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Motivation

Binary models are common in micro and macro empirical research

e.g., employment, recession, default...

Recently, there have been more extreme events occurred

e.g., Covid, higher inflation, extreme weather...

Important to study the effects of extreme X on binary Y

Existing methods

Parametric models (e.g., Logit, Probit): potential large misspecification bias in
the tail, esp., as some economics data exhibit heavy tails...

Nonparametric models (e.g., kernel, sieve): limited information in the tail,
resulting estimator may be largely inefficient...
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This Paper

Novel semiparametric approach

Based on Bayes’ theorem and regularly varying (RV) functions

Pareto approx. in the tail while flexible beyond the tail

Panel data

Effectively accommodate unobserved unit-specific tail thickness and RV fcns

Related to panel Logit on tail observations with logX as regressor

For small T , conditional MLE: cancel out unit-specific heterogeneity

For large T , bias correction: estimate unit-specific heterogeneity

Establish consistency and asymptotic normality for i.n.i.d. tail data

Extensions

Additional non-extreme covariates Z

Dynamic panel data models
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Related Literature

Binary cross-sectional models

Parametric, e.g., Logit & Probit: Wooldridge (2010)

Nonparametric: Matzkin (1992)

Semiparametric: Klein & Spady (1993), Manski (1985), Horowitz (1992)

Bayes’ representation: discriminant analysis (Amemiya, 1985), Klein & Spady
(1993)

Binary panel data models

Small T , (correlated) random effects and fixed effects: Wooldridge (2010)

Large T , fixed effects and bias corrections: Fernández-Val & Weidner (2018),
Stammann, Heiss, & McFadden (2016)

Dynamic panel: Honoré and Kyriazidou (2000)

Heavy tail and extreme value theory

Heavy tail: de Haan & Ferreira (2006), Gabaix (2009, 2016), Gomes & Guillou
(2015), Fedotenkov (2020)

With covariates: Wang & Tsai (2009)
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Related Literature (cont.)

Unit-specific forecasts in panel data

Linear: Liu, Moon, & Schorfheide (2020), Liu (2023), Giacomini, Lee, &
Sarpietro (2023)

Discrete outcome: Christensen, Moon, & Schorfheide (2020)

Also see: Fosten & Greenaway-McGrevy (2022), Qu, Timmermann, & Zhu
(2023)

Extreme events and economic consequences, esp. Covid

Exclude outliers: Schorfheide & Song (2021)

Jointly model outliers and ordinary observations: Carriero, Clark, Marcellino, &
Mertens (2022), Lenza & Primiceri (2022)

Liu and Wang Binary Outcome Models with Extreme Covariates Page 4



Roadmap

1 Cross-sectional Data

2 Panel Data

3 Monte Carlo Simulations

4 Empirical Example: Housing Price and Bank Loan Charge-off
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Cross-section: Simple Model and Objects of Interest

{Yi ,Xi}Ni=1: binary outcome Yi ∈ {0, 1} and continuous covariate Xi ∈ R
Potential objects of interest

Conditional probability: π (x) = P (Y = 1|X = x)

Partial effects: ∂π (x)/∂x

Extreme elasticity: δ(x) = ∂(π(x)(1−π(x)))
∂x

x
π(x)(1−π(x))
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Cross-section: Bayes’ Theorem

We observe extreme X , and essentially aim to analyze the comovement in the
tail between X and Y .

To facilitate this tail analysis, we use Bayes’ theorem to reverse the
conditioning set:

P (Y = 1|X = x) =
fX |Y (x |1)P (Y = 1)

fX |Y (x |1)P (Y = 1) + fX |Y (x |0)P (Y = 0)
.

Note: just characterization of data, allow for any causal directions.

Similar Bayes’ representation also used in discriminant analysis (Amemiya,
1985) and Klein & Spady’s (1993) single-index estimator. Here we focus on
tail properties.
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Cross-section: Heavy Tail and RV function

Heavy tails are common in economic and financial data (Gabaix, 2009, 2016).

To assess heavy tails:

Visual inspection: e.g., log-log plot Fig

Estimate Pareto exponent and conduct tests (Clauset, Shalizi, & Newman, 2009).

Data-driven evaluation: e.g., cross-validation and out-of-sample forecast

Regularly varying (RV) function

Generic g ∈ RV−α: for some α > 0, for all x > 0, limη→∞
g(ηx)
g(η)

= x−α.

Pareto exponent α: tail thickness. A smaller α indicates a heavier tail.

Equivalently, g (x) = x−αL (x) , where L (·) is a slowly varying function s.t. for

all x > 0, limη→∞
L(ηx)
L(η)

→ 1.
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Cross-section: Heavy Tail and RV function (cont.)

Back to our binary model, assume 1− FX |Y (·|y) ∈ RV−α(y) , for y ∈ {0, 1}.
Allow for different tail thickness for y ∈ {0, 1}.
Semiparametric setup

First-order Pareto approximation in the tail, for sufficiently large x(y) > 0,

fX |Y

(
x
∣∣∣y , x ≥ x(y)

)
∼ α(y)

(
x

x(y)

)−α(y)−1

Flexible beyond the tail

RV condition is mild and satisfied by many common distributions, e.g., Pareto,
Student-t, F , Cauchy (de Haan & Ferreira, 2006)

We can handle very heavy tails where α(y) ∈ (0, 1) and no moments exist.

For multidim. X , consider v(X ; γ): v(·; ·) is known, γ can be consistently
estimated and converges fast enough, e.g., index model v(X ; γ) = X ′γ
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Cross-section: Extreme Elasticity

In the tail, extreme elasticity is determined solely by the difference between α(y).

Proposition (Cross-sectional data: extreme elasticity). Suppose we have: (a)
1− FX |Y (·|y) ∈ RV−α(y) , for y ∈ {0, 1}; (b) fX |Y (x |y) and f ′X |Y (x |y) are
non-increasing in x ≥ x , for some x > 0; and (c) 0 < P(Y = 1) < 1. Then, as
x → ∞,

δ (x) =
∂ (π(x)(1− π(x)))

∂x

x

π(x) (1− π(x))
→ −

∣∣∣α(1) − α(0)
∣∣∣.

Liu and Wang Binary Outcome Models with Extreme Covariates Page 10



Cross-section: Comparison with Threshold-crossing

Proposition (Threshold-crossing model). Y = 1 {X − ε ≥ 0} .
Suppose we have: (a) 1− FX ∈ RV−αX

, and 1− Fε ∈ RV−αε
; (b) fX (x) is

non-increasing in x ≥ x , for some x > 0; and (c) ε ⊥ X . Then, for y ∈ {0, 1},
1− FX |Y (·|y) ∈ RV−α(y) with

α(0) = αX + αε, and α(1) = αX .

Note: our method does not require a threshold-crossing structure.

Threshold-crossing and uncond. RV tails imply our cond. RV tails.

Difficult to estimate threshold-crossing model with unobserved RV errors ε.

In contrast, our method uses cutoffs of observed X , and is easy to implement
and scalable to more complicated models.
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Cross-section: Additional Covariates Z

Conditional probability

π (x , z) = P (Y = 1|X = x ,Z = z)

=
fX |Y ,Z (x |1, z)P (Y = 1|Z = z)

fX |Y ,Z (x |1, z)P (Y = 1|Z = z) + fX |Y ,Z (x |0, z)P (Y = 0|Z = z)

Assume pseudo-linear Pareto exponent: α(y) (z) = z ′θ(y).

First-order Pareto approximation in the tail. MLE for tail observations.

θ̂(y) = arg max
θ∈Θ(y)

N∑
i=1

(
logZ ′

i θ − Z ′
i θ log

Xi

x
(y)
N

)
1
{
X

(y)
i ≥ x

(y)
N ,Yi = y

}

Related to exponential tail index in Wang & Tsai (2009).

Without Z , reduced to classic Hill (1975) estimator.
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Cross-section: Additional Covariates Z (cont.)

Choice of cutoff x
(y)
N

In theory, upper and lower bounds. Larger x
(y)
N to eliminate asymptotic bias.

In practice, empirical quantiles (e.g., 90% or 95%) + log-log plot.

Also compared with estimated x
(y)
N (Guillou & Hall, 2001; Clauset, Shalizi &

Newman, 2009). Robust wrt a range of x
(y)
N .

Asymptotic theory

x
(y)
N → ∞ while z remains constant.

Convergence rate is slower than
√
N due to limited tail observations.
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Roadmap

1 Cross-sectional Data

2 Panel Data

3 Monte Carlo Simulations

4 Empirical Example: Housing Price and Bank Loan Charge-off
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Panel Data: Baseline Model

i = 1, ...,N and t = 1, ...,T . For illustration, let T = 2.

Assume that:

{Yit ,Xit} are independent across i and stationary across t

Conditional independence across t: Pi (Yi1,Yi2|Xi1,Xi2) = Pi (Yi1|Xi1)Pi (Yi2|Xi2)

Unobserved unit-specific tail thickness and RV functions

α̃
(y)
i = α(y) + λi , and 1− Fi,Xit |Yit

(x |y) = x−α̃
(y)
i L(y)

i (x),

for some slowly varying function L(y)
i (x).

Allows heterogeneity in RV fcns w/o explicit modeling, similar to fixed effects.

Accommodates unit-specific scale parameters.

With Z , unit-specific tail thickness and RV fcns can flexibly depend on Z .

Need to handle i.n.i.d. case for theory.
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Panel Data: Conditional Probability

Let subscript i denote quantities given unit-specific heterogeneity, e.g.,

Pi (·) = P
(
· ; λi , {L(y)

i }
)
.

Conditional probability

Pi (Yit = 1|Xit = x) ∼ 1

1 + Pi (Yit=0)
Pi (Yit=1)

α̃
(0)
i

α̃
(1)
i

L(0)
i (x)

L(1)
i (x)

x−α̃
(0)
i

x−α̃
(1)
i

∼ 1

1 + Ai · xα(1)−α(0)
.

Without further assumptions, Ai cannot be consistently estimated in small-T
panels due to incidental parameter problem.

Instead, cancel them out by conditioning on Yi1 + Yi2 = 1, as x1, x2 → ∞,

Pi (Yi1 = 1|Yi1 + Yi2 = 1,Xi1 = x1,Xi2 = x2) ∼
1

1 +
(

x1
x2

)α(1)−α(0)
.
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Panel Data: Conditional MLE

Let α∗ = α(1) − α(0). Conditional MLE on tail observations.

α̂∗ = argmax
α∗

N∏
i=1

 1

1 +
(

Xi1

Xi2

)α∗


Yi1


(
Xi1

Xi2

)α∗

1 +
(

Xi1

Xi2

)α∗


1−Yi1

1{Ξi},

where Ξi = {Yi1 + Yi2 = 1,Xi1 ≥ x1N ,Xi2 ≥ x2N}. For simplicity, one can set
x1N = x2N = xN in implementation.
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Panel Data: Comparision with Panel Logit

Let Ãi = − logAi .

Pi (Yit = 1|Xit = x) ∼ 1

1 + Ai · xα∗ =
1

1 + exp
(
−Ãi + α∗ log x

) .
Ãi can be viewed as fixed effects that flexibly depend on unobserved
heterogeneity (and observed heterogeneity in the case with Z ).

Our objective function is asymptotically equivalent to panel Logit on tail
observations, with logX as regressor.

Justify and provide assumptions behind the intuitive practice of taking log of
extreme covariates.

Our semiparametric approach: focus on tail behavior, avoiding parametric
assumptions on entire error distribution. More robust to misspecification, but
reduced sample size.
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Panel Data: with Zi , Asymptotic Theory

Assumption (Panel data: model assumptions). Suppose we have:

1 {Yi1,Yi2,Xi1,Xi2,Zi} are independent across i .

2 For each i , {Yit ,Xit} are stationary across t = 1, 2.

3 For each i , Yi1 ⊥ Yi2|Xi1,Xi2,Zi .

4 For each i , Pi (Yit = 1|Xi1,Xi2,Zi ) = Pi (Yit = 1|Xit ,Zi ) for t = 1, 2.

5 1
N

∑N
i=1 Pi [Pi (Yit = 1|Zi ) ∈ (0, 1)] > p for some p > 0, for all N sufficiently large.

Assumption (Panel data: tail approximation).

Assumption (Panel data: estimation).

Theorem (Panel data: common parameters).



Panel Data: with Zi , Asymptotic Theory

Assumption (Panel data: model assumptions).

Assumption (Panel data: tail approximation). For i = 1, · · · ,N, for y ∈ {0, 1}, and almost
surely for z ∈ supp(Zi ):

1 Let α̃
(y)
i (z) = z ′θ(y) + λi . The conditional cdf Fi,Xit |Yit ,Zi

(x |y , z) satisfies that

1− Fi,Xit |Yit ,Zi
(x |y , z) = C

(y)
i (z) x−α̃

(y)
i (z)

(
1 + D

(y)
i (z) x−β

(y)
i (z) + o

(
x−β

(y)
i (z)

))
,

as x → ∞, where functions C
(y)
i (z) > 0,

∣∣∣D(y)
i (z)

∣∣∣ ≤ D < ∞, α̃
(y)
i (z) > 0, for some

constants D and β.

2 The remainder term satisfies that supz,i

{
xβ

(y)
i (z)o

(
x−β

(y)
i (z)

)}
→ 0, as x → ∞.

3 The conditional pdf fi,Xit |Yit ,Zi
(x |y , z) is non-increasing in x ≥ x , for some x > 0.

Assumption (Panel data: estimation).

Theorem (Panel data: common parameters).



Panel Data: with Zi , Asymptotic Theory

Assumption (Panel data: model assumptions).

Assumption (Panel data: tail approximation).

Assumption (Panel data: estimation). Let θ∗ ∈ Θ, where Θ is a compact convex subset of Rdθ

and dθ is the dimension of θ∗. For y ∈ {0, 1}, suppose we have:

1 NξN → ∞, as N → ∞.

2 Let M
(y)
i (Zi ) = |Zi |C

(1)
i (Zi )C

(0)
i (Zi )

∣∣∣D(y)
i (Zi )

∣∣∣ ∣∣∣∣1− β
(y)
i (Zi )

α̃
(y)
i (Zi )

∣∣∣∣. Then,√
N
ξN

· 1
N

∑N
i=1 Ei

[∣∣∣log Xi1
Xi 2

∣∣∣M(y)
i (Zi )x

−α̃
(1)
i (Zi )−α̃

(0)
i (Zi )−β

(y)
i (Zi )

N

]
→ 0, as N → ∞.

3 ΣN = 1
N

∑N
i=1 Ei

 (
Xi1
Xi2

)Z′
i θ

∗

(
1+

(
Xi1
Xi2

)Z′
i
θ∗

)2

(
log Xi1

Xi2

)2
ZiZ

′
i

∣∣∣∣∣∣∣Ξi

→ Σ(θ∗), as N → ∞, where

Σ(θ∗) is a finite positive definite matrix.

4 For all i , Ei

[∣∣∣log Xi1
Xi2

∣∣∣2+κ
∥Zi∥2+κ

]
< M for some κ,M > 0.

Theorem (Panel data: common parameters).



Panel Data: with Zi , Asymptotic Theory

Assumption (Panel data: model assumptions).

Assumption (Panel data: tail approximation).

Assumption (Panel data: estimation).

Theorem (Panel data: common parameters). Let NΞ =
∑N

i=1 1{Ξi}. Suppose the above
assumptions hold. Then,√

NΞΣ
1/2
N

(
θ̂∗ − θ∗

)
d→ N

(
0, Idθ

)
.



Panel Data: with Large T

Recall Ãi = − logAi and the asymptotic equivalence

Pi (Yit = 1|Xit = x ,Zi ) ∼
1

1 + Ai · xZ
′
i θ

∗ =
1

1 + exp
(
−Ãi + log x · Z ′

i θ
∗
) .

For large T , we can estimate Ãi via panel Logit estimators with bias
corrections (Fernández-Val & Weidner, 2018; Stammann, Heiss, & McFadden, 2016).

After estimating {θ∗, {Ãi}}, we can estimate the average partial effects
(APEs) and provide unit-specific forecasts.
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Panel Data: with Time-varying Zit

Now the unit-specific tail thickness becomes α̃
(y)
i (zit) = z ′itθ

(y) + λi ,

and Ai in becomes Ait =
Pi (Yit=0|Zit)
Pi (Yit=1|Zit)

α̃
(0)
i (Zit)

α̃
(1)
i (Zit)

L∗
i (Zit).

Note that we cannot difference out Ait as before.

Under regularity conditions, we can estimate θ∗ via local (conditional)
likelihood estimator (Tibshirani & Hastie, 1987; Honoré & Kyriazidou, 2000).

θ̂∗ = arg max
θ∗∈Θ

N∑
i=1

k
(dz )
h (Zi1,Zi2)

{
(1− Yi1) log

Xi1

Xi2
· Z ′

i1θ
∗ + log

(
1 +

(
Xi1

Xi2

)Z ′
i1θ

∗)}
1{Ξi}
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Dynamic Panel Data Models

Suppose Xit ,Yit | Xi,1:t−1,Yi,1:t−1,Zi = Xit ,Yit | Yi,t−1,Zi .

Partition data by (Yit ,Yi,t−1) = (y , y−)

Pi (Yit = y |Xit = x ,Yi,t−1 = y−,Zi = z)

=
fi,Xit |Yit ,Yi,t−1,Zi

(x |y , y−, z)Pi (Yit = y |Yi,t−1 = y−,Zi = z)∑
y ,y−

fi,Xit |Yit ,Yi,t−1,Zi
(x |y , y−, z)Pi (Yit = y |Yi,t−1 = y−,Zi = z)

.

Unit-specific tail thickness and RV functions

α̃
(yy−)
i (z) = z ′θ(yy−) + λi ,

1− Fi,Xit |Yit ,Yi,t−1,Zi
(·|y , y−, z) ∈ RV

α̃
(yy−)

i (z)
.
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Dynamic Panel Data Models (cont.)

Normalize θ(00) = 0. Suppose that we have five periods of data
Yi = (Yi1,Yi2,,Yi3,,Yi4,Yi5)

′. Consider four events:

E1 : Yi = (0, 0, 1, 1, 0)′ , E2 : Yi = (0, 1, 1, 0, 0)′ ,

E3 : Yi = (1, 1, 0, 0, 1)′ , E4 : Yi = (1, 0, 0, 1, 1)′ .

Given stationarity of the joint distribution {Yit ,Yi,t−1,Xit} | Zi ,
as xt → ∞ for t = 1, · · · , 5,

Pi

(
E1

∣∣∣∪4
e=1Ee , {Xit = xt}5t=1 ,Zi = z

)
∼ x−z′θ(01)

3 x−z′θ(11)

4 x−z′θ(10)

5(
x−z′θ(01)

3 x−z′θ(11)

4 x−z′θ(10)

5 + x−z′θ(01)

2 x−z′θ(11)

3 x−z′θ(10)

4

+ x−z′θ(11)

2 x−z′θ(10)

3 x−z′θ(01)

5 + x−z′θ(10)

2 x−z′θ(01)

4 x−z′θ(11)

5

) .

Similar conditional likelihood estimator for
(
θ(01), θ(10), θ(11)

)
.
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Roadmap

1 Cross-sectional Data

2 Panel Data

3 Monte Carlo Simulations

4 Empirical Example: Housing Price and Bank Loan Charge-off
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Alternative Estimators

Cross-sectional data

Parametric: Yi = 1(β0 + β1Xi − εi ≥ 0)

Logit, using all observations

Logit, using only tail observations

Nonparametric: P(Yi |Xi ) = E[Yi |Xi ]

Local linear reg.: β̂(x) = argmin
β

∑N
i=1 kh(Xi − x) [Yi − β0 − β1(Xi − x)]2

Local Logit: Let pi (β, x) =
1

1+exp[−(β0+β1(Xi−x))]
.

β̂(x) = argmax
β

∑N
i=1 kh(Xi − x) [Yi log pi (β, x) + (1− Yi ) log (1− pi (β, x))]

Panel data

Parametric: Yit = 1(β0 + β1Xit + Ci − εit ≥ 0)

Nonparametric: Pi (Yit |Xit) = E[Yit |Xit ,Vi ], e.g., Vi =
∑

t Xit (correlated random
effects)

Similar expressions for estimators with additional covariates Zi .
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Experiment 1: Cross-sectional Data

Model: Yi = 1 (Xi − εi ≥ medX −medε)
Covariate: Xi ∼ |tαX

|, αX = 0.5, 1, 1.5, 2
Error term: εi ∼ |tαε

|, αε = 0.5, 1, 1.5, 2
Sample Size: N = 10000
# Repetitions: Nsim = 1000

Threshold-crossing model: extreme elasticity ≈ −|α(1) − α(0)| ≈ −αε

Log-log plot for one sample with αX = 1 and αε = 1. Back

True asymptotic values: black dash lines. Estimated tail indices: red solid lines.



Parameter Estimates
Experiment 1: Cross-sectional Data

Specification with αX = 1 and αε = 1, so in the tail, α(0) → 2 and α(1) → 1, indicated by the blue vertical

lines.
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P̂(Y = 1|X = x)
Experiment 1: Cross-sectional Data

Specification with αX = 1 and αε = 1. Each row evaluates the probability at a specific
percentile of the distribution of X (90%, 95%, 97.5%, and 99%). The true P(Y = 1|X = x) is
indicated by the blue vertical lines.



Extreme Elasticity
Experiment 1: Cross-sectional Data

Specification with αX = 1 and αε = 1. Each row evaluates the probability at a specific percentile of the
distribution of X (90%, 95%, 97.5%, and 99%). The true P(Y = 1|X = x) is indicated by the blue vertical
lines.
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Roadmap

1 Cross-sectional Data

2 Panel Data

3 Monte Carlo Simulations

4 Empirical Example: Housing Price and Bank Loan Charge-off
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Housing Price and Bank Loan Charge-off

Charge-off rates reflect bank losses. A bank could be a risker for a particular
type of loan if its corresponding charge-off rates exceed a certain threshold.

Consider a panel of small banks (< $1b in assets), similar to Liu, Moon &
Schorfheide (2023).

Assume small banks operate in local markets. When local housing price drops
a lot, would small banks become riskier? (crucial in 2007-08 financial crisis)

Variables:

Yit : risk dummy based on loan charge off-rate of bank i in quarter t, Yit = 1 if
charge-off rate > c. Let c = 0 in the baseline model.

Xit : deflation rate of local housing price in the previous quarter.

Zi : average change in local unemployment rate.
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Data and Sample

Data sources:

Bank balance sheet data: Call Reports from Chicago Fed

Currently: local market = county

Determine the local market for each bank: Summary of Deposits from FDIC

Housing price index: Federal Housing Finance Agency. Convert 3-digit zip code
data to county level using HUD USPS ZIP Code Crosswalk.

Unemployment rate: Bureau of Labor Statistics

Let us focus on the following sample

Residential real estate (RRE) charge-off rates

Sample period: 1999Q4 - 2009Q3: N = 8538, T = 40

Forecast period (T + 1): 2009Q4
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Log-log Plot

Baseline sample: RRE, forecasting period = 2009Q4, T = 40.
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Forecast Evaluation: Log Predictive Score (LPS)

RRE CRE
Tail -1433.72 -1134.48
Logit, tail X -18.66 *** -23.49 ***
Logit, all X -160.25 *** -54.26 ***
Local Logit -429.20 *** -516.43 ***

CRE: (non-farm) non-residential commercial real estate (CRE) charge-off rates.

Forecasting period = 2009Q4, T = 40. The forecasts are assessed by the LPS and a test integrating Amisano

and Giacomini (2007) and Qu et al. (2020). For the tail estimator, the table reports the exact values of

LPS · N†
f . For other estimators, the table reports their differences from the tail estimator. The tests compare

other estimators with the tail estimator, with significance levels indicated by *: 10%, **: 5%, and ***: 1%.
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Predictive Probability of High Risk

Baseline sample: RRE, forecasting period = 2009Q4, T = 40. Average by county
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Heterogeneity and Bank Characteristics

Initial Average
Log assets 0.20*** 0.19***

(0.03) (0.03)
Loan frac. 0.28*** 0.68***

(0.10) (0.11)
Capital-assets -0.65 -2.05***

(0.56) (0.60)
Loan-assets 0.83*** 1.77***

(0.18) (0.19)
ALLL-loan 2.61 15.01***

(3.18) (3.45)
Diversification 1.00** 2.79***

(0.44) (0.50)
Ret. on assets -30.53*** -36.51***

(9.62) (11.66)
OCA -19.34** -60.19***

(9.05) (12.30)

Baseline sample: RRE, forecasting period = 2009Q4, T = 40. Regression of Ãi bank characteristics. In the

“Initial” column, bank characteristics are given by their values at the initial period 1999Q4. In the “Average”

column, bank characteristics are given by their time averages over the estimation sample. Significance levels

are indicated by *: 10%, **: 5%, and ***: 1%.



Take-aways

Novel semiparametric approach

Based on Bayes’ theorem and regularly varying (RV) functions

Pareto approx. in the tail while flexible beyond the tail

Panel data

Effectively accommodate unobserved unit-specific tail thickness and RV fcns

Related to panel Logit on tail observations with logX as regressor

For small T , conditional MLE: cancel out unit-specific heterogeneity

For large T , bias correction: estimate unit-specific heterogeneity

Establish consistency and asymptotic normality for i.n.i.d. tail data

Extensions

Additional non-extreme covariates Z

Dynamic panel data models

Many potential micro/macro applications, esp. given recent extreme events

Thank you!
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