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International Risk Sharing

Efficient allocation requires

U∗
C

UC
= MRT ≡ Q̃

— MRT how many units of C it takes to increase C∗ by one unit

Backus-Smith/Kollmann approach:(
C

C ∗

)σ

=
EP∗

P
≡ Q

— fails badly empirically cor(c − c∗, q) ≈ −0.2 ⇒ poor risk sharing?

Good reasons to be sceptical that MRT
?
= Q:

— macro: exchange rates disconnected from TFP, output...

— micro: alphabet soup of goods market frictions (PtM, PCP, LCP, DCP)
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This Paper

1 New method based on technological MRT:

— resource constraints + functional forms

— minimal data requirements (GDP, C, IM, EX)

2 Mapping between Q̃ and Q:

— BS wedge is neither necessary nor sufficient for distorted risk sharing

3 Apply to the data:

— on average, risk-sharing wedge is small and cor(c − c∗, q̃) ≈ 0.6
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Relation to the Literature

International (mis)allocation:

— Consumption efficiency: Backus, Kehoe & Kydland (1992), Mendoza
(1992), Backus & Smith (1993), Kollmann (1995), van Wincoop (1994,
1999), Lewis (1996), Aguiar & Gopinath (2007), Corsetti, Dedola & Leduc
(2008), Bai & Zhang (2010, 2012), Fitzgerald (2012), Gourinchas & Jeanne
(2013), Heathcote & Perri (2014), Ohanian, Restrepo-Echavarria & Wright
(2018), Corsetti et al (2023)

— Asset prices and portfolios: Brandt, Cochrane & Santa-Clara (2006),
French & Poterba (1991), Baxter & Jermann (1997), Cole & Obstfeld
(1991), Heathcote & Perri (2013), Coeurdacier & Gourinchas (2016), Farhi
& Werning (2016), Coeurdacier & Rey (2013), Lewis & Liu (2023)

— Wedge accounting: Chari, Kehoe & McGrattan (2007), Hsieh & Klenow
(2009), Capelle & Pellegrino (2023), Kleinman, Liu & Redding (2023)

Exchange rates and risk sharing:

— Financial markets: Alvarez, Atkeson & Kehoe (2002), Jeanne & Rose
(2002), Kollmann (2005), Gabaix & Maggiori (2015), Fornaro (2021),
Itskhoki & Mukhin (2021, 2023)

— Goods markets: Rogoff (1996), Engel (1999, 2011), Devereux & Engel
(2003), Atkeson & Burstein (2008), Bianchi (2011), Corsetti, Dedola &
Leduc (2018), Gopinath et al (2020), Amiti, Itskhoki & Konings (2019)

3 / 13



ENVIRONMENT
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Environment

Two regions: Home and Foreign (RoW)

Endowments:

— Armington model with country-specific goods/inputs

— focus on efficiency of allocation given output

CH + C∗H = Y

CF + C∗F = Y ∗

Preferences:

E
∞∑
t=0

βt C
1−σ
t

1− σ
, C =

[
(1− γ)

1
θ CH

θ−1
θ + γ

1
θ CF

θ−1
θ

] θ
θ−1

E
∞∑
t=0

βt C
∗1−σ
t

1− σ
, C∗ =

[
(1− γ∗) 1

θC
∗ θ−1

θ

F + γ∗
1
θC
∗ θ−1

θ

H

] θ
θ−1
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Efficient Allocation

Planner’s problem:

max
{CHt ,CFt ,C∗

Ht ,C
∗
Ft ,Ct ,C∗

t }
ωU({Ct}) + U({C∗t })

s.t. C (CHt ,CFt) = Ct µ

C∗(C∗Ht ,C
∗
Ft) = C∗t µ

CHt + C∗Ht = Yt µ

CFt + C∗Ft = Y ∗t µ

max
{CH ,CF ,C∗

H ,C
∗
F ,C ,C

∗}
ωU(C ) + U(C∗)

s.t. C (CH ,CF ) = C µ

C∗(C∗H ,C
∗
F ) = C∗ µ∗

CH + C∗H = Y ν

CF + C∗F = Y ∗ ν∗

1 “Static” efficiency: Edgeworth

γ

1− γ
CH

CF
=
( ν
ν∗

)−θ
=

1− γ∗

γ∗
C∗H
C∗F

2 “Dynamic” efficiency: details

1

ω

(
C

C∗

)σ
= Q̃, where Q̃ ≡ µ∗

µ
=

C∗
H

C∗ ν +
C∗
F

C∗ ν
∗

CH

C ν + CF

C ν
∗
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Inefficient Allocation
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Inefficient Allocation

Constrained planner’s problem:

max
{CH ,CF ,C∗

H ,C
∗
F ,C ,C

∗}
ωU(C ) + U(C∗)

s.t. C (CH ,CF ) = C µ

C∗(C∗H ,C
∗
F ) = C∗ µ∗

CH + C∗H = Y ν

CF + C∗F = Y ∗ ν∗

γ

1− γ
CH

CF
= (1 + δ)

1− γ∗

γ∗
C∗H
C∗F

η

ωU(C ) = Ū λ

Solve for shadow prices, not allocations: CD case

Y ,Y ∗ and δ, λ =⇒ C ,C ∗ and Q̃
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DECENTRALIZED EQUILIBRIUM
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Model

What is the mapping between Q̃ and Q? λ and BS wedge?

Standard OE model with σ = θ = 1, γ = γ∗

Asset markets:
1

ω

(
C

C∗

)σ
= (1 + ψ)Q

— real exchange rate Q ≡ EP
∗

P reflects private MRT

— ψ due to market incompleteness, segmentation and financial frictions

Goods markets:

PH = W 1−αHPαH PF = (W ∗E)1−αFPαF

P∗H = (W /E)1−α
∗
H (P∗)α

∗
H P∗F = (W ∗)1−α

∗
F (P∗)α

∗
F

— W ,W ∗ are wholesale price, P,P∗ are consumer price aggregates

— nests models of PtM and nominal rigidities (PCP/LCP/DCP)
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P reflects private MRT

— ψ due to market incompleteness, segmentation and financial frictions

Goods markets:

1 + δ =
PF

PH

/P∗F
P∗H

, Q =
EP∗H
PH
·
[
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∗
H)1−θ + γ∗

(1− γ) + γ(PF/PH)1−θ

] 1
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Shocks and Wedges

1 LOP/PCP α = 0:

λ = ψ, δ = 0

— real exchange rate reflects social costs Q = Q̃

2 PtM/LCP α = 1:

1 + λ =

(
Y

Y ∗

) 1
1−2γ

, δ = 0

— exporters’ markups fully absorb financial shocks ψ

— dynamic wedge due to Y /Y ∗ even w/o BS deviations

3 DCP α = 0, α∗ = 1:

1 + λ =

[
(1 + ψ)

Y

Y ∗

] 1
2(1−γ)

, 1 + δ =

(
1

1 + ψ

) 1−2γ
1−γ

(
Y

Y ∗

) 1
1−γ

— state wedge δ can arise from financial shocks ψ
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EMPIRICAL RESULTS
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Data and Calibration

Data:

— Yt , IMt ,EXt ,Ct ,Qt from WDI

— balanced panel from 2000-2019 for about 60 countries

— analysis for each country against the RoW

Calibration:

— θ = 4, σ = 2, β = 0.96 (annual)

— γ, γ∗ from trade shares in base year details

— caveat: real quantities not observed in levels, calibrate base-year ω, δ

Estimation:

— generalize model to allow for absorption C + I + G = GDP − NX

— back out {CHt ,CFt ,C
∗
Ht ,C

∗
Ft} from {Yt ,Ct} details

— compute {δt , λt , Q̃t} from planner’s problem details

10 / 13



Backus-Smith Correlation: RER vs MRT
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Backus-Smith Correlation: RER vs MRT

11 / 13



Backus-Smith Correlation: RER vs MRT

US

UK
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Wedges and Welfare

US
UK
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Wedges and Welfare
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Conclusion

How good is international risk sharing?

Backus-Smith is a poor measure

Propose a simple alternative

Better than one might think!
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Efficient Allocation

Planner’s problem:

max
{CH ,CF ,C∗

H ,C
∗
F ,C ,C

∗}
ωU(C ) + U(C∗)

s.t. C (CH ,CF ) = C µ

C∗(C∗H ,C
∗
F ) = C∗ µ∗

CH + C∗H = Y ν

CF + C∗F = Y ∗ ν∗

Optimality conditions:

∂C/∂CF

∂C/∂CH︸ ︷︷ ︸
MRSHF

=
ν∗

ν︸︷︷︸
S̃

=
∂C∗/∂C∗F
∂C∗/∂C∗H︸ ︷︷ ︸

MRS∗
HF

,
U∗C
ωUC︸ ︷︷ ︸

MRSCC∗

=
µ∗

µ︸︷︷︸
Q̃

=
ν
C∗
H

C∗ + ν∗
C∗
F

C∗

ν CH

C + ν∗ CF

C︸ ︷︷ ︸
MRTCC∗

Proposition: international allocation is efficient iff

γ

1− γ
CH

CF
=

1− γ∗

γ∗
C∗H
C∗F

,
1

ω

(
C

C∗

)σ
=

 (1− γ∗)
(

1−γ∗

γ∗
C∗
H

C∗
F

) 1−θ
θ

+ γ∗

1− γ + γ
(

γ
1−γ

CH

CF

) 1−θ
θ


1

1−θ
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Analytical Example

Special case: σ = θ = 1, γ = γ∗, ω = 1

Aggregate consumption and output pin down δ and λ:

C 1+κ =
1 + λ+ κη

1 + λ+ κ

(
κ(1 + λ− η)

1 + κ(1 + λ)

)κ
YY ∗κ

C∗1+κ =
1 + κη

1 + κ(1 + λ)

(
κ(1− η)

1 + λ+ κ

)κ
Y κY ∗

where κ ≡ γ
1−γ and η = η(δ) : 1−η

1+κη
1+λ−η
1+λ+κη = 1

1+δ

MRT around undistorted SS δ̄ = η̄ = λ̄ = 0 (first-order approximation):

d logMRT ≈ (1− 2γ)(y − y∗)− (1− 2γ)2λ

Welfare (second-order approximation):

W (λ, δ) = logY + logY ∗ − γ(1− γ)

[
λ2 +

1

4
δ2
]

back
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1+λ
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)1−γ (1− η
1+λ

1− η

)γ
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·
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1 + κ+ κλ
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)1−γ (1− η
1+λ

1− η

)γ
︸ ︷︷ ︸

=1 when η=0

·

(
1 + κ+ κλ

1 + κ+ λ
· Y
Y ∗︸ ︷︷ ︸

=ν∗/ν

)1−2γ

where κ ≡ γ
1−γ and η = η(δ) : 1−η

1+κη
1+λ−η
1+λ+κη = 1

1+δ

MRT around undistorted SS δ̄ = η̄ = λ̄ = 0 (first-order approximation):

c − c∗︸ ︷︷ ︸
mrs

= λ+ (1− 2γ)(y − y∗)− (1− 2γ)2λ︸ ︷︷ ︸
mrt

Welfare (second-order approximation):

W (λ, δ) = logY + logY ∗ − γ(1− γ)

[
λ2 +

1

4
δ2
]

back
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Estimation I

Define real absorption:

A ≡ C + I + G , A∗ ≡ C∗ + I ∗ + G∗

Assume the same CES aggregator for C , I ,G :

A
θ−1
θ = (1− γ)

1
θA

θ−1
θ

H + γ
1
θA

θ−1
θ

F

Rewrite resource constraints using hat algebra and solve for ÂH , ÂF , Â
∗
H , Â

∗
F :

(1− χ̄)ÂH + χ̄Â∗H = Ŷ , (1− γ̄)Â
θ−1
θ

H + γ̄Â
θ−1
θ

F = Â
θ−1
θ ,

χ̄∗ÂF + (1− χ̄∗)Â∗F = Ŷ ∗, (1− γ̄∗)Â∗
θ−1
θ

F + γ̄∗Â
∗ θ−1

θ

H = Â∗
θ−1
θ ,

where import and export trade shares are given by

γ̄ = γ
1
θ

(
C̄F

C̄

) θ−1
θ

, γ̄∗ = γ∗
1
θ

(
C̄∗H
C̄∗

) θ−1
θ

, χ̄ ≡ C̄∗H
Ȳ
, χ̄∗ ≡ C̄F

Ȳ ∗

Recover consumption components:

ĈH = ÂH
Ĉ

Â
, ĈF = ÂF

Ĉ

Â
, Ĉ∗H = Â∗H

Ĉ∗

Â∗
, Ĉ∗F = Â∗F

Ĉ∗

Â∗
data
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θ−1
θ ,

where import and export trade shares are given by

γ̄ = γ
1
θ

(
C̄F

C̄

) θ−1
θ

, γ̄∗ = γ∗
1
θ

(
C̄∗H
C̄∗

) θ−1
θ

, χ̄ ≡ C̄∗H
Ȳ
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Ȳ ∗

Recover consumption components:
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θ−1
θ ,
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Edgeworth Box
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Estimation II

Solve for λ, ν, ν∗, η from planner’s FOCs in growth rates:

(1− γ̄)λĈ 1−σ

(
ĈH

Ĉ

) θ−1
θ

= (1− χ̄)ĈHν − η

γ̄λĈ 1−σ

(
ĈF

Ĉ

) θ−1
θ

= χ̄∗ĈFν
∗ + η

γ̄∗Ĉ∗1−σ

(
Ĉ∗H
Ĉ∗

) θ−1
θ

= χ̄Ĉ∗Hν + η

(1− γ̄∗)Ĉ∗1−σ
(
Ĉ∗F
Ĉ∗

) θ−1
θ

= (1− χ̄∗)Ĉ∗F ν∗ − η

Distorted risk sharing:(
Ĉ

Ĉ∗

)σ
= λ

χ̄
Ĉ∗
H

Ĉ∗ ν + (1− χ̄∗) Ĉ∗
F

Ĉ∗ ν
∗

(1− χ̄) ĈH

Ĉ
ν + χ̄∗ ĈF

Ĉ
ν∗

data
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(
Ĉ∗F
Ĉ∗

) θ−1
θ

= (1− χ̄∗)Ĉ∗F ν∗ − η

Base-year system maps γ̄, γ̄∗, χ̄, χ̄∗ into base-year λ, ν, ν∗, η:

(1− γ̄)λ = (1− χ̄)ν − η
γ̄λ = χ̄∗ν∗ + η

γ̄∗ = χ̄ν + η

1− γ̄∗ = (1− χ̄∗)ν∗ − ηdata
20 / 13



Estimation III

Real variables X ∈{Y ,C ,A} computed in growth rates relative to base year:

X̂it =
Xit

X̄i

, X̂ ∗it =

∑
j w

X
j X̂jt − wX

i X̂it

1− wX
i

, wX
i ≡

X̄i∑
j X̄j

In base year, measure GDP, Exp and Imp in dollar values and compute

i) import shares (in values):

γ̄i ≡ γ
1
θ

(
C̄F

C̄

) θ−1
θ

=
Impi

GDPi − NXi
, γ̄∗i ≡ γ∗

1
θ

(
C̄∗H
C̄∗

) θ−1
θ

=
Expi∑

j 6=i

(GDPj − NXj)

ii) export shares (in real units):

χ̄i ≡
C̄∗H
Ȳ

=
Expi

GDPi−Expi
PPPi

+ Expi
, χ̄∗i ≡

C̄F

Ȳ ∗
=

Impi∑
j 6=i

GDPj−Expj
PPPj

+ Impi

data
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