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Abstract

In theories of creative destruction, product innovation is a key driver of aggregate economic growth.
In this paper, we confront the predictions of these models with the empirical patterns of product
innovation, documented based on product-level data on the near-universe of French manufac-
turing firms. Two key patterns in our data stand in contrast to the workings of the conventional
models. First, we find that product innovation is best described as a process of “bursts”–episodes
where firms rapidly add a series of products to their portfolio. These bursts lead to substantial
shifts in revenue and explain the majority of the variance in firm-level growth. Second, we find
that the growth in product-level revenue declines over the course of a product’s life cycle, indicat-
ing a diminishing effectiveness of process innovation. Including these features into a quantitative
framework that nests the canonical models of creative destruction, we show that innovation bursts
explain the concentration of production in a small number of large firms. Our model thus enables
the joint study of the determinants of industry concentration and growth in a setting consistent
with the empirical patterns of product dynamics. In a quantitative comparison against the con-
ventional models, our theory attributes to creative destruction a substantially greater impact on
aggregate productivity growth and on the concentration of production.
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1. Introduction

Product innovation lies at the heart of the modern theories of growth through creative destruction.

In these theories, innovative firms invest in research and development (R&D) to acquire the ability to

produce new products that are superior to those of their competitors. As their new products displace

the old, innovating firms acquire market share and grow their output, revenue, and profits, while rais-

ing aggregate productivity and output in the process. Since the seminal contribution of Klette and

Kortum (2004), the theories of creative destruction have been extended in many directions to account

for key empirical patterns on the relationships between firm-level R&D, patenting, and growth. These

empirical extensions have allowed researchers to study the consequences of the product innovation

activity of firms for macro-level phenomena such as the aggregate productivity growth, business dy-

namism, competition, and product-market concentration (e.g. Lentz and Mortensen 2008, Akcigit and

Kerr 2018, Acemoglu et al. 2018a, Cavenaile et al. 2020, Peters 2020, Aghion et al. 2023).

However, despite the wide applications of the theories of creative destruction, we know surpris-

ingly little about how well they explain the dynamics of firm-level product entry and exit. Due to the

unavailability of comprehensive, product-level data in innovation-intensive sectors, most researchers

rely on the dynamics of firm-level revenue or employment, observed only as aggregates across all of

of a firm’s products, to empirically discipline their models.1 In this paper, we fill this gap using com-

prehensive data from the French manufacturing sector, detailing the product composition of all major

firms at a fairly disaggregated level. Using the data, we document novel facts on firm-level product in-

novation activity that shed light on the underlying mechanisms driving firm-level product innovation,

but are difficult to explain under the standard models of creative destruction. We propose a simple the-

ory based on Klette and Kortum (2004) that is compatible with these new facts. When quantitatively

disciplined with our data, the new theory suggests a substantially larger role for creative destruction as

the driver of aggregate growth compared to that implied by the standard framework.

To examine the dynamics of product creation and destruction, we rely on a comprehensive survey

of French manufacturing firms containing information on the distribution of their sales across highly

detailed product categories. Our first fact is that the distribution of the number of products produced

by French manufacturing firms in highly concentrated among large firms and has a thick, Pareto-like

right tail. Our second fact documents that the distribution of new products introduced in any given

year also exhibits a substantial degree of concentration, which has a similar Pareto-like right tail. In

other words, a small share of firms are responsible for a sizable share of all product innovation as they

experience what we refer to as innovation bursts. We provide various robustness checks to ensure that

such innovation bursts constitute episodes of meaningful product innovation, and are not the byprod-

ucts of the specifics of data construction or reporting. Together, these two facts point to the dynamics

of product innovation as an important determinant of the high degree of production concentration

typically observed in firm-level data.

1Two notable exceptions that empirically investigate the dynamics of firm-level products include Argente et al. (2024)
and Argente et al. (2020), who focus on the nondurable, convenience consumer goods sector based on retail scanner data.
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We next use our data to quantify the contribution of creative destruction and, more specifically,

product innovation bursts to revenue growth at the firm and aggregate levels. We find a larger contri-

bution for process innovation, defined as the growth or fall in revenue on each firm’s continuing set

of products, when compared with that of creative destruction, defined as the growth or fall in firm

revenue due to the introduction of new products or loss of old products. Nevertheless, we also find

substantial heterogeneity in the balance between the two contributions across firms. Importantly, we

document that the balance steadily shifts toward higher contributions from creative destruction as we

move from firms with low rates of growth toward firms in the either extreme ends of the distribution of

revenue growth. In particular, the most extreme rates of growth belong to entering and exiting firms,

whose revenue growth is by definition fully driven by creative destruction. More importantly, we also

find that such firm-level entry and exit explains a substantial part of aggregate revenue growth.

Our last fact shows that, in addition to its direct contribution to aggregate growth highlighted

above, creative destruction makes an additional indirect contribution by furnishing firms with new

possibilities for process innovation. Using our data, We document a marked decline in the revenue

growth of continuing products over the course of their life cycle. In other words, product-level revenue

tends to grow the fastest in the first few years immediately after a new product is introduced to the

market. Thus, not only does product innovation grow firm revenue in the first year of the introduction

of a new product, it further enables the firm to sustain a faster rate of growth in the ensuing next few

years through an initially higher rate of process innovation.

To rationalize these facts, we propose a new way of modeling endogenous growth through product

and process innovation. Our first key novelty is that firm-level product innovation potentially arrive

in bursts: episodes in which the firm’s product portfolio expands rapidly. In standard models of cre-

ative destruction, firms that innovate expand their portfolio of products by a single product. In con-

trast, in our model of innovation bursts an innovating firm may acquire the technology to produce a

large number of additional products, as innovations may have multiple applications. We characterize

a stochastic process of product innovation bursts that is consistent with the high degree of concen-

tration of new products observed among French manufacturing firms. The model naturally nests the

canonical Klette and Kortum (2004) model for the special case in which an innovation only expands

firms’ product portfolio by a single product. In addition, process innovation in our model may exhibit

diminishing returns in the sense that successive innovations improving the process of producing each

product become increasingly incremental over the course of its life cycle. In other words, firms in our

model find it increasingly harder to find ideas to improve the production process as a product ages.

Innovation bursts help explain the high degrees of production concentration typically observed in

firm-level data, associated with the Pareto distribution of firm size. A well-known limitation of theories

of creative destruction is that they have difficulty explaining the existence of large firms. The forces

of creative destruction prevent the largest firms in the economy from significantly outgrowing their

competitors. This is at odds with empirical evidence: numerous studies have found that the firm-

size distribution also has a fat tail, with a Pareto index close to one (e.g. Axtell 2001, Gabaix 2009).

We show that for sufficiently thick-tailed distribution of innovation bursts, the equilibrium firm-size
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distribution is Pareto. Thus, we propose the lumpy nature of innovative ideas as the main driver of

the concentration of firm-level production, a reasoning that is fundamentally distinct from previous

theories of firm dynamics that rationalize the fat-tailed distribution of firm size (e.g., Luttmer 2007,

Luttmer 2011, Acemoglu et al. 2018b).2

Given the close links between our empirical analysis and the theoretical framework, we are able

to calibrate the majority of the parameters of the model directly from the observed patterns in the

data. The remainder are standard parameters that we calibrate based on common values used in the

literature. For comparison, we also calibrate a conventional model of creative destruction featuring

both product and process innovation without the presence of innovation bursts. We first confirm that,

unlike the conventional model, ours can match the distribution of firm products (unconditionally or

conditional on the lagged number of products), as well as the high degree of production concentration

observed in the data. Our model also fits the evolution of average product revenue over the course

of its life cycle. While remaining untargeted in our calibration, our model also provides a reasonable

fit for the decomposition of revenue growth in the data to the contributions of product creation and

destruction and that of continuing products.

Finally, we use the calibrated model to perform a quantitative investigation of the degree to which

product and process innovation drive the dynamics of aggregate productivity growth. Following prior

work (Garcia-Macia et al., 2019), we first confirm that relying on an additive decomposition, one may

attribute a small contribution to aggregate growth from product innovation. However, through the

lens of our model, this simple accounting exercise leaves out an important indirect contribution from

product innovation to growth. As ideas for process innovation become harder to find over the life cycle

of each product, the introduction of new products plays a crucial role in our model for facilitating

sustained process innovation. In our calibration, the indirect contribution of product innovation to

growth, mediated according to this channel through process innovation, is around twice larger than

its direct contribution.

Using the calibrated models, we also perform a quantitative comparison of the effects of creative

destruction on production concentration between our model and the conventional model. In both

models, a rise in the rate of creative destruction increases the concentration of production among

large firms. However, since product innovations arrive as bursts in our model, this link is tighter in our

model than that in the conventional model. Measuring the concentration of production in terms of

the revenue share of the top 10% of firms, we find that the response of this measure to a rise in the rate

of creative destruction is around 30% stronger in our model than that in the conventional one. If we

instead use as a proxy a measure of average firm size such as the average number of products per firm,

the response is around 60% stronger in our model.

Taken together, our quantitative results suggest a far more important contribution from creative

destruction to aggregate productivity growth and to the concentration of production than that implied

by the conventional theories of creative destruction.

2Luttmer (2010) offers a comprehensive review of models of firm dynamics that lead to a Pareto-tailed distribution of
firm size. For an alternative approach that leads to a Pareto distribution of firm size in a static assignment model, see Geerolf
(2017).
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Related Literature Our paper contributes to the large body of research in the tradition of the Schum-

peterian growth models of creative destruction following Aghion and Howitt (1992) and Grossman and

Helpman (1991) (see Aghion et al. 2014 for a review). Using this framework, Klette and Kortum (2004)

build an analytically tractable model of innovating multi-product firms that it consistent with sev-

eral empirical fact of firm dynamics. As already mentioned, many researchers have extended this

model to apply it in different applications such as the study of firm heterogeneity (e.g., Lentz and

Mortensen 2008), misallocation and innovation policy (e.g., Acemoglu et al. 2018b and Atkeson and

Burstein 2019), competition and market power (e.g., Peters 2020), management and firm organization

(e.g., Akcigit et al. 2021), business dynamism (e.g., Akcigit and Ates 2023), among others.

As already mentioned, we confront this class of models with data on the dynamics of product

churn and turnover at the firm level. Prior attempts for testing the predictions of these models regard-

ing the dynamics of product innovation have instead relied on indirect evidence drawn from patent

data (e.g., Akcigit and Kerr 2018 and Argente et al. 2020).

Multiple recent studies have documented the fact that industry concentration has been globally

rising over the past 30 years (e.g. Autor et al. 2020). Concurrently with the rise of large firms, there

has been a gradual decline in the growth rate of total factor productivity, despite a sustained rise in

innovative investments (Bloom et al. 2020). By constructing a theory of creative destruction that di-

rectly matches the firm-level empirical evidence on product innovation, our paper offers a laboratory

for studying the interplay between concentration, innovation, and growth.

Outline The remainder of this paper proceeds as follows. Section 2 presents the details of data used in

our paper and Section 3 discusses the empirical facts. Section 4 presents our model, Section 5 discusses

our quantitative exercise, and Section 7 concludes the paper.

2. Data

We use detailed data on the composition of the product portfolio of firms in the French manufacturing

sector. The data combines firm-level income statement and balance sheet data from tax records with

a detailed survey of the product portfolio of firms, covering revenues and quantities sold at the level of

detailed product categories.

Our source of information on firm product portfolios is the Enquête Annuelle de Production (EAP),

which is a survey collected by the statistical office (INSEE). The EAP surveys the universe of French

manufacturing firms with at least 20 employees or 5 million euros in revenue, comprising around 90%

of the value of aggregate manufacturing output.3 The data is available from 2009 to 2019. We start our

analysis in 2010, when the survey methodology was finalized.4 The survey contains revenue, quan-

tity, and average unit values for each product category that a firm produces each year at the level of

3The survey additionally includes a random sample of small firms. As this sample is redrawn every year, it is unsuitable
for our analysis of firm-level product dynamics, which requires panel data.

4The first year of the data, 2009, is excluded because the coverage of the survey appears incomplete as firms report sub-
stantially fewer numbers of products.
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10-digit product codes. The high level of detail in these product codes, distinguishing among 4000

distinc products, enable us to investigate changes in each firm’s product portfolio. The first six dig-

its are the harmonized European activity codes, which are sufficiently narrow to identify applicable

customs policies. The remaining digits contain a further sub-classification that is produced particu-

larly for France by INSEE.5 We exclude from our analysis the firms in EAP that do not belong to the

manufacturing sector, such as those in mining, repairs, and installation industries.

We combine this product-level data with standard, firm-level balance sheet data from the Fichier

Approaché des Résultats d’Esane (FARE). FARE provides detailed income statement and balance sheet

data such as total sales, wage bill, and capital, for the universe of French firms. Our main dataset covers

the set of firms that belong to the intersection of the FARE and EAP datasets. Additionally, we obtain

total spending on research and development (R&D) from the research tax credit program and measure

the wage bill of scientists that work at a firm using occupational codes of employees in the Déclaration

annuelle de Données Sociales–the social security filings. All datasets are merged using their common

firm identifier, the SIREN code.

Table 1 presents some summary statistics of the resulting dataset. The data contains 241,600 firm-

year observations, covering 31,924 unique firms operating in 188 four-digit manufacturing industries.

The number of products refers to the number of unique 10-digit product codes for which the firm

reports positive revenue in a given year. A new product is a 10-digit product code for which the firm

reported no revenue in the previous year and now reports positive revenue in the current year. For

firms that appear in the data for the first time we set the number of new products to missing. This

is because firms that appear for the first time in EAP may not be genuine entrants, as they may have

only been included in the data because they have achieved the sufficient size needed for the inclusion

in the data. A lost product, conversely, is a 10-digit product code for which the firm does not report

positive revenue in the current year while it did report positive revenue in the previous period. For

exiting firms, i.e., those exiting the comprehensive FARE dataset, we set the number of lost product in

equal to the number of products that firm reported positive revenue for in its last period of presence

in the data. We provide further details on variable definitions and cleaning in Online Appendix B.

3. Stylized Facts on Products and Product Innovation

This section establishes four stylized facts using the data from Section 2. First, we show that firms

differ considerably in the number of products that they produce. This means that, besides differences

in the amount of revenue that firms earn per product, concentration of product count is an important

driver of the fact that economic activity concentrates in a limited number of firms. Second, we show

that the number of products that firms produce is subject to significant episodes of product innovation

and product destruction. We document that product innovation comes in bursts: times at which firms

rapidly expand the number of products it produces. Third, we show that both product innovation and

destruction are important drivers of overall firm growth, with product innovation steadily becoming

5For example, the 8-digit code 20421300 contains pedicure and manicure cremes, where the 10-digit codes 2042130010
and 2042130020 respectively identify cremes that should be applied to the skin and the nails.
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Table 1: Summary Statistics

Variable Mean St. Dev. Median 10th Pct. 90th Pct. Observations
Sales 22291 283584 3319 584 29537 223887
Age 28 19 24 8 52 223887
Employees 67 307 20 4 120 223887
Revenue per Product 9607 179084 2001 316 15637 223887
Number of Products 1.93 2.66 1 1 4 223887
Lost Products 0.2 0.9 0 0 1 203159
New Products 0.14 0.89 0 0 0 193721
Continuing Products 1.81 2.32 1 1 4 193721

Notes: The table presents summary statistics for the merged EAP-FARE dataset between 2010 and 2019. Age and employment are defined

in years and full-time-equivalent workers, respectively. Sales is measured in thousands of 2015 euros. Sales per new and lost product are

the ratio of sales specific to new or lost products, respectively.

a more important driver of growth among firms that are growing or shrinking at higher rates. Finally,

we show that there is a steady decline in the growth of revenue that firms earn on products that they

continue to produce.

3.1. Concentration of Products

It is widely documented that production activity is highly concentrated among a small share of super-

star firms, as the distribution of both employment and revenue across firms also resembles a power

law (e.g. Axtell 2001, Luttmer 2007, Gabaix 2009, Garicano et al. 2016). Estimates yield that 60% to 90%

of production is done by the largest 20% of firms. Among French firms in our sample, the largest 20%

of firms are responsible for 84% of revenue and employ of 78% workers.6

In this section, we show that the distribution of the number of products that firms produce is

highly concentrated: while the majority of firms only produce one or very few products, there is a thick

tail of firms that produce numerous products. In other words, a minority of firms are responsible for

the production of the majority of products sold in the market. We analyze the degree of concentration

by plotting the natural logarithm of a firm’s number of products against the natural logarithm of the

ranking of the firm’s product count in the sample. If the number of products of firms is well-described

by a power law, as is the case for other measures of firm size such as employment or revenue, the

relationship between log-product count and its log-rank should be linear.

Figure 1a plots the distribution for a firm’s number of products, where a firm’s product count is

equal to the number of products for which it reports positive revenue. The figure shows that the re-

lationship between rank and the number of products that firms produce is nearly perfectly linear. It

therefore follows that the number of products that firms produce indeed resembles a power law and

6As it happens, this is closely in line with the heuristic 80/20% Pareto principle, stating that 80% of the outcome of interest
typically belongs to 20% of agents. If we assume a Pareto distribution, the percentage y of the number of products that is
produced by the largest x% of firms is given by y = x(θ−1)/θ , where θ is the Pareto tail index. For the 80/20% rule, we find a
Pareto tail index of around 1.16, fairly close to the tail index of unity implied by the Zipf law.
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Figure 1. Decomposing Firm Concentration into Products and Revenue Per Product

10-0

10-1

10-2
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Number of products

(a) Number of Products (b) Revenue per Product

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). Size is measured
through either revenue per product (in 2015 euros) or number of products. Inverse rank is measured as the ratio of firms’ rank starting
from the smallest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019. The
distribution for 2010 to 2018 is plotted in Appendix Figure A3. Revenue per product is measured in thousands of euros.

can be approximated by a Pareto distribution in its right tail. The slope of the size-rank relationship

implies that the largest 20% of firms produce 55% of all goods.7

The above fact implies that variation in the average revenue per product that firms produce is

partly responsible for the concentration of economic activity. We plot the distribution of this average

across firms in Figure 1b. The figure shows that revenue per product does not follow a power law

everywhere, as the left tail of the distribution is highly dispersed. The number of products that firms

produce, while not explaining the full degree of concentration, thus seems an important contributor

to the overall dispersion in size.

3.2. Product Innovation and Product Destruction

Having established that firms differ considerably in the number of products that they produce, we now

assess how the composition of a firm’s product portfolio changes over time. We first assess the rate at

which firms create new products, and the rate at which they lose them. We define the rate of product

innovation as the ratio of the number of products that firms report positive revenue on at time t but

not at time t −1, divided by the number of products that the firm reported positive revenue on at time

t −1. We define the rate of product destruction as the share of the firm’s products at time t −1 that the

firm does not report revenues on at time t .

Table 2 shows the product innovation and destruction rates for firms, depending on their number

of products in the previous period. The first row gives the average of the rates, while the bottom row

gives their bootstrapped standard errors. When firms of all sizes are included, we find that firms on av-

erage add 0.066 products to their portfolio for every product that they initially produce, while they stop

producing 0.082 products for every such product. The wedge between incumbents’ product innova-

7We can find the corresponding tail index from the coefficient of a least-squares regression of the log-rank on log-firm
size relationship, yielding an index of 1.58.
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Table 2: Overview of Product Innovation and Destruction

Product Innovation Rate Product Destruction Rate
All 1 2 3 4-5 6-8 8+ All 1 2 3 4-5 6-8 8+

.066 .066 .067 .068 .058 .056 .083 .082 .065 .111 .117 .117 .110 .129
(.001) (.002) (.001) (.002) (.002) (.003) (.004) (.001) (.001) (.001) (.002) (.002) (.003) (.004)

Notes: Product addition rate is the number of new products that a firm starts producing divided by its original number of products.

Product loss rate is the number of products that a firm stops producing over the horizon divided by its original number of products.

Different columns report the results conditional on the firm’s number of products in the preceding period Nt−1. The top row lists the

product innovation and creation rates while bootstrapped standard errors from 1000 replications are given in parentheses.

tion and destruction rates means that the number of products that a typical incumbent firm produces

on average shrinks over time. Such a wedge is expected if new firms enter the economy while the total

number of firm-products in the economy is approximately constant over time–which is the case in our

data. Columns differ in the initial product count of firms that are included, grouping the larger firms

to maintain a sufficient number of observations. For the product innovation rates, the table shows

no particular pattern across firms with different initial sizes: the rate at which small and large firms

expand their portfolio is similar, ranking from 0.056 to 0.083 per products initially produced. This

means that the expected number of new products firms add to their portfolios scales with the sizes of

their portfolios. The rate of product destruction is similar for firms with at least two products, though

it is almost 50% lower for firms that produce a single product. This means that single product firms

have higher average growth rates than larger firms, which is consistent with previous evidence that the

smallest firms grow faster than larger firms in terms of employment (e.g. Akcigit and Kerr 2018).

The average rates of product innovation reported in Table 2 mask substantial dispersion in the

number of products that firms add to their product portfolio. The product destruction rate is naturally

Figure 2. Distribution of Number of New Products

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). Size is measured

through either revenue (in 2015 euros) or employment (in full-time equivalence). Inverse rank is measured as the ratio of firms’ rank

starting from the smallest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019.

To find the fraction of firms x that is responsible for y% of product innovations we calculate x = yα/(α−1) ×0.34, where α is the Pareto tail

parameter and where the multiplication adjusts for the fact that only 34% of firms report product innovation. We find an α of -1.94.
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bounded to one, as firms can only lose as many goods as they produce. The product innovation rate

has no upper bound, however, and firms may expand well beyond their initial size between periods.

Figure 2, which plots the distribution of a firm’s number of new products, shows that this is the case in

our data. The vertical axis gives the log of rank while the horizontal axis gives the log of the number of

new products, as we did in Figure 1a. The figure shows that product innovation is highly concentrated.

The distribution in Figure 2 implies that 75% of product innovation comes from just 20% of firms.

The high degree of concentration in product innovation persists when we separate the sample

by firms’ initial size in Figure 3. This matters because firms of different sizes have constant innovation

rates, which means that concentration of overall product innovation can simply arise from the fact that

firms differ in their initial sizes. The figure shows that even among firms that initially produce only a

single product, there are product innovators that add tens of products to their portfolio. Note that both

Figure 2 and 3 only plot the distribution of product innovation for firms that add at least one product

to their portfolio. A large share of firms (66%) report no product innovation at all. For single-product

firms concentration is even more extreme, with all product innovation coming from just 7% of firms.

At the same time, it is common for firms to add a large number of products to the market when they

do engage in product innovation. We henceforth labels these episodes “innovation bursts.”

Robustness We perform various robustness checks to assure that innovation bursts are indeed episodes

in which firms expand their product portfolio, and not an artifact of reporting. We first show that the

revenue that firms report on new products does not depend on the number of new products that firms

report. If innovation bursts were an artifact of firms reporting similar products separately, one would

expect average revenue per new product to fall sharply in the number of new products. This would

also be the case if the new products were close substitutes. To the contrary, Appendix Figure A4 shows

that average revenue per product is constant in the number of new products that firms introduce.

As a further robustness test, in Appendix Figure A5, we show that the distribution of product inno-

vation is similar across different level of aggregation. The idea is that if innovation bursts are driven by

firms differing in the care with which they report revenue separately for each 10-digit product, the dis-

tribution should become less concentrated at higher levels of aggregation. The figure shows that this is

not the case: the distribution of the number of products that firms add is similar at the 6-digit, 8-digit

and the 10-digit level. We thus conclude that innovation bursts are episodes of rapid firm expansion,

rather than an artifact of the way that some firms report changes to their product portfolio.

Finally, we verify that innovation bursts are not driven by mergers and acquisitions. While firms

may expand their portfolio rapidly by purchasing other firms, such acquisitions are unlikely to involve

product innovations. While it is difficult to track mergers and acquisitions in the data, we are able to

track whether firms have seen a change in their intangible capital. The chief component in intangible

capital is goodwill, which rises when firms acquire a competitor. Appendix Figure A6 shows that the

concentration of product innovation is not driven by mergers and acquisitions: when excluding firms

with for changes in intangibles, the figure shows that the distribution is almost unchanged.
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Figure 3. Distribution of Number of New Products

(a) Distribution of New Products (Nt−1 = 1) (b) Distribution of New Products (Nt−1 = 5)

(c) Distribution of New Products (Nt−1 = 10) (d) Distribution of New Products (Nt−1 = 20)

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). Size is measured

through either revenue (in 2015 euros) or employment (in full-time equivalence). Inverse rank is measured as the ratio of firms’ rank

starting from the smallest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019.

Linear reference lines exclude the observation with the greatest number of added products.

Conditioning on Size, Age or Sector The product innovation and destruction patterns are present

across firms of different sizes, ages and industries. We have thus far have shown that rates of prod-

uct innovation and destruction, as well as the high concentration of product innovation, are similar

for firms with various initial product counts. In Appendix Figure A7, we show that product innova-

tion is similarly concentrated with separating the sample in three age bins, although young firms are

on average smaller and thus on average add fewer products to their portfolio. While all results are for

manufacturing because of the nature of our data, we find similar rates (and concentration) of prod-

uct innovation and destruction rates across our sample’s three primary Broad Economic Classification

industries – capital good production, industrial supplies production and consumer good production.

3.3. Firm Growth through Product Innovation and Destruction

How important is product innovation as a driver of firm growth? In addition to introducing new prod-

ucts, firms can further engage in innovation by improving the process of producing their existing prod-
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Table 3: Contribution of Product Innovation and Destruction to Revenue Growth

Overall Growth Product Innovation Product Destruction Continuing Products
Mean value
1-year 0.004 0.022 -0.024 0.006
5-year 0.027 0.076 -0.075 0.026

Shapley-Owen Contribution
1-year 100.0 16.0 55.2 28.8
5-year 100.0 37.3 49.8 12.9

Notes: The table decomposes total revenue growth into revenue loss from product loss, revenue gain from product gain, and changes in

revenue on products that the firm is continuing to produce. Bootstrapped standard errors from 1000 replications are given in parentheses.

Revenue is deflated by the GDP deflator. Observations in the upper panel are weighted by the denominator 0.5(Ri t +Ri t−h ).

ucts. In fact, Garcia-Macia et al. (2019) have recently argued, using evidence drawn based on the dis-

tribution of the overall employment growth of firms, that such process innovation plays a substantially

larger role in driving aggregate productivity growth compared to that of product innovation. In this

section, we rely on our data to decompose the contributions of product and process innovation to the

dynamics of firm growth.

We measure firm growth using the symmetric growth rate introduced by Davis et al. (2006), which

divides the change in firm size between period t and t −h by the average of size across both periods.

In contrast to changes in log size, this growth rate can be calculated for continuing firms as well as

firms that enter or exit, which is why it has become a standard measure in recent work on firm and em-

ployment dynamics. Using our data, we can decompose the revenue growth of each firm into changes

in revenue that come from the entry and exit of products from the firm’s product portfolio, and from

changes in the revenue that firms earn on their existing product portfolio. We use the following de-

composition for the change in the revenue of Ri t of firm i at time t :

Ri t −Ri t−h
1
2 (Ri t +Ri t−h)

= RN
i t

1
2 (Ri t +Ri t−h)

− RL
i t−h

1
2 (Ri t +Ri t−h)

+ R−
i t −R+

i t−h
1
2 (Ri t +Ri t−h)

, (1)

over some horizon of length h. In the decomposition, the first two terms capture growth in revenue

due to product innovation and destruction, while the final term captures revenue growth on products

that firms continue to produce. The term RN
i t denotes revenue on products that the firm produces at

time t but did not produce at time t −h, the term RL
i t−h is the revenue that the firm earned at time t-h

on products that it stopped producing between time t −h and time t , the term R−
i t is the revenue that

the firm earns at time t on the products that it was already producing at time t −h, and the term R+
i t−h

is therevenue the firm earns at time t −h on this same set of continuing products.

We quantify the contribution of product innovation and destruction using the decomposition in

Equation (1) in three ways. In the top panel of Table 3, we first present the average size of each term,

both for a single and a five year horizon. Observations are weighted by the denominator on the left

hand side of Equation (1) in order to measure contributions to aggregate revenue growth. The first row

shows that the effect of product innovation and product destruction on overall growth are an order

of magnitude greater than the effect of revenue growth on continuing products. Through the lens
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Figure 4. Creative Destruction and Aggregate Revenue Growth
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divided by average revenue in t and t −1. Growth rates are separated into 20 negative bins and 20 positive bins. The top figure presents the

contribution of changes in revenue across firms in a particular growth bin as a percentage of total revenue creation (the sum of increases

in revenue across growing firms) for positive bins or as a percentage of total revenue destruction (the sum of decreases in revenue across

shrinking firms) for negative bins. The bottom panel decomposes a bin’s overall revenue change into changes coming from continuing

products and the net of product innovation and destruction – creative destruction.

of this simple exercise, it may thus appear from the table that the net effect of product innovation

and product destruction–henceforth, labeled creative destruction–is small or even negative.8 As we

will show below, this average result masks a substantial degree of heterogeneity across firms in the

contribution of creative destruction to their growth.

However, the picture changes when we consider a decomposition of revenue growth at the firm

level. The bottom panel of Table 3 measures the contribution of product innovation and destruction

to overall revenue growth of firms through the Shapley value (see, e.g., Ozkan et al., 2023). The Shapley

value assigns importance to each of the components in revenue growth in explaining firms’ overall

revenue growth. To do so, it quantifies each component’s average marginal contribution to the R2 in

regressions on all possible combinations of the components. The table shows that creative destruction

explains over 70% of revenue growth over 1-year horizons, and more 87% over 5-year horizons. The

contribution of product innovation is more similar to product destruction over the longer horizon,

8Note that we exclude firms from the decomposition in their first year in the product-level EAP data if they appeared in
earlier years of the census of firms. As a result, innovation bursts that push firms over the size threshold to feature in the EAP
are therefore excluded from the data. This quantification on the importance of product innovation is thus likely to be a lower
bound.
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which is likely because product sales do not reach their full scale in the first year in the firm’s product

portfolio.9

The large contribution of creative destruction is largely due to its effect on the tails of firm revenue

growth. We illustrate the contribution of creative destruction to the tails of growth and the importance

of those tails for aggregate revenue growth in Figure 4. We split the sample of firms into 40 equally-

sized bin based on the firms’ revenue growth. The top figure quantifies the importance of the tails of

revenue growth. On the right side of the figure, for firms with positive growth, the figure plots the ratio

of the total change in revenue across the firms in each bin by the total change in revenue across all

firms with positive growth. Thus, the height of the bars account for the contribution of firms in each

bin to the overall growth of all growing firms. On the left side, we similarly report the ratio of the total

fall in the revenue of all firms within each bin to the overall fall in the revenues of all shrinking firms.10

The figure shows that 18% of revenue destruction comes from firms with revenue growth between -

1.95 and -2, while 14% of revenue creation comes from firms with revenue growth between 1.95 and

2. This means that, while most changes in overall revenue growth originates from the many firms

that have modest growth rates, the tails of revenue growth matter in aggregate. In the bottom figure

we decompose a bin’s total change in revenue into changes in revenue for continuing products (grey)

and the net change from creative destruction (green). The figure shows that the larger the change in

revenue growth, the greater the share of overall growth that comes from creative destruction.

Concentration of Revenue Growth We have so far shown that creative destruction plays an impor-

tant role in the tails of firm growth and that product innovation is highly concentrated. A natural

question is whether overall revenue growth is therefore highly concentrated, and well described by

a power law, as well. In Online Appendix C.4 we confirm that the distributions of revenue and employ-

ment growth are much more concentrated than, say, a log-normal distribution would predict. The log-

normal distribution is a natural starting point as, motivated by Gibrat (1931), firm dynamics models

with random shocks to productivity typically assume that firm growth is log normal (see, e.g., Hopen-

hayn 2014).11

Conditioning on Size, Age or Sector The patterns we describe above are similar for firms of different

sizes, ages, and primary sectors. In Online Appendix C.4, we show that the contribution of creative

destruction to overall revenue growth is similar for firms of different ages and sizes, although the con-

tribution is (by definition) exhaustive for entrants. The appendix also shows that revenue growth is fat

tailed for firms of different ages and sizes.

9For example, if firms start producing new goods uniformly over the year, revenue for new products will on average only
capture half a year of sales. This lowers the measured contribution of product innovation to revenue growth.

10This approach is similar to how the contribution of firms with different growth rates to overall job creation and job
destruction is calculated in Garcia-Macia et al. (2019).

11Our results echo recent findings in the literature on income dynamics which shows that individual income growth is
also better described by a fat-tailed distributions such as the Pareto distribution (see, e.g., Guvenen et al. (2021). Gabaix et al.
(2016) discuss the importance of the income growth process to explain stationary distributions of income and wealth.
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3.4. Revenue Growth over a Product’s Life Cycle

While creative destruction is key for the two tails of firm growth, the bulk of overall revenue growth

appears to come from products that firms continue to produce. This may imply that process innova-

tion, enabling firms to produce their existing products at higher quality or lower costs, could be the

primary driver of economic growth. We next show, however, that the growth of revenue of a continuing

product gradually falls over the course of its life cycle. Thus, by introducing new products that have

higher potential for process innovation, creative destruction makes an indirect contribution to growth

both at the firm and at the aggregate levels.

In Figure 5, we plot the relationship between average revenue growth and product tenure–the time

that has passed since a firm started producing the good. Before calculating average revenue growth by

tenure, we first subtract a firm-product’s average revenue growth over the entire spell of its life cycle

obverved in our data. This is to avoid a selection bias arising from the fact that revenue growth might

affect how long a firm produces a product. Hence, the figure plots how a firm-product’s revenue growth

deviates from its life cycle average as tenure increases. Each point in the figure gives the average of

the de-meaned revenue growth for a given years of tenure, while 90% confidence intervals based on

bootstrapped standard errors.

The figure shows that there is a significant decline in the growth rate of revenue over the life cycle

of a product. When firms have been producing a good for one year, revenue growth on their product

is on average 2 percentage points higher than the spell’s average. For comparison, average revenue

growth across all continuing firm-products is -2.1% in the data. In subsequent years, revenue growth

declines by an average of 0.5 percentage points per year. By year 8, which is the maximum horizon

over which we can study products’ life cycle with our 9-year dataset, revenue growth is on average 2

percentage points below the spell average.

The decline of revenue growth over the life cycle of a product means that creative destruction and

revenue growth on continuing products interact. For firms to sustain growing real revenue growth on

their products, they must improve the quality of the products that they sell or cut the costs at which

they produce, in order to sell at lower prices. When firms are just starting to produce a new prod-

uct, their revenue growth is rapid and exceeds the spells average. It thus appears that opportunities

for product innovation are large at the start of a product’s life cycle within of a firm, but growth falls

over the product’s life cycle – eventually turning significantly negative. Opportunities to sustain growth

through process innovation thus appears to decline. This means that creative destruction offers two

benefits: besides directly contributing to revenue growth of the firm that engages in product innova-

tion, it also enables a sequence of process innovations that deliver further revenue growth.

Conditioning on Size, Age or Sector The decline in revenue growth in a product’s tenure is present

across firms of different initial sizes, ages, and industries. In Appendix Figure A8 and A9, we respec-

tively show that revenue growth declines in product tenure for firms across firms of different sizes (as

measured through their product count) and firms of different ages. In Appendix Figure A10, we further

show that the decline in revenue with tenure is visible across products across our three main Broad
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Figure 5. Life Cycle of Revenue Growth
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Economic Classification industries, though more strongly in consumer good production than in capi-

tal good production.

3.5. Discussion

This section has established three new facts about products and product innovation. First, we show

that the concentration in economic activity in a small fraction of firms comes from a combination of

concentration in the number of products that firms produce, and high variation in the amount of rev-

enue that firms earn per product. We then show that the product portfolio of firms changes frequently,.

We furthermore show that creative destruction is an important contributor to overall revenue growth,

through two channels: 1) large bursts of product innovation and creative destruction cause fat tails in

the distribution of revenue growth, and 2) innovation bursts are a necessary ingredient for sustained

process innovation, as firms are best at improving their continuing products early in their life cycle.

4. The Baseline Model

In this section we describe our parsimonious model of endogenous growth through innovation bursts.

We start by describing the static and dynamic optimization of the firm, and then characterize the

model’s stationary balanced growth path equilibrium.

4.1. Preferences, Market Structure and Intermediate Good Production

An infinitely-lived representative household has log utility over instantaneous consumption Ct , which

is discounted at a rate ρ over time. Time is continuous and indexed by t, which is omitted when con-
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venient. The household owns a single unit of labor which it supplies inelastically. Consumption is an

aggregate of a continuum of differentiated goods with a constant elasticity of substitution:

Ct =
∫ 1

0

( ∑
i∈I j

qi j yi j t

) ϵ−1
ϵ

d j


ϵ
ϵ−1

(2)

where ϵ> 1 is the elasticity of substitution, goods are indexed by j , producers are indexed by i, and I j

denotes the set of firms that owns the technology that enables them to produce good j at a particular

level of quality qi j . Output of firm i on product j is denoted yi j t .

The outputs of the potential producers of good j are perfectly substitutable. Firms compete à la

Bertrand, which means that the firm with the technology to produce the good at the highest level of

quality is the good’s sole producer. This firm produces j with the linear production technology

yi j = li j ,

where li j t denotes the quantity of labor that firm i dedicates to the production of good j. It operates

on a competitive labor market and takes the wage w as given. The monopolist producer of good j sets

a price pi j that maximizes profits pi j yi j −wli j subject to demand

yi j = p−ϵ
i j Y qϵ−1

i j .

Following Acemoglu et al. (2012) and Acemoglu et al. (2018a), we assume that any firm that would

like to offer good j on the market faces an infinitely small price posting costs. As non-producing are

unwilling to incur this cost, only the firm with the highest level of quality to produce good j posits a

price. Hence, the price for good j is the familiar markup ϵ/(ϵ− 1) over marginal costs w . Profits are

therefore

π(q̂i j ) =
(

1

ϵ−1

)(
ϵ−1

ϵ

)ϵ
Y q̂ϵ−1

i j (3)

where q̂i j ≡ qi j /w is a measure of the relative quality of good j produced by firm i.

4.2. Product Innovation and Innovation Bursts

While each good is produced by a single firm, firms are able to produce all of the goods for which they

own the highest-quality patents.

Incumbent product innovation Incumbent firms expand the portfolio of patents through bursts of

innovation. An innovation burst is a collection of product innovations, each of which contains the

technology that enables a firm to produce a product that it did not yet produce. The innovating firm

can then produce each of the products in its innovation burst at a higher level of quality than the

respective product’s incumbent. Formally, an innovation burst can be represented as a set with nc
i t

elements, where each element contains a quality improvements λi j̃ and where each j̃ ∈ [0,1] denotes
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a randomly chosen product that i acquires a technology to produce. The quality qi j̃ at which the

innovator produces its new goods is given by

qi j̃ = q−i j̃ +λi j̃ q ,

where q−i j̃ is the incumbent’s quality while q denotes the average quality of the economy’s products.12

The number of products for which a quality improvement is contained in the firm’s innovation

burst at time t is nc
i t . We assume that nc

i t is a random variable that follows a Zeta distribution, such

that probability mass function of nc
i t is given by

P (nc
i t = n) = n−θ

ζ(θ)
, where ζ(θ) =

∞∑
i=1

1

iθ
,

which is the discrete counterpart of the probability density function of a Pareto distribution. The tail

parameter θ > 1 determines the thickness of the tail of innovation bursts. As θ approaches one, in-

novation bursts have a Zipf’s distribution. As θ increases, innovation bursts become less dispersed.

The average number of product innovations in a burst is given by the ratio of ζ(θ−1) and ζ(θ), which

is finite as long as θ exceeds two. In the limiting case where θ becomes large, firms only add a single

product to their product portfolio when they acquire an innovation burst.

Firms choose the Poisson flow rate xi ≥ 0 at which innovation bursts arrive. In order to achieve xi ,

firms employ r d x researchers along

r d x (xi ,ni ) = ηxψi n−σ(ψ−1)
i

where ψ > 1 and 0 ≤ σ ≤ 1. The parameter σ governs the degree to which the probability that a firm’s

optimal innovation rate scales with its size. For σ= 1, firms choose an arrival rate of innovation bursts

that is proportional to the number of products that they currently produce. For σ= 0 a firm’s optimal

arrival rate of innovation bursts does not depend on its current size, which means that the expected

percentage growth rate in firm size rapidly declines with size.

Our setup nests the canonical Klette and Kortum (2004) model of endogenous growth through

product innovation. In that model, firms choose the Poisson rate with which they acquire the technol-

ogy to produce a single additional good. As a consequence, the number of additional products that a

firm produces over a discrete time interval has a Poisson distribution. For large values of the innova-

tion burst parameter θ, firms in our model also acquire only a single production technology when they

innovate. The model would, in that case, also predict that the number of additional products has a

Poisson distribution. In addition, firms’ innovation capacity in Klette and Kortum scales perfectly with

size, σ= 1 in our model, while products are aggregated along a Cobb-Douglas aggregator, i.e. ϵ= 1.

12By assuming that quality improvements are multiplied by the average quality rather than a good’s quality we follow
Acemoglu et al. (2018a) and assure that the distribution of qualities in equilibrium is non-degenerate. This is important
because quality determines a product’s demand and thus revenue under a CES aggregator with ϵ> 1.
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Entrant product innovation There is a continuum of potential entrants that employ researchers in

order to acquire the technology to produce one of the incumbents’ products at a higher level of quality.

Their employment of researchers r d e is related to the rate of entry s along

r d e = ηe sψs

where ηe > 0 and ψ ≥ 1. Potential entrants that draw an innovation improve the quality of an incum-

bent’s product in the same way that innovation by incumbents raises a good’s quality.

4.3. Process Innovation

Incumbent firms also improve the quality of their existing products, which we henceforth label process

innovation. Firms choose the rate at which they improve the quality of each of their products, and

when a product’s process innovation is successful its quality rises along

qi j (t +∆t ) = qi j (t )(1+λγsi j ).

where λ> 0 and where si j counts the previous process innovation that firm i has achieved on good j.

As 0 < γ≤ 1, innovation steps on process innovation may become smaller over time, which represents

the idea that process innovations become increasingly incremental as a product within a firm matures.

To improve the quality of existing product j at a Poisson rate zi j > 0, the firm employs

r d z (zi j , si j ) = ηz zψi j

(
q̂i j (1+γsi j )

)ϵ−1

researchers, where ηz > 0. The R&D expense on process innovation rises in the quality of the

product and falls in the number of previous process innovations. The former implies that it is more

expensive to improve a more advanced product. As we show in the next section, these assumptions

combined assure that the returns to process innovation do not depend on q̂i j and si j , such that firms

choose equal process innovation rates across their product portfolio.

4.4. Growth and Creative Destruction

Firms stop producing a good if a different incumbent or an entrant comes up with a higher-quality

version of that product. The rate at which this happens to a product is the rate of creative destruction.

The rate of creative destruction is endogenous, as it is determined by the rate of entry and the effort to

acquire innovation bursts by incumbents:

τ= e +
∞∑

n=1

(
Mn xn

ζ(θ)

∞∑
k=1

k−θ
)

The first term reflects creative destruction due to entry while the second term reflects creative destruc-

tion due to innovation by incumbents. The outer summation of the incumbent innovation term is over
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the number of products (size) of each incumbent firm. Within the summation, total creative destruc-

tion by firms of size n is the product of the mass of firms of that size (Mn), the flow rate at which these

firms draw innovation bursts (xn), multiplied by the number of products that they expect to acquire

a technology for as part of the innovation burst–which is captured by the final summation. Using the

mean of the Zeta distribution, the rate of creative destruction can be written as

τ= e + ζ(θ−1)

ζ(θ)

∞∑
n=1

Mn xn (4)

Firms exit if innovation by incumbents or entrants causes them to cease producing their sole good.

The rate at which this happens is the creative destruction rate, which depends on both the rate at which

innovation bursts arrive and the size of innovation bursts, as explained in the next section.

4.5. Equilibrium

We now characterize the full balanced growth path equilibrium where productivity, consumption, out-

put and wages grow at a rate g.

Value Functions and First Order Conditions/ Equilibrium Definition Firms employ the number of

researchers that maximizes the firm’s value. Let Vt (q̂i ) denote the value function for a firm with the

vector of relative product qualities q̂i ≡ (q̂1, · · · , q̂ Ji ) at time t . Along a balanced growth path, the value

function satisfies

r Vt (q̂i )− V̇t (q̂i ) = max
xi ,zi j



∑
j∈Ji

πt (q̂i j )− g
∑

j∈Ji
q̂i j

∂Vt (q̂i )
∂q̂i j

+∑
j∈Ji

τ
[
Vt

(
q̂i \

{
q̂i j , si j

})−Vt (q̂i )
]

+∑
j∈Ji

zi j
[
Vt

(
q̂i \ {q̂i j , si j }∪+

{
q̂i j (1+γsi j ), si j +1

})−Vt (q̂i )
]

+xi
∑∞

h=1
h−θ
ζ(θ)E

[
Vt (q̂i ∪+ {q̂i k ,k = 1, ..,h})−Vt (q̂i )

]
−wtη(xi )ψn−σ(ψ−1)

i −wtηz
∑

j∈Ji
(zi i )ψ

((
q̂i j (1+γsi j )

)ϵ−1
)
−F (ni )


, (5)

where r and g are the interest rate and the rate of growth of output along the path, and where V̇t

denotes the change in firm value Vt with time. The first line on the right-hand side contains the sum

of the flow of profits, πt (q̂i j ). The second line contains the expected change in firm value if the firm

stops producing good j because of creative destruction. The term Vt
(
q̂i \

{
q̂i j , si j

})
denotes the value

of producing the portfolio of goods q̂i except good j that has quality q̂i j and on which the firm has

implemented si j process innovations. The third line contains the change in value that arises from

process innovation, which is again summed across all of the products that the firm produces. The

fourth row contains the expected increase in firm value from successful innovation. This is equal to

the Poisson rate at which the firm chooses to obtain innovation bursts, i , multiplied by the expected

increase in the firm’s value if it acquires an innovation burst. Value function Vt (q̂i ∪+ {q̂i k ,k = 1, ..,h})

denotes the increase in value if the innovation burst contains the technology to add h products, with

the k-th products being of relative quality q̂i k . This is weighted by the probability density function of

h, which is h−θ/ζ(θ). The first and second term in the bottom row contain the firm’s total expenditure
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on researchers, which are paid a wage w. The final term F (ni ) is a fixed costs that firms must pay in

order to operate, which we assume equals the option value of research and development.13

The following proposition characterizes the value function as the solution to the problem in Equa-

tion (5).

Proposition 1. The value function of a firm with intangible cost φi that produces a portfolio of goods J i

with cardinality ni grows at rate g along the balanced growth path and is given by

V (q̂i ) =
∑

j∈Ji
π̂q̂ϵ−1

i j

r − g +τ+ (ϵ−1)g
,

where π̂≡ ( 1
ϵ−1

)(
ϵ−1
ϵ

)ϵ
Y , which grows at rate g . The optimal rate of innovation reads as

xni =
 π̂E

[
q̂ϵ−1

i j

]
r − g +τ+ (ϵ−1)g

 1

ηψw

ζ(θ−1)

ζ(θ)


1

ψ−1

nσ
i . (6)

The optimal process innovation rate reads as

z =
([

π̂

r − g +τ+ (ϵ−1)g

]
1

ηzψw

) 1
ψ−1

. (7)

The optimal startup rate is given by

s =
 π̂E

[
q̂ϵ−1

e j

]
r − g +τ+ (ϵ−1)g

 1

ηeψw


1

ψ−1

. (8)

Proof: Appendix A.

Quality Shocks To mimic the empirical variability of product-level revenue we introduce idisyncratic

quality shocks. These shocks are log-normally distributed with zero mean and standard deviation Ξ.

Household Optimization The household maximizes life-time utility with respect to consumption

and saving. Given log utility over consumption with discount rate ρ, this yields the Euler equation:

Ċ

C
= r −ρ. (9)

Along the balanced growth path, consumption grows at the rate g , such that r − g = ρ.

Firm-Size Distribution The mass of single product firms expands through the entry of new firms,

which happens at a rate e, and because the mass of firms that produce two products declines through

13We borrow this ad-hoc restriction from Akcigit and Kerr (2018). It assures that the value function is linear in the number
of goods that firms produce, so that the model admits analytical first-order conditions for research and development. ?
shows that the economic effects of this assumption are offset by the calibration of σ, as both have a similar effect of the
degree to which optimal research and development scales with the number of products that firms produce.
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creative destruction. Simultaneously, the mass of single-product firms declines because these firms

also expand (through innovation bursts at rate x1) or exit (through creative destruction at rate τ1). The

flow equation of the single-product firms is given by

Ṁ1 = e +M2τ2 −M1(x1 +τ1) (10)

where, given that τn = nτ, we find τ1 = τ. For larger firms, the flow equation looks similar. The main

difference is that the mass of firms of size n expands through the arrival of innovation bursts at firms

of any size smaller than n:

Ṁn = Mn+1τn+1 +
(

n−1∑
k=1

Mk · x j · [n −k]−θk

ζ(θk )

)
−Mn (xn +τn) ∀n > 1. (11)

The first two terms in Equation (11) capture the two sources through which the mass of size n firms

expands. First, firms of size n+1 lose a product through creative destruction at Poisson rate τn+1, which

is the first term in (11). The second term captures the increase in the mass of size n firms through

innovation bursts by firms that initially produce k ∈ {1, ..,n −1} goods that increase the size of those

firms’ product portfolio by n − k goods. The final term captures the two sources through which the

mass of size n declines: creative destruction, at rate τn , and innovation bursts, at rate xn .

Along the balanced growth path the firm-size distribution is stationary, such that Ṁn = 0 for any

size n. The overall mass of firms is also constant, which means that exit through creative destruction

is exactly offset by entry such that e = τ1M1. This pins down the mass of single-product firms:

M1 = e

τ1
.

Inserting the mass of single-product firms into Equation (10) gives the mass of two-product firms:

M2 = M1

(
x1 +τ1

τ2

)
Setting the left-hand side of (10) to zero gives a sequence for the mass of any size bin n > 2 as a function

of the mass of smaller-sized firms:

Mn+1 = 1

τn+1

(
Mn(xn +τn)−

(
n−1∑
j=1

M j · x j · [n − j ]−θ j

ζ(θ j )

))
. (12)

Aggregate Variables and Aggregate Productivity Growth As the representative household supplies a

single unit of labor, equilibrium on the labor market requires that

1 = Lp +Lr d +Le ,
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where Lp , Lr d , and Le respectively denote labor used to produce intermediate goods, to conduct re-

search for incumbents, and to conduct research for entrants. Inserting the production function, de-

mand function and optimal prices, gives a straightforward expression for total production labor:

Lp = Y

w

( ϵ

ϵ−1

)−ϵ (∫ 1

0

∫
I j∈Ji q̂ϵ−1

i j di d j

)
where I j∈Ji is the indicator function that equals one when firm i produces good j. Total employment of

researchers by incumbents and entrants is given by

Lr d =
∞∑

n=1

(
Mnηxψn n− σ

ψ−1

)
and Le = ηe sψ.

The equilibrium wage is found by inserting the production function, demand function and opti-

mal prices into the aggregator gives the equilibrium wage:

w =
(
ϵ−1

ϵ

)(∫ 1

0

∫
I j∈Ji qϵ−1

i j di d j

) 1
ϵ−1

,

As usual, the equilibrium wage is a constant mark-down over the CES productivity index Q:

Q =
(∫ 1

0

∫
I j∈Ji qϵ−1

i j di d j

) 1
ϵ−1

. (13)

This aggregate index grows at a rate g , where the growth rate is determined by the innovation decisions

of incumbents and entrants. Aggregate productivity growth g ≡ ∂ lnQ/∂t is therefore given by:

g = 1

ϵ−1

1

Q

∫ 1

0

∫
I j∈Ji

(
∂qϵ−1

i j

∂t

)
di d j = τ ·E[λi j ]. (14)

Equilibrium Definition Combining all of the conditions state above, we present the definition of the

equilibrium in our model in Appendix A.

5. Quantification

We next detail how we quantify the model. The aim of the quantification is twofold. First, we show

that when the model can be disciplined with moments that are directly obtained from our empirical

analysis, and that the model is able to qualitatively and quantitatively replicate the empirical facts on

creative destruction and process innovation from Section 3. Second, we use the resulting calibrated

model to understand the importance of creative destruction and process innovation for overall pro-

ductivity growth, and to demonstrate how matching the empirical facts documented in this paper re-

shapes our understanding of the sources of growth.
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5.1. Calibration

We infer as many parameters as possible directly from the data on firm-and-product-level dynamics.

This contrasts with the common approach to calibrating the models of creative destruction, which of-

ten relies only on firm-level information. Our data enables us to directly infer parameters from empiri-

cal rates of creative destruction, product innovation, and process innovation. The inferred parameters

are summarized in Table 4.

Product Innovation The model has eight innovation parameters. The first parameter that we cali-

brate is the tail parameter of zeta distribution, θ. This parameter determines the average size of inno-

vation bursts in the model, as well as the thickness of the tail of the innovation burst distribution. We

calibrate θ to match the relationship between rank and the number of product innovations for single-

product firms in Figure 3a. Because firms may experience multiple innovation bursts over the course

of a year, the distribution of the number of product innovations differs from the distribution of the size

of innovation bursts. Hence, we cannot infer θ directly from the slope of the rank-size relationship in

Figure 3. At 3.05, θ matches the negative slope of 2.48 for the relationship between the number and

rank of product innovations for single-product firms in the data.

Turning to the frequency of innovation bursts, there are two parameters: the frequency of inno-

vation bursts relative to the number of products that firms currently produce (x), and the degree to

which the frequency of bursts scales with size (σ). We set the latter to 1, to match the fact that there is

no clear relationship between the number of products that firms initially produce and the ratio of their

new products over their existing products in Table 2.

We next use data on the rate of product innovation to calibrate x. As firms on average achieve

0.066 product innovations for each of their existing products (Table 2), and because the average size

of bursts ζ(θ− 1)/ζ(θ) is approximately 1.35, we set x to 0.049. Note that by directly calibrating the

rate of product innovation to match the data, we do not have to separately estimate the unobserved

parameters that drive optimal product innovation (the cost shifter η, curvatureψ and discount rate ρ).

As for the frequency of innovation bursts, we infer entry rate e from the data. As it is difficult for us

to measure entry directly due to the exclusive sampling of large firms in EAP, we rely on the fact that the

number of products in the model (and largely in the data) is constant over time. Firms lose an average

of 0.082 products for every product that they initially produce, while they gain 0.066 products 2). As

τ= x +e, this means that entry e contributes 0.012 to the creative destruction rate.

For the average innovation step size of product innovation, η, we choose the value that delivers an

overall productivity growth rate of 1.6%, which is the average French productivity growth in the Penn

World Tables. Together with the process innovation parameters, this is achieved by setting η to 0.031.

Process Innovation The process innovation step size λ and the process innovation frequency z play

a largely interchangeable role in the model. We set the Poisson rate of process innovations z to 1,

such that firms develop improved versions of their existing projects on average once per year. This has

the convenient implication of aligning the average number of improvements that firms have made in
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Table 4: Summary of Parameter Values

Parameter Description Value
θ Tail parameter of the zeta distribution 3.05
σ Rate of innovation bursts scaling with firm size 1.00
x Product innovation rate .049
γ Decline rate of follow-up process innovation size .870
e Entry rate adding to creative destruction rates .016
λ Process innovation step size .041
z Poisson rate of process innovations 1.00
η Average innovation step size of product innovation .031
Ξ Standard deviation of idiosyncratic quality shocks .271
ϵ Elasticity of substitution 5.00

any given year equal to the tenure of their product, which gives the rate at which follow-up process

innovation declines (γ) a straight-forward interpretation. We then calibrate λ to 0.041 to match the

average growth of 0.06% of revenue on firms’ continuing products, as found in the upper panel of

Table 3. As the average tenure of a product is 13.2 years, the expected step size of process innovation

is 0.0135. This means that the average productivity gain from successful process innovation is smaller

than the average gain from product innovation, in line with the patent-level evidence in Akcigit and

Kerr (2018).

The final parameter for process innovation to calibrate is the parameter controlling follow-up pro-

cess innovation, γ, which determines the rate at which quality growth declines in a product’s tenure.

The decline in the growth of revenue between the first and second year that a firm produces a good is

given by
∂2 lnri j t

∂t∂s
=λγs (ϵ−1) lnγ

where s is the product tenure. We calibrated parameter γ to 0.83, which delivers the 0.5 percentage-

point rate of decline in revenue growth over the product life-cycle observed in Figure 5.

Productivity Shocks The idiosyncratic product-level productivity shocks create changes in sales that

are unrelated to process and product innovation. Greater volatility of productivity shocks raises the

contribution of continuing products’ revenue growth to variation in overall firm revenue growth. We

assume a log-normal distribution for productivity shocks with a log-average of zero and a standard

deviation of Ξ. We set Ξ to 0.271 in order to match the 28.8% Shapley value of continuing products in

overall revenue growth in Table 3.

Other Parameters Finally, the elasticity of substitution ϵ determines the degree to which dispersion

in quality translates to dispersion in revenue per product and in revenue growth. It also controls the

markup, which is frequently estimated in empirical work. We set ϵ to 5 for a markup of 1.25.
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Table 5: Performance on Targeted Moments

Parameter Moment Target Model

Product Innovation
θ Regression of number of new products (log) on rank (log) if Nt−1 =1 -2.43 -2.43
σ Scaling of number of innovation bursts in firm size 1.00 1.00
x Arrival rate of innovation bursts (per existing product) .048 .048
e Entry rate .012 .012
η Growth rate of total factor productivity .016 .016

Process Innovation
z, λ Revenue growth on continuing products .006 .006
γ Change in revenue growth in product tenure -.005 -.005

Productivity shocks
Ξ Shapley-Owen contribution of continuing products to revenue growth 28.8% 28.8%

Other parameters
ϵ Markup 1.25 1.25

5.2. Model Performance

Before analyzing the sources of aggregate growth and the effect of innovation policy, we assess the

model’s ability to match the targeted moments from the previous section, as well as its ability to match

untargeted moments, such as the stylized facts of Section 3. The results below come from a simula-

tion of the quantified economy for 10,000 firms over 40 years.14 The model’s performance on targeted

moments is summarized in Table 5, which shows that all moments are matched with precision.

We next assess the degree to which the model is able to replicate the empirical facts on products

and product innovation from Section 3, which were largely untargeted in the calibration. In Figure 6 we

compare the distribution of product innovations in the data and the model. Left-hand figures are from

the data, while right-hand figures are based on simulations of the model. To understand the role of

innovation bursts in the model, right-hand figures contain both patterns of product innovations with

innovation bursts (blue-circled scatters) and patterns of product innovations if all episodes of product

innovation added 1 product to a firm’s portfolio (red-squared scatters). This is a natural benchmark, as

innovation bursts are a main deviation from previous models of firm dynamics and creative destruc-

tion, such as Klette and Kortum (2004), Akcigit and Kerr (2018) and Acemoglu et al. (2018b).15

Figure 6 shows the model’s ability to accurately match the high concentration of product innova-

tion in the data. Pooling firms of all sizes in the topmost panelt, the linear relationship between the

level and the rank of the number of product innovations fits almost perfectly with an R2 of 0.99. More-

over, the slope of the relationship is -2.12, which is close to the untargeted slope of -1.94 in the data,

14We simulate the economy for 40 years rather than the 10 years of the data that we have for the EAP survey. This is
because the fat-tailed distribution of product innovation implies that in small samples, convergence of sample moments to
true moments may be slow.

15To implement the model without bursts, we set ζ to a large number and adjust the innovation rate x such that the model
still matches the overall rate of product innovation in the data, as well as the overall growth rate of productivity
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Figure 6. Distribution of Number of New Products: Data and Model

(a) Data: New Products (Any Nt−1)
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(b) Model: New Products (Any Nt−1)

(c) Data: New Products (Nt−1 = 1)
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(d) Model: New Products (Nt−1 = 1)

(e) Data: New Products (Nt−1 = 10)
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(f) Distribution of New Products (Nt−1 = 10)

Notes: Left-hand figures are based on the EAP data. Blue-circled scatters on the right-hand side are from a model with innovation bursts.

Red-squared scatters are based on a model with Poisson-distributed product innovation. Figures plot log-rank, log-size relationships.

suggesting that product innovation has a similar degree of concentration in the model and the data.

When conditioning on size in the middle and lower panels, the model with innovation bursts again

closely matches the empirical distributions. If product innovations do not come in bursts, in contrast,

the model fits the empirical pattern of product innovations poorly. In this case, the resultaing distri-
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Figure 7. Untargeted Moments: Product Concentration and Revenue Per Product
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(c) Data: Revenue per Product
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(d) Model: Revenue per Product

Notes: Left-hand figures are based on the EAP data. Blue-circled scatters on the right-hand side are from a model with innovation bursts.

Red-squared scatters are based on a model with Poisson-distributed product innovation. Figures plot log-rank, log-size relationships.

bution of product innovation is Poisson, which leads to substantially lower degrees of concentration

under the conventional model.

Besides matching the empirical pattern of product innovation, innovation bursts are also vital to

match the concentration of firm size observed in the data. Figure 7 plots the distribution of the number

of products that firms produce and their average average revenue per product, where, as before, the

x- and y-axes show revenue and rank, respectively, in logarithmic scale. The figure shows that innova-

tion bursts are vital for explaining the observed concentration of production across large firms. When

product innovation comes in bursts, the distribution of the number of products in the model is similar

to the distribution of the model. Instead, if product innovation is a Poisson process, the number of

large firms is negligible. This is a familiar shortcoming of standard models of creative destruction (see,

e.g., Akcigit and Kerr 2018).

Table 6 summarizes the model’s ability to explain the fraction of firm growth that is respectively

explained by product innovation, product destruction and revenue growth on continuing products.

The model matches the fact that within the contribution of creative destruction, product innovation

explains a smaller part of the variation in revenue growth than product destruction. This is due to the

27



Table 6: Untargeted Moments: Shapley-Owen Decomposition in the Model vs the Data

Overall Growth Product Innovation Product Destruction Continuing Products
1-year
Data 100.0 16.0 55.2 28.8 (target)
Model 100.0 29.8 41.5 28.8 (target)

5-year
Data 100.0 37.3 49.8 12.9
Model 100.0 35.5 58.6 5.89

Notes: The table decomposes total revenue growth into revenue loss from product loss, revenue gain from product gain, and changes in

revenue on products that the firm is continuing to produce.

fact that firms do not earn revenue for the full year in which they start producing a good. The wedge

between the contribution of product innovation and product destruction is greater in the data than

in the model, which is likely due to the fact that we underestimate entry in the EAP data.16 Over 5-

year horizons, the model matches the (untargeted) contribution of product innovation and product

innovation closely.

As a final untargeted moment, Figure 9 presents the relationship between the magnitude of firms’

revenue changes. The model is able to replicate the broad empirical pattern that the bulk of overall

revenue destruction and creation occurs at firms with modest changes in sales, and that continuing

products are responsible for the bulk of that growth. The model is also able to match that the tails of

growth, in particular firm entry and exit, make up a significant part of overall revenue creation and

destruction. The model also qualitatively matches the fact that the larger a firm’s change in revenue,

the greater the contribution of creative destruction.

Figure 8. Life Cycle of Revenue Growth
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(b) Model

Notes: The vertical axis plots average growth of product revenue among all firm-products in the sample, where the average growth rate of

a firm-product’s revenue is subtracted from growth at each horizon. The horizontal axis plots the number of years that have passed since

the firm first started producing the product. Confidence bounds are at the 90% level and based on bootstrapped standard errors.

16Firms only enter the EAP data if they earn at least 5 million euros of revenue or employ at least 20 firms. We only consider
a product a new product if we observe the firm prior to the introduction to a product, which means that we under-count entry
of new products when firms add a product to their portfolio in the same year that they first appear in EAP.
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Figure 9. Untargeted Moments: Creative Destruction and Aggregate Revenue Growth
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Notes: The horizontal axis measures firm growth through the symmetric growth rate, defined as the change in revenue between t and t −1

divided by average revenue in t and t −1. Growth rates are separated into 20 negative bins and 20 positive bins. The top figure presents the

contribution of changes in revenue across firms in a particular growth bin as a percentage of total revenue creation (the sum of increases

in revenue across growing firms) for positive bins or as a percentage of total revenue destruction (the sum of decreases in revenue across

shrinking firms) for negative bins. The bottom panel decomposes a bin’s overall revenue change into changes coming from continuing

products and the net of product innovation and destruction – creative destruction.

6. Application: Creative Destruction as the Driver of Growth

We now apply the framework to understand the impact of creative destruction on aggregate productiv-

ity growth and market concentration. The calibrated model features various new interactions between

creative destruction, process innovation, concentration, and aggregate growth. Informed by the styl-

ized facts, product innovation is highly concentrated–which in turn means that an economy with fre-

quent innovation bursts features greater concentration of production among large firms. Similarly, we

find that the efficacy of process innovation declines in a product’s tenure, which means that frequent

innovation bursts can increase the effectiveness of process innovation by rejuvenating the product mix

of firms. In this section we quantify these interactions and show how they reshape our thinking about

the macroeconomic effects of creative destruction.

6.1. Additive Decomposition

A first way of quantifying the macroeconomic importance of creative destruction on growth is to use

the model to decompose aggregate productivity growth into the contribution of process innovation
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and creative destruction. In particular, the model implies that, in the long run, aggregate growth is

given by

g = τ ·η+ z ·λ ·E[γs]. (15)

In Equation (15), we may account for the direct contribution of creative destruction to productivity

growth by dividing the term involving creative destruction, the product of the creative destruction rate

and the product innovation step size, τη, by the overall rate of productivity growth, g . Although this

ratio abstracts from potential linkages between creative destruction and the rate and effectiveness of

process innovation, it offers a starting point for quantifying the contribution of creative destruction

to growth, if we counterfactually keep the contributions of process innovation constant. This exercise

is similar to that performed by Garcia-Macia et al. (2019) for quantifying the contribution of creative

destruction.

The top row in Table 7 presents the results of this approach to quantifying the direct contribution

to growth of creative destruction in our model. The first column presents the contribution in our cal-

ibrated model, which is 15.3%. This is much smaller than that in models without process innovation

(e.g. Klette and Kortum 2004), where the contribution of creative destruction to growth is 100%. In

a similarly calibrated model in which the process innovation step size remains constant in the prod-

uct’s tenure (e.g., Akcigit and Kerr 2018, Garcia-Macia et al. 2019), the direct contribution of creative

destruction would also be 15.3%. For comparison, in a model disciplined by the U.S. establishment

data on employment flows rather than product churn, Garcia-Macia et al. (2019) find that around 25%

of growth originates from creative destruction. Thus, using the richer data on firm-level product dy-

namics, we confirm that the simple decomposition above leads to the conclusion that the majority of

growth in the long run stems from process innovation, once we allow for it to play a role in our models.

6.2. Accounting for Endogeneity in Process Innovation

Our empirical exercise and quantitative framework show that process and product innovation are in-

tertwined: innovation bursts add a wide set of products to the firms’ product portfolios, enabling new

waves of reinvigorated process innovation that further increase growth. At the same time, creative de-

struction raises the firms’ discount rates, which negatively affects their incentive to engage in process

innovation.

The clearest way to see the interaction between creative destruction and process innovation is to

consider the impacts on the aggregate growth in the extreme scenario in which creative destruction

ceases altogether, such that τ is zero. In models with constant product innovation, the fall in growth

is given by the direct contribution of creative destruction, which is 15.3% under our calibration. When

process innovation declines with product tenure, however, growth eventually ceases entirely when

τ = 0 (Table 7, row 2). This is because process innovation becomes gradually ineffective over time

as products become older without the introduction of new products. In our model, the step size of

process innovation would gradually decline as prior instances of process innovation accumulate over

time. Thus, the direct effect of creative destruction on growth underestimates its true relevance.
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Table 7: Effect of Creative Destruction on Productivity Growth

Full Model No Process Innovation Constant Step Process Inn.
(e.g. Klette and Kortum) (e.g. Akcigit and Kerr)

Simple decomposition
Percent of growth due to creative destruction 15.3% 100% 15.3%

Growth in absence of creative destruction
Growth decline when τ= 0 in % of baseline 100% 100% 15.3%

Effect of creative destruction on growth
Direct effect 3.1pp 3.1pp 3.1pp
Incl. endo. effect on of process innovation step 13.2pp 3.1pp 3.1pp
Incl. endo. effect on of process innovation rate 8.1pp 3.1pp -2.0pp

Effect of process innovation on growth
Direct effect 1.3pp N.A. 1.3pp

Notes: Contributions of growth are obtained from the quantified model in Section 5. For all models, the step size of product innovations η

is 3.1%. For process innovation in the full model, the process innovation step size λ is 4.1% while γ is 0.88, giving rise to an average process

innovation step of 1.3%. For the model with constant process innovation steps, we set λ to 1.3% and γ to 1.

An alternative way to express the interaction between process and product innovation by exam-

ining the effect of a marginal increase in creative destruction on growth, taking into account both its

direct effects as well as the indirect effects mediated by the impact on process innovation. The latter

can, in turn, be separated into two parts. First, an increase in creative destruction raises the expected

step size of process innovation and thus its effect on growth. Second, a higher pace of creative destruc-

tion raises the rate at which the benefits to process innovation are discounted, as firms expect to lose

their product sooner when they are replaced by another firm through creative destruction. These three

components are terms in the the following total derivative of growth with respect to τ:

d g

dτ
= η︸︷︷︸

direct effect

+ λz

(
∂E[γs]

∂τ

)
︸ ︷︷ ︸

step-size effect >0

+ λE[γs]

(
∂z

∂τ

)
︸ ︷︷ ︸

discount effect <0

. (16)

The third panel of Table 7 presents the decomposition of the effects of creative destruction on

aggregate long-run growth implied by Equation (16). The direct effect is simply given by the step-

size of quality improvements from creative destruction, η, which we estimate to be 3.1 percentage

points. The steps-size effect, the second term in the decomposition, equals 10.1 percentage points.

That means that the indirect effect of innovation bursts on growth, by igniting a sequence of highly

productive process innovation, is more than three times larger than their direct effect. Finally, we

observe that the negative effect of creative destruction on the rate of process innovation can also be

sizable. From the first-order condition of process innovation, this response is

∂z

∂τ
=− 1

ψ−1

(
z

ρ+τ+ (ϵ−1)g

)
.

Hence, to quantify the discount effect, we need to calibrate ψ and ρ. We set the former to 2.6 and the

latter to 0.02, which are standard values in the literature. The negative effect is sizable: the decline
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Figure 10. Interaction between Creative Destruction, Process Innovation, and Growth
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Notes: The figure shows the changes in (a) the aggregate rate of productivity growth, (b) the average step size of process innovation, and

(c) the rate of process innovation for different rates of creative destruction in the calibrated model.

in process innovation reduces growth by 8.3 percentage points. The total derivative of growth with

respect to creative destruction, from the innovation bursts of either incumbents or entrants, is 4.9

percentage points. In Figure 10, we illustrate the relationship between creative destruction, process

innovation’s step size, and the incentive to engage in process innovation for a wide range of changes in

the rate of creative destruction, τ, keeping fixed all other model parameters.

The exercise above shows that an assessment of the effect of creative destruction on growth may

be highly sensitive to the details of the model considered. In our model, which is compatible with

the documented facts on the dynamics of product-level revenue growth over the life cycle, creative

destruction ignites a series of highly productive process innovations. As such, the indirect effect of

a rise in creative destruction, mediated through the impact on process innovation, may be far larger

than its direct impact on aggregate productivity growth.

6.3. Creative Destruction and Industry Concentration

Finally, in this section we examine the interaction between creative destruction and industry concen-

tration. As explained in Section 5, innovation bursts are a natural explanation for why production

concentrates in a small set of large firms. We next show that creative destruction has large effects on

the degree of industry concentration, which means that introducing innovation bursts into the model

is key when studying the joint determinants of productivity growth and industry concentration, which

is the topic of a growing body of research (e.g. Olmstead-Rumsey 2022, Akcigit and Ates 2021, Akcigit

and Ates 2023, Aghion et al. 2023, De Ridder 2024).

An increase in the rate at which firms obtain innovation bursts, x, raises the rate of creative de-

struction, τ, and reshapes the distribution of production across firms. Figure 11 shows this distribution
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Figure 11. Firm-Size Distribution: Interaction between Creative Destruction and Concentration
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Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes).

for the number of firm products, as a log-rank-vs.-log-size relationship, as we change the rate of cre-

ative destruction τ in the model while keeping fixed all other parameters. As we have already seen, this

relationship is close to linear in the data–a fact that the model with innovation bursts (the left-hand

figure) is able to replicate while that without innovation bursts (the right-hand figure) cannot. First,

the figure shows that this result holds across many different rates of creative destruction. Moreover, we

observe that higher rates of creative destruction are associated with the emergence of larger firms in

both models, but particularly so in the presence of innovation bursts.

Figure 12 presents the resulting variations in two different proxies of concentration of the distri-

butions of production as we change the rate of creative destruction, τ, in the two models. Under both

models, this relationship is increasing. However, the response of concentration to a rise in the rate of

creative destruction is more pronounced in the model featuring innovation bursts. As we can see in

Figure 12(a), the revenue share of the top 10% of firms increases in the rate of creative destruction,

and this rise is stronger under the full model featuring innovation bursts. At the calibrated value of τ,

the impact of a marginal rise in the rate of creative destruction on concentration are 2.36 and 1.83 in

our model and the conventional model, respectively. As an alternative proxy, Figure 12(b) shows the

average number of products of firms, which similarly rises in the rate of creative destruction, and does

so much more strongly in the presence of innovation bursts. Here, the impact of a marginal rise in the

rate of creative destruction on average firm size are 24.3 and 15.3 in our model and the conventional

model, respectively.

We conclude that a model that is compatible with the observed dynamics of firm-level production

in the data, as captured by the presence of innovation bursts, implies a tight link between creative

destruction and the concentration of production. In this model, stimulating product innovation raises

the likelihood of the emergence of large, superstar firms much more strongly than in a model with a

conventional account of product innovation.
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Figure 12. Interaction between Creative Destruction and Concentration
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Notes: The vertical axis of the left-hand figure plots the fraction of all products that is produced by the largest 10% of firms. The vertical

axis of the right-hand figure plots the average number of products that firms produce.The horizontal axis measures the rate of creative

destruction, τ.

7. Conclusion

This paper contributes to the ongoing research on the dynamics of firm-level innovation activity and

its impact on aggregate-level phenomena such as productivity growth, business dynamism, and the

firm-size distribution. By using comprehensive data from the French manufacturing sector, we have

documented a novel fact on firm-level product innovation activity, revealing that the distribution of

new products introduced by firms in each year has a thick, Pareto-like tail. This finding is inconsis-

tent with the predictions of standard theories of creative destruction, which have difficulty fitting this

empirical pattern.

To address this gap, we propose a new way of modeling endogenous growth through product in-

novation, which incorporates the concept of innovation bursts. Our model suggests that innovations

can come in bursts, with the potential for immediate applications that enable firms to expand their

portfolio of products rapidly. This notion of innovation bursts is consistent with the novel fact we have

documented on product innovation among French manufacturing firms.

Our proposed model offers a new explanation for the Pareto distribution of firm size commonly

observed in the data, which is a well-known limitation of theories of creative destruction. By showing

that the equilibrium firm-size distribution can be Pareto for a sufficiently thick-tailed distribution of

innovation bursts, we propose the lumpy nature of innovative ideas as the main driver of the concen-

tration of firm-level production.

Overall, this paper contributes to the literature on firm-level innovation activity, highlighting the

importance of incorporating the concept of innovation bursts into models of endogenous growth through

product innovation. By shedding new light on the interplay between concentration, innovation, and

growth, this paper offers a promising avenue for future research in this area.
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‘Growth Through Innovation Bursts’

Appendix - For Online Publication Only

Appendix A. Theoretical Appendix

The flow equation for the mass Mn of firms with different numbers of product n is given by

Ṁn =
(

n−1∑
j=1

M j · x j · [n − j ]−θ j

ζ(θ j )

)
+

( ∞∑
k=n+1

Mk ·τk ·
[k −n]−sk

ζ(sk )

)
−Mn (xn +τn ).

In the steady state, the mass of firms in a size bin is constant. This implies the following expresion

characterizing the steady state distribution:

Mn = 1

xn +τn

[(
n−1∑
j=1

M j · x j · [n − j ]−θ j

ζ(θ j )

)
+

( ∞∑
k=n+1

Mk ·τk ·
[k −n]−sk

ζ(k )

)]
.

Equilibrium Definition The following provides the definition of the equilibrium in our model.

Definition 1. The economy is in a balanced growth path equilibrium if for every t the variables
{
r,e,Lp , g

}
and functions

{
xni , Mni ,τ

}
are constant,

{
Y ,C ,Qw,

}
grow at a constant rate g that satisfies (14), interest

rates follow from (9), Q is given by (13), Y is Y = QLp , innovation rates xn satisfy (7), the entry rate e

satisfies (8), firm distribution Mn is constant and satisfies (12), the rate of creative destruction τ satisfies

(4), and both goods and labor markets are in equilibrium so that Y =C and Lp = 1−Ls −Lr d −Le .

Appendix B. Data Appendix

In this section, we describe the data sources used in our analysis and the procedure we use to merge

them and clean the resulting dataset of outliers.

B.1. EAP

The data are based on an annual survey of firms’ production activities, called the Enquête Annuelle

de Production (EAP), which is administered by the Institut National de la Statistique et des Études

Économiques (INSEE). In accordance with the EU regulation, the survey must encompass at least 90

per cent of the annual production of each 4-digit industry. The data contain comprehensive informa-

tion on sales and the volume of goods. The volume is recorded in units of measurement (number of

items, kilograms, litres) that are product-specific, while the value is recorded in current euros. As for

the level of product aggregation, the PRODFRA classification contains roughly 4300 10-digit product

codes (see below). The survey covers the entire manufacturing sector (NACE rev. 2 section C), ex-

cept for the agri-food industries (section 10, 11 and 12) and the manufacture of wood (16). While also

including the extractive industry; electricity, gas, steam and air-conditioning supply; water supply,

sewerage, waste management and remediation; we exclude these specific industries.
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Table A1: Examples of products in the PRODFRA classification

1812125000 Advertising and similar printed matter (excluding commercial catalogues)
1812199010 Administrative or commercial printed matter, at or continuous, customised

or not, and directories
2511235040 Industrial boiler products: not including tanks, boilers, nuclear equipment
3102100010 Wooden kitchen furniture: by mounted elements, including custom
310912502B Dining and living room furniture other than tables: buffets, credenzas and

livings, bookcases, cabinets by element.

B.1.1. Sampling Framework

The survey contains an exhaustive sample of firms with at least 20 employees or revenues higher than

5 million Euros. The sample size varies over time but it is usually around 25’000 units. To ensure a good

level of coverage the survey must cover at least 90 per cent of the total production value of each 4-digit

industry (NACE rev. 2). If this threshold is not reached more enterprises are surveyed. Additionally, the

survey contains a random sample of firms with less than 20 employees. Its size varies year by year and

it is usually around 8/9000 units. Because of sample attrition, we drop this second set of smaller firms

from our analysis.

B.1.2. Product Classification

As for the level of product aggregation, the PRODFRA classification contains roughly 4300 10-digit

product codes. Table A1 presents examples of products in the PRODFRA classification. The first eight

positions of PRODFRA represent the PRODCOM classification, where the last two positions are used to

refine the nomenclature. A few special products, which account for around 5 per cent of the total num-

ber of product categories, are identified by a letter (H, N, S, Y) instead of a number in the 9th position

of PRODFRA. These product categories are dropped when working with the PRODCOM classification.

The PRODCOM classification can be directly linked to the classification of industrial activities in the

EU (NACE Rev. 2), as the first four digits of the PC code identify a 4-digit NACE industry.

B.1.3. Product Concordance

A common feature of PRODFRA is to change over time (from 3 to 5% of product categories change

each year). The use of these product codes in longitudinal studies requires harmonizing the product

classification system over time. To do so, we use the algorithm developed by ?, called “connected com-

ponents concordance", or C3 for short. C3 uses the graph theory to identify stable and comparable

groups of products over time while minimizing the size of each group. The identified groups of prod-

ucts are then assigned to a single, time-consistent, code. The vast majority of products (almost 90%)

are not affected by this concordance procedure, and a marginal fraction of the new product groups

include more than three PRODFRA10 codes.

39



B.2. FARE

The Fichier approché des résultats d’Esane (FARE) contains a coherent set of statistics on the universe of

French private companies. It combines administrative data obtained from annual profit declarations

made by companies to the tax authorities and from annual social data which provide information on

employees and data obtained from a sample of companies surveyed by a specific questionnaire to

produce structural business statistics (ESA).

40



Appendix C. Additional Figures

Figure A1. Size Distribution - Revenue and Employment
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(b) Distribution: Revenue - Tail
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(c) Distribution: Employment
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(d) Distribution: Employment - Tail

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). Size is measured

through either revenue (in 2015 euros) or employment (in full-time equivalence). Inverse rank is measured as the ratio of firms’ rank

starting from the smallest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019.

Slopes by figure: (a) Slope: -1.1. Standard error: .01. R2: 0.98; (b) Slope: -1.30. Standard error: .02. R2: 0.99; (c) Slope: -1.2. Standard error:

.01. R2: 0.97; (d) Slope: -1.5. Standard error: .01. R2: 0.99.

C.1. Number of products
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Figure A2. Robustness for Figure 1
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(a) Distribution: Products 2010
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(b) Distribution: Products 2012
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(c) Distribution: Products 2014
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(d) Distribution: Products 2016
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(e) Distribution: Products 2018
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(f) Distribution: Products 2019

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). Left-hand figures

plot the entire distribution, while right-hand figures plot the tail of the distributions by narrowing in on the top 25% of firms. All figures

use 2019 data. Size is measured through either revenue (in 2015 euros) or employment (in full-time equivalence). Inverse rank is measured

as the ratio of firms’ rank starting from the smallest firm, divided by the total number of observations in the data. Plots are based on the

FARE-EAP sample for 2019. ADD OLS SLOPES.
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Figure A3. Robustness for Figure 1
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(a) Distribution: Products 8 digit
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(b) Distribution: Products 6 digit

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). Size is measured

through either revenue (in 2015 euros) or employment (in full-time equivalence). Inverse rank is measured as the ratio of firms’ rank

starting from the smallest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019.

ADD OLS SLOPES.
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C.2. Product Innovation Bursts Robustness

Figure A4. Revenue Per Product and Number of New Products
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(a) Average Revenue of New products (All Sizes)
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(b) Average Revenue of New products (Nt−1 = 1)
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(c) Average Revenue of New products (Nt−1 = 5)
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(d) Average Revenue of New products (Nt−1 = 10)

Notes: Figures plot the ratio of total revenue earned on new products divided by the total number of new products on the vertical axis,

against the number of new products on the horizontal axis. Dots present the average ratio in the sample, while confidence bounds are

plus/minus one standard deviation.
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Figure A5. Distribution of Number of New Products by Level of Aggregation

(a) Distribution of New Products (All Sizes) (b) Distribution of New Products (Nt−1 = 1)

(c) Distribution of New Products (Nt−1 = 5) (d) Distribution of New Products (Nt−1 = 10)

Notes: The figures plot the relationship between a firm’s size (horizontal axes) and the firm’s inverse rank (vertical axes). The figure provides

overlapping plots of the log rank against the log number of products added at the 10 digit level (blue circles), 8-digit (red triangles) and 6

digit level (green diamonds). The idea is that if innovation bursts are driven by firms differing in the care with which they report revenue

separately for each 10-digit product, the distribution should become less thick tailed at higher levels of aggregation. Size is measured

through either revenue (in 2015 euros) or employment (in full-time equivalence). Inverse rank is measured as the ratio of firms’ rank

starting from the smallest firm, divided by the total number of observations in the data. Plots are based on the FARE-EAP sample for 2019.

Figure A6. Distribution of Number of New Products - No Mergers

Notes: The figures plot the relationship between a firm’s number of new products and its rank. Inverse rank is measured as the ratio of firms’

rank starting from the firm with the fewest new products, divided by the total number of observations in the data. Plots are based on the

FARE-EAP sample for 2019.
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Figure A7. Product Innovation by Age

Notes: The figures plot the relationship between a firm’s number of new products and its rank. Inverse rank is measured as the ratio of firms’

rank starting from the firm with the fewest new products, divided by the total number of observations in the data. Plots are based on the

FARE-EAP sample for 2019. Firms are split into three equally-sized age bins, such that scatters for Age 1 belong to the youngest third of firms.

C.3. Product-Level Revenue Growth by Tenure for Type of Firm

Figure A8. Life Cycle of Revenue Growth by Product Count
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Notes: The vertical axis plots average growth of product revenue among all firm-products in the sample, where the average growth rate of

a firm-product’s revenue is subtracted from growth at each horizon. The horizontal axis plots the number of years that have passed since

the firm first started producing the product. Confidence bounds are at the 90% level and based on bootstrapped standard errors.
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Figure A9. Life Cycle of Revenue Growth by Age
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Notes: The vertical axis plots average growth of product revenue among all firm-products in the sample, where the average growth rate of

a firm-product’s revenue is subtracted from growth at each horizon. The horizontal axis plots the number of years that have passed since

the firm first started producing the product. Confidence bounds are at the 90% level and based on bootstrapped standard errors.

Figure A10. Life Cycle of Revenue Growth by Sector
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Notes: The vertical axis plots average growth of product revenue among all firm-products in the sample, where the average growth rate of

a firm-product’s revenue is subtracted from growth at each horizon. The horizontal axis plots the number of years that have passed since

the firm first started producing the product. Confidence bounds are at the 90% level and based on bootstrapped standard errors.
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Table A2: Concentration of Firm Growth

1 Year 5 Year
-3 σ -2 σ +2 σ +3 σ -3 σ -2 σ +2 σ +3 σ

Product Count
Data 0.98 1.08 1.09 1.00 0.90 0.93 0.99 0.96
Normal Dist. 0.13 2.28 2.28 0.13 0.13 2.28 2.28 0.13
Ratio 7.3 0.5 0.5 7.4 6.7 0.4 0.4 7.1

Revenue
Data 0.47 0.97 0.84 0.42 0.13 0.34 0.55 0.34
Normal Dist. 0.13 2.28 2.28 0.13 0.13 2.28 2.28 0.13
Ratio 3.5 0.4 0.4 3.1 1.0 0.2 0.2 2.5

Employment
Data 0.77 1.51 0.95 0.38 0.27 0.75 0.65 0.19
Normal Dist. 0.13 2.28 2.28 0.13 0.13 2.28 2.28 0.13
Ratio 5.7 0.7 0.4 2.8 2.0 0.3 0.3 1.4

Notes: The table presents the percentage of observations in the tail of the data and the percentage of observations in the tail under the

normal distribution. Colomn headers indicate tail in terms of standard deviations from the mean.

C.4. Distribution of firm growth

We now turn to the first new fact of the paper: the distribution of firm growth is fat tailed. As with

size, we measure firm growth through changes in the number of 10-digit products that it sells, changes

in revenue and changes in employment. To measure firm growth, we measure either year-on-year

or five-year changes in the natural logarithm of each of these variables: ln yi t − ln yi t−h , where h =
1,5. By focusing on log changes we are able to study the entire distribution of firm growth. The main

alternative measure of firm growth is the symmetric growth proposed by Davis et al. (2006), which is

bounded by [−2,2] regardless of the underlying distribution of firm size. This makes it impractical for

studying the tail of the firm-growth distribution. We return to symmetric growth rates in Section ??.

To show that the distribution of growth is fat tailed, we compare the distribution of log-change in

firm size to the log-normal distribution. The log-normal distribution is a natural starting point as, mo-

tivated by Gibrat (1931), firm dynamics models with random shocks to productivity typically assume

that such shocks (and thus firm growth) are log normal (see, e.g., Hopenhayn 2014, Danial: add refer-

ences).17 In models of firm dynamics and creative destruction in the spirit of Klette and Kortum (2004)

firm growth arises as the result of a Poisson process, which yields a distribution of firm growth that is

even more thin tailed (see, e.g., Luttmer 2010).

Quantile-Quantile plots We plot the distribution of firm growth in Figure A11. Each sub-figure con-

tains a Quantile-Quantile (QQ) plot comparing the distribution of a particular measure of firm growth

to a log-normal distribution with the same mean and standard deviation. To produce these figures, we

17Our results echo recent findings in the literature on income dynamics which shows that individual income growth is
also better described by a fat-tailed distributions such as the Pareto distribution (see, e.g., Guvenen et al. (2021). Gabaix et al.
(2016) discuss the importance of the income growth process to explain stationary distributions of income and wealth.
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Figure A11. Distribution of Growth Rates

(a) Product Count Growth (b) Product Count Growth (5 year)

(c) Revenue Growth (d) Revenue Growth (5 year)

(e) Employment Growth (f) Employment Growth (5 year)

Notes: The figures plot Quantile-Quantile plots comparing the empirical distribution of log change in product count, revenue and employ-

ment against the log-normal distribution. Dashed light-blue lines present the reference log-normal distribution.

sort firm-year observations by growth rate and calculate their rank. The plot than compares a partic-

ular quantile’s growth rate on the vertical axis to what that s quantile’s growth rate would be under the

log-normal distribution. If growth rates are log-normally distributed, the scatters should be positioned

on the diagonal reference lines. If the growth rates are fat tailed, scatters of the left tail are below the

reference line, while scatters on the right tail are above the reference line.
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Figure A11 shows that firm growth is fat tailed in the data. The upper, middle, and lower figures

respectively plot the distribution product count, revenue, and employment. For each measure, both

the 1-year growth rate (left-hand) and the 5-year growth rate show that large positive and negative

growth rates occur more often than a log-normal distribution predicts. The deviation is particularly

clear for the largest changes in size. For employment, for example, the deviation becomes graphically

clear around ± 0.5 log change, which translate to -45% and +65%.

Tail mass Table A2 quantifies how much the tails of firm growth deviates from the log-normal distri-

bution. It compares the percentage of observations to the left (right) of minus (plus) 2 and 3 standard

deviations from the mean for each variable and horizon. For product count, the data shows a close

alignment with the normal distribution at the +2 standard deviations and +3 standard deviations lev-

els in the 1-year period, with ratios of 0.5 and 7.4 respectively, indicating that extreme changes in a

firm’s product count are relatively common. Revenue data again displays a marked deviation from

the normal distribution, with changes in annual revenue growth outside the ±3 standard deviations

occurring more than three times as often. Results for employment growth are similar.

Log-rank versus log-size Having established that extreme changes in firm size are much more com-

mon than under the log-normal distribution, we next explore what distribution fits firm growth better.

As firm growth can be both positive and negative, the standard Pareto or Zeta distribution from Section

2 are poor fits. Instead, we explore whether a two-sided version of these distribution can explain both

the left and right-hand tails of firm growth. To see if this is the case, we separately calculate the rank of

firm growth firms among the firms with negative growth (yi t < yi t−h) and positive growth (yi t > yi t−h)

and plot the log of the inverse rank against the log of firm growth (yi t /yi t−h). This relationship is linear

at either side of zero if the firm growth distribution is indeed two-sided Pareto.

Figure A12 plots the results. The subfigures have the same order as in Figure A11. The horizontal

axis range is fixed at -4 to 4 in all plots. The figure shows that the two-sided Pareto distribution fits

the empirical firm growth well. For product count, the linear reference lines are a near perfect fit for

positive growth in both the 1-year and 5-year growth plots, although negative product growth seems

somewhat less thick-tailed than the Pareto distribution at the 5-year horizon. For revenue growth and

employment growth the tails appear to be even fatter than the two-sided Pareto distribution. This

is particularly visible for the right tail of the distribution: as the scatter plot is mostly above linear

reference lines, extreme growth in employment and revenue is more common in the data than in a

Pareto distribution.

Conditioning on age or size We next assess how the tails of the firm growth distribution change with

age and size. Figure A13 presents the QQ plots for all measures of 1-year growth, dividing the sample

into three equally large age groups on the left-hand figures. Blue-round scatters plot the distributions

for the youngest third of firms, while red-square and green-diamond scatters respectively belong to

the middle and oldest age group. (describe result: tails decline with size, stronger result than by age).
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Figure A12. Two-Sided Pareto Distribution of Firm Growth

(a) Product Count Growth (b) Product Count Growth (5 year)

(c) Revenue Growth (d) Revenue Growth (5 year)

(e) Employment Growth (f) Employment Growth (5 year)

Notes: The figures plot the relationship between the log of a firm’s inverse rank for growth and the log of growth. Growth is defined as

yi t /yi t−h . Rank is calculated separately for firms with negative growth and firms with positive growth. Blue-dashed lines are illustrative

linear reference lines to asses whether
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Figure A13. Distribution of Growth Rates by Age and Initial Size

(a) Product Count Growth - by Age (b) Product Count Growth - by Size

(c) Revenue Growth - by Age (d) Revenue Growth - by Size

(e) Employment Growth - by Age (f) Employment Growth - by Size

Notes: The figures plot Quantile-Quantile plots comparing the empirical distribution of log change in product count, revenue and employ-

ment against the log-normal distribution. Dashed light-blue lines present the reference log-normal distribution.
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Figure A14. Symmetric Shapley-Owen Decomposition of Revenue Growth by Age and Size
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Notes: The figures decompose total revenue growth into revenue loss from product loss, revenue gain from product gain, and changes in

revenue on products that the firm is continuing to produce.

Figure A14 presents the symmetric Shapley-Owen decomposition separately for firms of different

age deciles (left-hand) and initial sizes (right-hand), grouping entry and exit into churn. Size is mea-

sured through the number of products that firms produced in the previous year.18 The figure shows

that the contribution of churn is similar for firms of different ages and sizes. The only outlier is entrants,

which inherently see their entire growth attributed to churn as they have no continuing products.

18Results are similar when measuring size through revenue and employment.
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Table A3: Overview of Churn

Product Addition Rate Product Loss Rate
Horizon (years): 1 2 3 4 5 1 2 3 4 5
All firms 0.066 0.057 0.050 0.047 0.044 0.082 0.077 0.073 0.071 0.069

(0.513) (0.328) (0.217) (0.196) (0.174) (0.250) (0.328) (0.374) (0.406) (0.429)

All firms 0.055 0.049 0.046 0.045 0.044 0.075 0.072 0.069 0.070 0.069
Balanced (0.317) (0.259) (0.229) (0.203) (0.174) (0.240) (0.318) (0.367) (0.404) (0.429)

Nt−h = 1 0.055 0.051 0.048 0.048 0.048 0.059 0.059 0.058 0.060 0.060
Nt−h = 2 0.057 0.048 0.043 0.042 0.041 0.102 0.094 0.089 0.088 0.087
Nt−h = 3 0.060 0.049 0.041 0.038 0.037 0.110 0.100 0.094 0.092 0.091
Nt−h = 4 0.052 0.041 0.036 0.032 0.033 0.106 0.095 0.090 0.088 0.086
Nt−h = 5 0.049 0.044 0.038 0.034 0.031 0.116 0.102 0.095 0.091 0.090
Nt−h = 6 0.042 0.035 0.031 0.029 0.027 0.098 0.087 0.080 0.080 0.080
Nt−h = 7,8 0.052 0.041 0.033 0.034 0.036 0.104 0.094 0.089 0.088 0.086
Nt−h > 8 0.073 0.055 0.048 0.045 0.043 0.115 0.102 0.096 0.096 0.094

Notes: Product addition rate is the number of new products that a firm starts producing divided by its original number of products. This

number is divided by the length of the horizon to obtain an annual rate. Product loss rate is the number of products that a firm stops

producing over the horizon divided by its original number of products. This rate is annualized by taking τ = 1− (1−τ)1/h , where τ is the

raw fraction of products lost over horizon h.
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