also extends.

Corollary O.1. X fails generalized group-balance if and only if there are points e, e′ ∈ FX
such that e < e′ but d(e) > d(e′).
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In some cases, generalized group-balance reduces further. One such case is whenX ∈ {0, 1}
is binary, and h follows the formulation in (O.1) where the fairness loss function `(d, y) =

1(d = 0) is an indicator for whether the decision is equal to 0 (e.g., not getting hired);

in this case, fairness is measured as the absolute difference in the conditional probability

of being assigned d = 0 given membership in either group. Let the accuracy loss function

`(d, y) = 1(d 6= y) be the standard misclassification loss. For each g ∈ {r, b} define

axg := 1 [P(Y = 1 | X = x,G = g) ≥ 1/2]

to be the optimal action for group g given signal realization x, breaking ties in favor of d = 1.

Then generalized group-balance reduces to the following easily checkable condition.

Claim 1. X fails generalized group-balance if and only if ar0 = ab0 and ar1 = ab1 and

these values are distinct—that is, the optimal action is the same for both groups given either

covariate realization, and this common optimal action differs across covariate realizations.

The proof of Claim 1 and all other results mentioned in this section are contained below.

O.1.1. Proofs of Theorem O.1 and Proposition O.1. To save on notation we suppress de-

pendence on X in what follows, using F for the fairness-accuracy frontier, E for the feasible

set and A for the set of algorithms. We first show that the fairness-accuracy frontier is the

union of the Pareto frontiers of the unfairness sublevel sets.

Lemma O.1. d (·) is continuous and convex.

Proof. We first show convexity. Consider e1, e2 ∈ EX and let ai be the algorithm that

minimizes unfairness among all algorithms yielding error pair ei; that is, d (ei) = |h (ai)| and

e (ai) = ei for i ∈ {1, 2}. Since e (·) and h (·) are linear,

d (λe1 + (1− λ) e2) = d (λe (a1) + (1− λ) e (a2)) = d (e (λa1 + (1− λ) a2))

≤ |h (λa1 + (1− λ) a2)| = |λh (a1) + (1− λ)h (a2)|

≤ λ |h (a1)|+ (1− λ) |h (a2)|

= λd (e1) + (1− λ) d (e2)

as desired.
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We now show continuity. Consider the correspondence ϕ : E ⇒ A where

ϕ (e) := {a ∈ A : e (a) = e}

Note this is compact-valued. We will show ϕ is continuous. To show upper hemicontinuity,

consider sequences ek → e and ak → a where each ak ∈ ϕ
(
ek
)
. Then by definition of ϕ, each

e
(
ak
)

= ek, which further implies e (a) = e as e (·) is continuous. Thus, a ∈ ϕ (e) proving

upper hemicontinuity.

We now show lower hemicontinuity. Consider ek → e and some a ∈ ϕ (e). For each ek,

let ak ∈ ϕ
(
ek
)

be the closest point in ϕ
(
ek
)

to a. Since ϕ
(
ek
)

is a linear subspace, ak is

unique and well-defined. We will show that
∣∣ak − a∣∣→ 0. Suppose otherwise, in which case

we can find some n and ε > 0 such that for all k > n, |a′ − a| ≥ ε for all a′ ∈ ϕ
(
ek
)
. But

that means ϕ (e) is also strictly separated from a yielding a contradiction. This proves ϕ is

also lower hemicontinuous and thus continuous. Since h (·) is continuous, by the maximum

theorem, d (·) is continuous. �

Lemma O.2. Eδ is closed and convex.

Proof. Immediate from the fact that d (·) is convex and continuous (Lemma O.1). �

Lemma O.3. F =
⋃
δ≥0P (Eδ)

Proof. First, suppose e ∈ P (Eδ) for some δ ≥ 0. Suppose e 6∈ F so there exists some e′ ∈ E
that FA-dominates e. Thus, d (e′) ≤ d (e) so e′ ∈ Eδ. Note that if e′g < eg for some group g,

then this contradicts e ∈ P (Eδ). Thus, it must be that e′g = eg for both groups g so e′ = e

yielding a contradiction.

Now, let e ∈ F and consider δ = d (e). Clearly, e ∈ Eδ. Note that if e 6∈ P (Eδ), then there

exists another e′ ∈ Eδ that Pareto dominates e. But since d (e′) = d (e), e′ also FA-dominates

e yielding a contradiction. �

Completion of the proof of Theorem O.1. We will first prove rX (·) is continuous.

First, let

Aδ := {a ∈ A : |h (a)| ≤ δ}

and note that

Aδ = {a ∈ A : − δ ≤ h (a) ≤ δ}
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Since h (·) is linear, this is just a polytope in A = [0, 1]X .

Fix some δ and define

e∗r := min
a∈Aδ

er (a)

e∗b := min
a′∈argmina∈Aδ er(a)

eb (a′)

We will show that e∗ = rX (δ). First, let a∗ be the corresponding algorithm for e∗ so

|h (a∗)| ≤ δ. This implies that d (e∗) ≤ δ so e∗ ∈ Eδ. Thus, if we let e = rX (δ), then er ≤ e∗r.

Suppose the inequality is strict. That means we can find some algorithm a∗∗ such that

er (a∗∗) < er (a∗) and |h (a∗∗)| ≤ δ. But that implies a∗∗ ∈ Aδ contradicting the definition

of e∗r so it must be er = e∗r. This implies that eb ≤ e∗b . Suppose the inequaility is strict,

so again we can find some algorithm a∗∗ such that er (a∗∗) = er (a∗), eb (a∗∗) < eb (a∗) and

|h (a∗∗)| ≤ δ. This contradicts the definition of e∗b so it must be that e = e∗. We can thus

write

rX (δ) =

(
min
a∈Aδ

er (a) , min
a′∈argmina∈Aδ er(a)

eb (a′)

)
Continuity follows from the fact that er (·), eb (·) and h (·) are all linear. That bX (δ) is con-

tinuous follows symmetrically. Since F =
⋃
δ≥0P (Eδ) and P (Eδ) is characterized by rX (δ)

and bX (δ), the result follows.

Completion of the proof of Proposition O.1. Recall

Aδ = {a ∈ A : − δ ≤ h (a) ≤ δ}

Now, for λ ∈ (0, 1), define

eλ := λer + (1− λ) eb

and

A∗δ (λ) := arg min
a∈Aδ

eλ (a)

Define A∗δ (0) and A∗δ (1) similarily but with tie-breaking. For large enough δ where Aδ = A,

we can just let A∗ = A∗δ . It is straightforward to show that

P (Eδ) =
⋃

λ∈[0,1]

{e (a) : a ∈ A∗δ (λ)}
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We will now prove that if P (Eδ1) ⊂ P (E) and δ1 ≤ δ2, then P (Eδ2) ⊂ P (E). Consider

some e ∈ P (Eδ2) so we can find some λ ∈ [0, 1] such that a2 ∈ A∗δ2 (λ) and e = e (a2). Let

a1 ∈ A∗δ1 (λ) and ā ∈ A∗ (λ). Since Aδ is increasing in δ, it must be that

eλ (a1) ≤ eλ (a2) ≤ eλ (ā)

Now, since e (a1) ∈ P (Eδ1) ⊂ P (E), there must exist some a′1 ∈ A∗ (λ1) for some λ1 ∈ [0, 1]

such that e (a′1) = e (a1). That implies that

eλ1 (a1) = eλ1 (a′1) ≤ eλ1 (a)

for all a ∈ A so a1 ∈ A∗ (λ1). Note that a1 ∈ A∗ (λ1) and ā ∈ A∗ (λ) are on the boundary

of A. Since a2 is also on the boundary of A, by continuity, we can find some λ2 between λ1

and λ such that e (a2) ∈ A∗δ2 (λ2). This implies e (a2) ∈ P (E) as desired.

O.2. Proof of Claim 1. Since X is binary-valued, each algorithm can be identified with a

pair (p0, p1) denoting the respective probabilities with which X = 0 and X = 1 are mapped

into d = 1. From the proof of Lemma A.1, we know that the feasible set is a polygon whose

vertices are the error rates derived from the deterministic algorithms (0, 0), (0, 1), (1, 0), and

(1, 1). Moreover,

|E(d = 1 | G = r)− E(d = 1 | G = b)| = |(αrp0 + (1− αr)p1)− (αbp0 + (1− αb)p1|

= |(αr − αb)(p0 − p1))|

where αg := P(X = 0 | G = g). So unfairness is minimized (and achieves the value zero)

by setting p0 = p1. Thus FX is the Pareto set of the line from the (1, 1) vertex to the (0, 0)

vertex of the polygon.

Suppose ar0 = ab0 and ar1 = ab1 with distinct values. Then the deterministic algorithm

(p0, p1) = (ar0, ar1) ∈ {(0, 1), (1, 0)} maximizes accuracy for both groups. The corresponding

vertex is simultaneously rX and bX , so it is also the Pareto set P(E). But this point does

not intersect the line from (0, 0) to (1, 1), so FX does not belong to P(E) (see Figure 13 for

an example). We thus have the claim in one direction.

In the other direction, suppose first that ar0 = ab0 = ar1 = ab0. In this case, (p0, p1) =

(ar0, ar1) ∈ {(0, 0), (1, 1)} is simultaneously rX , bX , and FX , as depicted in Panel (a) of

Figure 14. Clearly FX ∈ P(E).
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(0,0)

(1,0)

er

eb

(0,1)

(1,1)

Figure 13. X fails generalized group balance. The fairness-accuracy set is the shaded
green area. In this example, rX = bX = (0, 1) while FX is the line from (0, 0) to (1, 1).

In all remaining cases, rX is different from bX , so the Pareto set P(EX) includes at least

one non-degenerate line segment. This line segment must include at least one of the vertices

(0, 0) and (1, 1). See Panels (b)-(d) of Figure 14 for the possible configurations. So the

Pareto set intersects the line connecting (1, 1) and (0, 0), and FX is precisely this point of

intersection. Thus FX ∈ P(E), completing the argument.

O.3. General Fairness Criteria. In this section, we consider the general case where fair-

ness is evaluated using |φ (er)− φ (eb)| for some strictly increasing continuous function φ.

For instance, if φ is log, then this reduces to using the ratio of error rates as a measure of

fairness. The characterization of the fairness-accuracy frontier remains the same except the

fairness optimal point fX may now be different. Whether it expands or contracts depends

on the curvature of φ as the following proposition demonstrates.59

Proposition O.2. Let F ′X denote the fairness-accuracy frontier where fairness is evaluated

using

|φ (er)− φ (eb)|

for strictly increasing φ : R→ R. Then

(1) FX = F ′X if X is group-balanced

(2) FX ⊆ F ′X if X is group-skewed and φ in concave

(3) FX ⊇ F ′X if X is group-skewed and φ in convex

59We assume that the accuracy and fairness loss functions are the same but can generalize the results in this
section via the same methodology as in Section O.1.
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(1,1)

(0,0)

(1,0)

(0,1)

er

eb

er

eb

(0,1)

(1,1)

(0,0)

(1,0)

er

eb

(1,1)

(0,0)
(0,1)

(1,0)

er

eb

(1,1)

(0,0)
(0,1)

(1,0)

(b)(a)

(c) (d)

Figure 14. X satisfies generalized group balance. The fairness-accuracy set is the
shaded green area. In all cases, Fx = {fx} is a singleton. In Panel (a), rX = bX =
fX = (1, 1). In Panels (b) and (c), rX = fX = (1, 1) while bX = (0, 0). In Panel (d),
rX = (0, 1), fX = (1, 1), and bX = (1, 0).

Proof. Let EX and E ′X denote the feasible sets where fairness is defined using |er − eb| and

|φ (er)− φ (eb)| respectively. Let fX and f ′X denote the corresponding fairness optimal points.

First, note that if X is group-balanced, then by the same argument as Theorem 1, FX = F ′X
is the lower boundary from rX = r′X to bX = b′X .

Now, suppose X is r-skewed without loss. Let e and e′ correspond to fX and f ′X so

eb − er ≤ e′b − e′r
φ (e′b)− φ (e′r) ≤ φ (eb)− φ (er)
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First, suppose φ is concave. We will show that e′r ≥ er. Suppose by contradiction that

e′r < er so φ (e′r) < φ (er). Thus,

φ (e′b)− φ (eb) ≤ φ (e′r)− φ (er) < 0

so e′b < eb. Thus, we have e′r ≤ e′b < eb. Note that

e′b = λeb + (1− λ) e′r

where

λ :=
e′b − e′r
eb − e′r

We thus have

φ (eb)− φ (er) + φ (e′r) ≥ φ (e′b) = φ (λeb + (1− λ) e′r)

≥ λφ (eb) + (1− λ)φ (e′r)

(1− λ) (φ (eb)− φ (e′r)) ≥ φ (er)− φ (e′r)

(eb − e′b)
φ (eb)− φ (e′r)

eb − e′r
≥ φ (er)− φ (e′r)

where the second inequality follows from the fact that φ is concave. Since er − e′r ≥ eb − e′b,
this implies

φ (eb)− φ (e′r)

eb − e′r
≥ φ (er)− φ (e′r)

er − e′r
Since X is r-skewed, eb ≥ er > e′r. Since φ is concave, the above inequality must be satisfied

with equality. This means that

(eb − e′b)
φ (eb)− φ (e′r)

eb − e′r
≥ φ (er)− φ (e′r) = (er − e′r)

φ (eb)− φ (e′r)

eb − e′r
so eb − e′b = er − e′r or eb − er = e′b − e′r. But e corresponds to fX and since e′ achieves the

same fairness as e, it must be that er ≤ e′r. This contradicts our assumption that e′r < er.

Thus, e′r ≥ er and by the same argument characterizing the FA frontier as in Theorem 1,

FX ⊆ F ′X . The case for when φ is convex is symmetric. �

O.4. Adversarial Agents. We now consider the problem outlined in Section 4, when one

of the weights αr, αb is negative.60 Without loss, let αr > 0 > αb, reflecting an adversarial

agent who prefers for group b’s error to be higher. The first half of Lemma 1 extends fully.

60It is straightforward also to consider the case where both weights are negative, but we do not consider this
setting to be practically relevant.
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Lemma O.4. For every covariate vector X, E∗X = EX ∩H.

But the analogous equivalence for the FA frontier does not extend. Instead, similar to the

development of rX , bX , and fX , define

g∗X := arg min
e∈E∗X

eg

to be the feasible point in E∗X that minimizes group g’s error (breaking ties by minimizing

the other group’s error), and define

f ∗X := arg min
e∈E∗X

|er − eb|

to be the point that minimizes the absolute difference between group errors (breaking ties

by minimizing either group’s error).

Definition O.7. Covariate vector X is:

• input-design r-skewed if er < eb at r∗X and er ≤ eb at b∗X

• input-design b-skewed if eb < er at b∗X and eb ≤ er at r∗X

• input-design group-balanced otherwise

The proof for Theorem 1 applies for any compact and convex feasible set, and so directly

implies:

Theorem O.2. The input-design fairness-accuracy (FA) frontier F∗X is the lower boundary

of the input-design feasible set E∗X between

(a) r∗X and b∗X if X is input-design group-balanced

(b) g∗X and f ∗X if X is input-design g-skewed

We can use this characterization to extend our result from Section 4.3.2.

Definition O.8. X is strictly input-design-group-balanced if er < eb at r∗X and eb < er at b∗X .

Proposition O.3. Suppose αr > 0 > αb and X is strictly input-design group-balanced. Then

excluding G over X uniformly worsens the frontier.

This result says that, perhaps surprisingly, even if the agent choosing the algorithm has

adversarial motives against one of the groups, the designer may still prefer to send informa-

tion about group identity. The notion of group-balanced covariate vectors, suitably adapted
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to the input design setting, again serves as a sufficient condition for uniform worsening of

the frontier when excluding G.

Proof. By assumption that X is strictly input-design group-balanced, the input-design FA

frontier given X is the lower boundary of E∗X from r∗X to b∗X , which consists of negatively

sloped edges. We will show that every point on this frontier is FA-dominated by some point

in E∗X,G.

If this point (er, eb) is distinct from b∗X and r∗X , then we claim that for sufficiently small

positive ε, the point (er − ε, eb − ε) belongs to E∗X,G. Indeed, (er − ε, eb − ε) belongs to the

unconstrained feasible set EX,G because this feasible set is a rectangle, and er − ε, eb − ε are

within the minimal and maximal group errors achievable given X. Moreover, (er, eb) must

have smaller group-r error and larger group-b error compared to b∗X , which means the same

is true for (er − ε, eb − ε). Since αr > 0 > αb, the point (er − ε, eb − ε) must belong to

H given that b∗X does. Hence when (er, eb) differs from b∗X and r∗X , it is FA-dominated by

(er − ε, eb − ε) ∈ E∗X,G.

Suppose now that (er, eb) = b∗X . Then by similar argument it is FA-dominated by (er −
ε, eb) ∈ E∗X,G. Finally if (er, eb) = r∗X , then it is FA-dominated by (er, eb − ε) ∈ E∗X,G. In all

these cases the FA frontier uniformly worsens when excluding G, completing the proof. �

O.5. Fairness Criteria in the Literature. We review here certain fairness criteria that

have appeared in the literature, and explain how these criteria can be accommodated within

our framework.

O.5.1. Statistical Parity. This criterion seeks equality in decisions, namely that the propor-

tion of either group receiving the two decisions is the same (Dwork et al., 2012). Formally,

an algorithm a satisfies statistical parity if

E(a(X) = 1 | G = r)− E(a(X) = 1 | G = b) = 0

The loss function

`(d, y) =

{
1 if d = 1

0 otherwise

returns a relaxed version of this criterion, since

eg(a) = E [`(a(X), Y ) | G = g] = E [a(X) = 1 | G = g]
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so |er(a)− eb(a)| is the absolute difference in the probability that a group-r individual and

a group-b individual receive the decision d = 1.

O.5.2. False Positives. Another common fairness criterion is equality of false positives across

two groups (Angwin and Larson, 2016; Chouldechova, 2017; Kleinberg et al., 2017). For

example, among borrowers who would not have defaulted on their loan if approved, prediction

of default should be equal across the two groups. Formally, an algorithm a satisfies equality

of false positive rates if

P(a(X) = 1 | Y = 0, G = r)− P(a(X) = 1 | Y = 0, G = b) = 0

To see how we can accommodate this, consider the group-dependent loss function

`g (d, y) =
1 {d = 1, y = 0}
P (Y = 0|G = g)

,

In this case, we obtain

eg (a) =
P (a (X) = 1, Y = 0|G = g)

P (Y = 0|G = g)

=
P (a (X) = 1, Y = 0, G = g)

P (Y = 0, G = g)

= P (a (X) = 1|Y = 0, G = g)

is the false-positive rate for group g, and so |er(a)− eb(a)| is the absolute difference in false

positive rates. A fairness criterion based on the difference in false negative rates can be

accommodated similarly.

An alternative (unconditional) false positive rate would be equalizing

P(a(X) = 1, Y = 0 | G = r)− P(a(X) = 1, Y = 0 | G = b) = 0

This is achieved by setting the loss function

`(d, y) =

{
1 if (d, y) = (1, 0)

0 otherwise

since in this case

eg(a) = E [`(a(X), Y ) | G = g] = P [a(X) = 1, Y = 0 | G = g] .
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O.5.3. Equalized Odds. Another popular fairness criterion asks for equalized odds (Hardt

et al., 2016), which an algorithm a satisfies if

(O.2) EY [EX [a(X) | G = r, Y ]− EX [a(X) | G = b, Y ]] = 0

The inner difference compares the average decision for group-r and group-b individuals who

share the same type Y , and the outer expectation averages over those values of Y .

The group-dependent loss function

`(d, y, g) =

{
P (Y=y)

P (Y=y|G=g)
if d = 1

0 otherwise

returns a relaxed version of this criterion, since

E[`(d, y, g) | G = r] = P (Y = 0 | G = r)× E
[

P (Y = 0)

P (Y = 0 | G = r)
× 1(d = 1) | G = r, Y = 0

]
+ P (Y = 1 | G = r)× E

[
P (Y = 1)

P (Y = 1 | G = r)
× 1(d = 1) | G = r, Y = 1

]
= P (Y = 0)× E[1(d = 1) | G = r, Y = 0]

+ P (Y = 1)× E[1(d = 1) | G = r, Y = 1]

so |E[`(a(X), Y,G) | G = r] − E[`(a(X), Y,G) | G = b]| is exactly the LHS of (O.2). As

discussed in footnote 13, all of our results hold also for this group-dependent loss function.


