Lifetime Trajectories and Drivers of Socioeconomic Health Disparities: Evidence from Longitudinal Biomarkers in the Netherlands

Ailun Shui¹ Gerard J.van den Berg^{1,2} Jochen Mierau^{1,2,3} Laura Viluma¹

¹University of Groningen

²University Medical Center Groningen

³Lifelines

Jan 9, 2025

Introduction

2 Data

3 Allostatic Load and Chronic Disease

- 4 Socioeconomic Health Disparities over the Life Cycle
- 5 Drivers of Allostatic Load over the Lifecycle

6 Conclusion

- Substantial health disparities exist over the lifespan and across the individuals:
 - Reducing the health gap is a common goal.
- Many existing studies measuring health disparities use metrics such as mortality or self-rated health:
 - Mortality often becomes apparent only later in life,
 - Self-rated health is inherently subjective and non-specific.
- Limited knowledge exists regarding health disparities before they are clinically diagnosed.

Mortality rate by age and current income in the NL

Absolute mortality rate

Source: Van Kippersluis et al., 2010

- Biomarkers are objective, quantifiable indicators of biological processes.
- The dynamic of biomarkers is often linked to the aging process, onset of diseases, and mortality.
- Biomarkers provide objective measures and can indicate medical conditions before a clinical diagnosis is reached.
- Offer policy insights for early interventions before diseases fully develop.

Sketch of Literature

- Socioeconomic health disparities:
 - Morbidity (Cutler & Lleras-Muney, 2006; Kivimäki et al., 2020; Pallesen et al., 2024; Danesh et al., 2024)
 - Mortality/life expectancy (Deaton, 2003; Van Kippersluis et al., 2010; Chetty et al., 2016)
 - Self-rated health (Van Kippersluis et al, 2010; Van Ooijen et al., 2015)
- Biomarkers and allostatic load
 - Health disparities in biomarkers (Kavanagh et al., 2010; Davillas & Jones, 2020)
 - Allostatic load (Seeman et al., 2004; Carrieri et al., 2020)
- The determinants of health disparities
 - Health-related behaviors and lifestyles (Adler & Stewart, 2010; Suvarna et al., 2020; Danesh et al., 2024)
 - Early-life conditions (Van den Berg et al. 2010; Alessie et al., 2019)
 - Environmental exposure (Danesh et al., 2024) ,

Research questions and contribution

- Research questions:
 - Do patterns in biomarkers predict the onset of chronic disease burden?
 - Is the socioeconomic health gap already visible in biomarkers at lower ages?
 - To what extent are those biomarkers driven by modifiable (lifestyle) factors?
- Additional contributions:
 - Leverages large-scale biomarker data to examine the biological health prior to reaching the diagnosis.
 - Employs objective measurements to analyze socioeconomic health disparities across the life cycle.

Overview of the Dutch Lifelines cohort study and biobank

- A large-scale longitudinal cohort study conducted in the northern Netherlands:
 - More than 167,000 participants at baseline in 2006, representing approximately 10% of the population,
 - Currently includes 3 waves of biomarker measurements,
 - Participants range in age from 18 to over 80 years,
 - Includes family connections.
- Repeated measures of various biomarkers, including:
 - Anthropometry (e.g., body measurements)
 - Blood pressure
 - Electrocardiogram (ECG)
 - Biomaterial collection (fasting blood and urine)
 - Lung function
- Comprehensive survey data:
 - Demographic and socioeconomic status.
 - Health-related behaviors.
 - Information on diseases, medication use, and mortality.

- Concept: Allostatic load measures the cumulative dysregulation of physiological systems in response to social and environmental stress (Seeman et al., 1997, 2004).
- We create an index based on 12 biomarkers:
 - Cardiovascular system (n=3): systolic blood pressure, diastolic blood pressure, ECG heart rate.
 - Metabolic system (n=8): body mass index, waist-to-hip ratio, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, glycosylated hemoglobin, glucose, triglycerides.
 - Kidney function (n=1): creatinine.

• Clinically established threshold cut points are applied for each biomarker.

$$ALI_{i,a} = \sum_{k=1}^{12} I_{i,a}^k \tag{1}$$

- Where:
 - $I_{i,a}^k$ is a binary variable indicating whether the level of biomarker k in individual i at age a is above the threshold.
 - ALI_{i,t} is the allostatic load index.
- Higher ALI scores indicate greater physiological stress.

Allostatic load index and aging-related chronic disease index

Regression analysis

	Regression Res	sults of Chro	nic Disease	on Allostati	c Load		
	25	25-34		35-44		45-54	
	(1)	(2)	(1)	(2)	(1)	(2)	
ALI	0.024***		0.048***		0.056***		
	(0.004)		(0.003)		(0.002)		
ALI_{a-t}		0.033***		0.051***		0.070***	
		(0.005)		(0.003)		(0.003)	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	8,287	8,287	20,789	20,789	40,046	40,046	
R-squared	0.019	0.025	0.027	0.037	0.027	0.041	
		55-64		65-74			
		(1)	(2)	(1)		(2)	
ALI		0.068***		0.075*** (0.005)			
		(0.004)					
ALI_{a-t}			0.086***			0.072***	
			(0.004)			(0.006)	
Controls		Yes	Yes	Yes		Yes	
Observations		30,120	30,120	16,89	98	16,898	
R-squared		0.041	0.057	0.03	1	0.039	

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Controls are age, age squared, gender, cohort, urban, province, and survey year.

イロン 不聞 とくほとう ほとう

12 / 21

2

Educational allostatic load disparities by age and gender

The gender gap in biomarkers at ages below 30

(1)	(2)	(3)				
Model 1	Model 2	Model 3				
-0.112***	-0.090***	-0.092***				
(0.006)	(0.006)	(0.006)				
	0.062***					
	(0.002)					
		0.071***				
		(0.001)				
Yes	Yes	Yes				
120,083	120,083	120,083				
0.159	0.159	0.160				
	(1) Model 1 -0.112*** (0.006) Yes 120,083 0.159	Yes Yes Yes 120,083 120,083 0.159 0.159				

Regression Results of Testing the Role Allostatic Load as a Medicator of Educational Differnece in Aging-Related Chronic Disease

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Controls are age, age squared, gender, cohort, urban, province, and survey year.

э

• We employ a linear regression for different 10-year age bins:

$$ALI_{i,a} = \sum_{j=1}^{J} X_{i,a}^{j} \gamma_{j,a} + \epsilon_{i,a}$$
⁽²⁾

• Where:

- ALI_{i,a} is the level of the current allostatic load index,
- $X_{i,a}^{j}$ is a vector of factors, including health behaviors, educational attainment, employment status, and neighborhood SES.
- Then, we decompose the total R-squared of this regression based on Shapley-Owen values (Huettner & Sunder, 2012):-
 - This method calculates the average contribution of each regressor to R-squared among all possible regression sequences.

The decomposition results

A. Females

The decomposition results

B. Males

- Biomarker-related health risks emerge early in adulthood, preceding aging-related chronic disease.
- Biomarker-related socioeconomic health disparities emerges early in adulthood, widens with age, and peaks in late middle age.
- Health behaviors play an important role in allostatic load.
- There are clear gender differences in the life cycle pattern and drivers of biomarker-related risks.
- Robustness analysis shows that using parental education gives rise to qualitatively similar findings.

- Limitations:
 - The results may be influenced by the number and types of biomarkers we selected.
 - The current analysis does not account for time-varying confounders.
 - The analysis does not consider the impact of factors such as environmental exposure and early life conditions in the decomposition analysis.
- Next Steps:
 - Future analyses will focus on accounting for confounders in the analysis:
 - We aim to capture biological aging speed based on our dynamic biomarkers.

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?