Seth Benzell Chapman University Stanford University Erik Brynjolfsson Stanford University NBER Ruyu Chen Stanford University

NBER Megafirms and the Economy Cambridge, Fall 2024

Introduction: Scalability and Firm Size

- CEO's tasks can be decomposed into two parts (Baker and Hall, 2004):
 - **'Scalable'** part: marginal product of the task increases with firm size
 - *Example:* CEO decides firm will adopt a GenAI tool
 - **'Non-scalable'** part : additive, marginal product of the task not increase with firm size
 - *Example:* CEO redecorates office

Introduction: Scalability and Firm Size

- CEO's tasks can be decomposed into two parts (Baker and Hall, 2004):
 - **'Scalable'** part: marginal product of the task increases with firm size
 - *Example:* CEO decides firm will adopt a GenAI tool
 - 'Non-scalable' part : additive, marginal product of the task not increase with firm size
 - *Example:* CEO redecorates office
- Gabaix and Landier (2008) find CEO compensation increases about 20% with doubling of firm size.
 - CEO's marginal product is proportional to firm size
 - In a competitive market, CEO's compensation reflect their marginal product

Introduction: Scalability and Firm Size

In theory, all occupations conduct these two types of tasks. But the ratios may vary.

Occupations	Scalable tasks	Non-scalable tasks
Salespersons	Closing a large B2B sales	Checkout at the counter
Doctors	Writing a guide for residents	Treating a patient
Factory Workers	Discovering a dangerously faulty part	Installing a windshield

MOTIVATION ○●○○○

Research Questions

- Do occupations beyond CEO experience wage scaling?
- If so, which jobs scale and why?
 - Ranking of worker
 - Top vs. median
 - Nature of tasks
 - Type of technology

What we do

- Our unique data allows us to split wage scaling with size by occupational characteristics for the first time.
 - The "large-firm wage premium" was first identified in (Moore 1911)
 - More recently, Song et al. (2018) and Autor et al. (2020) explore effects on inequality and the labor share

What we do

- Our unique data allows us to split wage scaling with size by occupational characteristics for the first time.
 - The "large-firm wage premium" was first identified in (Moore 1911)
 - More recently, Song et al. (2018) and Autor et al. (2020) explore effects on inequality and the labor share
- Analyze a large-scale, high-frequency administrative payroll dataset of over 15 million U.S. workers of 898 occupations 2017-2023.

What we do

- Our unique data allows us to split wage scaling with size by occupational characteristics for the first time.
 - The "large-firm wage premium" was first identified in (Moore 1911)
 - More recently, Song et al. (2018) and Autor et al. (2020) explore effects on inequality and the labor share
- Analyze a large-scale, high-frequency administrative payroll dataset of over 15 million U.S. workers of 898 occupations 2017-2023.
- Measure how wages scale with firm size and across occupations, jobs, and industries

MOTIVATIO 00000 Empirical Strategy and Re

What we find

- 1. Wages across all occupations increase by 8.6% on average in a firm twice as large
- 2. Wages for the highest-paid workers in a given firm-occupation-year scale with firm size by 16.9%

What we find

- 1. Wages across all occupations increase by 8.6% on average in a firm twice as large
- 2. Wages for the highest-paid workers in a given firm-occupation-year scale with firm size by 16.9%
- 3. Large variations in how wages scale with firm size.
 - Stronger scaling among occupations that are intensive in abstract tasks, leadership and decision making roles
 - Weaker scaling in occupations intensive in routine and manual tasks
- 4. Firms with more intensive IT investment in previous years

What we find

- 1. Wages across all occupations increase by 8.6% on average in a firm twice as large
- 2. Wages for the highest-paid workers in a given firm-occupation-year scale with firm size by 16.9%
- 3. Large variations in how wages scale with firm size.
 - Stronger scaling among occupations that are intensive in abstract tasks, leadership and decision making roles
 - Weaker scaling in occupations intensive in routine and manual tasks
- 4. Firms with more intensive IT investment in previous years
- 5. Results are robust for establishment vs. firm size; including firm-fixed effects, individual fixed effects; and using job-level features

1 Motivation

2 Theoretical Framework

3 Data

4 Empirical Strategy and Results

5 Conclusion

MOTIVATION 00000

• Informational economy of scale:

- Innovation
- Span-of-control

• O-Ring-Style Complementarity:

• Production functions heavily dependent on the quality of the weakest link input.

• Informational economy of scale:

• Innovation:

MOTIVATION 00000

• Informational economy of scale:

- Innovation:
 - Workers in R&D, engineering and creative positions
 - New trade secrets, branding designs, or production processes (example: patents, manuals, prototypes, software programs, etc.)

• Informational economy of scale:

- Innovation:
 - Workers in R&D, engineering and creative positions
 - New trade secrets, branding designs, or production processes (example: patents, manuals, prototypes, software programs, etc.)
- Span-of-control:
 - Positions requiring leadership or decision-making skills; higher-wage earners in their occupation-firm group.
 - The employees and divisions of the firm that a worker can directly command, guide, or otherwise help or hinder in their pursuit of company goals (Drucker, 2007)

• Informational economy of scale:

- Innovation:
 - Workers in R&D, engineering and creative positions
 - New trade secrets, branding designs, or production processes (example: patents, manuals, prototypes, software programs, etc.)
- Span-of-control:
 - Positions requiring leadership or decision-making skills; higher-wage earners in their occupation-firm group.
 - The employees and divisions of the firm that a worker can directly command, guide, or otherwise help or hinder in their pursuit of company goals (Drucker, 2007)

Theories Driving Task Scalability

• O-Ring-Style Complementarity:

- Production functions heavily dependent on the quality of the weakest link input.
- If the most complex firms are the most productive, then all workers might have very high marginal products.

Empirical Strategy and Result

A worker's log wage in firm i, of size S_i , is the sum of their marginal product in scalable and non-scalable tasks:

A worker's log wage in firm i, of size S_i , is the sum of their marginal product in scalable and non-scalable tasks:

$$log(w_{i,j,o,t}) = log(S_{i,t})C_{i,o,p}T_{i,j,o} + D_{o,i,t}$$
(1)

- *o*: the occupation type
- *j*: the individual potential job/worker
- $T_{i,j,o}$: the individual's talent
- $C_{i,o,p}$: how complementary the talent is to firm size for this occupation
- p: skill percentile the worker is in at their occupation at the firm.
- $D_{o,t}$: the average *direct* contribution to output of a worker at a given occupation and time to a firm of size 0.

That model motivates the following reduced form regression:

$$log(w_{i,j,o,t}) = \beta log(S_{i,t}) + \eta X_{o,i,j,t} + \alpha$$
(2)

This regression asks how wage in a firm scales with firm size after controlling for a vector of fixed effects $X_{o,i,t}$. We sometimes restrict attention to specific occupation o or firm-occupation wage percentiles p.

MOTIVATION 00000 Empirical Strategy and Result

That model motivates the following reduced form regression:

$$log(w_{i,j,o,t}) = \beta log(S_{i,t}) + \eta X_{o,i,j,t} + \alpha$$
(2)

This regression asks how wage in a firm scales with firm size after controlling for a vector of fixed effects $X_{o,i,t}$. We sometimes restrict attention to specific occupation o or firm-occupation wage percentiles p.

We also investigate interactions between job characteristics and firm size in predicting wage

$$log(w_{i,j,o,t}) = \beta_0 log(S_{i,t}) + \eta Y_{o,i,j,t} + \beta_1 Y_{o,i,j,t} log(S_{i,t}) + \alpha$$
(3)

- Y: job characteristic that might effect scalability
- β_1 : how much stronger or weaker scaling is for occupations with the characteristics Y

EMPIRICAL STRATEGY AND R.

1 Motivation

2 Theoretical Framework

3 Data

4 Empirical Strategy and Results

5 Conclusion

MOTIVATION

Data

• ADP Payroll Data:

- One of the world's leading payroll processing firms
- Covers about 20% of the U.S. workforce
- Key variables:
 - Monthly total taxable income for each employee
 - 6-digit O*NET occupation code and job description; 2-digit NAICS industry code
 - Zip code of employees and establishments

MPIRICAL STRATEGY AND RESULT

Data

• ADP Payroll Data:

- One of the world's leading payroll processing firms
- Covers about 20% of the U.S. workforce
- Key variables:
 - Monthly total taxable income for each employee
 - 6-digit O*NET occupation code and job description; 2-digit NAICS industry code
 - Zip code of employees and establishments

• Sample Selection:

- Full-time workers with above minimum wage, aged 18-70
- Firms with at least 10 employees, 2017-2023
- Over 15 million employees, 128,376 unique firms, about 75k - 77k firms every year, 36,049 firms in the balanced sample
- Analysis conducted at the *occupation-firm-year* level
- Approximately 11 million observations

• Additional Data Sources:

- Over 200 O*NET descriptors
 - Work context impact of decisions on co-workers or company results, etc.
- Business Dynamics Statistics (BDS) dataset
 - Number of firms/establishments at the 2-digit NAICS level as the weight for regression

DATA

MPIRICAL STRATEGY AND RESULT

Baseline Empirical Strategy

Complementarity between skill and size motivates:

 $log(Wage_{j,i,t}) = \alpha + \beta log(Size_{i,t}) + Fixed \ Effects + \varepsilon_{j,i,t} \quad (4)$

- $log(Wage_{j,i,t})$: An occupation-firm-year measure of wage for:
 - Highest-paid worker
 - Median worker
 - Workers at other percentiles
- $log(Size_{j,i,t})$: An occupation-firm-year measure of firm size
 - Firm payroll
 - Firm employment
- Year, 2-digit NAICS industry, and occupation fixed effects depending on specification

Baseline Results

- Positive scaling for all size measures
- Stronger scaling for highest-paid workers than median workers

	(1)	(2)	(0)	
	(1)	(2)	(3)	(4)
	log(wages fo	or highest-paid workers)	log(wages fo	r median workers)
Log of firm payroll size	0.169^{***} (0.001)		0.086^{***} (0.001)	
Log of firm employment size		0.132^{***} (0.001)		0.041^{***} (0.001)
Observations	9,606,243	9,606,243	9,606,243	9,606,243
$Adj.R^2$	0.495	0.448	0.473	0.446
Year FE	Y	Y	Y	Y
2-digit NAICS FE	Y	Y	Y	Y
O*NET occupational FE	Y	Y	Y	Y

MOTIVATION

THEORETICAL FRAM

Data oo Empirical Strategy and Results

CONCLUSION

Baseline Results

Stronger positive scaling for workers at higher wage percentile in their firm-occupation

Scaling for Selected Occupations - Highest-paid workers

Horizontal lines indicate 95% confidence intervals

MOTIVATION

Theoretical Framewo

MEWORK D

Empirical Strategy and Results

CONCLUSION O

Scaling for Selected Occupations - Median workers

Horizontal lines indicate 95% confidence intervals

Empirical Strategy and Results

What Characteristics Drive Scaling?

$$\log(Wage_{ijsmt}) = \alpha + \beta_0 \log(Size_{ismt}) + \eta OccChar_j + \beta_1 \log(Size_{ismt}) \times OccChar_j + \delta_t + \mu_s + \varepsilon_{ijsmt}$$
(5)

$\bullet \ OccChar$ is some characteristic of the occupation-firm-year

- Belonging to a specific occupation
- The IT exposure of the firm or industry
- Occupational or job-level characteristics

We're primarily interested in β_1 , which reports the effect of an occupational characteristic on scaling.

Scaling as a Function of Occupational Task Type

· · · · · · · · · · · · · · · · · · ·	(1)	(2)	(3)	(4)
Panel A: Log of Wages for highest-paid Workers				
Log of firm size	0.174***	0.134***	0.220***	0.194***
Log of firm size \times Abstract task score	(0.001)	(0.001) 0.085*** (0.002)	(0.001)	(0.001)
Log of firm size \times Routine task score		()	-0.157*** (0.001)	
Log of firm size \times Manual task score			(0.001)	-0.287^{***} (0.004)
Observations	9,974,733	9,673,093	9,673,093	9,673,093
$Adj.R^2$	0.492	0.497	0.501	0.497
Panel B: Log of Wages for Median Workers				
Log of firm size	0.086***	0.074***	0.102***	0.090***
Log of firm size \times Abstract task score	(0.001)	(0.001) 0.025*** (0.001)	(0.001)	(0.001)
Log of firm size \times Routine task score		· · /	-0.054***	
Log of firm size \times Manual task score			(0.001)	-0.053^{***} (0.003)
Observations	9,974,733	9,673,093	9,673,093	9,673,093
Adj.R ²	0.474	0.476	0.477	0.476
Year FE	Y	Y	Y	Y
2-digit INAICS FE O*NET occupational FE	Y V	Y V	Y V	Y V
O HET Occupational FE	1	1	1	1

Notes: "routine/manual/abstract" categorization of Autor and Handel (2013)

OTIVATION	Theoretical Framework	Data	Empirical Strategy and Results	Conclusion
0000	00000	00	00000000000000	0

Scaling as a Function of Occupational Task Type

		, .		
	(1)	(2)	(3)	(4)
Panel A: Log of Wages for highest-paid Workers				
Log of firm size	0.174^{***} (0.001)	0.134^{***} (0.001)	0.220^{***} (0.001)	0.194^{***} (0.001)
Log of firm size \times Abstract task score	(0.002)	0.085*** (0.002)	(0.002)	(0.002)
Log of firm size \times Routine task score		. ,	-0.157***	
Log of firm size \times Manual task score			(0.001)	-0.287*** (0.004)
Observations $\operatorname{Adj} . R^2$	$9,974,733 \\ 0.492$	$9,673,093 \\ 0.497$	$9,673,093 \\ 0.501$	$9,673,093 \\ 0.497$
Panel B: Log of Wages for Median Workers				
Log of firm size	0.086***	0.074***	0.102***	0.090***
Log of firm size \times Abstract task score	(0.001)	(0.001) 0.025*** (0.001)	(0.001)	(0.001)
Log of firm size \times Routine task score		· · /	-0.054***	
Log of firm size \times Manual task score			(0.001)	-0.053^{***} (0.003)
Observations	9,974,733	9,673,093	9,673,093	9,673,093
$Adj.R^2$	0.474	0.476	0.477	0.476
Year FE	Y	Y	Y	Y
2-digit NAICS FE	Y	Y	Y	Y
O"NET occupational FE	Ŷ	Y	Ŷ	Y

Notes: "routine/manual/abstract" categorization of Autor and Handel (2013)

OTIVATION [Theoretical Framework	Data	Empirical Strategy and Results	Conclusion
0000	00000	00	00000000000000	0

Scaling as a Function of Occupational Task Type

· · ·				
	(1)	(2)	(3)	(4)
Panel A: Log of Wages for highest-paid Workers				
Log of firm size	0.174***	0.134***	0.220***	0.194***
	(0.001)	(0.001)	(0.001)	(0.001)
Log of firm size × Abstract task score		(0.002)		
Log of firm size \times Routine task score			-0.157***	
Log of firm size \times Manual task score			(0.001)	-0.287***
				(0.004)
Observations	9,974,733	9,673,093	9,673,093	9,673,093
$\operatorname{Adj} R^2$	0.492	0.497	0.501	0.497
Panel B: Log of Wages for Median Workers				
Log of firm size	0.086***	0.074***	0.102***	0.090***
	(0.001)	(0.001)	(0.001)	(0.001)
Log of firm size \times Abstract task score		(0.025^{***})		
Log of firm size \times Routine task score		. ,	-0.054***	
Log of firm size × Manual task score			(0.001)	-0.053***
	l			(0.003)
Observations	9,974,733	9,673,093	9,673,093	9,673,093
$Adj.R^2$	0.474	0.476	0.477	0.476
Year FE	Y	Y	Y	Y
2-digit NAICS FE	Y	Y	Y	Y
O*NET occupational FE	Y	Y	Y	Y

Notes: "routine/manual/abstract" categorization of Autor and Handel (2013)

MOTIVATION .	Theoretical Framework	Data	Empirical Strategy and Results	Conclusion
00000	00000	00	0000000000000	0

Scaling and Firm IT

- Firms with intensive IT investments experience stronger scaling
- But only among workers at higher wage percentiles

				-				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable is	Highest	99th	95th	90th	75th	Median	25th	1st
log of wages for:	paid							
Log of firm size	0.172^{***}	0.162^{***}	0.144^{***}	0.131^{***}	0.108^{***}	0.086^{***}	0.067^{***}	0.016^{***}
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
IT investment (lagged)	-2.172^{***}	-2.232***	-1.630^{***}	-1.137 * * *	-0.425	0.113	0.486^{*}	1.244^{***}
	(0.356)	(0.367)	(0.363)	(0.349)	(0.322)	(0.297)	(0.285)	(0.319)
$Log of firm size \times IT$	0.166^{***}	0.171^{***}	0.137^{***}	0.108^{***}	0.065^{***}	0.033^{*}	0.010	-0.035*
investment (lagged)	(0.022)	(0.023)	(0.023)	(0.022)	(0.020)	(0.018)	(0.018)	(0.020)
Observations	7.986.870	7.986.870	7.986.870	7.986.870	7.986.870	7.986.870	7.986.870	7.986.870
$Adj.R^2$	0.501	0.499	0.498	0.502	0.511	0.512	0.473	0.435
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
2-Digit NAICS FE	Y	Y	Y	Y	Y	Y	Y	Y
6-Digit O*NET FE	Y	Y	Y	Y	Y	Y	Y	Y

"IT Workers" are any employee in the "Computer and Mathematical" family of occupations;

"IT Developers" are Computer Programmers, Software Developers, and Web Developers

OTIVATION	Theoretical Framework	DATA	Empirical Strategy and Results	Conclusion	21/29
0000	00000	00	0000000000000	0	/-0

Scaling and Firm IT

- Firms with intensive IT investments experience stronger scaling
- But only among workers at higher wage percentiles

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable is	Highest	99th	95th	90th	75th	Median	25th	1st
log of wages for:	paid							
Log of firm size	0.172^{***}	0.162^{***}	0.144^{***}	0.131^{***}	0.108^{***}	0.086^{***}	0.067^{***}	0.016^{***}
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
IT investment (lagged)	-2.172^{***}	-2.232^{***}	-1.630^{***}	-1.137 * * *	-0.425	0.113	0.486^{*}	1.244^{***}
	(0.356)	(0.367)	(0.363)	(0.349)	(0.322)	(0.297)	(0.285)	(0.319)
$Log of firm size \times IT$	0.166^{***}	0.171^{***}	0.137^{***}	0.108^{***}	0.065^{***}	0.033^{*}	0.010	-0.035*
investment (lagged)	(0.022)	(0.023)	(0.023)	(0.022)	(0.020)	(0.018)	(0.018)	(0.020)
Observations	7,986,870	7,986,870	7,986,870	7,986,870	7,986,870	7,986,870	7,986,870	7,986,870
$Adj.R^2$	0.501	0.499	0.498	0.502	0.511	0.512	0.473	0.435
Year FE	Y	Y	Y	Y	Y	Y	Y	Y
2-Digit NAICS FE	Y	Y	Y	Y	Y	Y	Y	Y
6-Digit O*NET FE	Y	Y	Y	Y	Y	Y	Y	Y

"IT Workers" are any employee in the "Computer and Mathematical" family of occupations;

"IT Developers" are Computer Programmers, Software Developers, and Web Developers

OTIVATION	Theoretical Framework	Data	Empirical Strategy and Results	Conclusion	21/29
0000	00000	00	00000000000000	0	/

What Characteristics Drive Scaling?

For the remainder we focus on

- Wage = highest-paid wage in a given occupation-firm-year
- Size = Firm payroll

OTIVATION

R&D and creative workers

• Occupations in the creative, science, and engineering fields do not see much difference in scaling with firm size

Dependent variable is the	(1)	(2)	(3)
log of wages for highest-paid workers		. ,	
Log of firm size	0.137^{***}	0.138^{***}	0.137***
	(0.001)	(0.001)	(0.001)
R&D workers	0.060^{**}		
	(0.030)		
$Log of firm size \times R\&D workers$	0.003^{*}		
	(0.002)		
Creative workers		-0.226^{***}	
		(0.034)	
Log of firm size \times Creative workers		0.001	
		(0.002)	
Creative workers			-0.151^{***}
			(0.024)
Log of firm size \times R&D or creative workers			0.008***
			(0.001)
Observations	9,974,736	9,974,736	9,974,736
$Adj.R^2$	0.121	0.122	0.120
Year FE	Y	Y	Y
2-digit NAICS FE	Υ	Υ	Υ

MOTIVATION

Theoretical Framewo

Data oo CONCLUSION

R&D and creative workers

• Occupations in the creative, science, and engineering fields do not see much difference in scaling with firm size

Dependent variable is the	(1)	(2)	(3)
log of wages for highest-paid workers	(-)	(-)	(0)
Log of firm size	0.137^{***}	0.138^{***}	0.137^{***}
0	(0.001)	(0.001)	(0.001)
R&D workers	0.060**	· /	· · /
	(0.030)		
Log of firm size \times R&D workers	0.003*		
	(0.002)		
Creative workers		-0.226^{***}	
		(0.034)	
Log of firm size \times Creative workers		0.001	
		(0.002)	
Creative workers			-0.151^{***}
			(0.024)
Log of firm size \times R&D or creative workers			0.008^{***}
			(0.001)
Observations	0.074.726	0 074 726	0 074 726
Observations	9,974,730	9,974,730	9,974,730
Auj.a-	0.121	0.122	0.120
I CALLER FE	Y	Y V	r V
2-aigit NAIOS FE	ĭ	r	ľ

MOTIVATION

Cheoretical Framewor

Data 00 EMPIRICAL STRATEGY AND RESULTS

CONCLUSION

Scaling and O*NET Characteristics

Year and occupation fixed effects included.

MOTIVATION	Theoretical Framework	Data 00	Empirical Strategy and Results	Conclusion	24/
00000	00000	00	000000000000000000000000000000000000000	0	

29

Scaling, O*NET Characteristics, and IT

v , ,			
Dependent variable is the log of wages for highest-paid workers	(1)	(2)	(3)
Log of firm size	0.141***	0.216***	0.191***
IT investment (lagged)	(0.001) -4.620***	(0.001) -6.484***	(0.001) -7.197***
Log of firm size \times IT investment (lagged)	(0.675) 0.299^{***}	(0.556) 0.466^{***}	(0.564) 0.490^{***}
Log of firm size×Abstract task score	(0.042) 0.068^{***}	(0.035)	(0.035)
Abstract task score×IT investment (lagged)	(0.002) -0.317		
Log of firm size \times Abstract task score \times IT investment (lagged)	(0.778) 0.108**		
Log of firm size×Routine task score	(0.048)	-0.154***	
Routine task score×IT investment (lagged)		(0.002) 3.565^{***}	
${\rm Log~of~firm~size} \times {\rm Routine~task~score} \times {\rm IT~investment~(lagged)}$		(0.621) -0.235***	
Log of firm size×Manual task score		(0.038)	-0.278***
Manual task score×IT investment (lagged)			(0.004) 23.979***
Log of firm size $\times Manual$ task score $\times IT$ investment (lagged)			(2.220) -1.233*** (0.136)
Observations	7,847,602	7,847,602	7,847,602
Adj.R ²	0.502	0.507	0.503
Year FE	Y	Y	Y
2-Digit NAICS FE	Y	Y	Y
6-Digit O*NET FE	Y	Y	Y

Year and occupation fixed effects included.

MOTIVATION	
00000	

THEORETICAL FRAMEWO

EMPIRICAL STRATEGY AND RESULTS

CONCLUSION

Scaling, O*NET Characteristics, and IT

v , ,			v
Dependent variable is the log of wages for highest-paid workers	(1)	(2)	(3)
T	0.141***	0.916***	0.101***
Log of firm size	(0.001)	(0.001)	(0.001)
IT investment (lagged)	-4 620***	-6.484***	-7 107***
11 investment (lagged)	(0.675)	(0.556)	(0.564)
Log of firm size×IT investment (lagged)	0.299***	0.466***	0.490***
	(0.042)	(0.035)	(0.035)
Log of firm size×Abstract task score	0.068***	()	(,
	(0.002)		
Abstract task score×IT investment (lagged)	-0.317		
	(0.778)	_	
Log of firm size×Abstract task score×IT investment (lagged)	0.108**		
	(0.048)		
Log of firm size×Routine task score		-0.154^{***}	
		(0.002)	
Routine task score×IT investment (lagged)		3.565***	
		(0.621)	
Log of firm size \times Routine task score \times IT investment (lagged)		-0.235***	
I		(0.038)	0.079***
Log of firm size×manual task score			-0.278
Manual task score VIT investment (lagred)			23 070***
Manual task score×11 investment (lagged)			(2.220)
Log of firm size×Manual task score×IT investment (lagged)			-1.233***
nog of him bibo(framan cash booto(fr mrcoomone (mggod)			(0.136)
			(
Observations	7,847,602	7,847,602	7,847,602
Adj.R ²	0.502	0.507	0.503
Year FE	Y	Y	Y
2-Digit NAICS FE	Y	Y	Y
6-Digit O*NET FE	Y	Y	Y

Year and occupation fixed effects included.

MOTIVATION	Theoretical Framew	'ORK DATA	Eм
00000	00000	00	00

Empirical Strategy and Results 00000000000000

CONCLUSION

Robustness Checks

- Individual-level analysis
- Job feature- extract scores from text descriptions for 6,494 jobs
- Wage scaling with establishment size, with additional controls for local market (commuting zone)

Robustness 1: Individual-level Results

	(1)	(2)	(3)
log of wages for each worker	with	n Individual FE	2
Log of firm size	0.028^{***}	0.039^{***}	0.034^{***}
	(0.004)	(0.002)	(0.003)
$Log firm size \times Abstract task score$	0.026^{**}		
	(0.010)		
$Log firm size \times Routine task score$		-0.022^{***}	
		(0.003)	
Log firm size×Manual task score			0.001
			(0.009)
Num. obs.	169, 365, 043	169, 365, 043	169, 365, 043
$Adj. R^2$	0.630	0.630	0.630
O*NET FE:	Y	Y	Y
2-digit NAICS FE:	Y	Y	Y
Year FE:	Y	Υ	Υ
Individual FE:	Y	Y	Y

MOTIVATION 00000 THEORETICAL FRA

al Framework

DATA

WHICH JOBS SCALE AND WHY?

Robustness 1: Individual-level Results

	(1)	(2)	(3)
log of wages for each worker	with	h Individual FE	C
Log of firm size	0.028^{***}	0.039***	0.034^{***}
	(0.004)	(0.002)	(0.003)
Log firm size imes Abstract task score	0.026^{**}		
	(0.010)		
$Log firm size \times Routine task score$		-0.022^{***}	
		(0.003)	
Log firm size imes Manual task score			0.001
			(0.009)
Num. obs.	169, 365, 043	169, 365, 043	$1\overline{69}, 365, 043$
Adj. \mathbb{R}^2	0.630	0.630	0.630
O*NET FE:	Y	Y	Y
2-digit NAICS FE:	Y	Y	Υ
Year FE:	Y	Y	Y
Individual FE:	Y	Y	Y

MOTIVATION 00000 Theoretical Fr.

Framework

DATA

Empirical Strategy and Results 00000000000000

WHICH JOBS SCALE AND WHY?

Robustness 2: Job-level Features

- Extract job features from 6,949 distinct job titles and text descriptions
- Example prompt: To what extent are the negative consequences if someone makes a mistake in this job? (Answer 1-10)

WHICH JOBS SCALE AND WHY?

Conclusion

- 1. Most occupations, not just CEOs, scale with firm size
 - Significant heterogeneity in scalability
- 2. Stronger scaling:
 - Leadership and decision making occupations
 - Abstract task occupations
 - Top percentile workers in a firm-occupation
- 3. Weaker scaling:
 - Routine task occupations
 - Manual task occupations
 - Low-percentile workers
- 4. Little or no effects:
 - R&D workers
 - Creative workers

Conclusion

- 1. Most occupations, not just CEOs, scale with firm size
 - Significant heterogeneity in scalability
- 2. Stronger scaling:
 - Leadership and decision making occupations
 - Abstract task occupations
 - Top percentile workers in a firm-occupation
- 3. Weaker scaling:
 - Routine task occupations
 - Manual task occupations
 - Low-percentile workers
- 4. Little or no effects:
 - R&D workers
 - Creative workers
- 5. IT increase scaling directly and amplifies the above Interpretation:

Informational Economies of Scale are associated with wage scaling. O-ring complementarity appears to be less important

Motivation 00000