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Abstract

This paper studies the impact of employee output information disclosure through
GitHub on labor reallocation towards large firms. Github, which is the world’s
largest software management platform, tracks and publicly displays real-time individual
contributions. In 2016, a policy change enabled GitHub users to display their
contributions more accurately on their profiles. Following this update, employees
with 1 standard deviation higher GitHub contributions witnessed a 5% increase in job
transitions to large firms, predominantly at the expense of smaller companies. While
productive individuals left small firms for senior roles in larger companies, the latter
retained them through internal promotions. The departure of productive workers led to
an overall reduction in employment growth and productivity for small firms with more
productive employees prior to the shock. Our findings highlight the role of labor-related
big data in amplifying the dominance of large firms in recent years.
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1 Introduction

The past two decades have witnessed an unprecedented surge in the prominence of large firms

(Autor et al. (2020)), sparking a debate about the economic implications of this phenomenon

(De Loecker et al., 2020). Several studies have attributed this trend to changes in technology

(Crouzet and Eberly, 2018; Lashkari et al., 2018; Autor et al., 2020; Firooz et al., 2022;

Hsieh and Rossi-Hansberg, 2023) and the growing importance of online platforms and big

data (Veldkamp and Chung, 2024) in enhancing the product market power of large firms.

Our paper instead examines how large firms may benefit from the implications of these

technology-related trends on the labor market. Specifically, we argue that the abundance of

data made available via web-based platforms, which enable employees to provide real-time

output information, has implications for labor reallocation and, consequently, the growth of

large versus small firms.

The rise of internet-based platforms has revolutionized employee recruitment, with an

overwhelming majority of job seekers (over 80%) and employers (over 90%) now utilizing

them (Smith (2015); Bradshaw (2024)). Information on individual output available on

such platforms provides a signal on employee productivity. The impact of these signals on

labor reallocation is not clear ex-ante. On one hand, in the absence of other employee-level

information, employment at larger firms may serve as a signal of higher employee quality,

as these firms typically offer higher wages due to better worker quality and productivity

(Brown and Medoff (1989); Oi and Idson (1999); Troske (1999)). The introduction of new

productivity information may diminish the significance of job assignment and employer brand

as indicators of quality (Waldman (1984, 1990); Bernhardt and Scoones (1993)), enabling

productive employees to work at smaller firms. On the other hand, detailed signals may

help larger firms overcome adverse selection and recruit talented employees from smaller

firms (Greenwald (2018); Gibbons and Katz (1991)). Additionally, larger firms can invest

more significantly in obtaining such data, and better utilize them, due to economies of scale

(Brynjolfsson and McElheran (2016)).
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To empirically study this question, we focus on GitHub, a software management and

version control platform, used by over 100 million worldwide users and 200,000 firms in

the United States alone.1 Users and firms leverage GitHub to host their code and data in

repositories, fostering collaborative work through contributions from multiple users. GitHub

provides contributors the flexibility to choose the visibility of their repositories — whether

public, allowing anyone to view and download the code, or private, restricting access solely

to users within the same firm. GitHub’s unique feature is its public display of users’

contributions, including time stamps, turning it into a hub for recruiters seeking potential

employees.2 The large dimensionality and extensive public use make GitHub an ideal starting

point for studying how big data3 hosted by technology platforms impacts labor markets.

We identify the impact of information on individual output available on GitHub by

exploiting a quasi-natural experiment that changed users’ ability to signal their quality.

Prior to May 2016, the GitHub contribution calendar only displayed public contributions.

However, on May 19, 2016, GitHub introduced the option for users to include anonymized

private contributions on their profiles. Given these private contributions typically refer to

projects managed on Github by employers, the quantity of individuals’ private contributions

capture their productivity in their current firm. With this update, Github users could

instantaneously reveal the number of previously hidden private contributions, without

incurring any additional costs. Since revealing the number of private contributions could only

improve the profile of an individual at no cost, increasing their outside option, individuals’

rational response was to opt in and display their total contributions on their profiles.

We construct a novel database that integrates employee work history with individual

output to implement our research design. Employee work history is sourced from LinkedIn,

the largest online professional networking platform globally. We link this dataset to

1https://github.com/about and https://enlyft.com/tech/products/github.
2See https://arc.dev/hire-developers/github or https://www.toptal.com/github as examples of

how numerous third-party providers assist recruiters in sourcing candidates through GitHub.
3GitHub data meet all three criteria for big data as defined by Goldstein et al. (2021): they are large in

size (a compressed subset of GitHub repositories as of November 2020 was 21 TB in size https://archiv

eprogram.github.com/arctic-vault/), possess multiple dimensions, and have a complex layout.
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employees’ GitHub profiles, which provide records of their daily contributions. Our final

sample covers approximately 300,000 individuals and more than 36,000 firms in the U.S. We

develop a person-specific measure of output by employing an AKM model (Abowd et al.,

1999) on total pre-shock private contributions on GitHub. This is achieved by regressing total

private contributions on individual fixed effect, firm fixed effects and time-varying controls,

and using the individual component of contributions as our measure of employee output.

At the individual level, we examine whether information on employee-specific output

impacts the reallocation of employees between firms. We find that individuals with

1 standard deviation higher productivity increased their mobility to larger firms (those

employing over 1000 individuals), by 5% over the sample mean in our most robust

specification, after the GitHub policy change. The coefficients remain unchanged regardless

of granular dynamic employee and market controls, alleviating concerns of concurrent trends

influencing our results. Importantly, the lack of pre-trends in the eight quarters preceding the

change strengthens our confidence in attributing the observed impact to this specific event.

Moreover, the absence of any significant effects on a placebo sample, where individual output

is based on public contributions unaffected by the shock, helps alleviate concerns regarding

potential confounding factors. Another concern might be that only individuals looking to

move jobs choose to reveal their private contributions, biasing our results. However, our

results persist even within users who reveal their contributions and for whom we observe at

least one pre-period private contribution, thereby minimizing the likelihood of such bias.

In contrast to the increasing flow of talent towards large firms after the shock, individuals

with 1 standard deviation higher productivity are less likely to move to medium-sized firms

(those employing between 50 and 1,000 employees) by 5% relative to the sample mean, and

less likely to move to small firms (those employing 50 employees or less) by 6% relative to the

sample mean. These results are also robust to a dynamic analysis, which shows there are no

pre-trends prior to the GitHub policy change. Interestingly, when we estimate our baseline

specification by firm size buckets, we find that talent flow increases almost monotonically
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across size buckets from -8% at the 11-50 size bucket to a +7% at firms with more than

10,000 employees. As such, the largest gains are captured by the largest employers in the

economy, the so-called “superstar” firms.

Moreover, we examine where the talent flow to large firm originates from. Do we observe

reallocation of talent between large firms or are these gains to large firms at the expense of

smaller firms? Our results suggest that reallocation of talent within large firms drops, while

it is small and medium-sized firms who lose their talent to large firms. In economic terms,

the larger effects are seen amongst mobility from small firms, and less so from medium-sized

firms: individuals with 1 standard deviation higher productivity are more likely to move

from small (medium-sized) firms to large firms by 5% (4%) relative to the sample mean,

following the shock. Such moves from small/med-sized to large firms are associated with

career upgrades for talented employees, who move to more senior or higher-paying jobs in

large firms. In contrast, large firms do not lose their talented employees, but they promote

them, consistent with the fact that the outside option of talented employees increases after

the policy. Overall, treated employees experience career upgrades following the GitHub

policy change either by moving towards large firms or by getting promotions within large

firms.

We next test the idea that the reduction of information asymmetry regarding employee

quality through GitHub should reduce the importance of traditional signals of employee

quality. To this end, we consider three traditional signals: the work experience of the

individual, having a degree from a highly-ranked university, and the network of universities

large firms typically hire from. We find consistent results across all our measures that talented

individuals with less experience, with degrees outside of the highly-ranked universities, and

outside the traditional networks large firms typically hire from are more likely to move

to large firms following the GitHub policy change. These results support the hypothesis

that web-based platforms have led to a ‘democratization’ of screening in the labor markets,

allowing talent to flow more freely across firms.
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The flow of talent towards large firms can be a result of both demand and supply-side

factors. On the one hand, employees may prefer to work for large firms as large firms

tend to offer steeper career paths to their employees (Mueller et al. (2017); Di Porto et al.

(2024)). To test this, we estimate our baseline specification for two subsets of firms: those

with above-median average annual salary change and those with below-median average

annual salary change. We observe that the coefficient estimates are larger for large firms

characterized by steeper career growth as opposed to those with less steep career growth.

Individuals with 1 standard deviation higher output are more likely to move to large firms

characterized by steeper (less steep) career growth by 7% (2%) relative to the sample mean,

following the shock. This potential for increased career growth may come with increased

labor risk. To this end, we divide our sample by firm stability, defined as the probability of

employees experiencing career downgrades when working for a firm. Our findings indicate

that productive employees tend to move to firms with below-median stability following

the shock, suggesting that talented employees prefer riskier jobs with increased career

advancement opportunities.

On the other hand, large firms tend to invest more in technology to screen workers

(Eckel and Yeaple (2017)), and are thus better able to discover talent once the GitHub

signal becomes available. To test this, we split firms based on whether one of their Human

Resource (HR) personnel uses GitHub or not. We then show that more talented individuals

move to large firms with tech-savvy HR departments as opposed to large firms whose HR

departments are not tech-savvy. Similarly, large firms already using the GitHub platform

will be better versed to identify talent based on their contributions. To this end, we observe

that talent flow to large firms is more pronounced when these firms are GitHub users as

compared to large firms not on GitHub.

At the firm level, we show that heterogeneity in labor reallocation creates winners and

losers. For this analysis, we define the treatment group as firms exhibiting above-median

average employee productivity, with productivity determined by the AKM-based individual
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component of private contributions during the pre-period. Small firms with above-median

individual productivity experienced slower quarter-on-quarter employment growth after

the shock, by 13% relative to the sample mean. We also observe a higher likelihood of

left-tail outcomes, as the probability of small treated firms exiting the market increased by

36% of the mean after the shock. Small firms with above-median individual productivity

also experienced a decline in productivity, proxied by public GitHub contributions (which

are not directly affected by GitHub’s policy change). Specifically, productivity in

small firms employing highly productive individuals pre-treatment, dropped by 5 to 7%

post-announcement. Instead, large firms employing high-productivity talent pre-treatment

experienced a 5% increase in quarterly employment growth over the mean and a 2 to 5%

rise in public GitHub contributions following the policy change.

While there has been considerable discussion on the aggregate trends in local labor market

concentration, there is a broad consensus that national industry-level labor concentration

has risen in the U.S. since 1980 (Autor et al., 2023).4 We aggregate our data at the industry

level to evaluate the relationship between GitHub private contributions and changes in

industry-level labor market concentration in the U.S. from 2011 to 2021. Although these

results are based on correlations, they offer interesting insights into the overarching trends.

We find that industries with more GitHub contributions before the shock (2013-2016) saw

a greater increase in national labor market concentration in the five years after the shock

(average concentration over 2016 to 2021) compared to the five years before it (average

concentration over 2011 to 2016). This correlation suggests that the availability of labor

productivity information through platforms like GitHub may enable larger firms to more

effectively identify and recruit top talent from smaller firms, thereby intensifying their

dominance in the industry.

Our paper makes significant contributions to three strands of the existing literature. A

4The market for workers in our sample is national with more than 35% of users in the same firms and
roles as our sample reporting work across at least two different locations (states) in the three years prior to
the shock.
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substantial body of literature has attributed the rise of large firms to technological trends

such as the rise of the platform economy (Crouzet and Eberly (2018); Lashkari et al. (2018);

Bessen (2020); Firooz et al. (2022); Brynjolfsson et al. (2023); Hsieh and Rossi-Hansberg

(2023)) and big data (Tambe and Hitt (2012); Brynjolfsson and McElheran (2016); Begenau

et al. (2018); Farboodi et al. (2022); Aghion et al. (2023)), arguing that these technologies

provide product market advantages (Prat and Valletti (2022); Eeckhout and Veldkamp

(2022)), superior returns on investment (Tambe and Hitt (2012)), and better forecasting

abilities (Begenau et al. (2018)) to large firms. Our paper introduces a novel explanation,

examining how big data, available via platform technologies, enhance large firms’ ability to

attract and retain top talent, thus contributing to their growth and dominance.

Second, this paper contributes to the ongoing discussion on the decline in U.S. business

dynamism by identifying a new channel influencing this phenomenon. Existing literature

has explored various explanations, including a reduction in knowledge diffusion (Akcigit

and Ates, 2023; Andrews et al., 2015), decreased responsiveness of firms to productivity

shocks (Decker et al., 2020), inefficient allocation of productive resources (Decker et al.,

2017; Davis and Haltiwanger, 2014), a rising dependence on intangible assets (De Ridder,

2024), demographic shifts (Karahan et al., 2024), declining interest rates (Liu et al., 2022),

strategic hoarding by large firms (Akcigit and Goldschlag, 2023), and deteriorating local

housing markets (Davis and Haltiwanger, 2024). Our findings suggest that technological

innovations, particularly the enhanced signaling capabilities of web-based platforms, have led

to the migration of key talent from smaller to larger firms. This talent shift has contributed

to the diminished growth and productivity of smaller firms, offering a novel perspective in

the debate on declining business dynamism.

Finally, our paper contributes to the existing literature on labor reallocation between

firms of different sizes across firms within the economy. Prior research has extensively

documented how regulatory policies influence the distribution of talent between established

companies and startups. For instance, Acemoglu et al. (2018) examine R&D taxation,
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Pagano and Picariello (2023) study unemployment insurance, Baghai et al. (2024) analyze

bankruptcy, Jeffers (2024) explores the impact of non-compete agreements, and Gupta (2023)

investigates the effects of immigration policies. However, relatively little attention has been

given to the role technological changes play in this trend. Our study fills this gap by exploring

how the emergence of big data on employee performance influences the shift of talent towards

larger firms.

2 Setting and Data

We use data from GitHub, the world’s largest web-based platform in the software

development ecosystem. GitHub’s user base comprises of over 100 million developers–with

more than 20 million in the U.S. alone. Additionally, over 200,000 U.S. firms, including

90% of the Fortune 100 companies use GitHub for software management. In this section,

we provide a brief description of GitHub, followed by a summary of how we utilize GitHub’s

data to create a proxy for employee productivity.

2.1 GitHub: A Web-Platform for Software Management

GitHub is a web-based platform for version control and collaboration in software development

projects. GitHub allows users–independent developers and firms alike–to store, manage,

and share their data and code streamlined within projects known as repositories. By

providing centralized online repositories for code storage and management, GitHub enables

developers, who might be dispersed geographically, to work collaboratively on projects. It

also helps stakeholders track modifications to repositories over time ensuring the integrity

and coherence of project versions. Whenever a repository is modified, a snapshot of the

repository’s contents is automatically created and forever logged with a timestamp. With

each change, along with the repository’s snapshot, GitHub also records rich metadata: who

made the change, what it consists of, and when exactly it was made. Before a proposed
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modification is integrated and the new version is released, it must, however, be approved by

the repository owners (or designated managers).

An important feature of GitHub repositories is the flexibility of keeping them private

or public. Public repositories, used for open-source projects, are accessible to all users,

promoting collaboration and knowledge sharing within the entire developer community. Any

GitHub user can view the contents, previous versions, contributors or contribution history,

and even make changes (subject to approval by repository owners) to a public repository. In

contrast, private repositories are restricted to specified users or teams (members invited

by the repository owners or designated managers), providing a secure environment for

proprietary or sensitive projects. While the content of private contributions is not publicly

accessible, the requirement that each contribution must be approved by a repository manager

for incorporation into a project makes these contributions difficult to manipulate. While

today GitHub users can create an unlimited number of public or private repositories for free,

in the past only paid GitHub accounts (developers or firms paying a monthly subscription

fee) could maintain private repositories.5 Subsequently, until recently, private repositories

were mostly held by organizations seeking to protect intellectual property and maintain

confidentiality while collaborating on development projects.

2.2 GitHub Contributions: A Measure of Productivity

In addition to facilitating version control and collaboration on software projects, GitHub

provides users with individual profile pages akin to those found on traditional social media

platforms. These user profile pages allow individuals to personalize their online presence by

including their name, bio, location, affiliation with firms, and other relevant information.

A sample GitHub profile is shown in Figure A.1. GitHub’s user profile pages prominently

feature the contribution calendar, offering a visual representation of a user’s GitHub activity

5GitHub previously charged per repository, with prices ranging from $7 per month for up to 5 private
repositories to $200 per month for up to 125 private repositories. In October 2015, they changed this policy to
allow unlimited private repositories for $7 per month (Conti et al. (2021)). GitHub made private repositories
free in 2019.
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over time. This calendar serves as a dynamic record of a user’s contributions (in the form

of modifications) to GitHub repositories, providing a real-time high-frequency update on a

user’s work output.

The precise records of users’ GitHub contributions provide a way to quantify the output

of software developers. GitHub hosts a vast and diverse user base comprising millions of

software developers globally, resulting in extensive coverage of coding activity across various

domains and projects. Moreover, the granularity and high-frequency of the contributions

and the large-scale coverage of GitHub make it an appealing measure of individual output,

and thereby of productivity of high-skilled professionals. Although we cannot quantify

the importance of contributions (especially the private contributions whose content is not

publicly available), all contributions have to be vetted by a repository manager before they

are recorded on GitHub, which assures a minimum level of quality.

We validate the usability of GitHub contributions by comparing them to other commonly

used measures of employee productivity and quality. Internet appendix Figure A.2 presents

binned scatter plots of the logarithm of salary and publications against log contributions.

Both plots display strong positive and linear correlations, indicating that total contributions

effectively capture employee quality and productivity. Furthermore, GitHub contributions

correlate with firm financing for startups (Conti et al., 2021), underscoring their value to

sophisticated investors, such as Venture Capitalists (VCs), as a measure of human capital.

Other studies similarly use individual GitHub contributions to assess the productivity

of software developers, thereby reinforcing our interpretation (Holub and Thies, 2023;

El-Komboz and Fackler, 2023; Conti et al., 2023).

Unsurprisingly, recruiters and hiring managers increasingly rely on GitHub user activity

to source and evaluate potential tech-sector employees. Figure A.3 presents examples of

numerous third-party web platforms that help organizations in recruiting technical talent

via GitHub. This shift towards leveraging GitHub contributions as a key metric in the

recruitment process underscores the platform’s growing significance as a talent marketplace.
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Motivated by these facts, we use GitHub as our laboratory to study the impact of web-based

labor platforms on labor reallocation and utilize GitHub contributions as a measure of

employee productivity.

2.3 GitHub Policy Shift

GitHub implemented a policy change that allowed users to reflect their GitHub contributions

more accurately. Before May 19, 2016, users could only display contributions made to

public GitHub repositories on their profiles. However, on May 19, 2016, GitHub introduced

the option for users to include the number of (anonymized) private contributions to their

existing contribution calendar. With a click of a button, users could instantaneously reveal

their previously hidden private contributions, with no additional costs. While private

contributions were always available internally to the firm, this policy change allowed users to

credibly signal their within-firm productivity (verified by GitHub) to external employers for

the first time. As an illustration, Figure A.4 shows how the policy changed users’ GitHub

contribution calendar.

GitHub’s new policy added a feature on users’ profile pages to “turn on their private

contributions” and include the number of (anonymized) private contributions in the calendar.

We use users’ pre-policy private contributions to construct an exogenously available measure

of their output. It is important to note that we observe only the number, not the content,

of private contributions, precluding the creation of a quality-adjusted contribution measure.

However, the requirement that each contribution be approved by a repository manager for

incorporation into a project helps ensure the quality of each contribution. Additionally, we

verify in the previous section that the raw number of contributions correlates with other

measures of productivity such as salary and publications.
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2.4 Data Sources and Sample Construction

We construct a novel dataset using three main data sources: (i) user profiles from GitHub,

(ii) GitHub contributions from GitHub API, and (iii) employment records from Revelio Labs.

Revelio Labs continuously collects employees’ online resumes from various websites (such as

LinkedIn) to create one of the world’s first universal HR database.

We obtain data on publicly sourced profiles of U.S.-based GitHub users from

Humanpredictions, a public data aggregator that developed a proprietary database of

over 150 million technical talent worldwide. This data includes users’ names, location,

coding languages, date of joining GitHub as well as their LinkedIn profile links. We

further append this dataset with users’ GitHub contributions from GitHub’s official API

(Application Protocol Interface)6 The API provides the capability to programmatically

access and retrieve all publicly available data on GitHub. We retrieve monthly-level

public and private contributions for users from 2011 to 2021. Finally, we merge GitHub

users with their employment details from LinkedIn, the largest global online professional

networking platform. We obtain individual-level LinkedIn profiles from Revelio Labs.

LinkedIn data provide comprehensive information regarding users’ educational background

(including programs pursued and graduation dates) as well as their employment history

(listing firms, positions held, and tenure duration). The dataset also provides us with the

direct LinkedIn URLs for each GitHub profile. These merges are made based on publicly

available information, where users list both LinkedIn and GitHub URLs together. We are

able to successfully merge over 1 million GitHub users with employment data from LinkedIn.

Roughly 82% of the matches are obtained by directly merging the LinkedIn URLs in the two

datasets. For the remaining matches, we merge on users’ names and work history (employer

name, start date of job, etc.).

We then construct a matched employer-employee panel detailing each employee’s firm

6We use GraphQL to query GitHub API using the endpoint: https://api.github.com/graphql. The
documentation can be found at https://docs.github.com/en/graphql/guides/forming-calls-with-g
raphql.
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and title each quarter to track employee mobility. In case of an employee listing multiple

jobs on LinkedIn at the same time (e.g., volunteering or part-time work along with a primary

job), we retain only one primary job. We do so by excluding jobs where job titles include

words related to volunteering or part-time employment activity. In case multiple jobs still

persist, we retain the one that is listed higher on the user’s LinkedIn profile (likely to be

more important) and/or that corresponds to a higher seniority level.7

As a next step, we append the users’ employment records with firm-level identifiers and

attributes. For each job, the LinkedIn data provides a URL corresponding to the firm’s

LinkedIn page that has details on its size, year of incorporation, and industry among others.

We use a snapshot of all LinkedIn firm pages as of 2017 to merge these details into our

data. We derive the size and age of firms, close to the time of GitHub’s policy change,

using these appended details. Additionally, we also merge the firm URLs with an auxiliary

dataset containing firm identifiers from FactSet (also provided by Revelio Labs). This dataset

includes a firm’s unique FactSet ID, its parent firm information, as well as its GVKEY in

case the firm is publicly listed. For a small fraction of firms that remain unmatched, we also

use firm data from Crunchbase to obtain the firm’s size, age, and other identifiers.

In our empirical analysis, we utilize GitHub’s policy change regarding users’ contribution

calendar and focus on its impact on their employment outcomes. Subsequently, we filter

out a relevant set of GitHub users for our empirical setting from the merged sample in two

steps. First, we restrict the sample to users who had joined GitHub and had made at least

one GitHub contribution before the policy change on 19th May, 2016. And second, we limit

the sample to users who had completed their highest educational degree before the policy

change, namely we exclude users who were still studying at some point after May 2016.

These filters result in an initial sample size of approximately 380,000 US-based employees

across 103,000 firms.

We next filter our data to create a consistent sample of employees where we can estimate

7Revelio assigns each job a seniority score between 1-4 based on the title and job description among other
details.
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individual component of productivity using the Abowd et al. (1999) (AKM) methodology.

Table 2 Panel A presents the sample estimates. 93% of the initial sample are part of the

connected set, representing the largest grouping of firms where employees move between the

same organizations. After filtering to retain only firms with at least two employees observed

in any given month, we are able to estimate regression coefficients for 89% of the sample.

Further refinement involves focusing solely on employees employed at for-profit firms at the

time of the policy change. This filtering process yields a final sample size of around 300,000

employees, constituting 80% of employees in the initial sample. Within this final sample,

we identify approximately 36,000 firms, representing 35% of the raw sample, as the AKM

requires discarding firms where multiple employees are not observed within the same role

and month.

2.5 Summary Statistics

Table 1 provides summary statistics for our sample. Panel A presents cross-sectional

distributions, showing that 80% of employees are male, 70% are white, and 40% hold software

engineering roles. Internet Appendix Table A.1 offers further breakdowns by industry, coding

language, and roles. The Software, Internet, and Information Technology sectors constitute

over 45% of the sample. Figure A.2 presents the geographic distribution of our sample.

The data reveals that most counties in the U.S. with significant technology clusters are

represented, with New York, San Francisco, and Seattle comprising a quarter of the sample.

On average, employees have eight years of experience and a salary of nearly ninety thousand

dollars. Comparatively, the Bureau of Labor Statistics (BLS) data indicates that software

engineers are 78% male, 60% white, with over 15% living in tech hubs like New York, Seattle,

or San Francisco, earning an average salary close to 98,000 dollars.8 Thus, our sample is

representative of the median American software worker.

Panel B presents time-varying employee outcomes. The average probability of an

8Data obtained from Bureau of Labor Statistics table: https://www.bls.gov/oes/tables.htm
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employee moving is 7% per quarter, indicating an average tenure of 3.6 years, which aligns

with the median tenure for employees in technical services (3.9 years) as reported by the

BLS. Of those who move, 40% transition to large firms (over a thousand employees), 30%

to medium firms (fifty to a thousand employees), and 30% to small firms (less than fifty

employees). More than 55% of these moves result in a rank or salary increase, while 2% of

employees are promoted within the same firm each quarter.

Panel C presents firm-level characteristics. In our sample, 15% of firms are large (over

a thousand employees), 37% are medium (fifty to a thousand employees), and 48% are

small (less than fifty employees). However, as shown in Internet Appendix Table A.2, large

firms employ more than half of the workers in our sample, similar to estimates from the

Longitudinal Business Database (LBD), where large firms account for 16% of firms but

employ 47% of the workforce. The average firm in our sample grows at 3% per quarter,

comparable to 2.5% employee growth for all firms in the LBD. Most of these firms are active

on GitHub, with the average firm seeing ten public contributions per employee per quarter.

2.6 Extracting Employee Productivity: AKM Model

We first create our measure of individual productivity based on individuals’ output-GitHub

contributions. The GitHub policy change revealed new information on the total number of

employees’ private contributions, encapsulating both individual and firm-level productivity.

Hiring departments often benchmark these contributions relative to peers, factoring in the

influence of the specific firm environment on employee performance. To disentangle the

individual component of productivity, independent of the firm influence of the firm they

work for, we adopt the methodology proposed by Abowd et al. (1999) (AKM):

Log(PvtContributions)i,f,t = ϑi + ϑf + ϑt + ϑk +Xi,f,t + εi,f,t (1)

The dependent variable represents the logarithm of one plus the number of private
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contributions made by employee i, while employed at firm f during month t. We partition

each employee’s private contributions into individual, firm, role, and monthly components

using employee (ϑi), firm (ϑf ), role (ϑk) and month (ϑt) fixed effects. Additionally, Xi,f,t

includes controls for current job duration, and total work experience, ensuring that we

account for variations attributable to different roles or employee seniority. Our regression

analysis spans May 2011 to April 2016, precisely five years preceding the GitHub policy

change. This time-frame enables us to discern how pre-existing productivity information

influenced employee job outcomes. Specifically, we utilize the employee-specific private

contributions over this period (ϑi) as our proxy for individual-level productivity information.

Table 2 presents summary statistics for the AKM. Panel A shows that our connected set

covers 93% of the employees in the initial sample. We are able to calculate AKM estimates

for 80% of the initial sample employees, after applying filters as detailed in Section 2.4. Panel

B unveils that 67% of the total variation in contributions stems from differences in employee

output, with an additional 8.5% attributed to disparities in average firm output. Thus,

individual human capital explains 7.8 times the variation in contributions at the firm level.

This finding aligns with prior research on innovation, which suggests that individual-level

capabilities account for 5-10 times more variation in inventor patenting output compared to

firm-level factors (Bhaskarabhatla et al. (2021)).We also test the persistence of individual

productivity estimates from the pre-shock period (2011–2016) to the post-shock period

(2016–2021). Figure A.5 presents these results, indicating that the majority of employees

remain within similar productivity quintiles before and after the shock. This persistence

suggests that our estimates capture inherent differences in individual quality, rather than

any attempt by employees to manipulate these metrics. The results highlight that the

GitHub policy change regarding employee private contributions can be interpreted as a new

signal of employee productivity, with inherent and persistent differences among employees

accounting for the majority of variation in these contributions.

To address recent concerns about the validity of using the logarithm in case of count-like
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variables with several zeros and skewed distributions (Cohn et al. (2022); Chen and Roth

(2024)), we further perform two analyses. First, we employ alternative AKM specifications,

including continuous measures of contributions and categorical variables. Second, we

demonstrate that our findings hold even without using the AKM framework by utilizing

private contributions and the share of private contributions to define employees productivity.

Our results remain consistent across all these approaches, reinforcing the robustness of our

findings. Detailed discussions and the outcomes of these robustness checks are provided in

Section 3, where we describe the employee-level results.

3 Employee Level Reallocation

3.1 Mobility to large firms

In our baseline analysis, we examine whether improved information on employee

quality influences the reallocation of employees between firms. We carry out a

differences-in-differences analysis where we compare the change in employee mobility for

individuals with higher AKM-implied productivity after the GitHub policy change, as

compared to those with lower productivity. Our baseline specification is as follows:

Yi,t = βProductivityi × 1(Postt) + λXit + αi + δt + γit + εi,t (2)

where, the dependent variable Y is a binary indicator that equals 1 if employee i switches

jobs in quarter t, and 0 otherwise. Productivityi represents the normalized version of the

individual component of private GitHub contributions (ϑi), as obtained from Equation 2

in section 2.6. We normalize Productivityi by subtracting the sample mean and dividing

by the standard deviation to enhance the interpretability of our coefficient estimates. The

coefficient of interest, denoted as β, captures the interaction between the AKM-derived

productivity estimate for each employee i and an indicator that switches on after GitHub’s
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policy shift in May 2016. We include individual (αi) and (δt) quarter fixed effects to control

for any time-invariant individual differences and time trends. To ensure the robustness of our

findings, we sequentially add several controls to our model. First, we account for employee’s

current salary and seniority (Xit). We also include fixed effects that interact together the

employee’s cohort of graduation, most used coding language, first job role, and quarter fixed

effects to account for time-varying job trends. Additionally, we control for employee’s first

industry (based on LinkedIn’s 144 industry categories) interacted with the first geographical

area (metropolitan statistical area) and time. This ensures that we are comparing employee

transitions within the same market-quarter context. Our sample covers a period of six years:

from the third quarter of 2013 (July to September quarter, three years before the shock) to

the second quarter of 2019 (April to June quarter, three years after the shock). We cluster

our standard errors at the individual employee level, which is the treatment level in our

analysis.

Table 3 presents our findings. Individuals with productivity estimates higher by 1

standard deviation augmented their likelihood of transitioning to larger firms (employing

over 1000 individuals) by 4 to 5.7% above the sample mean following the shock, depending

on the specification. Note our results remain statistically significant and consistent in

magnitude across columns 1 to 5, as we progressively introduce controls from solely employee

and time fixed effects to incorporating time-varying employee-level controls (salary and

seniority), dynamic job-level (cohort-programming language-role-time), and market-level

(industry-M.S.A-time) fixed effects. We also test whether the moves to large firms are

accompanied by changes in industry and location, as shown in Table A.7. We find that

the probability of moving to a larger firm increases by 6% over the sample mean when

accompanied by a location change, compared to a 4% increase when the move occurs within

the same location. Furthermore, the likelihood of transitioning to a large firm across both

similar and different industries rises by 5% over the sample mean. These findings support

the idea that enhanced signaling plays a more crucial role in cross-location moves, as it helps
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compensate for the absence of localized networks.

We also estimate the dynamic version of Equation 2 as follows:

Yi,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t (3)

The model is similar to the one detailed in Equation 2, except we estimate a separate βτ for

each quarter τ relative to the shock. The omitted quarter is the first quarter of 2016 (January

to March 2016), one quarter before the shock. We test the parallel trends identifying

assumption of the difference-in-differences methodology, by checking for any pre-trends in

βτ before the shock.

The event study corresponding to Table 3 Column 5, depicted in Figure 2, illustrates

that employees with higher private contributions pre-treatment exhibit parallel trends with

employees with lower private contributions. In other words, each pre-period coefficient

is statistically indistinguishable from zero. Notably, there is a sudden and sustained

surge in employee mobility among treated employees in the quarter following the GitHub

announcement, indicative of a rapid change in information disclosure driving the observed

outcomes.

3.1.1 Identification challenges

Two primary challenges may undermine a causal interpretation of our estimates. First,

concurrent changes in factors correlated with employee productivity could potentially yield

similar results. However, as shown in Table 3, the coefficients remain robust to granular

dynamic controls for both employees, firms, and markets. Additionally, we use a placebo

sample of employee public contributions (those unaffected by the shock) to further rule out

the impact of unobservable employee characteristics. Unobserved employee traits should

equally impact both public and private contributions. Therefore, if our results are driven by

concurrent changes in unobserved individual-specific factors, we should observe comparable
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results when using public contributions as our independent variable. We present the results in

Table 4, Panel A. We decompose pre-shock public contributions using the AKMmethodology,

similar to our baseline measure, to obtain the individual component of public contributions.

We find no significant change, either economically or statistically, in the mobility of employees

with 1 standard deviation higher public contributions-based productivity after the shock.

This null result supports our conclusion that the observed effects are driven by signaling

based on private contributions.

We further validate our results by examining heterogeneity based on the enforcement

of non-compete agreements. Previous research has demonstrated that non-competes

significantly restrict employee mobility (Jeffers, 2024). Hence, we expect a stronger impact of

signaling on mobility in states where non-competes are not enforceable. Table A.8 presents

our findings. As anticipated, the data reveals a substantially larger increase in mobility for

employees residing in states without enforceable non-compete agreements, consistent with

the hypothesis that we capture the impact of signaling on labor mobility. Additionally, we

test if our results are influenced by trends correlated with the 2016 presidential elections or

other local economic characteristics. If our results were driven by the elections or differences

in local economic conditions, we would expect to find different impacts in areas based on

their political leanings or economic characteristics. However, Table A.9 shows no differential

impact on counties that were more Republican, white, immigrant-heavy, richer, or more

unequal.

As a final validation, we analyze changes in firm stock prices following the GitHub

announcement. This analysis helps isolate the immediate daily impact of the GitHub

announcement, controlling for any longer-term changes.9 Using CompuStat data from 1,679

firms, we categorize firms two ways: by their average productivity (above or below median),

and by size (with indicators for the top and bottom quartiles). Table A.11 shows a 0.65

basis point decline in returns for small firms (bottom quartile) with high GitHub private

9Bloomberg does not report any major tech-related news announcements from 17 May 2016 to 20 May
2016
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contributions (above median), indicating market anticipation of talent loss. No significant

impact is observed for larger firms (top quartile) or smaller firms without GitHub exposure

(bottom quartile in size and below median average productivity).

Moreover, there’s a risk that individuals may endogenously opt to signal their pre-shock

productivity when they anticipate moving to larger firms, potentially biasing our estimates

upwards. To address this concern, we present results limited to active GitHub users. We

test our findings across four alternative samples: users active on GitHub before the shock

(with more than 10 pre-period total contributions), users whose employers were active on

GitHub at the time of the shock (firms with at least 100 total contributions as of the shock

date), users with at least one private contribution before the shock, and users with at least

ten private contributions before the shock. Table 4, Panel B, presents the results. Although

filtering on users reduces our sample size significantly, our results persist both in magnitude

and statistical significance for all samples, diminishing the likelihood of such a bias driving

our findings.

We also test the robustness of our results to different specification choices. Table A.3

presents these findings. First, as explained in section 2.6, we might be worried about

the impact of using logarithm of one plus contributions as the dependent variable in the

AKM calculations. We show that our results are robust to using other measures in the

AKM calculation in Panel A, including using the arcsine transformation of contributions,

categorical variables, and the raw contribution numbers. Panel B shows that the results

persist even if we use the raw number of private contributions instead of AKM-implied

productivity. The consistency across specifications reinforces the validity of our findings.

Another concern might be that our results are capturing differences in working styles

(e.g., making multiple small contributions versus several large ones). We address this by

showing that our results are robust when using the share of private contributions over

total contributions as dividing by total contributions helps control for these individual-level

idiosyncrasies. A concern might stem from the usage of a continuous variable as our
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treatment in a diff-in-diff setting, as detailed by Callaway et al. (2024). We show our results

are robust to using an indicator for non-negative productivity in Panel C.10 Panel D examines

the sensitivity of our findings to the time period over which we estimate the AKM, Panel E

explores the impact of alternate clustering methods, Panel F tests the effect of more granular

fixed effects, and Panel G shows that are results are robust to estimating our coefficients on

a matched treatment and control sample.11

3.2 Mobility to medium and small firms

We next examine the impact of the GitHub announcement on the mobility of productive

employees to small and medium-sized firms. We use a specification akin to Equation 2,

except we now consider transitions to medium-sized firms (50 to 1000 employees) and small

firms (less than 50 employees) as the outcome variables. The results, outlined in Table 5,

reveal that individuals with productivity estimates higher by 1 standard deviation reduced

their likelihood of transitioning to small and medium firms by 6% and 4.8% of the sample

mean post-shock, respectively. Event studies depicted in Figure 3 validate the absence of

pre-trends in all of those outcomes pre-treatment, supporting the parallel trends assumption.

We further replicate our analysis by non-parametrically estimating our baseline

specification across different firm size categories, as illustrated in Figure 4.12. Our findings

indicate that the mobility of employees with 1 standard deviation higher productivity

increases almost monotonically with firm size, ranging from -8% of the sample mean for firms

with 11-50 employees to +7% for firms with more than 10,000 employees. An exception to

10Callaway et al. (2024) argue that the parallel trends assumption may not rule out selection bias in
difference-in-differences designs with a continuous treatment variable. Subsequently, in Figure A.6, we show
that our parallel trends assumption is robust to using a dummy indicator for treatment.

11In Panel D, we estimate the AKM using contributions from the pre-sample period, up until the the
second quarter (April to June) of 2014. Panel E presents results after double clustering at the industry
and location as well as at the employee and time-varying firm levels. Panel F involves interacting all
fixed effects, including cohort, role, language, location, industry, and time. We match treated employees
(those with positive normalized productivity estimates) with control employees (having negative normalized
productivity estimates) on gender, race, industry, location, experience, salary, and seniority in Panel G1.
We additionally match on public contributions in Panel G2.

12Table A.4 shows the regression counterparts of Figure 4.

22



this trend is observed for firms with fewer than 10 employees, where the decrease in mobility

is economically small, at -2%, and statistically insignificant. This could be attributed to

entrepreneurs starting their own firms within this category, making it less directly comparable

to other categories consisting of employees joining established firms.

Overall, our findings indicate that the largest gains are captured by the largest employers

in the economy, the so-called “superstar” firms. We confirm the robustness of our results with

various definitions of superstar firms. Internet Appendix Table A.5 shows that the increase in

mobility holds when defining superstars as the top 1% and 10% by market capitalization and

revenue, as defined in Tambe et al. (2020). Moreover, internet appendix Table A.6 reveals

that even within young firms, mobility increases to only “superstar” startups with over $500

million in funding.13 Thus, the GitHub policy change facilitates a redistribution of employees

from small and medium-sized firms to the largest firms in the economy (irrespective of age).

3.3 Heterogeneity by initial firm size

The previous specification examines the changes in employee mobility following GitHub’s

policy change. Next, we aim to additionally identify the origin firms for these employees

to establish patterns of labor reallocation. Therefore, we analyze the post-GitHub policy

change in the mobility of productive employees by firm size. Specifically, we estimate a

triple-difference specification:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)+

β2Productivityi × 1(Postt)× 1(Midi(t−1))

+β3Productivityi × 1(Postt)× 1(Smalli(t−1)) + λXit + αi + δt + γit + εi,t

(4)

The specification is an extension of Equation 2, incorporating a triple interaction

involving three indicators: the productivity estimate of employee i derived from the AKM

decomposition, an indicator that equals 1 for quarters following GitHub’s policy change,

13Startups with at least $500 Million have a median size of 1000-5000 employees.
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and indicators representing the size of the firm where the individual worked in the previous

quarter. Here, Mid denotes an indicator variable that equals 1 for firms with 50-1000

employees, and Small represents an indicator for firms with fewer than 50 employees. While

we also estimate the coefficients for double interaction terms between individual productivity

and firm-size indicators, and firm-size indicators interacted with indicators for GitHub policy

change, we do not report them in the specification or results for brevity. β1 captures the

impact of the policy change on more productive employees working at large firms, while β2

and β3 assess the additional impact on employees currently employed at mid-sized and small

firms, respectively. This specification, thus, enables us to examine how the joint interaction

of employee productivity, the GitHub policy change, and firm size influences the outcome of

interest.

We also estimate the dynamic version of Equation 4, to verify the absence of pre-trends,

as follows:

1(MoveToLargeF irm)i,t =

12∑
τ=−8

β1,τProductivityi × 1(τ = t)

+

12∑
τ=−8

β2,τProductivityi × 1(τ = t)× 1(Midi(t−1))

+

12∑
τ=−8

β3,τProductivityi × 1(τ = t)× 1(Smalli(t−1)) + λXit + αi + γit + εi,t

Table 6 presents the results. We find that mobility to large firms for individuals with

productivity estimates higher by 1 standard deviation, who were currently employed at large

firms, decreased by 12% of the sample mean, post-GitHub announcement. Conversely, the

probability of individuals with 1 standard deviation higher productivity, currently employed

at medium and small firms, increased by 4% and 5% of the sample mean post-shock,

respectively. The absence of pre-trends, when plotting the triple-difference coefficient for

both mid-sized small firms in Figure 5, underscores that we are capturing the impact

of the change in GitHub policy. Our results hence indicate that productive employees
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currently employed at small and medium firms migrated to larger firms, leading to an overall

re-allocation of talent following the GitHub policy change.

3.4 Impact on promotions

Our previous analysis has primarily focused on job changes as the outcome variable. Now,

we aim to understand the impact of the GitHub policy change on promotions, encompassing

both salary increases and title advancements, within and across firms. The results,

presented in Table 7, dissect promotions into three distinct categories: those occurring

when employees transition to large firms, those happening when employees transition to

small and medium firms, and those occurring within the same firm. We maintain the

baseline specification outlined in Equation 2 for odd columns and adopt Equation 4 for

even columns. Additionally, we introduce firm interacted employee cohort fixed effects for

within-firm promotions to ensure comparisons across employees within the same firm and

with equal tenure. Our findings, summarized below, document the impact of the GitHub

policy change on promotions.

Column 1 demonstrates that the likelihood of transitioning to a large firm with an increase

in salary and title rose by 5.4% above the mean for individuals with 1 standard deviation

higher productivity, following the GitHub announcement. Column 2 shows that this increase

is mainly driven by employees from mid and small-sized firms. Specifically, the probability

of moving from one large firm to another with promotion decreased by 9% of the sample

mean for those individuals with 1 standard deviation higher productivity after the GitHub

shock. Conversely, the probability of transitioning from small and medium firms to large

firms with promotion increased by 5% of the sample mean for those with 1 standard deviation

higher productivity post the GitHub announcement. These findings suggest that large firms

attracted productive employees from small and medium firms by offering improved salary

and title, after the GitHub change.

In contrast, Column 3 reveals that the probability of moving to a small or medium firm
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with an improvement in salary and title decreased by 6.1% of the sample mean for individuals

with 1 standard deviation higher productivity, following the GitHub announcement. Column

4 reveals that this decrease is mainly attributed to employees from large firms. Specifically,

the probability of moving from one large firm to small or medium firm with promotion

decreased by 12.7% of the sample mean for those with 1 standard deviation higher

productivity after the GitHub shock. Conversely, there was less than 1% change in

probability of moving from one small and medium firm to another with promotion for those

with 1 standard deviation higher productivity after the GitHub shock. These results suggest

that small and medium firms were unable to attract highly productive employees from large

firms with better title or pay.

Column 5 notably illustrates that current employers also react to the disclosure of

new productivity information, showing a significant increase of 4.9% over the mean in

the probability of within-firm promotions for employees with 1 standard deviation higher

productivity post-shock. We also plot the dynamic event study for these results in

Figure 6 and observe no pre-trends. Column 6 further demonstrates that this effect is

particularly pronounced for large firms, which experience a post-shock increase of 6.2% over

the mean in within-firm promotion probability for employees with 1 standard deviation

higher productivity. In contrast, the same effect is 4.2% of the mean for small firms,

diminished by the impact of productive employees transitioning to more senior positions at

large firms following the shock. This increase in internal promotion probability aligns with

existing theoretical models (e.g., Waldman (1984); Bernhardt and Scoones (1993)). These

models suggest that firms are hesitant to promote talented employees without credible signals

because such promotions could alert other firms to their quality, increasing the risk of losing

them to competitors.

In summary, our findings indicate that the sudden disclosure of productivity information

on GitHub was advantageous for productive employees, facilitating their career progression.

While large firms demonstrated an ability to retain employees through internal promotions,
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small firms appeared to lose valuable talent to larger firms, which offered these employees

better career opportunities.

4 Potential mechanisms

4.1 Heterogeneity by Individual Characteristics

Previous literature has highlighted significant information asymmetry regarding employee

quality, suggesting that access to productivity information could help employers better

screen candidates mitigating this asymmetry (Waldman (1984); Greenwald (2018)). We

examine this mechanism by exploring the heterogeneity of our results across three types

of alternate individual signals: work experience, degree from a high-ranked university, and

education-based employment networks. We present these results in Table 8.

Columns 1 and 2 examine the heterogeneity of our results based on the total number of

years of employee experience since graduation at the time of the shock. We find that more

productive employees with less than median experience (i.e., 7 years) at the time of shock saw

a 1.5 times larger increase in post-shock mobility to large firms compared to those with more

than median experience. This suggests that productivity information from GitHub served

as a substitute for work experience, enabling less experienced but productive employees to

be employed by larger firms.

Columns 3 to 6 assess the heterogeneous impact of having a degree from a highly-ranked

university on our results. We define elite universities as those within the top 30 ranked

universities according to U.S. News and World Report (Columns 3 and 4) and QS Global

University Rankings (Columns 5 and 6). Our findings indicate that productive employees

without an elite university affiliation experienced a mobility increase to large firms that

was 2.5 to 4 times greater than the change observed for employees with an elite university

degree. Our results, so far, suggest that the increased availability of information on employee

productivity may reduce reliance on hard information, such as work experience or university
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rankings, as a criterion for mobility to large firms.

Finally, columns 7 and 8 examine the differential impact of mobility based on the

employment networks. We use the employees’ schools at large firms as a proxy for such

networks. Specifically, we define high-network schools as the top five recruitment destinations

for all large firms in our sample. Our analysis shows that more productive employees from

low-network schools experienced a 1.5 times greater increase in post-shock mobility to large

firms compared to employees from high-network schools. These results suggest that the

provision of productivity information reduces reliance on relationship-based information,

enabling firms to recruit talented employees from outside their traditional recruitment

networks.

Overall, our results support the hypothesis that web-based platforms have reduced

reliance on both hard signals, such as experience and education, and network-based screening,

leading to a “democratization” of labor markets. This has facilitated a less constrained flow

of talent across firms, allowing employees to advance based on productivity rather than

traditional metrics.

4.2 Heterogeneity by Firm Characteristics

The flow of talent towards large firms can result from both supply and demand-side factors.

On the supply side, previous literature has documented that large firms offer steeper career

paths than smaller firms (Di Porto et al. (2024)). These steeper career paths, and the

resulting higher wage inequality, have also been demonstrated to correlate with enhanced

employee and firm productivity (Lemieux et al. (2009); Mueller et al. (2017); Wallskog

et al. (2024)). Hence, a preference for such steeper career paths may drive more productive

employees toward larger firms. On the demand side, larger firms may have better IT resources

(Eckel and Yeaple (2017)), enabling them to better utilize and recruit based on GitHub

signals. We test these hypotheses using heterogeneity tests.

First, we classify firms based on their probability of offering salary increases. We
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calculate the average annual salary change for all employees in a firm using LinkedIn data for

individuals with the same job roles as those in our GitHub sample during the pre-treatment

sample period (quarter 3 2013 to quarter 2 of 2016). Firms are then divided into two subsets:

those with above-median average annual salary change and those with below-median average

annual salary change. Table 9, columns 1-2, present the results. We find that individuals

with productivity 1 standard deviation above the mean were 6.8% more likely (compared

to the sample average) to move to large firms with steeper salary growth after the GitHub

policy change. In contrast, the increase was only 1.5% of the sample mean, and economically

insignificant, for mobility to large firms with below-median salary growth. T-tests confirm

that the difference between these two coefficients is significant at the 1% level. These results

support the notion that employees prefer to join large firms due to the potential for faster

career growth.

Second, we assess whether the increase in career growth potential increases job risk.

Using the entire LinkedIn dataset for roles matching those in our GitHub sample during

the pre-treatment sample period (quarter 3 2013 to quarter 2 of 2016), we determine the

probability of forced turnover for each firm. Forced turnover is defined as job separation with

a gap of at least three months, accompanied by a decrease in salary or seniority. We categorize

firms into two groups based on their forced turnover probability relative to the median for

all firms in our sample. Columns 3-4, present the results. Individuals with 1 standard

deviation higher productivity increased their mobility to larger firms with above-median

forced turnover by 6.2% above the sample mean following the GitHub policy change. In

contrast, there was a statistically insignificant decrease of 1.2% of the sample mean for

mobility to large firms with below-median forced turnover. T-tests confirm that the difference

between these two coefficients is significant at the 1% level. These findings show that the

increase in steep career growth is accompanied by a shift to “riskier” jobs for more productive

employees following the GitHub shock, suggesting that productive human capital prefers jobs

with high upside.
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Third, we examine the role for tech-savvy recruiters and firms’ own GitHub usage.

Columns 5-6 in Table 9 present the results, splitting firms based on whether their Human

Resource (HR) personnel use GitHub. We find that individuals with productivity estimates

1 standard deviation above the mean increased their probability of moving to large firms with

tech-savvy HR by 8.4% of the sample mean after the GitHub policy change. In contrast, the

increase was only 1.3% of the sample mean for moves to large firms without any recruiters

on GitHub. T-tests show these coefficients to be significantly different from each other at

the 1% confidence level.

Columns 7-8 in Table 9 further split the sample based on whether firms themselves

have created GitHub profiles. Large firms with a presence on GitHub may be more adept at

utilizing these signals for recruitment. Consistent with this idea, we find that the probability

of an employee with 1 standard deviation higher productivity moving to a large firm with

its own GitHub account post-shock increased by 5.4% of the sample mean. In comparison,

the increase was 3.6% of the sample mean for large firms not on GitHub. The difference

between these two coefficients is statistically significant at the 5% confidence level. Together,

these tests support the hypothesis that firms who invest more in, or possess better, screening

technologies leverage new information from web-based platforms for recruiting talent.

5 Firm Level Impact

Section 3 demonstrates that high-productivity employees reallocated from small and

medium-sized firms to large firms as a result of the GitHub productivity disclosure. It is

crucial to assess whether this labor reallocation had an aggregate impact on firm outcomes. If

small and medium firms are capable of replacing workers or internally redistributing projects,

we would expect the disclosure to have no impact on firm growth or productivity. However,

if these firms are constrained in their ability to hire and train talented employees, we would

anticipate observing an aggregate impact.
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We, thus, examine next the effect of the GitHub policy change on firm growth and

productivity. To this end, we aggregate our data to the firm level and use a triple-differences

specification. The basic difference-in-differences setup compares the changes in firms with a

higher proportion of high-productivity (treated) employees with firms with a low proportion

of high-productivity employees, before and after the GitHub announcement. Subsequently,

the third difference dissects this coefficient based on firm size, allowing us to discern the

divergent impact of the GitHub policy change on treated small and medium-sized firms

compared to treated large firms. We estimate the following regression equation:

FirmOutcomej,t = β11(Productivityj > Median)× 1(Postt)

+ β21(Productivityj > Median)× 1(Postt)× 1(Midj)

+ β31(Productivityj > Median)× 1(Postt)× 1(Smallj) + λXjt + αj + γj,t + εj,t

(5)

In our regression model, the dependent variable is an outcome variable for firm g at

quarter t. The coefficient β1 captures the interaction between 1(Productivityj > Median),

an indicator that takes the value 1 if the average AKM-derived productivity estimate is

greater than the median for firm j, and 1(Postt), an indicator that switches on after

GitHub’s policy shift in May 2016. Coefficients β2 and β3 further interact these variables

with indicators for firm size. Our sample covers a period of six years: from the third

quarter of 2013 (three years before the shock) to the second quarter of 2019 (three

years after the shock). To ensure robustness of our analysis, we control for firm and

industry-state-time fixed effects, controlling for constant firm-level differences and market

level time trends on our results. Additionally, we incorporate other relevant controls. In

the case of employment-related outcomes, we control for lagged employment level, while for

contribution-based productivity outcomes, we control for lagged total contribution stock and

the median pre-period contribution interacted with 1(Postt). We cluster our standard errors

at the firm level.
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We also estimate a dynamic version of the same regression as follows:

FirmOutcomej,t =

12∑
τ=−8

γτ1(Productivityj > Median)× 1(τ = t)

+

12∑
τ=−8

θτ1(Productivityj > Median)× 1(τ = t)× 1(Mid− SizedF irmj)

+

12∑
τ=−8

βτ1(Productivityj > Median)× 1(τ = t)× 1(SmallF irmj) + λXjt + αj + γjt + εj,t

(6)

The model is similar to the one detailed in Equation 5, except we estimate a separate βτ for

each quarter τ relative to the shock. The omitted quarter is the first quarter of 2016, one

quarter before the shock. We test for the parallel trends assumption by checking for any

pre-trends in βτ before the shock.

We present the results for employee growth and productivity in Table 10. Columns

1 and 2 present the results for firm employment growth. We find that large firms with

more than median individual productivity grew 3.5 to 4.8% faster than the mean after the

GitHub announcement, depending on specification. Above-median productivity med-sized

firms grew less by 2.5% than large firms following the policy shift, although the difference

is not statistically significant. On the other hand, employment growth in above-median

productivity small firms decreased by 12.9% of the mean after the announcement. Column 2

creates a proxy indicator for firm exit, defined as a firm experiencing a headcount reduction

of more than half compared to the previous quarter. Our findings show no significant change

in the probability of closures for large or medium firms with above-median productivity

levels post-GitHub shock. However, small firms with above-median productivity witnessed a

substantial 35% increase over the mean in the probability of closures, after the GitHub

announcement.14 Figure 7 demonstrates that our results are not driven by differential

pre-trends across firms. Overall, these findings support the notion that large firms benefited

from the information revealed as they could discover new talent, while small firms experienced

14The magnitude appears large because the pre-period mean of closures is very low (0.6%), particularly
due to large firms that are much less likely to exit. The pre-period mean of exits among small firms is 1%,
suggesting that the shock leads to about 21% increase in their probability to exit.
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losses and were unable to replenish talent effectively.15

Columns 3 to 6 use instead employee productivity as the outcome variable. Here, we

utilize the public contributions for each employee, as these were not directly influenced by

the shock. We exclude any contributions made by an employee to their own repository, as

these may represent personal activity. The results show the number of public contributions

increased by 5.3% for large firm with productivity estimates exceeding the median post the

GitHub announcement. There was a 1.7% (though statistically insignificant) increase in

public contributions per employee for large firms with above-median productivity levels

post-GitHub shock. We find statistically indistinguishable changes for med-sized firms.

Notably, the entire positive impact is negated for small firms with above-median productivity,

which witnessed a 4.5% reduction in the number of contributions and a 6.5% reduction in the

number of contributions per employee after the GitHub shock. We find that these results are

driven by changes in the probability of experiencing very high (top quartile) contributions,

reducing concerns that we are capturing bias in logarithm due to count like variables. Figure

8 displays the corresponding event studies. The absence of any discernible pre-trends before

the shock is consistent with capturing the impact of the change in GitHub policy. In

summary, these results highlight that large firms were able to enhance productivity, whereas

small firms struggled to offset talent losses, resulting in an overall reduction in productivity.

We also test our results using different types of public contributions and various cut-offs for

high GitHub activity. Table A.10 presents these findings. Panel A shows that our results

hold when using all public contributions, as well as contributions to organization-owned

repositories. Panel B confirms robustness across alternate cut-offs, including the top tercile,

top decile, non-zero contributions, and contributions exceeding 10.

15In un-reported analysis we find that the results in Column 1 are robust to dropping firms which exited
from the sample. We also find that a maximum of 1.5% of our sample is aqui-hires (where more than 80%) of
the team moves to a new firm. Our results are also robust to excluding acqui-hire deals from the regression
analysis.
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6 Market Concentration

Sections 3 and 5 document the effects of GitHub productivity disclosure on individual

reallocation to larger firms and the subsequent impact on the growth and productivity of most

impacted firms by size. We now proceed to evaluate whether this reallocation has influenced

broader industry dynamics, potentially leading to increased concentration in more affected

industries. To address this, we aggregate our data to the industry level and investigate

the correlation between changes in concentration, as measured by the Herfindahl-Hirschman

Index (HHI), and the average number of private contributions in each industry. We estimate

the following regression equation:

∆Concentrationh = βProductivityh + εh (7)

The dependent variable, ∆Concentrationh, denotes the change in concentration for

industry h over the period spanning five years before the shock (2011-2016) to five years

after the shock (2016-2021). We investigate changes in market concentration across various

specifications. The coefficient β captures the correlation between the outcome and a measure

of private contributions, Productivityh. We present our findings for both the average

productivity and the proportion of employees with productivity greater than zero during

the pre-shock period, within industry h. We conduct the analysis for both 144-LinkedIn

industries and 3-digit SIC industry codes, clustering standard errors at the industry level.

We abstain from asserting causality for these regressions, recognizing the difficulty of inferring

causal relationships from aggregate correlations. Nevertheless, these correlations offer

interesting insights into overarching trends, particularly concerning the observed increase

in firm concentration over the past decade (Autor et al. (2023)).

Table A.12 presents our results. Columns 1-2 and 3-4 test whether there was a greater

increase in labor market HHI in industries with a higher proportion of GitHub private

contributions, based on LinkedIn and SIC industry definitions, respectively. Industries with 1
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standard deviation higher share of GitHub employees with private contributions experienced

a 6.4% (14.0%) larger increase in labor concentration from 2016 to 2021, compared to 2011

to 2016, at the LinkedIn (SIC 3-digit) industry level. Similarly, industries with a 1 standard

deviation higher average number of private contributions saw a 6.7% (13.7%) higher increase

in labor concentration over a five-year period at the LinkedIn (SIC 3-digit) industry level.

These findings demonstrate that there were greater concentration changes in labor markets

within industries where more information was unveiled following the GitHub announcement.

7 Conclusion

This paper represents one of the first examinations of the impact of

individual-productivity-related big data on labor distribution within the economy.

Our investigation centers on GitHub, the world’s largest repository of individual-level

productivity information. Leveraging a quasi-natural experiment, we exploit a scenario

where employees were exogenously enabled to disclose existing private contributions on

their GitHub profiles.

Our findings unveil a significant paradigm shift: higher signaling ability by individuals

triggered the reallocation of talented individuals toward larger firms. Smaller and

medium-sized firms encountered challenges in both recruiting and retaining talented

individuals post-shock. In contrast, large firms effectively retained existing talent through

internal promotions and attracted new talent. Consistent with a reduction of information

asymmetry on the labor market, the surge in productivity information mitigated reliance

on traditional signals of hard information and existing networks, thereby democratizing

opportunities for talent from lower-ranked, non-networked universities.

However, this talent redistribution had adverse effects on the growth and productivity

of smaller firms. Further correlational evidence suggests that this talent reallocation led

to an increase in market concentration in industries with greater informational disclosure
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facilitated by GitHub. Our findings unearth a novel labor channel for big data, wherein

increased employee productivity information reallocates labor from small to large firms,

amplifying the significance of large firms in the economy.
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Figure 1: Our Sample GitHub Users by MSA

This figure presents the distribution of our sample by employee’s location (MSA) based on their first job.
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Figure 2: GitHub Shock & Employee Mobility to Large Firms

This figure presents an event study on employee mobility to large firms around the disclosure of employee
productivity information on GitHub. The x-axis plots the quarter around the shock. The dashed line
indicates the quarter 2 (April-June) of 2016, during which GitHub introduced the policy that allowed users
to display their productivity information more accurately. The quarter 1 of 2016 (Jan-March) is the omitted
quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more productive
employees estimated by the β coefficients obtained from the equation:

1(MoveToLargeF irm)i,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with the time indicator for each quarter. The dependent variable is an indicator
that equals 1 when employee i switches job to a large firm (>1000 employees) in quarter t and is 0 otherwise.
Xit represents employee’s time-varying salary and seniority controls. αi is employee fixed effects. γit
represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s
location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year
corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry,
and location represent the employee’s first job role, MSA, and industry in our sample period respectively.
Standard errors are clustered at the employee level. Light blued lines show 95% confidence intervals for
estimates.
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Figure 3: GitHub Shock & Employee Mobility

This figure presents event studies on employee mobility to small-sized and medium-sized firms around the disclosure of employee productivity
information on GitHub. The x-axis plots the quarter around GitHub’s policy change. The dashed line indicates the quarter 2 (April-June) of 2016,
during which GitHub introduced the policy that allowed users to display their productivity information more accurately. The quarter 1 of 2016
(Jan-March) is the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more productive employees
estimated by the β coefficients obtained from regression estimate:

1(Move)i,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with the time
indicator for each quarter. The dependent variable is an indicator that equals 1 when employee i switches job to a mid-sized firm (50 < employees
<= 1000) for Panel (a), to a small firms (<= 50 employee) for Panel (b), in quarter t and is 0 otherwise. Xit represents employee’s time-varying
salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as
well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last
degree. Language is the employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are clustered at the employee level. Light blued lines show 95% confidence intervals for
estimates.

(a) Move to Mid-Sized Firms (b) Move to Small Firms
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Figure 4: GitHub Shock & Employee Mobility to Different Size Buckets

This figure presents the economic magnitude of employee mobility to firms in different size buckets around the disclosure of employee productivity
information on GitHub. On the y-axis, we plot the economic magnitude of the differential impact of the shock on more productive employees using
the β coefficients obtained from regression estimate:

1(Move)i,t =

12∑
τ=−8

βτProductivityi × 1(τ = t) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with the time
indicator for each quarter. The dependent variable is an indicator that equals 1 when employee i switches job to a firm in a given size bucket. Xit

represents employee’s time-varying salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language
interacted with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s
graduation year corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry, and location represent
the employee’s first job role, MSA, and industry in our sample period respectively. Standard errors are clustered at the employee level. Light blued
lines show 95% confidence intervals for estimates.
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Figure 5: GitHub Shock & Employee Mobility to Large Firms: Heterogeneity by Initial Firm
Size

This figure presents event studies on employee mobility to large firms from small and mid-sized firms around the disclosure of employee productivity
information on GitHub. The x-axis plots the quarter around the shock. The dashed line indicates the quarter 2 (April-June) of 2016, during which
GitHub introduced the policy that allowed users to display their productivity information more accurately. The quarter 1 of 2016 (Jan-March) is the
omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more productive employees, particularly at small and
mid-sized firms, estimated by the β coefficients obtained from the equation:

1(MoveToLargeF irm)i,t =

12∑
τ=−8

δτProductivityi × 1(τ = t) +

12∑
τ=−8

βτProductivityi × 1(τ = t)× 1(Mid− Sizedi(t−1))

+

12∑
τ=−8

β
′

τProductivityi × 1(τ = t)× 1(Smalli(t−1) + λXit + αi + γit + εi,t

The independent variable is a triple interaction of three indicators: normalized productivity estimate of the employee i derived from the AKM
decomposition, indicators for the size of the firm where the employee worked in the previous quarter, and the time indicator for each quarter. We also
include indicator variables Mid and Small as well as their double interactions with Productivity and time, but do not show them in the above equation
for brevity. Panel A plots interaction with Mid, an indicator variable that takes the value of 1 for firms with 50-1000 employees. Panel B plots the
interaction with Small, an indicator for firms with less than 50 employees. The dependent variable is an indicator that equals 1 if the employee switches
job to a large firm (> 1000 employees) in that quarter. Xit represents employee’s time-varying salary and seniority controls. αi is employee fixed
effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location and industry interacted
with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample period respectively. Standard
errors are clustered at the employee level. Light blued lines show 95% confidence intervals for estimates.

(a) Mid-Sized Firms (b) Small Firms
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Figure 6: GitHub Shock & Employee Promotions at Large Firms

This figure presents an event study on employees’ within-firm promotions at large firms around the disclosure
of employee productivity information on GitHub. The x-axis plots the quarter around the shock. The dashed
line indicates the quarter 2 (April-June) of 2016, during which GitHub introduced the policy that allowed
users to display their productivity information more accurately. The quarter 1 of 2016 (Jan-March) is
the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on more
productive employees, particularly at large firms, estimated by the β coefficients obtained from the equation:

1(Within− FirmPromotion)i,f,t =

12∑
τ=−8

βτProductivityi × 1(τ = t)

+

12∑
τ=−8

λτProductivityi × 1(τ = t)× 1(Mid− Sizedi(t−1))

+

12∑
τ=−8

λ
′

τProductivityi × 1(τ = t)× 1(Smalli(t−1) + αi + γit + δft + εi,f,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with the time indicator for each quarter. We also include indicator variables Mid
and Small as well as their double interactions with Productivity and time, but do not show them in the
above equation for brevity. The dependent variable is an indicator that equals 1 when employee i does not
switch jobs and her salary or seniority improves in quarter t compared to quarter t-1 and is 0 otherwise.
αi represents employee fixed effects. γit represents employee’s cohort, role, and language interacted with
time fixed effects as well as employee’s location and industry interacted with time fixed effects. δft is firm
cohort fixed effects representing an interaction of the employee’s current firm and the year of joining the
firm. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the
employee’s most preferred coding language. Role, industry, and location represent the employee’s first job
role, MSA, and industry in our sample period respectively. Standard errors are clustered at the employee
level. Light blued lines show 95% confidence intervals for estimates.
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Figure 7: GitHub Shock & Employment Growth at Small Firms

This figure presents an event study on firm-level employment growth for small firms (<= 50 employees) around the disclosure of employee productivity
information on GitHub. The x-axis plots the quarter around GitHub’s policy change. The dashed line indicates the quarter 2 (April-June) of 2016,
during which GitHub introduced the policy that allowed users to display their productivity information more accurately. The quarter 1 of 2016
(Jan-March) is the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on employment growth of small firms
with above-median employee productivity estimated by the β coefficients obtained from the following equation:

EmploymentGrowthj,t =

12∑
τ=−8

θτ1(Productivityj > Median)× 1(τ = t)

+

12∑
τ=−8

δτ1(Productivityj > Median)× 1(τ = t)× 1(MidSizedj)

+

12∑
τ=−8

βτ1(Productivityj > Median)× 1(τ = t)× 1(Smallj) + λXjt + αj + γjt + εj,t

The independent variable is a triple interaction of three binary indicators: 1(Productivityj > Median) that takes the value of 1 if firm j ’s average
AKM-based employee productivity is above median, 1(Smallj) that takes the value of 1 if firm j is small (<= 50 employees), and 1(τ = t) that is the
time indicator for each quarter. We also include the double interaction of indicator variables MidSized and Small with time, but do not show them in
the above equation for brevity. In Panel (a), the dependent variable is the employment change (in %) for firm j in quarter t with respect to quarter
t-1. In Panel (b), the dependent variable is a dummy that takes the value of 1 if the employment at the firm frops by more than 50% in that quarter
and 0 otherwise. Xjt represents firm’s time-varying lagged employment. αj is firm fixed effects. γjt represents the firm’s industry × state interacted
with time fixed effects. We cluster the standard errors at the firm level. Light blued lines show 95% confidence intervals for estimates.

(a) Employment Growth (b) 1(Employment Reduction > 50%)
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Figure 8: GitHub Shock & Productivity at Small Firms
This figure presents event studies on firm-level productivity of small firms (<= 50 employees) proxied by their public GitHub contributions around the
disclosure of employee productivity information on GitHub. The x-axis plots the quarter around GitHub’s policy change. The dashed line indicates
the quarter 2 (April-June) of 2016, during which GitHub introduced the policy that allowed users to display their productivity information more
accurately. The quarter 1 of 2016 (Jan-March) is the omitted quarter set equal to zero. On the y-axis, we plot the differential impact of the shock on
public contributions of small firms with above-median employee productivity estimated by the β coefficients obtained from the following equation:

1(Contributionsj,t) =

12∑
τ=−8

θτ1(Productivityj > Median)× 1(τ = t) +

12∑
τ=−8

δτ1(Productivityj > Median)× 1(τ = t)× 1(MidSizedj)

+

12∑
τ=−8

βτ1(Productivityj > Median)× 1(τ = t)× 1(Smallj) + λXjt + αj + γjt + εj,t

The independent variable is a triple interaction of three binary indicators: 1(Productivityj > Median) that takes the value of 1 if firm j ’s average

AKM-based employee productivity is above median, 1(Smallj) that takes the value of 1 if firm j is small (<= 50 employees), and 1(τ = t) that is

the time indicator for each quarter. We also include the double interaction of indicator variables MidSized and Small with time, but do not show

them in the above equation for brevity. The dependent variable in Panel (a) (Panel (b)) is a binary indicator that takes the value of 1 if the firm

j ’s total public contributions (total public contributions per employee) in the quarter is in the top quartile and is 0 otherwise. Firm contributions

only include public contributions made by incumbent employees towards repositories not owned by the employees themselves. Xjt represents firm’s

time-varying lagged stock of total contributions as well as the median pre-period public contribution interacted with an indicator for quarters after

GitHub’s policy change. αj is firm fixed effects. γjt represents the firm’s industry × state interacted with time fixed effects. We cluster the standard

errors at the firm level. Light blued lines show 95% confidence intervals for estimates.

(a) Public Contributions (b) Public Contributions per Employee
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Table 1: Descriptive Statistics

This table presents descriptive statistics for employee-level variables in Panel A, and firm-level variables in
Panel B.

Panel A: Employee Level Summary

Mean Std. Dev. P10 Median P90 Obs.

1(Male) 0.79 0.41 0 1 1 302,903
1(White) 0.69 0.46 0 1 1 302,903
1(Software Engg. Role) 0.37 0.48 0 0 1 302,903
1(SF/NY/Seattle) 0.25 0.43 0 0 1 302,581
Experience (Years) 8.82 8.13 1 7 20 302,903
Initial Seniority 2.20 0.93 1 2 4 302,903
Initial Salary (in ’000 $s) 87.34 26.85 56.73 84.88 116.66 302,903
Pre-Period Total Contributions (Log) 2.60 2.16 0 2.08 5.87 302,903
Pre-Period Public Contributions (Log) 2.35 1.91 0 1.95 5.17 302,903
Pre-Period Private Contributions (Log) 0.66 1.86 0 0 3.22 302,903
1(Job Change to Large Firms) 0.03 0.04 0 0 0.08 302,902
1(Job Change to Mid-Size Firms) 0.02 0.04 0 0 0.08 302,902
1(Job Change to Small Firms) 0.02 0.03 0 0 0.06 302,902
1(Job Change) 0.07 0.07 0 0.05 0.17 302,903
1(Promotion) 0.06 0.05 0 0.04 0.13 302,903
1(Across-Firm Promotion) 0.04 0.05 0 0.04 0.10 302,903
1(Within-Firm Promotion) 0.02 0.03 0 0 0.07 302,903

Panel B: Firm Level Summary

Mean Std. Dev. P10 Median P90 Obs.

All Sample Firms (LinkedIn)
1(Large Firm) (Employees > 1000) 0.15 0.36 0 0 1 57,982
1(Mid-size Firm) (50 < Employees <= 1000) 0.37 0.48 0 0 1 57,982
1(Small Firm) (Employees <= 50) 0.48 0.50 0 0 1 57,982
Employment Change 0.03 0.09 -0.03 0.02 0.13 55,335
Public Contributions 46.49 739.07 0.17 4 65 50,307
Public Contributions/Employee 10.26 107.47 0.13 1.75 17.26 50,307

Compustat Firms
Firm Size (in ’000 Employees) 24.05 74.32 0.36 5.10 60.08 1,675
Daily Excess Return (in %) -0.03 0.14 -0.18 -0.02 0.09 1,675
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Table 2: Sample & Variation Breakdown for AKM Tests

This table presents the details of sample construction (in Panel A) and variance decomposition (in Panel
B) of the AKM (Abowd et al., 1999) tests done to estimate individual employee productivity from private
GitHub contributions. We isolate employee productivity from historical private GitHub contributions by
running the following regression specification:

Log(PvtContributions)i,f,t = ϑi + ϑf + ϑt + ϑk +Xi,f,t + εi,f,t

ϑi, the employee fixed effect, represents the estimated employee i’s productivity. The dependent variable
is the logarithm of the number of private contributions made by employee i in month t. The regression is
estimated on data spanning May 2011 to April 2016, exactly five years before GitHub policy change. We
control for employee’s current job duration, and total work experience. We also include firm fixed effects
(ϑf ), time fixed effects (ϑt), and employee’s role fixed effects (ϑk). Panel A shows the number of observations
in our initial sample, the connected set (the largest set of firms linked by employee mobility), the filtered set
(connected set with at least two employees in each firm-time observation), the sample for which productivity
estimates were obtained, and the final sample remaining after excluding users working in non-profit industries
at the time of GitHub’s policy change. Panel B summarizes the breakdown of the variance in the dependent
variable explained by the employee and firm components.

(1) (2) (3) (4)

Panel A: Summary Stats

Employees Parent Firms

Sample N % Initial Sample N % Initial Sample

Initial Sample 381,114 103,308
Connected Set 356,106 93.4% 77,899 75.4%
Filtered Set 342,769 89.9% 36,358 35.2%
Productivity Estimates 338,523 88.8% 36,358 35.2%
Excluding Non-Profits 302,903 79.5%

Panel B: Variation Breakdown

Var. Explained

Person F.E. 66.7%
Firm F.E. 8.5%
Residual 24.7%
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Table 3: GitHub Shock & Employee Mobility to Large Firms

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on
employee mobility to large firms. We report the differential impact of GitHub’s policy change on productive
employees estimated by the β coefficient from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + γXit + αi + θt + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with Post, an indicator that takes the value of 1 for quarters after GitHub’s policy
change (quarter 2 of 2016). The dependent variable is an indicator that equals 1 when employee i switches
job to a large firm (>1000 employees) in quarter t and is 0 otherwise. Columns 1 to 5 present estimates
with varying controls and fixed effects. Cohort represents an employee’s graduation year corresponding to
the last degree. Language is the employee’s most preferred coding language. Role, industry, and location
represent the employee’s first job role, MSA, and industry in our sample period respectively. Standard errors
are clustered at the employee level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Job Change to Large Firms)

Productivity × 1(Post) 0.0013*** 0.0012*** 0.0017*** 0.0016*** 0.0015***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

Employee F.E. Y Y Y Y Y
Time F.E. Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Time F.E. Y
Cohort × Language × Role × Time F.E. Y Y
Industry × Location × Time F.E. Y

Observations 6,804,386 6,804,386 6,804,166 3,811,484 3,199,173
# Unique Employees 302,781 302,781 302,772 170,880 143,446
R-squared 0.054 0.054 0.06 0.168 0.212
Y-Mean 0.031 0.031 0.031 0.032 0.033
Magnitude (%) 4.04 3.84 5.32 5.69 5.27
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Table 4: GitHub Shock & Employee Mobility to Large Firms: Placebo & Alternate Samples

This table presents placebo and alternate sample tests for estimates reported in Table 3. Panel A presents a placebo test with the independent variable
being an alternative productivity estimate computed by using employee’s public contributions as the dependent variable in the AKM decomposition.
Panel B estimates results on a subsample of active GitHub Users. Panel B1 only includes users with more than 10 total GitHub contributions during
the pre-period (in the 12 quarters before May 2016). Panel B2, only includes users employed at firms (at the time of shock) with 100 or more total
GitHub contributions during the pre-period. Panel B3 restricts the sample to users with non-zero private GitHub contributions during the pre-period.
Panel B4 restricts the sample to users with at least 10 private GitHub contributions during the pre-period. All tests correspond to our baseline
specification, Column 5 in Table 3. Standard errors are clustered at the employee level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: Coefficient Std. Error Observations R-squared Y-Mean Magnitude (%)

Panel A: Placebo Test

A1: Productivity based on Public Contributions
Productivity × 1(Post) -0.0004 (0.0003) 3,199,024 0.211 0.033 -1.4

Panel B: Within Active User Comparison

B1: Pre Period Individual Total Contributions > 10
Productivity × 1(Post) 0.0018*** (0.0002) 1,708,418 0.224 0.033 7.8

B2: Pre-period Firm Contributions >= 100
Productivity × 1(Post) 0.0042*** (0.0002) 1,748,870 0.259 0.0025 12.56

B3: Pre-period Individual Private Contributions > 0
Productivity × 1(Post) 0.0011*** (0.0003) 506,974 0.271 0.043 7.65

B4: Pre-period Individual Private Contributions >= 10
Productivity × 1(Post) 0.0011*** (0.0003) 401,146 0.274 0.024 8.35
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Table 5: GitHub Shock & Employee Mobility to Medium & Small Firms

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information on employee mobility based
on destination firm size. We report the differential impact of GitHub’s policy change on productive employees estimated by the β coefficient from the
equation:

1(Move)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with Post, an
indicator that takes the value of 1 for quarters after GitHub’s policy change (quarter 2, i.e., April-June 2016). The dependent variable is an indicator
that equals 1 when employee i switches job in quarter t to a large firm (>1000 employees) for Column 1, mid-sized firm (50 < employees <= 1000) for
Column 2, and small firm (<= 50 employees) for Column 3. Xit represents employee’s time-varying salary and seniority controls. αi is employee fixed
effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location and industry interacted
with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample period respectively. Standard
errors are clustered at the employee level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3)

Outcome: 1(Job Change)

Large Firm Medium Firm Small Firm

Productivity × 1(Post) 0.0015*** -0.0013*** -0.0012***
(0.0002) (0.0002) (0.0002)

Salary & Seniority Controls Y Y Y
Employee F.E. Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y
Industry × Location × Time F.E. Y Y Y

Observations 3,199,173 3,199,173 3,199,173
# Unique Employees 143,446 143,446 143,446
R-squared 0.212 0.211 0.222
Y-Mean 0.033 0.03 0.023
Magnitude (%) 5.27 -4.83 -5.99
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Table 6: GitHub Shock & Employee Mobility to Large Firms:
Heterogeneity by Origin Firm Size

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information on employee mobility to large firms based on the origin firm size. We report the differential
impact of GitHub’s policy change on productive employees by origin firm type estimated by the β coefficient
from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt) + β2Productivityi × 1(Postt)× 1(Midi(t−1))

+ β3Productivityi × 1(Postt)× 1(Small)i(t−1)) + λXit + αi + θt + γit + εi,t

The independent variable is a triple interaction of three indicators: normalized productivity estimate of

employee i derived from the AKM decomposition, indicators for the size of the origin firm, i.e. where

employee i worked in the previous quarter, and an indicator that takes the value of 1 for quarters after

GitHub’s policy change (quarter 2, i.e., April-June 2016). Mid is an indicator variable that takes the value

of 1 for firms with 50-1000 employees and Small is an indicator for firms with less than 50 employees.

The dependent variable is an indicator that equals 1 when employee i switches job to a large firm (>1000

employees) in quarter t and is 0 otherwise. We also estimate coefficients for indicator variables Mid and

Small as well as their double interactions with Productivity and Post, but do not report them for brevity.

Columns 1 to 5 present estimates with varying controls and fixed effects. Cohort represents an employee’s

graduation year corresponding to the last degree. Language is the employee’s most preferred coding language.

Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample period

respectively. Standard errors are clustered at the employee level. Significance levels: **(p < 0.05), ***(p <

0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Job Change to Large Firms)

Productivity × 1(Post) -0.0037*** -0.0039*** -0.0029*** -0.0025*** -0.0025***
(0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

Productivity × 1(Post) × 1(Mid) 0.0045*** 0.0047*** 0.0042*** 0.0031*** 0.0030***
(0.0003) (0.0003) (0.0003) (0.0004) (0.0005)

Productivity × 1(Post) × 1(Small) 0.0050*** 0.0053*** 0.0046*** 0.0041*** 0.0040***
(0.0003) (0.0003) (0.0003) (0.0004) (0.0005)

Employee F.E. Y Y Y Y Y
Time F.E. Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Time F.E. Y
Cohort × Language × Role × Time F.E. Y Y
Industry × Location × Time F.E. Y

Observations 6,455,765 6,455,765 6,455,545 3,596,761 3,022,682
# Unique Employees 300,779 300,779 300,770 169,629 142,754
R-squared 0.069 0.069 0.075 0.184 0.227
Y-Mean 0.03 0.03 0.03 0.031 0.032
Magnitude (Mid) (%) 2.8 2.66 4.29 2.27 1.78
Magnitude (Small) (%) 4.56 4.48 5.62 5.99 5.42
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Table 7: GitHub Shock & Employee Promotion

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on employee career advances. We report the
differential impact of GitHub’s policy change on productive employees by initial firm type estimated by the β coefficient from the equation:

1(Promotion)i,f,t = β1Productivityi × 1(Postt) + β2Productivityi × 1(Postt)× 1(Midi(t−1))

+ β3Productivityi × 1(Postt)× 1(Small)i(t−1)) + αi + γit + δft + εi,f,t

The independent variable is an interaction of two indicators: normalized productivity estimate of the employee i derived from the AKM decomposition,
and an indicator that takes the value of 1 for quarters after GitHub’s policy change (quarter 2, i.e., April-June 2016). Even-numbered columns
additionally interact this term with indicators for the size of the firm where the employee worked in the previous quarter. Mid is an indicator variable
that takes the value of 1 for firms with 50-1000 employees, and Small is an indicator for firms with less than 50 employees. The dependent variable is
an indicator variable that is 1 if there is a promotion (salary or job-seniority increase compared to the previous quarter) and the employee switches job
to a large firm (> 1000 employees) in Columns 1 and 2, switches job to a small or mid-sized firm (<= 1000 employees) in Columns 3 and 4, remains
at the same firm in columns 5 and 6. We also estimate coefficients for indicator variables Mid and Small as well as their double interactions with
Productivity and Post, but do not report them for brevity. αi represents employee fixed effects. γit represents employee’s cohort, role, and language
interacted with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s
graduation year corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry, and location represent
the employee’s first job role, MSA, and industry in our sample period respectively. In columns 5 and 6, we also control for δft, firm cohort representing
an interaction of the employee’s current firm and the year of joining the firm. Standard errors are clustered at the employee level. Significance levels:
*(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: 1(Promotion)

Move to Large Move to Small & Med. Within-Firm

Productivity × 1(Post) 0.0011*** -0.0018*** -0.0020*** -0.0039*** 0.0008*** 0.0011**
(0.0001) (0.0003) (0.0002) (0.0006) (0.0002) (0.0005)

Productivity × 1(Post) × 1(Mid) 0.0023*** 0.0032*** 0.0002
(0.0004) (0.0007) (0.0006)

Productivity × 1(Post) × 1(Small) 0.0028*** 0.0042*** -0.0004
(0.0004) (0.0007) (0.0006)

Employee F.E. Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y
Firm Cohort Y Y

Observations 3,199,173 3,022,682 3,199,173 3,022,682 2,860,181 2,828,288
# Unique Employees 143,446 142,754 143,446 142,754 142,827 142,521
R-squared 0.204 0.216 0.212 0.22 0.269 0.271
Y-Mean 0.024 0.023 0.036 0.035 0.019 0.019
Magnitude (%) (Main) 5.42 -9 -6.16 -12.7 4.96 6.25
Magnitude (%) (Small) 5.11 0.84 4.19
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Table 8: GitHub Shock & Employee Mobility to Large Firms: Heterogeneity by Employee
Type

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information based on employee-type. We
report the differential impact of GitHub’s policy change on productive employees, particularly those susceptible to higher information asymmetry,
estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)

+ β2Productivityi × 1(Postt)× 1(Groupi) + λXit + αi + γit + εi,t

The independent variable is a triple interaction of three indicators: the employee’s normalized productivity estimate derived from the AKM
decomposition, indicators for employee group, and indicator that takes the value of 1 for quarters after GitHub’s policy change quarter 2, i.e.,
April-June 2016). Columns 1-2 include triple interaction for 1(Experience < Median), which takes the value of 1 for employees that have less than
median work experience at the time of shock. Columns 3-4 (5-6) include triple interactions with 1(Non-Elite School) that takes the value 1 if the
employee did not attend a school ranked among the top 30 in the US (world) by US News & Ranking (QS University Rankings) in 2016. Columns
7-8 include triple interaction with 1(Low-Network School) that takes the value of 1 if the employee did not attend a school that is among the top 5
universities any large firm hired from in the pre-period. We also estimate coefficients for double interaction of Group and Post, but do not report
them for brevity. We control for employees’ time-varying salary and seniority. Xit represents employee’s time-varying salary and seniority controls.
αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location
and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the
employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample
period respectively. Standard errors are clustered at the employee level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Job Change to Large Firms)

Productivity × 1(Post) 0.0013*** 0.0012*** 0.0007 0.0006 0.0005 0.0004 0.0015*** 0.0014***
(0.0002) (0.0002) (0.0005) (0.0006) (0.0006) (0.0007) (0.0001) (0.0002)

Productivity × 1(Post) × 1(Experience < Median) 0.0005* 0.0006**
(0.0003) (0.0003)

Productivity × 1(Post) × 1(Non-Elite School - US) 0.0009* 0.0010*
(0.0005) (0.0006)

Productivity × 1(Post) × 1(Non-Elite School - Global) 0.0011* 0.0012*
(0.0006) (0.0007)

Productivity × 1(Post) × 1(Low-Network School) 0.0006* 0.0007*
(0.0003) (0.0004)

Employee F.E. Y Y Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y

Observations 4,397,956 3,112,896 4,397,956 3,112,896 4,397,956 3,112,896 4,397,956 3,112,896
# Unique Employees 196,369 139,680 196,369 139,680 196,369 139,680 196,369 139,680
R-squared 0.092 0.213 0.092 0.213 0.092 0.213 0.091 0.212
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Table 9: GitHub Shock & Employee Mobility to Large Firms: Heterogeneity by Destination
Firm Characteristics

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information based on destination firm
characteristics. We report the differential impact of GitHub’s policy change on productive employees estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is an interaction of the employee’s normalized productivity estimate derived from the AKM decomposition and an indicator
that takes the value of 1 for quarters after GitHub’s policy change (quarter 2, i.e., April-June 2016). The dependent variable is mobility to a subset
of large firms (> 1,000 employees) and differs in each column based on the subset. In columns 1-2, the subset is based on steepness in career growth
defined by whether the firm had an above-median average annual salary change in the pre-period. In columns 3-4, the subset is based on job stability
defined by whether the firm had below-median average forced turnovers in the pre-shock period. In columns 5-6, the subset is based on whether
any Human Resource professional at the firm used GitHub during the pre-period, and in columns 7-8, the subset is based on whether the firm and
its employees use GitHub (derived from firm-level private contributions). Xit represents employee’s time-varying salary and seniority controls. αi

is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as well as employee’s location and
industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last degree. Language is the
employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry in our sample
period respectively. Standard errors are clustered at the employee level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Job Change to Large Firms with)

Steep Career Growth High Stability Tech-savvy Recruiters GitHub Usage

Yes No Yes No Yes No Yes No

Productivity × 1(Post) 0.0014*** 0.0001 0.0000 0.0016*** 0.0014*** 0.0002* 0.0014*** 0.0001***
(0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000)

Employee F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 3,192,168 3,192,168 3,194,104 3,194,104 3,199,173 3,199,173 3,199,173 3,199,173
# Unique Employees 143,445 143,445 143,445 143,445 143,446 143,446 143,446 143,446
R-Squared 0.2 0.221 0.224 0.207 0.189 0.23 0.204 0.266
Y-Mean 0.024 0.007 0.003 0.029 0.018 0.015 0.03 0.003
Magnitude (%) 6.8 1.59 -1.25 6.23 8.43 1.31 5.44 3.58
T-test (H0 : βY es = βNo) (0.0000)*** (0.0000)*** (0.0000)*** (0.0189)**
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Table 10: GitHub Shock & Firm Outcomes

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on firm employment and productivity. We
report the differential impact of GitHub’s policy change on small and mid-sized firms with more productive employees pre-treatment estimated by
the β coefficient from the equation:

FirmOutcomej,t = β11(Productivityj > Median)× 1(Postt) + β21(Productivityj > Median)× 1(Postt)× 1(Midj)

+ β31(Productivityj > Median)× 1(Postt)× 1(Smallj) + λXjt + αj + γjt + εj,t

The independent variable is a triple interaction of three indicators: 1(Productivityj > Median) that takes the value of 1 if firm j ’s average AKM-based
employee productivity is above median, an indicator for firm size, and an indicator that takes the value of 1 for quarters after GitHub’s policy change
(quarter 2, i.e., April-June 2016). Mid is an indicator variable that takes the value of 1 for firms with 50-1000 employees, and Small is an indicator
for firms with less than 50 employees. In column 1, the dependent variable is the percentage change in employment compared to the previous quarter.
In column 2, the dependent variable is a binary indicator which takes the value of 1 if the employment at the firm falls by more than 50% compared
to the previous quarter and 0 otherwise. In columns 3-4 and 5-6, the dependent variable is the firm’s public contributions and per-capita public
contributions, respectively. Firm public contributions only include contributions made by incumbent employees towards repositories not owned by the
employees themselves. In columns 3 and 5, the dependent variable is the logarithm of one added to the firm public contributions variable. In columns
4 and 6, the dependent variable takes the value of 1 if the firm contribution variable is in the top quartile and 0 otherwise. We also estimate coefficients
for double interaction of indicator variables Mid and Small with Post, but do not report them for brevity. Xjt represents firm’s time-varying controls
(lagged employment in columns 1-2 and lagged stock of total contributions as well as pre-period median public contributions interacted with Post in
columns 3-6). αj is firm fixed effects. γjt represents the firm’s industry × state interacted with time fixed effects. Standard errors are clustered at
the firm level. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: Employment Public Contributions Per-capita Public Contributions

QoQ Emp. Growth Emp Reduction > 50% Log(1+Y) 1(Top Quartile) Log(1+Y) 1(Top Quartile)

1(Productivity > Median) × 1(Post) 0.0034** -0.0001 0.0528** 0.0549** 0.0167 0.0147
(0.0016) (0.0004) (0.0253) (0.0243) (0.0162) (0.0253)

1(Productivity > Median) × 1(Post) × 1(Mid) -0.0018 -0.0003 -0.0068 0.0012 -0.0103 0.0109
(0.0025) (0.0007) (0.0306) (0.0295) (0.0201) (0.0305)

1(Productivity > Median) × 1(Post) × 1(Small) -0.0125*** 0.0022** -0.1079*** -0.1050*** -0.0651*** -0.0719**
(0.0030) (0.0011) (0.0299) (0.0291) (0.0207) (0.0305)

Controls Y Y Y Y Y Y
Firm F.E. Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y

Observations 1,110,207 1,110,207 860,044 860,044 860,044 860,044
# Unique Firms 51,144 51,144 44,600 44,600 44,600 44,600
R-squared 0.222 0.166 0.722 0.584 0.642 0.515
Y-Mean 0.071 0.006 1.237 1 0.754 0.998
Magnitude- Base (%) 4.76 -1.39 4.26 5.49 2.21 1.47
Magnitude - Small (%) -12.88 35.94 -4.45 -5.01 -6.43 -5.73
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A.1 Appendix

Figure A.1: Sample GitHub Profile and Contribution Calendar

This figure presents a sample GitHub profile and the user’s contribution calendar.
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Figure A.2: Association between Employees’ GitHub Contributions,
Salaries, and Publications

This figure presents the scatter plot of employees’ GitHub contributions and salary (in panel A) and
publications (in Panel B). On the y-axis, we plot the logarithm of employees’ average salary in Panel A
and the logarithm of the number of articles authored by the employee on Google Scholar, DevTo, and
ORCiD in Panel B. On the x-axis, we plot the logarithm of the number of total GitHub contributions by the
employees. We collapse the data into equal-sized bins and plot the mean value of the variables in each bin.

Panel A Panel B
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Figure A.3: GitHub as a Source of Technical Talent

This figure presents snapshots of third-party web platforms that assist firms in sourcing potential employees
using GitHub.
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Figure A.4: GitHub Calendar Before and After Policy Change

This figure provides an illustration of the change in a user’s GitHub contribution calendar before and
after GitHub’s policy change on May 19, 2016. Prior to May 19, 2016, users’ contribution calendar only
showcased the number of contributions made by users towards public repositories on GitHub. Following the
policy change, users could also include the (anonymized) number of private contributions in their calendar,
subsequently increasing their total number of contributions and making their contribution calendar more
active.
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Figure A.5: Persistence of Employee Productivity: Evidence from
AKM Decomposition Before and After Shock

This figure presents a heat map on the probability of transition of employees across productivity quintiles
derived from two different AKMs - before and after GitHub’s policy change. The pre-shock productivity
quintile sorts employees into 5 buckets based on the productivity estimates from the pre-shock AKM
decomposition (AKM sample spanning May 2011 - April 2016). The post-shock productivity quintile sorts
employees similarly using AKM decomposition, but in the post-shock period (AKM sample spanning May
2016 - April 2021). A cell (row, column) represents the percentage of people in the pre-shock productivity
quintile “row” who transition to post-shock quintile “column”. For instance, cell (1, 2) indicates that 21.9%
employees, who were initially in quintile 1 based on their productivity estimates from pre-shock AKM move
to quintile 2 of productivity when estimates are derived from AKM in the post-period. The analysis is
restricted to employees for whom productivity estimates could be derived from the AKM decomposition in
both pre- and post-shock periods.
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Figure A.6: GitHub Shock & Employee Mobility to Large Firms:
Robustness with Dummy Treatment Indicator

This figure presents an event study on employee mobility to large firms around the disclosure of employee
productivity information on GitHub. The event study replicates the setup in Figure 2 but uses a dummy
measure of Productivity as the dependent variable. The dummy indicator takes the value of 1 if the employee’s
normalized AKM-based productivity is positive and takes the value of 0 otherwise. The rest of the variables
and empirical setup remain unchanged.
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Table A.1: Sample Characteristics

This table presents the distribution of employees across five major industries, locations, coding languages, and
roles. Language is the employee’s most preferred coding language. Role, industry, and location correspond
to an employee’s initial job role, MSA, and industry respectively.

Panel A: Top 5 Industries Panel B: Top 5 Locations

Industry Share of Users (%) MSA Share of Users (%)

Computer Software 16.77 New York-Northern New Jersey-Long Island 11.94
Internet 15.17 Seattle-Tacoma-Bellevue 7.65
Information Technology and Services 14.04 San Francisco-Oakland-Fremont 7.41
Financial Services 4.88 San Jose-Sunnyvale-Santa Clara 5.85
Marketing and Advertising 3.57 Boston-Cambridge-Quincy 5.29

Total 54.43 Total 38.14

Panel C: Top 5 Coding Languages Panel D: Top 5 Roles

Language Share of Users (%) Role Share of Users (%)

Javascript 26.09 Software Engineer - Applications 16.66
Python 14.03 Software Engineer - Systems 15.7
Java 12.35 Full Stack Developer 5.15
Ruby 10.18 Software Developer 3.71
C# 5 Web Developer 3.26

Total 67.65 Total 44.48
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Table A.2: Distribution by Firm Size

This table presents the distribution of firms by their size buckets and the subsequent classification of firms
into small, medium, or large category.

Firm Size Buckets from LinkedIn

[1 - 10] [11 - 50] [51 - 200] [201 - 500] [501 - 1,000] [1,001 - 5,000] [5,001 - 10,000] [10,001 - )

Share (% All Firms) 19.82 28.25 21.92 9.34 5.39 8.15 2.4 4.73

Percentile 10th 25th 50th 75th 85th 90th 95th 99th

Classification Small (Size <= 50) Mid (50 < Size <= 1,000) Large (Size > 1,000)

Share (% All Firms) 48.07 36.65 15.28
Share (% All Employees) 19.35 30.23 50.42
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Table A.3: GitHub Shock & Employee Mobility to Large Firms:
Robustness

This table presents robustness tests for estimates reported in column 5 of Table 3. In Panel A, we use
alternative measures of productivity from alternative AKMs estimated by treating the dependent variable
differently. In part A1 (A3), we use the inverse hyperbolic sine (raw value) of user’s private contributions as
the dependent variable. In part A2, we use five buckets of private contributions (0, [1, 9], [10,99], [100,999],
and [1000+)) as input in the AKM. In Panel B, we use different measures of employee productivity computed
without estimating the AKM. We define productivity as the logarithm of private contributions (private
contributions as a share of total contributions) in part B1 (B2). Panel C presents results from estimates
using a binary dummy indicator for employees’ productivity. 1(Productivity > 0) is a dummy variable that
takes the value of 1 for employees whose normalized productivity is greater than zero and 0 for the remaining
employees. In Panel E, we use the original AKM specification but restrict the AKM sample until quarter
2, i.e., April-June quarter of 2014. We then estimate employee mobility in the quarters after quarter 2
(April-June) of 2014. In Panel E, we report our main results by clustering our standard errors alternatively.
In part E1 (E2), we double cluster standard errors at the level of employee’s industry and location (firm
and employee). In Panel F, we control for more granular fixed effects by interacting employee’s cohort, role,
language, location, and industry with time. Finally, in Panel G, we run the test on a matched sample.
Employees with positive normalized productivity estimates are matched with employees with non-positive
estimates based on demographic characteristics (gender, white or non-white, whether in software engineering,
whether located in SF/NY/Seattle, experience, salary, and seniority) in G1 and demographic characteristics
along with public contributions in G2. All panels run tests corresponding to our baseline specification,
Column 5 in Table 3. In panels A, B, C, D, F, and G, standard errors are clustered at the employee level.
Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: Coefficient Std. Error Observations R-squared Y-Mean Magnitude (%)

Panel A: Alternate AKM Specifications

A1: AKM with Asine Function
Productivity × 1(Post) 0.0015*** (0.0002) 3,199,173 0.212 0.033 4.64

A2: AKM with Categorial Variables
Productivity × 1(Post) 0.0016*** (0.0002) 3,199,173 0.212 0.033 4.67

A3: AKM with Raw Contribution Numbers
Productivity × 1(Post) 0.0008*** (0.0001) 3,199,173 0.211 0.033 2.5

Panel B: Alternate Productivity Definition

B1: Log(Private Contributions)
Productivity × 1(Post) 0.0011*** (0.0001) 3,199,173 0.212 0.033 3.63

B2: Share Private Contributions
Productivity × 1(Post) 0.0040*** (0.0008) 3,199,173 0.212 0.033 13.66

Panel C: Dummy Productivity Definition

C1: Productivity defined as Dummy Indicator Variable
1(Productivity > 0) × 1(Post) 0.0066*** (0.0005) 3,199,173 0.212 0.033 22.92

Panel D: Alternate AKM Sample Period

D1: Pre Sample AKM (2011-14)
Productivity × 1(Post) 0.0011*** (0.0002) 1,680,047 0.223 0.03 4.2

Panel E: Alternate Clustering

E1: Double Cluster at Industry & Location
Productivity × 1(Post) 0.0015*** (0.0003) 3,199,173 0.212 0.033 5.27

E2: Double Cluster at Employee & Firm
Productivity × 1(Post) 0.0016*** (0.0003) 3,092,556 0.215 0.034 5.45

Panel F: More Granular Controls

F1: Control for Cohort × Role × Language × Location × Industry × Time
Productivity × 1(Post) 0.0017*** (0.0004) 745,659 0.37 0.036 5.71

Panel G: Matched Sample

G1: Match on Individual Demographics
Productivity × 1(Post) 0.0016*** (0.0002) 1,444,081 0.247 0.032 7.38

G2: Match on Individual Demographics and Public Contributions
Productivity × 1(Post) 0.0015*** (0.0002) 1,405,593 0.246 0.032 6.61
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Table A.4: GitHub Shock & Employee Mobility to Different Firm-Size Buckets

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity information on employee mobility based
on destination firm size. We report the differential impact of GitHub’s policy change on productive employees estimated by the β coefficient from the
equation:

1(Move)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM decomposition interacted with Post, an
indicator that takes the value of 1 for quarters after GitHub’s policy change (quarter 2, i.e., April-June 2016). The dependent variable is a dummy
variable that equals 1 when employee i switches job in quarter t to a firm size as indicated in various columns. Xit represents employee’s time-varying
salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed effects as
well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s graduation year corresponding to the last
degree. Language is the employee’s most preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are clustered at the employee level. Significance levels: *(p<0.10), **(p < 0.05), ***(p <
0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Job Change)

Firm Size: [1 - 10] [11 - 50] [51 - 200] [201 - 500] [501 - 1,000] [1,001 - 5,000] [5,001 - 10,000] [10,001 - )

Productivity × 1(Post) -0.0002 -0.0010*** -0.0009*** -0.0004*** 0.0000 0.0003*** 0.0001** 0.0011***
(0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173 3,199,173
R-Squared 0.221 0.21 0.206 0.206 0.205 0.205 0.2 0.205
Y-Mean 0.008 0.015 0.016 0.008 0.006 0.01 0.005 0.018
Magnitude (%) -2.4 -8.03 -6.56 -4.9 -0.09 3.26 3.37 6.9
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Table A.5: GitHub Shock & Employee Mobility to Superstar Firms

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information
on employee mobility to superstar firms. We report the differential impact of GitHub’s policy change on
productive employees estimated by the β coefficient from the equation:

1(MoveToSuperstar)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with Post, an indicator that takes the value of 1 for quarters after GitHub’s policy
change (quarter 2, i.e., April-June 2016). The dependent variable is an indicator that equals 1 when employee
i switches job to a superstar firm in quarter t and is 0 otherwise. In each column, we define superstar firms
differently based on the average market capitalization or average revenue of the firm in the three years
before GitHub’s policy change. Xit represents employee’s time-varying salary and seniority controls. αi

is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed
effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an
employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry
in our sample period respectively. Standard errors are clustered at the employee level. Significance levels:
*(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: 1(Mobility to Superstar Firms)

Within-Industry Top 10% Within-Industry Top 1% Across Industry Top 10% Across Industry Top 1%

Market Cap Revenue Market Cap Revenue Market Cap Revenue Market Cap Revenue

Productivity × 1(Post) 0.0008*** 0.0008*** 0.0005*** 0.0004*** 0.0008*** 0.0008*** 0.0005*** 0.0003***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y Y Y Y Y
Time F.E. Y Y Y Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087 3,219,087
# Unique Employees 143,447 143,447 143,447 143,447 143,447 143,447 143,447 143,447
R-Squared 0.191 0.194 0.175 0.18 0.193 0.196 0.18 0.188
Y-Mean 0.017 0.018 0.007 0.006 0.017 0.017 0.009 0.006
Magnitude (%) 5.35 4.84 8.61 7.58 5.38 5.3 6.93 4.9
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Table A.6: GitHub Shock & Employee Mobility to Star Startups

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information
on employee mobility to star startups. We report the differential impact of GitHub’s policy change on
productive employees estimated by the β coefficient from the equation:

1(MoveToStarStartup)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is the normalized productivity estimate of the employee i derived from the AKM
decomposition interacted with Post, an indicator that takes the value of 1 for quarters after GitHub’s policy
change (quarter 2, i.e., April-June 2016). The dependent variable is an indicator that equals 1 when employee
i switches job to a star startup in quarter t and is 0 otherwise. We define a firm as a startup if the firm’s age
at the time of GitHub’s policy change was less than ten years. Subsequently, as indicated across different
columns, we define star startups differently based on the final venture funding round or the total funding
raised before GitHub’s policy change. Xit represents employee’s time-varying salary and seniority controls.
αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed
effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an
employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry
in our sample period respectively. Standard errors are clustered at the employee level. Significance levels:
*(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5)

Outcome: 1(Mobility to Star Startups)

Funding > Series B Funding > Series D Funding > $ 100 Mn Funding > $ 500 Mn Funding > $ 1 Bn

Productivity × 1(Post) -0.0002** 0.0001 0.0001 0.0001*** 0.0001***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y Y
Time F.E. Y Y Y Y Y
Salary & Seniority Controls Y Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y

Observations 3,145,396 3,145,396 3,145,396 3,145,396 3,145,396
# Unique Employees 143,437 143,437 143,437 143,437 143,437
R-Squared 0.173 0.168 0.166 0.155 0.151
Y-Mean 0.005 0.003 0.003 0.001 0.001
Magnitude (%) -5.03 3.07 2.75 13.08 14.77
10th percentile Firm Size [11 - 50] [11-50] [51 - 200] [201 - 500] [501 - 1,000]
Median Firm Size [51 - 200] [201 - 500] [201 - 500] [1,001 - 5,000] [1,001 - 5,000]
90th percentile Firm Size [501 - 1,000] [1,001 - 5,000] [1,001 - 5,000] [10,001 - ) [10,001 - )
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Table A.7: GitHub Shock & Employee Mobility to Different Industry
and Location

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information based on destination firm characteristics. We report the differential impact of GitHub’s policy
change on productive employees, estimated by the β coefficients from the equation:

1(MoveToLargeF irm)i,t = βProductivityi × 1(Postt) + λXit + αi + γit + εi,t

The independent variable is an interaction of the employee’s normalized productivity estimate derived from
the AKM decomposition and an indicator that takes the value of 1 for quarters after GitHub’s policy change
(quarter 2, i.e., April-June 2016). The dependent variable is mobility to a subset of large firms (> 1,000
employees) and differs in each column based on the subset. In columns 1-2, the subset is based on whether the
move is associated with a change in the employee’s location. In columns 3-4, the subset is based on whether
the industry categorization changes with the new job. Xit represents employee’s time-varying salary and
seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language interacted
with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort
represents an employee’s graduation year corresponding to the last degree. Language is the employee’s most
preferred coding language. Role, industry, and location represent the employee’s first job role, MSA, and
industry in our sample period respectively. Standard errors are clustered at the employee level. Significance
levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: 1(Job Change to Large Firms with)

Location Change Industry Change

Yes No Yes No

Productivity × 1(Post) 0.0010*** 0.0005*** 0.0013*** 0.0002***
(0.0001) (0.0001) (0.0001) (0.0001)

Employee F.E. Y Y Y Y
Time F.E. Y Y Y Y
Salary & Seniority Controls Y Y Y Y
Cohort × Language × Role × Time F.E. Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y

Observations 3,199,173 3,199,173 3,198,865 3,198,865
# Unique Employees 143,446 143,446 143,446 143,446
R-Squared 0.213 0.204 0.214 0.19
Y-Mean 0.018 0.015 0.029 0.004
Magnitude (%) 6.36 4 5.27 5.46
T-test (H0 : βY es = βNo) (0.0145)** (0.9836)
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Table A.8: GitHub Shock & Employee Mobility: Heterogeneity by
Non-Compete Enforceability

This table presents estimates on the heterogeneous impact of GitHub’s disclosure of employee productivity
information based on state-level variation in the enforcement of Non-Comepete Agreements (NCAs). We
report the differential impact of GitHub’s policy change on productive employees, estimated by the β
coefficients from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)

+ β2Productivityi × 1(Postt)× 1(Non− CompeteNot/LessEnforcedi)

+ λXit + αi + γit + εi,t

The independent variable is the triple interaction of three variables: employee’s normalized productivity
estimate derived from the AKM decomposition, an indicator variable that takes the value of 1 for quarters
after GitHub’s policy change (quarter 2, i.e., April-June 2016), and an indicator that takes the value of
1 for employees in states where NCAs are not/less enforced and 0 otherwise. In columns 1-2 (3-4), the
NCA enforceability variable takes the value of 1 for states that almost entirely prohibit NCAs (states that
do not have any statute governing NCAs) and 0 otherwise. We use US government’s official archives to
get state-level variation in the enforcement of NCAs as of 2016.a The dependent variable is mobility to
large firms (> 1,000 employees). Xit represents employee’s time-varying salary and seniority controls. αi

is employee fixed effects. γit represents employee’s cohort, role, and language interacted with time fixed
effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an
employee’s graduation year corresponding to the last degree. Language is the employee’s most preferred
coding language. Role, industry, and location represent the employee’s first job role, MSA, and industry
in our sample period respectively. Standard errors are clustered at the employee level. Significance levels:
*(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: Job Change to Large Firms

Productivity × 1(Post) 0.0013*** 0.0013*** 0.0010*** 0.0011***
(0.0002) (0.0002) (0.0002) (0.0003)

Productivity × 1(Post) x1(NCAs Not Enforced) 0.0006** 0.0007**
(0.0003) (0.0003)

Productivity × 1(Post) x1(No Statute for NCs) 0.0007*** 0.0006**
(0.0003) (0.0003)

Employee F.E. Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Cohort × Language × Role × Time F.E. Yes Yes Yes Yes
State × Time Yes Yes Yes Yes
Industry × Location × Time F.E. No Yes No Yes

Observations 3,425,232 3,199,173 3,425,232 3,199,173
# Unique Employees 153,374 143,446 153,374 143,446
R-Squared 0.173 0.212 0.173 0.212
Y-Mean 0.033 0.033 0.033 0.033
Magnitude (%) 4.67 4.59 3.48 3.7

aLink: https://obamawhitehouse.archives.gov/sites/default/files/competition/state-by-statenoncompetesexplainer

_unembargoedfinal.pdf
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Table A.9: GitHub Shock & Employee Mobility: Heterogeneity by Local Economic and
Demographic Characteristics

This table presents estimates on any heterogeneous impact of GitHub’s disclosure of employee productivity information based on local economic and
demographic characteristics. We report the differential impact of GitHub’s policy change on productive employees, estimated by the β coefficients
from the equation:

1(MoveToLargeF irm)i,t = β1Productivityi × 1(Postt)

+ β2Productivityi × 1(Postt)× 1(MSAIndicatori) + λXit + αi + γit + εi,t

The independent variable is a triple interaction of three indicators: the employee’s normalized productivity estimate derived from the AKM
decomposition, indicators for employee’s initial location (MSA), and indicator that takes the value of 1 for quarters after GitHub’s policy change
(quarter 2, i.e., April-June 2016). Each column includes a triple interaction with a dummy indicator that takes the value of 1 if the employee’s initial
MSA has an above-median value of the economic/demographic characteristic described in the column at the time of GitHub’s policy change. Xit

represents employee’s time-varying salary and seniority controls. αi is employee fixed effects. γit represents employee’s cohort, role, and language
interacted with time fixed effects as well as employee’s location and industry interacted with time fixed effects. Cohort represents an employee’s
graduation year corresponding to the last degree. Language is the employee’s most preferred coding language. Role, industry, and location represent
the employee’s first job role, MSA, and industry in our sample period respectively. Standard errors are clustered at the employee level. Significance
levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4) (5) (6)

Outcome: 1(Job Change to Large Firms)

Productivity × 1(Post) 0.0016*** 0.0014** 0.0016*** 0.0018*** 0.0016*** 0.0016***
(0.0002) (0.0006) (0.0002) (0.0005) (0.0002) (0.0003)

Productivity × 1(Post) × 1(MSA Indicator) -0.0009 0.0002 -0.0001 -0.0002 -0.0001 -0.0001
(0.0007) (0.0006) (0.0004) (0.0006) (0.0003) (0.0004)

MSA Indicator - Above Median Republican Vote Share Share of Immigrants Share of White Population Median House Value Change in House Value Gini Index

Employee F.E. Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Cohort × Language × Role × Time F.E. Yes Yes Yes Yes Yes Yes
Industry × Location × Time F.E. Yes Yes Yes Yes Yes Yes

Observations 3,132,014 3,142,580 3,143,808 3,143,808 3,143,808 3,143,808
# Unique Employees 140,433 140,911 140,966 140,966 140,966 140,966
R-Squared 0.209 0.21 0.21 0.21 0.21 0.21
Y-Mean 0.033 0.033 0.033 0.033 0.033 0.033
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Table A.10: GitHub Shock & Firm Productivity: Robustness

This table presents robustness tests for estimates reported in columns 3-6 of Table 10. In Panel A, we present robustness results using the same
specification as in Table 10 but using different measures of public contributions. In columns 1-2 and 5-6, firm contributions include contributions made
by incumbent employees towards repositories owned by an organization. In columns 3-4 and 7-8, firm contributions include all employee contributions.
In Panel B, we present robustness using the same measure of public contributions as in Table 10 but using different specifications. In columns 1 and 5
(2 and 6), the dependent variable takes the value of 1 if the firm contribution is in the top tercile (top decile) and 0 otherwise. In columns 3 and 7 (4
and 8), the dependent variable takes the value of 1 if the firm contribution is greater than zero (greater than ten) and 0 otherwise. We also estimate
coefficients for double interaction of indicator variables Mid and Small with Post, but do not report them for brevity. Significance levels: *(p<0.10),
**(p < 0.05), ***(p < 0.01).

Panel A

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: Total Contributions Contributions/Employees

Organization Repos All Contributions Organization Repos All Contributions

Log(1+Y) 1(Top Quartile) Log(1+Y) 1(Top Quartile) Log(1+Y) 1(Top Quartile) Log(1+Y) 1(Top Quartile)

1(Productivity > Median) × 1(Post) 0.0349 0.031 0.0841*** 0.0721*** 0.009 0.0048 0.0384** 0.0522**
(0.0243) (0.0237) (0.0246) (0.0239) (0.0148) (0.0248) (0.0163) (0.0255)

1(Productivity > Median) × 1(Post) × 1(Mid) -0.0014 0.0233 0.0379 0.0428 -0.0091 0.0169 0.0278 0.0294
(0.0291) (0.0289) (0.0294) (0.0286) (0.0185) (0.0299) (0.0198) (0.0301)

1(Productivity > Median) × 1(Post) × 1(Small) -0.0812*** -0.0701** -0.0970*** -0.0713** -0.0465** -0.0364 -0.0507** -0.0651**
(0.0285) (0.0286) (0.0286) (0.0280) (0.0191) (0.0299) (0.0202) (0.0298)

Observations 860,044 860,044 859,337 860,044 860,044 860,044 859,398 860,044
# Unique Firms 44,600 44,600 44,597 44,600 44,600 44,600 44,597 44,600
R-squared 0.716 0.577 0.678 0.54 0.639 0.518 0.571 0.447
Y-Mean 0.946 0.974 1.342 0.998 0.55 0.998 0.824 0.998
Magnitude- Base (%) 3.68 3.18 6.27 7.23 1.63 0.48 4.66 5.23
Magnitude - Small (%) -4.89 -4.02 -0.96 0.09 -6.82 -3.17 -1.5 -1.29

Panel B

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: Total Contributions Contributions/Employees

1(Top Tercile) 1(Top Decile) 1(Y>0) 1(Y>10) 1(Top Tercile) 1(Top Decile) 1(Y>0) 1(Y>10)

1(Productivity > Median) × 1(Post) 0.0371* 0.0306 0.0124* 0.0104* 0.0273 -0.0111 0.0124* 0.0002
(0.0193) (0.0498) (0.0068) (0.0059) (0.0205) (0.0410) (0.0068) (0.0043)

1(Productivity > Median) × 1(Post) × 1(Mid) 0.0163 -0.0242 0.0051 0.0024 0.0023 -0.0291 0.0051 -0.0018
(0.0235) (0.0589) (0.0083) (0.0072) (0.0246) (0.0516) (0.0083) (0.0054)

1(Productivity > Median) × 1(Post) × 1(Small) -0.0618*** -0.1362** -0.0143* -0.0246*** -0.0465* -0.1358** -0.0143* -0.0158***
(0.0233) (0.0570) (0.0082) (0.0071) (0.0245) (0.0529) (0.0082) (0.0055)

Controls Y Y Y Y Y Y Y Y
Firm F.E. Y Y Y Y Y Y Y Y
Industry × Location × Time F.E. Y Y Y Y Y Y Y Y

Observations 860,044 860,044 860,044 860,044 860,044 860,044 860,044 860,044
# Unique Firms 44,600 44,600 44,600 44,600 44,600 44,600 44,600 44,600
R-squared 0.578 0.578 0.552 0.585 0.525 0.492 0.552 0.496
Y-Mean 0.993 1.024 0.457 0.222 0.996 1 0.457 0.107
Magnitude- Base (%) 3.74 2.99 2.71 4.67 2.74 -1.11 2.71 0.16
Magnitude - Small (%) -2.48 -10.3 -0.43 -6.4 -1.93 -14.7 -0.43 -14.56
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Table A.11: GitHub Shock & Firm Market Reaction

This table presents estimates on the impact of GitHub’s disclosure of employee productivity information on
firm value for Compustat firms. The dependent variable is the firm’s abnormal return using the Fama-French
3-factor model. The event window starts 252 days (one calendar year) before GitHub’s policy change and
ends on the day of the change. The independent variable Event Date takes the value 1 on the day of the
policy change and 0 otherwise. High-productive (Low-productive) firms have above-median (below-median)
AKM-based average employee productivity. Small (Large) firms comprise the bottom (top) 25th percentile
firms in terms of employee size.

(1) (2) (3) (4) (5)

All Firms High Productive Low Productive

Small Large Small Large

Event Date -0.0017*** -0.0065** 0.0016 -0.0033 0.0004
(0.0006) (0.0028) (0.0021) (0.0029) (0.0022)

#Firms 1679 112 106 136 57
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Table A.12: Industry Labor Market Concentration

This table presents correlations between the change in industry-level concentration around GitHub’s policy
change and the average productivity of GitHub employees within the industry. The dependent variable is
the change in the Herfindahl-Hirschman Index (HHI) for employment five years before (2011-2015) and five
years after GitHub’s policy change (2016-2020). In columns 1-2, the industry and employment figures are
sourced from LinkedIn while in columns 3-4, the data is based on Compustat firms (SIC 3-digit industries).
In columns 1 and 3 (2 and 4), the independent variable is the normalized share of employees with positive
private contributions (normalized average number of private contributions) at the time of GitHub’s policy
change within the industry. Standard errors are clustered at the LinkedIn industry level in columns 1-2 and
SIC 3-digit industry level in columns 3-4. Significance levels: *(p<0.10), **(p < 0.05), ***(p < 0.01).

(1) (2) (3) (4)

Outcome: Change in Industry Labor Market Concentration (∆HHI)

All Firms (LinkedIn) Compustat Firms (SIC 3-Digit)

Share Emp with Private Contr > 0 0.064** 0.140***
(0.029) (0.002)

Average Private Contr 0.067** 0.137***
(0.027) (0.013)

Observations 143 143 221 221
R-squared 0.098 0.107 0.133 0.128
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