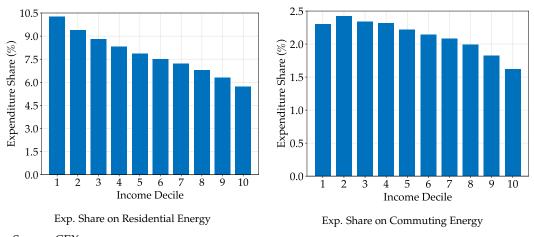
COMMUTING, HOME UTILITIES, AND PRODUCTION: THE DISTRIBUTIONAL EFFECTS OF ENERGY PRICE SHOCKS

Mehedi Hasan Oni

Department of Economics University of Arkansas

NBER Conference – Distributional Consequences of New Energy Policies September 20, 2024

Introduction


- Energy price experiences sharp and persistent changes relative to other prices
 Energy vs. Non-Energy CPI
 Energy Corr
- Literature has studied aggregate effects of energy price shocks (e.g., Kim and Loungani, 1992; Hamilton, 2003; Kilian, 2009)
- This paper: Distributional consequences of energy price shocks

Facts

• Fact 1: Low-income households (HHs) spend larger budget share on (residential & commuting) energy than high-income HHs

- Fact 2: Demand for energy is inelastic (e.g., Havranek and Kokes, 2015; Labandeira, Labeaga, and Lopez-Otero, 2017)
 - Demand for commuting energy is more inelastic than demand for residential energy Evidence
- Fact 3: Production sectors use two-thirds of total energy Figure

Low-Income HHs Spend Larger Budget Share on (Residential & Commuting) Energy than High-Income HHs

Source: CEX

- Fact 1: Low-income households (HHs) spend larger budget share on (residential & commuting) energy than high-income HHs
- Fact 2: Demand for energy is inelastic (e.g., Havranek and Kokes, 2015; Labandeira, Labeaga, and Lopez-Otero, 2017)
 - Demand for commuting energy is more inelastic than demand for residential energy Evidence
- Fact 3: Production sectors use two-thirds of total energy Figure

- Fact 1: Low-income households (HHs) spend larger budget share on (residential & commuting) energy than high-income HHs
- Fact 2: Demand for energy is inelastic (e.g., Havranek and Kokes, 2015; Labandeira, Labeaga, and Lopez-Otero, 2017)
 - Demand for commuting energy is more inelastic than demand for residential energy
- Fact 3: Production sectors use two-thirds of total energy Figure

Research Question

• **Q**: How does an energy price shock affect the consumption and welfare of HHs in different income groups?

• Why do we care?

- To design government transfer programs aimed at reducing negative impact of high energy prices
- To design energy pricing policies (e.g., energy taxation/subsidies)

Approach

- Develop a dynamic heterogeneous-agent incomplete market model
- Calibrate the model to US data
- Use calibrated model for welfare and policy analysis

- Non-homothetic consumption preferences to capture variations in expenditure share on energy across income groups
- Extensive & intensive margin labor supply choices + Commuting costs (commuting is energy intensive and can influence labor supply)
- Energy as a factor of production for non-energy goods & services
- Exogenous energy price shock (typically energy price fluctuations are common worldwide and caused by factors external to the U.S. economy)

- Non-homothetic consumption preferences to capture variations in expenditure share on energy across income groups
- Extensive & intensive margin labor supply choices + Commuting costs (commuting is energy intensive and can influence labor supply)
- Energy as a factor of production for non-energy goods & services
- Exogenous energy price shock (typically energy price fluctuations are common worldwide and caused by factors external to the U.S. economy)

- Non-homothetic consumption preferences to capture variations in expenditure share on energy across income groups
- Extensive & intensive margin labor supply choices + Commuting costs (commuting is energy intensive and can influence labor supply)
- Energy as a factor of production for non-energy goods & services
- Exogenous energy price shock (typically energy price fluctuations are common worldwide and caused by factors external to the U.S. economy)

- Non-homothetic consumption preferences to capture variations in expenditure share on energy across income groups
- Extensive & intensive margin labor supply choices + Commuting costs (commuting is energy intensive and can influence labor supply)
- Energy as a factor of production for non-energy goods & services
- Exogenous energy price shock (typically energy price fluctuations are common worldwide and caused by factors external to the U.S. economy)

- Non-homothetic consumption preferences to capture variations in expenditure share on energy across income groups
- Extensive & intensive margin labor supply choices + Commuting costs (commuting is energy intensive and can influence labor supply)
- Energy as a factor of production for non-energy goods & services
- Exogenous energy price shock (typically energy price fluctuations are common worldwide and caused by factors external to the U.S. economy)

MODEL

• Time:

• Discrete with an infinite horizon: $t = 1, 2, 3, \cdots, \infty$

Households:

- Continuum of HHs heterogeneous in productivity (z)
- Derive utility from consumption (energy (E_R) , non-energy (C)) + leisure
- Employed HHs face commuting costs $(p_E E_T(zwh))$ Functional Form
- Government:
 - Collects taxes on assets and labor income
 - Finances transfers to ensure minimum consumption expenditure
- Firms:
 - Representative
 - *Factor inputs:* Labor (*L*), capital (*K*), and energy (*E_F*)
 - Output: Non-energy goods
- Aggregate Shock:
 - Exogenous energy price shock

• Time:

- Discrete with an infinite horizon: $t = 1, 2, 3, \dots, \infty$
- Households:
 - Continuum of HHs heterogeneous in productivity (*z*)
 - Derive utility from consumption (energy (E_R) , non-energy (C)) + leisure
 - Employed HHs face commuting costs $(p_E E_T(zwh))$ > Functional Form
- Government:
 - Collects taxes on assets and labor income
 - Finances transfers to ensure minimum consumption expenditure
- Firms:
 - Representative
 - *Factor inputs:* Labor (*L*), capital (*K*), and energy (*E_F*)
 - Output: Non-energy goods
- Aggregate Shock:
 - Exogenous energy price shock

• Time:

- Discrete with an infinite horizon: $t = 1, 2, 3, \dots, \infty$
- Households:
 - Continuum of HHs heterogeneous in productivity (z)
 - Derive utility from consumption (energy (E_R) , non-energy (C)) + leisure
 - Employed HHs face commuting costs $(p_E E_T(zwh))$ > Functional Form

Government:

- Collects taxes on assets and labor income
- Finances transfers to ensure minimum consumption expenditure

• Firms:

- Representative
- *Factor inputs:* Labor (*L*), capital (*K*), and energy (*E_F*)
- Output: Non-energy goods
- Aggregate Shock:
 - Exogenous energy price shock

• Time:

- Discrete with an infinite horizon: $t = 1, 2, 3, \dots, \infty$
- Households:
 - Continuum of HHs heterogeneous in productivity (z)
 - Derive utility from consumption (energy (E_R) , non-energy (C)) + leisure
 - Employed HHs face commuting costs $(p_E E_T(zwh))$ > Functional Form

Government:

- Collects taxes on assets and labor income
- Finances transfers to ensure minimum consumption expenditure

• Firms:

- Representative
- *Factor inputs:* Labor (*L*), capital (*K*), and energy (*E_F*)
- Output: Non-energy goods
- Aggregate Shock:
 - Exogenous energy price shock

• Time:

- Discrete with an infinite horizon: $t = 1, 2, 3, \dots, \infty$
- Households:
 - Continuum of HHs heterogeneous in productivity (z)
 - Derive utility from consumption (energy (E_R) , non-energy (C)) + leisure
 - Employed HHs face commuting costs $(p_E E_T(zwh))$ > Functional Form

Government:

- Collects taxes on assets and labor income
- Finances transfers to ensure minimum consumption expenditure

• Firms:

- Representative
- *Factor inputs:* Labor (*L*), capital (*K*), and energy (*E_F*)
- Output: Non-energy goods

• Aggregate Shock:

• Exogenous energy price shock

Household's Problem

$$V_t(a,z) = \max\{V_t^E(a,z), V_t^U(a,z)\}$$

• when HH decides to work:

$$V_t^E(a,z) = \max_{\{E_{Rt}, C_t, h_t, a'\}} \left\{ u_{xt}(E_{Rt}, C_t) - u_{ht}(h_t) + \beta \mathbb{E}_t \left[V(a', z') | z \right] \right\}$$
s.t.

 $p_{Et}\left(E_{Rt} + E_{T}(zw_{t}h_{t})\right) + C_{t} + a' = zw_{t}h_{t} - \mathcal{T}\left(zw_{t}h_{t}\right) + [1 + (1 - \tau^{a})r_{t}]a$

$$a' \geq \underline{a}, \ \underline{a} \leq 0$$

$$E_{Rt} \ge 0, \ E_{Tt} \ge 0, \ C_t \ge 0, \ h_t \in [0,1]$$

Household's Problem

• when HH decides not to work:

$$\begin{aligned} V_t^U(a,z) &= \max_{\{E_{Rt},C_t,a'\}} \left\{ u_{xt}(E_{Rt},C_t) + \beta \mathbb{E}_t \left[V(a',z') | z \right] \right\} \\ \text{s.t.} \end{aligned}$$

$$p_{Et} E_{Rt} + C_t + a' = [1 + (1 - \tau^a)r_t]a + T(a)$$

$$a' \geq \underline{a}, \ \underline{a} \leq 0$$

$$\underline{E_{Rt}} \geq 0, \ C_t \geq 0$$

Household's Period Utility Function

$$u(\mathbf{E}_{\mathbf{R}}, \mathbf{C}, h) \equiv u(\mathbf{x}, h) = \frac{\mathbf{x}^{1-\gamma} - 1}{1-\gamma} - \varphi_1 \frac{h^{1+\frac{1}{\nu}}}{1+\frac{1}{\nu}} - \varphi_2 \cdot \mathbf{1}_{\{h>0\}}$$

where **x** is implicitly aggregated as

$$1 = \left[\Omega_{E_R}^{\frac{1}{\sigma}} \left(\frac{E_R}{\boldsymbol{x}^{\boldsymbol{\epsilon}_{E_R}}}\right)^{\frac{\sigma-1}{\sigma}} + \Omega_C^{\frac{1}{\sigma}} \left(\frac{C}{\boldsymbol{x}^{\boldsymbol{\epsilon}_{C}}}\right)^{\frac{\sigma-1}{\sigma}}\right]$$

where

- $oldsymbol{\gamma}$: relative risk aversion
- $\boldsymbol{\nu}$: Frisch elasticity
- $\pmb{\varphi}_1$: disutility of labor hours
- φ_2 : fixed disutility of work

$$\sigma$$
 : elasticity of substitution between E_R and C

 ϵ_j : non-homotheticity parameter of good $j = \{E_R, C\}$

 Ω_j : weight of good $j = \{E_R, C\}$ in consumption basket

Firm's Problem

• Representative firm operates in a perfectly competitive market:

$$\max_{\{K_t, L_t, \mathbf{E}_{Ft}\}} \Pi_t \equiv Y_t - (r_t + \delta)K_t - w_t L_t - p_{Et} \mathbf{E}_{Ft}$$

s.t. $Y_t = F(G(K_t, L_t), \mathbf{E}_{Ft})$

- All energy imported & balanced trade
- Output = HHs' non-energy consumption + Export
- Constant returns-to-scale Leontief production technology: Find Evidence

$$Y_{t} = \min\left[K_{t}^{\alpha}L_{t}^{1-\alpha}, \kappa A_{Et} \mathbf{E}_{Ft}\right]$$

s.t. $\kappa A_{Et} \mathbf{E}_{Ft} \leq K_{t}^{\alpha}L_{t}^{1-\alpha}$

• Evolution of capital:

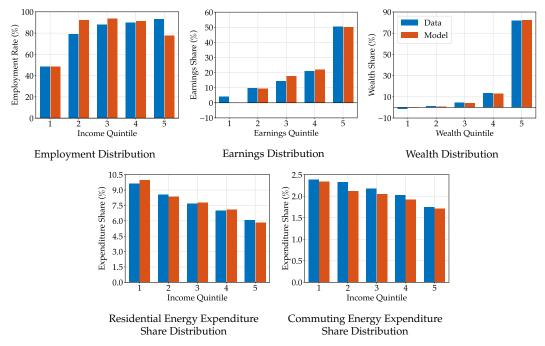
$$K_{t+1} = (1-\delta)K_t + I_t$$

CALIBRATION

Summary of Calibration

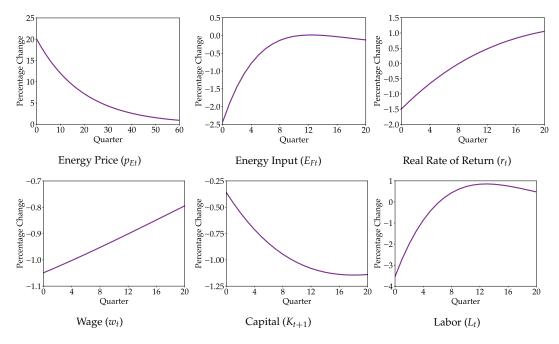
- Model is calibrated to **quarterly** frequency
- Overall **twenty-five** parameters:
 - **three** related to technology: $\{\alpha, \kappa, \delta\}$
 - **five** related to labor productivity: { ρ_z , σ_z , z_{max} , π_{up} , π_{stay} }
 - ten related to preference: $\{\beta, \gamma, \sigma, \epsilon_{C}, \epsilon_{E_{R}}, \Omega_{C_{R}}, \Omega_{C}, \nu, \varphi_{1}, \varphi_{2}\}$
 - four related to tax and transfers: $\{\tau^a, \tau^l, \lambda, \bar{e}\}$
 - **two** related to commuting costs: $\{\iota_0, \iota_1\}$
 - one related to borrowing: <u>a</u>
- $\{\Omega_{\mathbf{C}}, \epsilon_{\mathbf{C}}\}$ normalized to 1
- $\{\sigma, \epsilon_{E_R}\}$ estimated using CEX data
- $\{\alpha, \delta, \rho_z, \sigma_z, \gamma, \nu, \tau^a, \tau^l\}$ assigned directly from literature
- { κ , z_{\max} , π_{up} , π_{stay} , β , Ω_{E_R} , φ_1 , φ_2 , λ , \bar{e} , ι_0 , ι_1 , \underline{a} } calibrated jointly in a steady state equilibrium to match equal number of moments from US Data

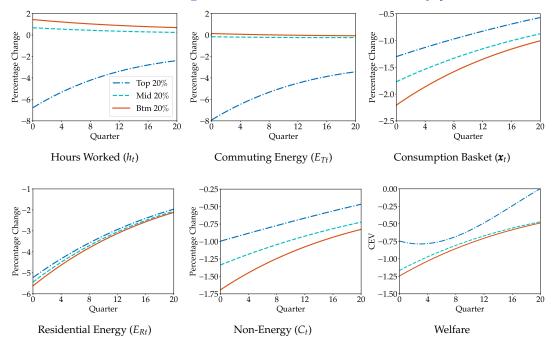
Calibration of σ and ϵ_{E_R} Using CEX


Model consumption allocation:
$$j_{it} = \Omega_j \left(\frac{p_{jt}}{Exp_{it}}\right)^{-\sigma} \mathbf{x}_{it}^{\epsilon_j(1-\sigma)}, \ j = \{\mathbf{E}_R, C\}$$

Parameter	Description	Value
σ	Elasticity of substitution between E_R and C	0.248
ϵ_{E_R}	Non-homotheticity of E_R	0.346

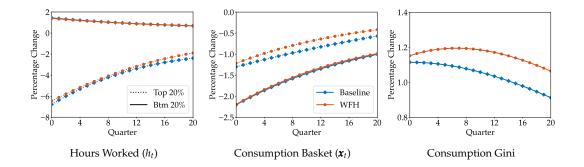
MODEL VALIDATION

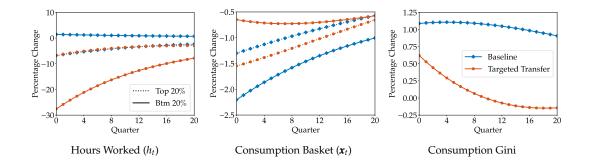

Cross-Sectional Distributions – Data vs. Model


Quantitative Analysis:

Distributional Effects of an Inflationary Energy Price Shock Similar to the One in 2021 ($\approx 20\% \uparrow \text{ of } p_E$)

Aggregate Responses to a 20% Inflationary p_E Shock


Distributional Responses to a 20% Inflationary *p*_E Shock


Policy Analysis:

(i) Work from Home (WFH) Opportunity (ii) Targeted Lump-Sum Transfer

Influence of WFH Opportunity on the *p*_E Shock Effects

Influence of Targeted Transfer on the *p*_E Shock Effects

Concluding Remarks

- Develop and solve a heterogeneous agent incomplete market model with three different types of energy use
- Energy price shocks unevenly impact HHs across different income groups with low-income HHs being impacted the most
- WFH mainly benefits high-income households due to their disproportionate access to it thus worsening inequality
- A lump-sum transfer to low-income HHs, financed by higher earnings tax, mitigates shock's impact on consumption inequality

THANK YOU!

References I

Martin Floden and Jesper Lindé. Idiosyncratic risk in the united states and sweden: Is there a role for government insurance? Review of Economic Dynamics, 4(2):406–437, 2001. ISSN 1094-2025. doi: https://doi.org/10.1006/redy.2000.0121. URL https://www. sciencedirect.com/science/article/pii/S1094202500901212.

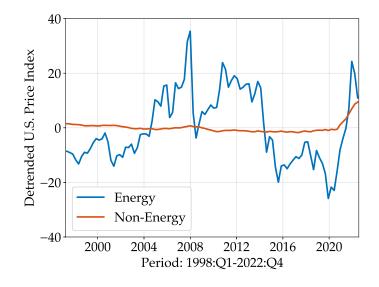
James D. Hamilton. What is an oil shock? Journal of Econometrics, 113(2):363-398, 2003. ISSN 0304-4076. doi: https://doi.org/10.1016/S0304-4076(02)00207-5. URL https://www.sciencedirect.com/science/article/pii/ S0304407602002075.

Tomas Havranek and Ondrej Kokes. Income elasticity of gasoline demand: A meta-analysis. *Energy Economics*, 47:77–86, 2015. ISSN 0140-9883. doi: https://doi.org/10.1016/j.eneco.2014.11.004. URL https://www.sciencedirect.com/science/article/pii/S0140988314002734.

References II

- Jonathan Heathcote, Kjetil Storesletten, and Giovanni L Violante. Presidential Address 2019: How Should Tax Progressivity Respond to Rising Income Inequality? *Journal of the European Economic Association*, 18(6):2715–2754, 10 2020. ISSN 1542-4766. doi: 10.1093/jeea/jvaa050. URL https://doi.org/10.1093/jeea/jvaa050.
- Lutz Kilian. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. *American Economic Review*, 99(3):1053–69, June 2009. doi: 10.1257/aer.99.3.1053. URL

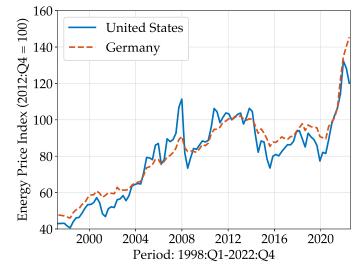
https://www.aeaweb.org/articles?id=10.1257/aer.99.3.1053.


In-Moo Kim and Prakash Loungani. The role of energy in real business cycle models. Journal of Monetary Economics, 29(2):173–189, 1992. ISSN 0304-3932. doi: https://doi.org/10.1016/0304-3932(92)90011-P. URL https://www. sciencedirect.com/science/article/pii/030439329290011P.

References III

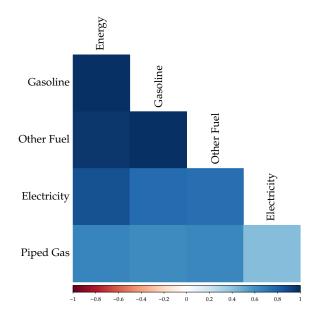
- Xavier Labandeira, Jose M. Labeaga, and Xiral Lopez-Otero. A meta-analysis on the price elasticity of energy demand. *Energy Policy*, 102:549–568, 2017. ISSN 0301-4215. doi: https://doi.org/10.1016/j.enpol.2017.01.002. URL https://www.sciencedirect.com/science/article/pii/ S0301421517300022.
- Mathias Trabandt and Harald Uhlig. The laffer curve revisited. *Journal of Monetary Economics*, 58(4):305–327, 2011. ISSN 0304-3932. doi: https://doi.org/10.1016/j.jmoneco.2011.07.003. URL https://www. sciencedirect.com/science/article/pii/S030439321100064X.

APPENDIX


Energy vs. Non-Energy (Consumer) Price Index

Source: CPI

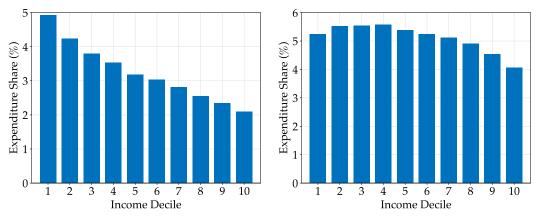
Introduction


Energy Price Index: US vs. Germany

Source: CPI & Eurostat

Introduction

Correlation Matrix of CPIs of Different Energy Goods


Expenditure on Energy to Commute to Work from CEX

- First step: Exp. on gasoline for regular use = Total exp. on gasoline Exp. on gasoline for trips & vacations
- Second step:

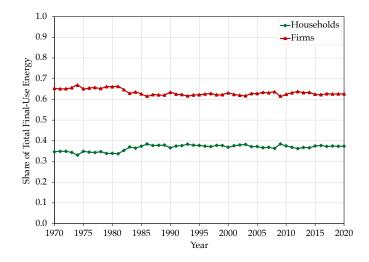
$$\begin{split} \log(\exp. \text{ on gasoline for regular use}) &= \beta_0 + \beta_1 \log(\text{after-tax income}) \\ &+ \beta_2 \log(\text{total expenditure}) \\ &+ \beta_3(\text{time}^2) \\ &+ \beta_4(\text{unemployed} = 1, \text{otherwise 0}) \\ &+ \epsilon \end{split}$$

Electricity and Gasoline Expenditure Shares by Income Decile

Electricity Expenditure Share Distribution

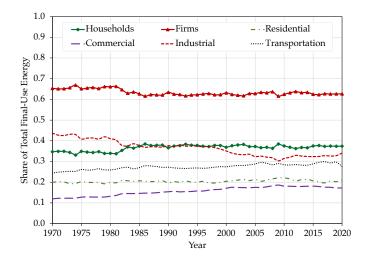
Gasoline Expenditure Share Distribution

Source: CEX

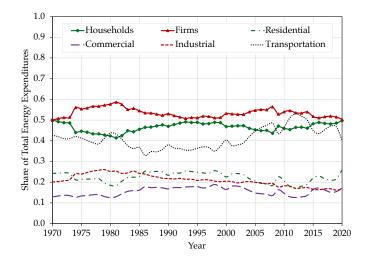


2021 Energy Price Shock and Changes in Consumption across Income Groups

	Income Groups (Percentiles)		
_	\leq 33	34-67	> 67
	Percentage Change: Q1 to Q4		
Quarterly Expenditure	-11.66	-13.59	-9.50
Energy	-6.22	-1.93	0.22
Commuting	-3.29	4.58	2.69
Residential	-6.94	-3.78	-0.50
Non-Energy	-12.22	-14.62	-10.18



Historical Patterns of Energy Consumption


◄ Facts

Historical Patterns of Energy Consumption

◄ Facts

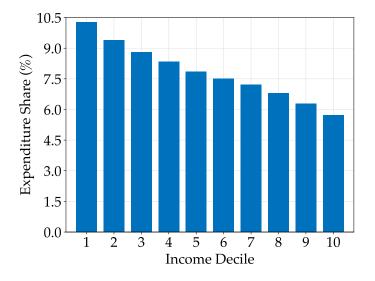
Historical Patterns of Energy Expenditures

◄ Facts

Functional Form of Energy Use for Commuting, Labor Income Tax, and Means-Tested Transfers

• Energy use for commuting to work:

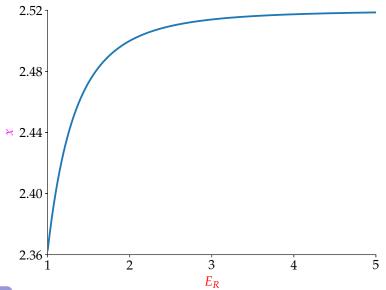
 $E_T(zwh) = \iota_0 \left[\log(1 + zwh) \right]^{\iota_1}$


• Labor income tax function:

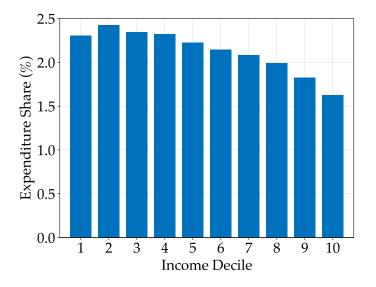
$$\mathcal{T}(y) = y - \lambda y^{1 - \tau^l}$$

• Transfers:

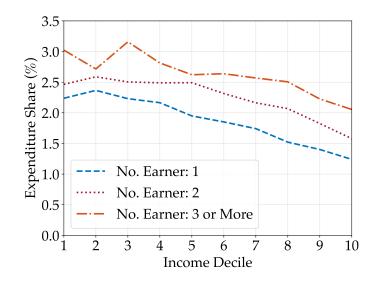
$$T(a) = \max\left\{0, \bar{e} - [1 + (1 - \tau^{a})r]a \cdot \mathbf{1}_{\{a>0\}}\right\}$$


Distribution of HH Exp. Share on Residential Energy

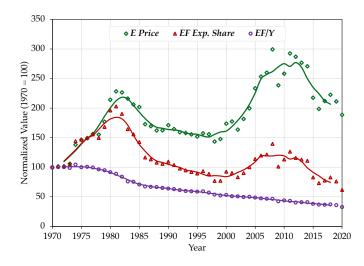
Source: CEX



Non-Homothetic CES Aggregator



Distribution of HH Exp. Share on Commuting Energy


Distribution of HH Exp. Share on Commuting Energy by Number of Earners

Source: CEX

Functional Form 🚶 🖪 Calibratio

Energy Intensity of Output

• Energy intensity of output does not react to short-run energy price fluctuations

Rental Rate and Wage

$$R_t = \alpha \left(1 - \frac{p_{Et}}{\kappa A_{Et}} \right) \left(\frac{K_t}{L_t} \right)^{\alpha - 1}$$

$$w_t = (1 - \alpha) \left(1 - \frac{p_{Et}}{\kappa A_{Et}} \right) \left(\frac{K_t}{L_t} \right)^{\alpha}$$

Demand Estimation Using CEX

$$\ln \mathbb{X}_{iEt} = (1 - \sigma) \ln p_{iEt} + \sigma (1 - \epsilon_{E_R}) \ln Exp_{it} - \epsilon_{E_R} (1 - \sigma) \ln p_{iCt}$$

+ $\epsilon_{E_R} \ln \mathbb{X}_{iCt} + \zeta_{iE} + \xi_{iEt}$

where $\mathbb{X}_{ijt} \equiv j_{it} p_{ijt}$: exp. on good *j* by HH *i* at time *t* with $j = \{E_R, C\}$

Parameter	(1)	(2)	(3)
σ	0.251*** (0.015)	0.303*** (0.014)	0.248*** (0.021)
ϵ_{E_R}	0.328*** (0.017)	0.301*** (0.017)	0.346*** (0.020)
Region FE	\mathcal{X}	\checkmark	\checkmark
Year $ imes$ Quarter FE	\mathcal{X}	\mathcal{X}	\checkmark

Notes. *** indicates significance at the 1% level.

Expenditure Elasticity: Structural vs. Reduced-Form

Structural (Non-Homothetic CES): $\eta_j = \sigma + (1 - \sigma) \frac{\epsilon_j}{\sum_j \omega_j \epsilon_j}, \quad j = \{E_R, C\}$

Reduced-Form:
$$\log\left(\frac{\mathbb{X}_{jt}^{i}}{\overline{\mathbb{X}}_{jt}}\right) = \alpha_{jtr} + \eta_{j} \ln Exp_{t}^{i} + \Gamma_{j}\mathbf{Z}^{i} + u_{jt}^{i}, \quad j = \{\mathbf{E}_{R}, C\}$$

where \mathbb{X}_{jt}^i : expenditure on good *j* by HH *i* at time *t*

 $\overline{\mathbb{X}}_{jt}$: average expenditure on good *j* across HHs at time *t*

		Non-Hom	othetic CES	Reduced-Form
Consumption Category	CE Share (in Percentage)	ϵ_j	η_j	η_j
Energy	7.94	0.346*** (0.020)	0.522	0.466*** (0.007)
Non-Energy	92.06	1.00 (-)	1.041	0.989*** (0.005)

Notes. $\sigma = 0.248$. *** indicates significance at the 1% level.

Externally Set Parameters

Parameter	Value	Source
α	0.36	Literature
δ	0.015	Literature
$ ho_{z}$	0.975	Floden and Lindé (2001)
σ_z	0.165	Floden and Lindé (2001)
γ	2.0	Within the range of values in literature
ν	0.50	Literature
$ au^a$	0.36	Trabandt and Uhlig (2011)
$ au^l$	0.09	Heathcote, Storesletten, and Violante (2020)

Calibration of Other Energy-Related Parameters

Parameter	Value	Target	Data	Model
κ	20.0	Firms' expenditure on energy as a share of GDP	4.1%	4.1%
Ω_{E_R}	0.08	HHs' average E_R expenditure share	7.94%	7.93%
ι ₀	0.03	Employed households' average E_T expenditure share	2.0%	2.0%
ι1	0.58	Bottom-to-top income quintile working HHs' E_T expenditure share	1.37	1.37

Other Internally Calibrated Parameters

Parameter	r Value	Target	Data	Model
β	0.981	After-tax rate of return	4.1%	4.1%
\pmb{z}_{\max}	20.85	Wealth share of top wealth decile	66.44%	64.88%
$\pi_{ m up}$	$7.03 imes 10^{-4}$	Earnings share of top earnings decile	35.04%	35.12%
$\pmb{\pi}_{ ext{stay}}$	0.978	Earnings share of top 1% of the earnings	11.62%	14.32%
$arphi_1$	38.84	Average hours worked as a share of total time endowment	33.33%	33.34%
$arphi_2$	0.52	Employment rate	79.63%	80.64%
λ	0.789	Govt. purchases as a share of output	20.0%	20.0%
ē	0.24	Average transfers-to-income ratio of the lowest wealth quintile	14.72%	15.97%
<u>a</u>	-0.07	Share of HHs with negative wealth	12.58%	10.49%