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Abstract

This paper presents a novel semiparametric method to study the effects of extreme

events on binary outcomes and forecast future outcomes, which is particularly relevant

given the recent occurrences of extreme events. Our approach, based on Bayes’ the-

orem and regularly varying (RV) functions, facilitates a Pareto approximation in the

tail while allowing for a flexible relationship between covariates and outcomes beyond

the tail. We analyze cross-sectional as well as static and dynamic panel data models,

incorporate additional covariates in both setups, and accommodate the unobserved

unit-specific tail thickness and RV functions in the panel setup. We establish consis-

tency and asymptotic normality of the proposed tail estimator. We demonstrate that,

under regularity conditions, our objective function converges to that of a panel Logit

regression on tail observations with the log of the extreme covariate as a regressor,

which simplifies implementation and facilitates empirical research. We evaluate the

finite-sample properties of the proposed tail estimator in Monte Carlo simulations. In

the empirical application, we use a panel of small banks to study whether they become

riskier when local housing prices experience a significant decline, a channel crucial in

the 2007-08 financial crisis.
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1 Introduction

Binary outcome models are widely used in both empirical microeconomics and empiri-

cal macroeconomics research. For example, microeconomic studies may be interested in

the determinants of individuals’ labor force participation decisions, and macroeconomic

analyses may seek to forecast the probability of recessions or country defaults. Recently,

extreme events such as the Covid-19 pandemic and its aftermath, sustained periods of

high inflation, and increasingly frequent extreme weather events have highlighted the im-

portance of studying the effect of extreme covariates on binary outcomes.

Consider the simplest example with cross-sectional data, where we have a random

sample of {Y,X} with binary outcome Y ∈ {0, 1} and continuous covariate X ∈ R.
Depending on the empirical context, one may be interested in the conditional probability

π(x) = P (Y = 1|X = x) , (1)

the partial effect ∂π (x) /∂x, and/or the extreme elasticity1

δ(x) =
∂ (π(x) (1− π(x)))

∂x

x

π(x) (1− π(x))
, (2)

where x takes extreme values. Given a random sample with N observations, we character-

ize the extremeness by letting x → ∞ as N → ∞.2 Let us use sovereign debt and country

default as a running example for intuitive explanations. In this context, the outcome Y

indicates whether the country defaults or not, the covariate X is the debt-to-GDP ratio,

and the conditional probability π(x) represents the probability of default when the debt-

to-GDP ratio is particularly high, which can be viewed as a counterfactual probability or

a predictive probability.

Existing methods face limitations when dealing with extreme covariates, as often seen

in economic data that exhibit heavy tails (Gabaix, 2009, 2016). This extremeness in

covariates can be related to heavy-tailed error terms (or shocks, as referred to in macroe-

conomics) in the context of threshold-crossing models: see Proposition 2.2. Parametric

methods, such as Logit or Probit, which assume thin-tailed error distributions, can lead

to significant misspecification bias, particularly in the tails. Conversely, nonparametric

1Note that in the tail analysis, one of the two quantities, π(x) and (1− π(x)), tends to 0 and while

the other tends to 1, so we consider their product π(x) (1− π(x)) instead. Further details are provided in

Proposition 2.1.
2Here we focus on the right tail without loss of generality. In practice, a similar exercise can be applied

to the left tail, allowing for different tail thickness for each tail.
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methods, such as kernel or sieve estimators, may encounter difficulties due to limited in-

formation in the tail, resulting in highly inefficient estimators with large variances. This

inefficiency can lead to imprecise forecasts, especially for extreme values.

To address these challenges, we propose a novel semiparametric approach based on

Bayes’ theorem and RV functions. RV functions offer a flexible framework that encom-

passes a wide range of distributions, making our method more robust to potential mis-

specification. For heavy-tailed distributions, the RV condition naturally leads to a Pareto

approximation in the tail (see Section 2.1 for details), while maintaining flexibility in the

relationship between covariates and outcomes beyond the tail region.3

Specifically, by Bayes’ rule, we have that

P (Y = 1|X = x) =
fX|Y (x|1)P (Y = 1)

fX|Y (x|1)P (Y = 1) + fX|Y (x|0)P (Y = 0)
, (3)

where fX|Y (·|y) denotes the conditional density function of X given Y = y. When x

takes extreme values, the RV properties allow us to approximate 1− FX|Y (·|y) by x−α(y)

up to some constant, where α(y), the Pareto exponent for y ∈ {0, 1}, is the object of

interest. Then, fX|Y (·|y) is approximately proportional to x−α(y)−1. Under this Pareto

approximation, the extreme elasticity δ(x) asymptotically converges to −
∣∣α(1) − α(0)

∣∣, as
x → ∞. We establish formal asymptotic results in a more general setting with additional

non-extreme covariates Z = z, where we hold z fixed and let x → ∞. Note that given

the limited data available in the tail for extreme x values, the convergence rate of the tail

estimator is slower than the standard
√
N -rate.

Furthermore, our method not only addresses the limited information in the tail but

also effectively handles unobserved unit-specific tail parameters and unit-specific RV func-

tions in panel data. We show that, under regularity conditions, our objective function is

asymptotically equivalent to that of a panel Logit regression on tail observations, when we

treat the log extreme covariate as a regressor. This equivalence simplifies the estimation

procedure and makes the method more accessible for empirical studies.

Here we consider two scenarios. First, for panels with small T , we can use the con-

ditional MLE to eliminate unit-specific tail effects. The proof nontrivially extends Wang

and Tsai (2009) to panel data with independent, non-identically distributed observations,

as well as extends Hoadley (1971) to tail analysis. Second, for panels with large T , when

3Note that traditional kernel methods focus on local observations close to a specific x of interest,

allowing for flexibility far from x. Similarly, our tail estimator focuses on a specific local region, namely

the extreme tail where x → ∞, allowing for flexibility in the middle.
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the unit-specific tail behaviors or the unit-specific forecast are of interest, we can directly

estimate the unit-specific parameter based on existing methods for panel Logit with large

T . Finally, we expand our discussion to dynamic panel data models, incorporating lagged

outcomes into the analysis.

We assessed the finite-sample performance of our tail estimator through Monte Carlo

simulations under various specifications. Experiment 1 focuses on estimation accuracy

in cross-sectional data, and Experiment 2 examines out-of-sample forecasts in panel data

with large N and large T . Results show that our tail estimator outperforms parametric

and nonparametric alternatives, particularly in capturing heavy-tailed behavior, reducing

misspecification bias, and providing more accurate forecasts.

In our empirical application, we study the impact of local housing price declines on

the riskiness of small banks, a crucial factor in the 2007–2008 financial crisis. We con-

struct a panel dataset of loan charge-off rates of small banks, local housing prices, and

unemployment rates, and again find that the tail estimator yields the most accurate pseudo

out-of-sample forecasts among all methods considered. In addition, this analysis also helps

reveal interesting heterogeneity patterns in riskiness among small banks, varying across

geographic regions and bank characteristics.

Related literature. Our work draws on a wide range of econometric literature, includ-

ing binary outcome models, panel data, extreme value theory, and forecasting. First, while

we focus on extreme events, our work builds on a large literature on the binary outcome

models, especially those for panel data. However, existing literature typically focuses on

mid-sample properties: see Chapter 15 in Wooldridge (2010) for a textbook discussion.

In binary cross-sectional models, various methods have been explored, including para-

metric approaches (e.g., Logit and Probit), nonparametric approaches (e.g., Matzkin

(1992)), and semiparametric approaches, such as a single-index model (Klein and Spady,

1993) and a maximum score estimator (Manski, 1985; Horowitz, 1992). Also see Horowitz

and Savin (2001) for a review. Our approach falls within the semiparametric framework,

approximating the heavy tails using RV functions while allowing flexibility in the middle.

Notably, much of this existing literature assumes threshold-crossing models, whereas our

approach does not require such a structure. For a detailed comparison, see Remark 2.1.1.

In contrast to common methods that directly work with P (Y = 1|X = x), we employ

Bayes’ theorem to reverse the conditioning set. This transformation is reminiscent of what

is used in the discriminant analysis (see Chapter 9.2.8 in Amemiya (1985)), where assuming
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normal distributions for X|Y = y yields a quadratic Logit form for P (Y = 1|X = x), as

well as in the semiparametric single-index model in Klein and Spady (1993). In our

specific context of extreme events, this transformation offers a novel way to disentangle

the tail distributions. Unlike their focus on mid-sample properties using the entire sample,

we analyze tail properties with only tail observations. This distinction necessitates the

development of nonstandard asymptotic theory for the tails.

In binary panel data models, the unobserved unit-specific heterogeneity can be chal-

lenging to handle due to the incidental parameter problem in the presence of nonlinear

model structures. Besides the distinction among parametric, nonparametric, and semi-

parametric approaches, the binary panel literature can be further divided based on the

assumptions made regarding unit-specific heterogeneity. In a random effects setup, the

unit-specific heterogeneity is assumed to be drawn from a common underlying distribution.

For example, when the distribution is fully parameterized, the common parameters can be

estimated via integrated maximum likelihood (see for example, Chamberlain (1980)). In

a correlated random effects setup, this underlying distribution could depend on observed

covariates. In a fixed effects setup, the unit-specific heterogeneity is treated as fixed pa-

rameters unique to each unit, without imposing any distributional assumptions, which

implicitly allows for an arbitrary correlation between the heterogeneity and covariates,

without explicitly modeling it. For example, for logistic errors, common parameters can

be identified and estimated by eliminating the unit-specific intercept through conditional

MLE, as pioneered by Rasch (1960, 1961), Andersen (1970), and Chamberlain (1980); for

general errors, Manski (1987) extended the maximum score estimator to the panel data

context.

Since we allow for heterogeneity in the RV functions without explicitly modeling it,

our approach aligns with a fixed effects framework where unit-specific tail thickness and

RV functions can flexibly depend on the additional covariates Z. The heterogeneity in

the RV functions naturally accommodates unit-specific scale parameters as well. In the

current context of extreme covariates, we show that, under our Pareto tail approximation

based on the RV condition, our objective function is asymptotically equivalent to that of

a panel Logit regression on tail observations with the log of the extreme covariate as a

regressor. In panels with small T , this equivalence facilitates a comparable analysis based

on a similar conditional MLE; in panels with large T , we can use bias correction methods,

as developed by Fernández-Val and Weidner (2018) and Stammann, Heiss, and McFadden

(2016), to estimate unit-specific parameters and forecast unit-specific future outcomes.
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Additionally, we extend our approach to dynamic binary panel data models, where the

conditional MLE construction is related to the work of Honoré and Kyriazidou (2000).

Second, our work contributes to the heavy tail and extreme value theory literature.

For a comprehensive review, please refer to de Haan and Ferreira (2006) and Gabaix

(2009, 2016). The literature typically focuses on continuous outcomes with heavy tails,

such as the classic Hill (1975) estimator.4 In contrast, we focus on binary outcomes and

utilize Bayes’ representation to introduce a novel estimator in this setting. To incorporate

covariates, we build upon the work of Wang and Tsai (2009), significantly extending their

theoretical framework to handle panel data and independent but not necessarily identically

distributed (i.n.i.d.) random variables. While Hoadley (1971) provides a foundation for

MLE asymptotics in the i.n.i.d. case, we extend his framework to tail analysis, where the

number of tail observations increases at a slower rate than the total sample size.

Third, our work further contributes to the burgeoning literature on unit-specific fore-

casts in panel data setups. To the best of our knowledge, this paper is the first study to

analyze unit-specific forecasts in panel data settings with binary outcomes and extreme

covariates. In linear models, Liu, Moon, and Schorfheide (2020) develop an empirical

Bayes approach for point forecasts, while Liu (2023) constructs a full Bayesian approach

for density forecasts. In nonlinear models, Christensen, Moon, and Schorfheide (2020)

study discrete outcome models and propose efficient robust forecasts, and Liu, Moon,

and Schorfheide (2023) examine a Tobit model, which our empirical application builds

on. Also see Fosten and Greenaway-McGrevy (2022) for panel nowcasting, Giacomini,

Lee, and Sarpietro (2023) for robust forecasts, and Qu, Timmermann, and Zhu (2023)

for forecasting comparison. Most existing methods focus on continuous outcomes (except

for Christensen, Moon, and Schorfheide (2020)) and mid-sample properties, and thus not

suitable for forecasting under extreme events. Also note that panel data are particu-

larly valuable in these extreme cases, as the limited tail information makes it even more

beneficial to combine information across cross-sectional units.

Finally, our work is also related to the growing interest in studying extreme events,

partly spurred by the Covid-19 pandemic and its economic consequences. Broadly, ex-

isting approaches generally focusing on time-series data, either excluding outliers (e.g.,

Schorfheide and Song (2021)) or adapting models to accommodate both outliers and or-

4In addition, numerous estimators for the Pareto exponent have been developed, including Smith (1987)

and Gabaix and Ibragimov (2011), among many others. See recent reviews by Gomes and Guillou (2015)

and Fedotenkov (2020) for over a hundred estimators.
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dinary observations within a unified framework (e.g., Carriero, Clark, Marcellino, and

Mertens (2022), and Lenza and Primiceri (2022)). Our work differs in two key ways.

First, our approach focuses on cross-sectional and panel data, allowing us to exploit in-

formation across units.5 Second, we incorporate a semiparametric approach that models

extreme events separately from the middle of the data, acknowledging potentially distinct

patterns in normal and extreme environments.

The remainder of this paper is organized as follows. Section 2 specifies our methodology

for cross-sectional data and derives its asymptotic properties. Section 3 presents our

estimators in panel data setups. Section 4 extends our estimator to various contexts, such

as a dynamic panel data model and a model with time-varying covariates Zit. Section 5

conducts Monte Carlo experiments to study the finite-sample properties of our estimators.

Section 6 applies our panel data estimator to examine whether small banks became riskier

when local housing prices experienced a significant decline during the 2007–2008 financial

crisis. Finally, Section 7 concludes. Appendix A provides the proofs for all propositions

and theorems, and Appendix B contains additional tables and figures.

2 Cross-sectional data

In this section, we continue the discussion from the introduction for cross-sectional data.

Section 2.1 focuses on the motivation and illustrates our main idea without additional

covariates. It also compares our method with the classic threshold-crossing model. Section

2.2 details the estimator and establishes its asymptotic properties in the general case with

additional covariates.

2.1 Baseline models and RV functions

Recall that in the introduction, we introduced the simplest cross-sectional setup with

a random sample of binary outcome Y and continuous covariate X. Without loss of

generality, let the support of X be R+ and consider x → ∞ as N → ∞.6 We focused

5While our framework can accommodate dynamic panels under conditional stationarity, extending it to

more complicated time-series models like unit roots poses theoretical challenges for extreme value analysis.
6Directly accommodating multidimensional extreme covariates poses theoretical challenges. However,

a practical solution is to replace X with v(X; γ), where v(·; ·) is a known function with unknown finite-

dimensional parameters γ, as long as γ can be consistently estimated with sufficiently fast convergence

rate. One example is the linear index structure v(X; γ) = X ′γ. For simplicity, we will use scalar X in the

rest of the paper, but most of our discussions can be extended to the case of v(X; γ).
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on three potential objects of interest: the conditional probability π(x), the partial effect

∂π (x) /∂x, and the extreme elasticity δ(x), as defined in equations (1) and (2).

Heavy-tailed distributions are widely documented in economic and financial data, e.g.,

Gabaix (2009, 2016). Also, we can assess the presence of heavy tails using various methods

in the literature. First, a simple visual inspection using the log-log plot can provide initial

insights. By plotting the threshold x against the probability of exceeding x, both on a log

scale, we can assess tail behavior: tail observations aligning around a downward-sloping

line suggest a heavy-tailed distribution with the slope being approximately −α, while a

vertical alignment indicates a relatively thin-tailed distribution. Figures 1 and 6 illustrate

this for simulated and empirical data, respectively. Note that the exact values of X may or

may not be large, depending on the unit, but the log-log plot reveals the relative prevalence

of large values within the range of the data. Second, a more rigorous approach involves

estimating the tail index, i.e., the Pareto exponent, and conducting statistical tests: see

for example, Clauset, Shalizi, and Newman (2009). Finally, for a data-driven evaluation,

techniques like cross-validation and pseudo out-of-sample forecasting can be employed as

well, as demonstrated in our Monte Carlo Experiment 2 and empirical example.

The presence of extreme values in the covariate (and error term in the threshold-

crossing model in Section 2.1.1) poses significant challenges to analysis and limits the

applicability of existing methods. Parametric approaches, such as Logit and probit, may

incur substantial misspecification bias in the tail, while nonparametric methods, such as

kernel or sieve, may be highly inefficient due to a limited number of tail observations.

To overcome these challenges, we proposed a semiparametric approach based on Bayes’

theorem and RV functions as follows.

First, we observe extreme values in the covariateX, and our interest lies in understand-

ing the behavior of Y when X takes on extreme values, so we essentially aim to analyze

the comovement in the tail between X and Y . Recall the conditional probability defined

in equation (1). To facilitate this tail analysis, we can use Bayes’ theorem to reverse the

conditioning in this probability, resulting in equations (3), reproduced below:

P (Y = 1|X = x) =
fX|Y (x|1)P (Y = 1)

fX|Y (x|1)P (Y = 1) + fX|Y (x|0)P (Y = 0)
.

Note that this Bayesian representation is simply an alternative characterization of the

data. We make no assumptions about the causal direction between X and Y , and this

representation allows for any possible causal relationship. A similar Bayes’ representation

has been employed in the discriminant analysis (Chapter 9.2.8 in Amemiya (1985)), where
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normal distributions of X|Y = y leads to a quadratic Logit form of P (Y = 1|X = x).

Klein and Spady (1993) also use a similar Bayes’ transformation in their semiparametric

single-index estimator.

Next, as x → ∞, the conditional pdfs fX|Y (x|y) for y ∈ {0, 1} are dominated by their

tail behaviors. In particular, if X|Y = y exhibits a heavy tail, its distribution can be well

approximated by the Pareto distribution, e.g., see Smith (1987). Therefore, we adopt a

more general concept of RV functions that results in a Pareto approximation in the tail.7

Let us first introduce the following definition. For a generic function g (·) with a heavy

tail, we say g is RV at infinity with index −α for some α > 0, if for all x > 0,

g (ηx)

g (η)
→ x−α, (4)

as η → ∞. This is denoted by g ∈ RV−α. Equivalently, by Karamata’s characterization

theorem, we can write

g (x) = x−αL (x) ,

where L (·) is a slowly varying function such that for all x > 0, L(ηx)
L(η) → 1, as η → ∞.

The parameter α is also referred to as the Pareto exponent, which characterizes the tail

thickness of g (x). In particular, a smaller α indicates a heavier tail, i.e., the function g (x)

decays to zero more slowly. As α approaches infinity, we approach thin-tailed distributions,

such as logistic and normal.8

Let X ∈ R+ be a generic random variable with cdf FX(x). If the upper tail probability

(or survival function) 1 − FX ∈ RV−α, the RV condition (4) implies that as x → ∞, for

x ≥ x,

1− FX(x) = (1− FX(x))

(
x

x

)−α

(1 + o(1)). (5)

Thus, the tail distribution of X is asymptotically proportional to a Pareto distribution

as the first-order approximation. The RV condition is relatively mild and satisfied by

many commonly used heavy-tailed distributions, including the Student-t, F , and Cauchy

distributions. For example, for the Student-t with v degrees of freedom, α equals v. A

list of distributions and their corresponding values of α can be found in Gabaix (2016).

7While our method could be extended to the generalized Pareto distribution, encompassing thin-tailed

and bounded-support distributions, these cases are often distinguishable given the empirical data. More-

over, estimators based on the generalized Pareto distribution tend to be more involved than our simpler

Pareto-based approach.
8While the literature has considered cases where α = 0 (slowly varying) and α < 0 (rapidly varying)

(see Appendix B in de Haan and Ferreira (2006)), our focus here is on α > 0 for heavy tail distributions.
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Additionally, the moments of X are characterized by α: E [|X|r] is finite for r < α, while

infinite for r > α. Note that we can handle cases with very heavy tails where α ∈ (0, 1)

and no moments exist.

Returning to our binary outcome model, we assume that the distribution of X condi-

tional on Y = y satisfies the RV condition (4), that is, for y ∈ {0, 1},

1− FX|Y (·|y) ∈ RV−α(y) .

Three points are worth noting. First, the Pareto exponent α(y) is indexed by y, allowing

for different tail thickness for y ∈ {0, 1}. Second, if Y were continuous, α(y) would become

a function of y, which would be difficult to estimate without parametric assumptions.

However, the binary outcome structure simplifies this, with α(y) taking only two distinct

values, α(0) and α(1), which can be easily estimated, such as the classic Hill (1975) esti-

mator in this simplest model without additional covariates. Further estimation details are

provided in Section 2.2. Finally, this approach is semiparametric, as we allow for flexible

relationships between X and Y outside the tail region.

After estimating α(y), we can proceed with the conditional probability π(x) as well

as other objects of interest. Following from Theorem B.1.9(11) in de Haan and Ferreira

(2006), if fX|Y (x|y) is non-increasing for sufficiently large x, as x → ∞,
xfX|Y (x|y)
1−FX|Y (x|y) → α(y),

and hence

π (x) ∼ 1

1 + P(Y=0)
P(Y=1)

α(0)

α(1)

1−FX|Y (x|0)
1−FX|Y (x|1)

, (6)

where f(x) ∼ g(x) denotes limx→∞ f(x)/g(x) = 1 for generic functions f(x) and g(x).

By the RV condition in equation (5), given some large x(y), the term in the denominator

becomes

P (Y = 0)

P (Y = 1)

α(0)

α(1)

1− FX|Y (x|0)
1− FX|Y (x|1)

∼
P
(
Y = 0, X ≥ x(0)

)
P
(
Y = 1, X ≥ x(1)

) α(0)

α(1)

(
x(0)

)α(0)

(
x(1)

)α(1)
xα

(1)−α(0)
. (7)

Then, a consistent estimator of π(x) can be obtained by plugging in the estimated α̂(y) and

the sample analog of
P(Y=0,X≥x(0))
P(Y=1,X≥x(1))

≈ N(1)

N(0) , where N (y) =
∑N

i=1 1
{
X

(y)
i ≥ x(y), Yi = y

}
is

the number of tail observations in the subsample with Yi = y.9

9The theorem for consistency was established in a previous version of this paper and is available upon

request.
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Remark 2.1 Based on equations (6) and (7), we can defineA =
P(Y=0,X≥x(0))
P(Y=1,X≥x(1))

α(0)

α(1)

(x(0))
α(0)

(x(1))
α(1) ,

which can be viewed as a constant that does not change over x. This simplifies the ex-

pression for π(x) to:

π(x) ∼ 1

1 +A · xα(1)−α(0)
. (8)

Then, an alternative way to estimate π(x) would be directly estimating A and α∗ =

α(1) − α(0) via the MLE.

Furthermore, let Ã = − logA, then we have

π(x) ∼ 1

1 + exp
(
−Ã+ α∗ log x

) .
This reveals an interesting connection: in this simplified model, our objective function

becomes asymptotically equivalent to that of a Logit regression on tail observations, using

the log of the extreme covariate as the regressor. Thus, our analysis offers a theoretical

justification for the common practice of log-transforming covariates to address extreme

values. This insight becomes particularly valuable in panel data cases with unobserved

unit-specific heterogeneity: see Remark 3.1.

In terms of the estimation in the cross-sectional case, we slightly prefer the estimator

based on equations (6) and (7). First, in the above simplest model, this estimator is

generally easier to implement and often does not require an optimization step. Second,

when incorporating additional covariates Z (see Section 2.2), the parameter Amay become

a complicated function of Z, making it difficult to infer.

Remark 2.2 An additional insight from equation (8) is that the component with the

heavier tail (i.e., smaller Pareto exponent α(y)) will ultimately dominate the conditional

probability, that is, as x → ∞,

π(x) ∼ 1

1 +A · xα(1)−α(0)
→


1, if α(1) < α(0),

0, if α(1) > α(0),

1
1+A , if α(1) = α(0).

Note that this Pareto approximation represents only the first-order term. Higher-order

terms, as detailed in Assumption 2.2, can also contribute to the behavior of π(x). Also,

from both Monte Carlo simulations and the empirical example, our method provides sig-

nificant improvement even when π(x) is not extremely close to 0 or 1. In practice, it

generally works well for values of π(x) below 0.2 or above 0.8.
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Having estimated π(x) from equations (6) and (7), the partial effect ∂π (x) /∂x can be

obtained as a by-product through either analytical or numerical differentiation.

Finally, for extremely large x, π(x) would approach either 0 or 1, and the partial effect

would approach 0. In this case, it would be more informative to examine the extreme

elasticity, as defined in equation (2) in the introduction. Interestingly, in the tail, the

extreme elasticity is determined solely by the difference between coefficients α(y).

Proposition 2.1 (Cross-sectional data: extreme elasticity) Suppose we have: (a)

1− FX|Y (·|y) ∈ RV−α(y), for y ∈ {0, 1}; (b) fX|Y (x|y) and f ′
X|Y (x|y) are non-increasing

in x ≥ x, for some x > 0; and (c) 0 < P(Y = 1) < 1. Then, as x → ∞,

δ (x) =
∂ (π(x)(1− π(x)))

∂x

x

π(x) (1− π(x))
→ −

∣∣∣α(1) − α(0)
∣∣∣ .

Note that the extreme elasticity is inherently non-positive in the tail due to the RV struc-

ture.

2.1.1 Comparison with a threshold-crossing model

We now compare our approach with the classic threshold-crossing model, which has been

extensively studied in the literature:

Y = 1 {X − ε ≥ 0} ,

where ε is the error term. It is worth noting that our method does not require a threshold-

crossing structure. The following proposition shows that α(0) − α(1) directly corresponds

to the Pareto exponent of ε.

Proposition 2.2 (Threshold-crossing model) Suppose we have: (a) 1−FX ∈ RV−αX ,

and 1 − Fε ∈ RV−αε; (b) fX (x) is non-increasing in x ≥ x, for some x > 0; and (c)

ε ⊥ X. Then, for y ∈ {0, 1}, 1− FX|Y (·|y) ∈ RV−α(y) with

α(0) = αX + αε, and α(1) = αX .

Furthermore, αε = α(0) − α(1).

There are three points worth noting. First, the threshold-crossing structure and the un-

conditional RV tails provide a sufficient condition for our conditional RV tails. With both

X and ε exhibiting heavy tails, so we essentially examine the comovement in the tail

between X and Y .
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Second, the difference between the two conditional Pareto exponents, α(0)−α(1), equals

the Pareto exponent for the distribution of the unobserved error term. As the tail of the

error term becomes thinner with larger αε, this difference increases. The extreme case of

a very thin-tailed error (i.e., close to the Logit) with αε → ∞ corresponds to α(0) → ∞,

α(1) = αX , and π(x) → 1: see also the first case in Remark 2.2.

Finally, one might attempt to estimate the threshold-crossing model with RV errors ε,

but ε is not observable, making it difficult to determine which observations are in the tail.

This could significantly bias the results as data in the middle may substantially deviate

from the Pareto distribution. In contrast, our method circumvents this issue by using

cutoffs of observed X, and offers an asymptotic equivalent estimator that is relatively easy

to implement and scalable to more complicated setups, such as those involving additional

covariates and panel data.

2.2 Estimation and asymptotic properties

In this subsection, we first extend the simplest cross-sectional model in Section 2.1 to

incorporate additional covariates, aligning it more closely with empirical research. We

then derive the asymptotic properties of our estimator.

Let Z ∈ Rdz , where dz is the dimension of Z, be a vector of non-extreme covariates in

addition to X. Z can be either discrete or continuous. For example, consider the context

of sovereign debts and country defaults, where institutional details could be included as

covariates given their potential impact on default risk. Now we rewrite our conditional

probability and the Bayes’ representation by introducing Z into all conditioning sets:

π (x, z) = P (Y = 1|X = x, Z = z)

=
fX|Y,Z (x|1, z)P (Y = 1|Z = z)

fX|Y,Z (x|1, z)P (Y = 1|Z = z) + fX|Y,Z (x|0, z)P (Y = 0|Z = z)
.

Note that here we hold z constant and let x tend towards infinity. Accordingly, we assume

that 1 − FX|Y,Z (·|y, z) ∈ RV−α(y)(z), where the Pareto exponent α(y) (z) is a function of

the additional covariates z.

In principle, the dependence of the Pareto exponent α(y)(·) on z could be nonlinear and

complex, and could potentially be estimated nonparametrically. However, our focus on the

tails requires using only large values of X, rendering nonparametric estimation of α(y)(·)
challenging due to data limitations. To sidestep this issue, we assume a pseudo-linear

13



structure:

α(y) (z) = z′θ(y), (9)

with pseudo-parameters θ(y) for y ∈ {0, 1}. This simplification is also consistent with

approaches used in the literature, such as Wang and Tsai (2009). Additionally, we require

that z′θ(y) > 0 almost surely over z, with sufficient conditions discussed after Assumption

2.2.

From the RV condition, for y ∈ {0, 1}, given some large threshold x
(y)
N , we have the

conditional cdf for values of x exceeding this threshold given by

1− FX|Y,Z

(
x
∣∣∣y, z, x ≥ x

(y)
N

)
=

1− FX|Y,Z (x|y, z)

1− FX|Y,Z

(
x
(y)
N |y, z

) → α(y) (z) .

By Theorem B.1.9(11) in de Haan and Ferreira (2006), if the corresponding pdf is non-

increasing for sufficiently large x, then it is asymptotically equivalent to a Pareto distri-

bution,

fX|Y,Z

(
x
∣∣∣y, z, x ≥ x

(y)
N

)
∼ α(y) (z)

(
x

x
(y)
N

)−α(y)(z)−1

.

Let Ξ
(y)
i =

{
X

(y)
i ≥ x

(y)
N , Yi = y

}
, then N (y) =

∑N
i=1 1

{
Ξ
(y)
i

}
is the total number of

tail observations in the subsample where Yi = y. The asymptotic Pareto distribution

above leads to the following pseudo-MLE

θ̂
(y)

= arg max
θ∈Θ(y)

N∑
i=1

(
logZ ′

iθ − Z ′
iθ log

Xi

x
(y)
N

)
1
{
Ξ
(y)
i

}
. (10)

Since the objective function is concave, and the domain is convex (specifically, it could

be a convex cone as discussed after Assumption 2.2), this MLE is a convex programming

problem that can be easily solved. Also note that this MLE is closely related to the

tail index regression proposed by Wang and Tsai (2009), with differences being: first,

we separate the data into two subsamples based on y ∈ {0, 1}; and second, we adopt a

pseudo-linear approximation for the Pareto exponent to better align with the panel data

case in Section 3, rather than an exponential approximation in their setting.

In a special case without Z, the FOC of equation (10) results in

α̂(y) =

[
1

N (y)

N∑
i=1

(
logXi − log x

(y)
N

)
1
{
Ξ
(y)
i

}]−1

,
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for y ∈ {0, 1}. This coincides with the classic Hill (1975) estimator, as the indicator

function 1
{
Ξ
(y)
i

}
effectively selects the largest order statistics.

To establish the asymptotic properties, we impose the following assumptions.

Assumption 2.1 (Cross-sectional data: model assumptions) Suppose we have:

(a) {Yi, Xi, Zi} is i.i.d.

(b) 0 < P (Yi = 1|Zi = z) < 1 almost surely for z ∈ supp(Z).

Condition (b) ensures non-degenerate probabilities, thus guaranteeing a non-trivial Bayes’

representation.

Assumption 2.2 (Cross-sectional data: tail approximation) For y ∈ {0, 1} and

almost surely for z ∈ supp(Z):

(a) The conditional cdf FX|Y,Z (x|y, z) satisfies that

1− FX|Y,Z (x|y, z) = C(y) (z)x−α(y)(z)
(
1 +D(y) (z)x−β(y)(z) + o

(
x−β(y)(z)

))
,

as x → ∞, where functions C(y) (z) > 0,
∣∣D(y) (z)

∣∣ ≤ D < ∞, α(y) (z) > 0 satisfying

equation (9), and β(y) (z) ≥ β > 0, for some constants D and β.

(b) The remainder term satisfies that supz

{
xβ

(y)(z)o
(
x−β(y)(z)

)}
→ 0, as x → ∞.

(c) The conditional pdf fX|Y,Z (x|y, z) is non-increasing in x ≥ x, for some x > 0.

First, the equation in condition (a) implies the RV conditional and resembles equation

(2.2) in Wang and Tsai (2009).10 The first-order term C(y) (z)x−α(y)(z) is proportional to

a Pareto distribution, while the second-order term D(y) (z)x−β(y)(z) captures deviations

from the ideal Pareto form. This second-order term is essential for characterizing the

asymptotic distribution of our estimator. Second, to guarantee the existence of θ(y) such

that α(y)(z) = z′θ(y) > 0 almost surely (i.e., the existence of the convex cone), a sufficient

condition is that each element of z has a domain strictly above or below zero. This

can be achieved through a monotonic transformation of z, such as the exponential or

probability integral transforms. Third, the bounds on D(y)(z) and β(y)(z), as well as the

supremum condition (b) on the remainder term, allow us to ignore higher order terms

10In the absence of additional covariates Z, this equation simplifies to the well-studied second-order

condition: see for example, Hall (1982) and Chapter 2 in de Haan and Ferreira (2006).
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in the asymptotic analysis. Finally, the relatively mild condition (c) of a non-increasing

conditional probability density function ensures that the tail behavior of the pdf can be

inferred from the corresponding cdf, according to Proposition B.1.9(11) in de Haan and

Ferreira (2006).

To derive the asymptotic properties, note thatN (y) =
∑N

i=1 1{Ξ
(y)
i } =

∑N
i=1 1

{
X

(y)
i ≥ x

(y)
N , Yi = y

}
is a random variable, so we need to carefully account for its randomness when applying

the LLN and CLT. Then, we further introduce

ξ
(y)
N = E

[
C(y)(Zi)

(
x
(y)
N

)−α(y)(Zi)
]
,

a non-random sequence representing the asymptotic proportion of tail observations for

Yi = y. Specifically, N(y)

N = ξ
(y)
N (1 + op(1)), and we will utilize ξ

(y)
N to characterize the

asymptotic behavior of our estimator.

Assumption 2.3 (Cross-sectional data: estimation) For y ∈ {0, 1}, suppose we

have:

(a) Nξ
(y)
N → ∞, as N → ∞.

(b)
√

N

ξ
(y)
N

E
[∣∣ZiD

(y)(Zi)
∣∣C(y)(Zi)

β(y)(Zi)

α(y)(Zi)(α(y)(Zi)+β(y)(Zi))

(
x
(y)
N

)−α(y)(Zi)−β(y)(Zi)
]

→ 0,

as N → ∞.

(c) Σ
(y)
N = E

[
ZiZ

′
i

(α(y)(Zi))
2

∣∣∣∣Ξ(y)
i

]
is a finite and positive definite matrix, for all N suffi-

ciently large.

Conditions (a) and (b) jointly impose lower and upper bounds on the rate at which the

tuning parameter x
(y)
N tends to infinity. It implies that N (y) goes to infinity at a slower

rate than N . Also note that in condition (b), we select a larger x
(y)
N to eliminate the

asymptotic bias, albeit at the expense of a slower convergence rate. This is close in spirit

to choosing an undersmoothing bandwidth in kernel regressions. Condition (c) is a mild

regularity condition that ensures the invertibility of the Hessian matrix.

The following theorem establishes the asymptotic result, building on Wang and Tsai

(2009) while also accounting for the fact that N (y), for y ∈ {0, 1}, are random variables.

Theorem 2.1 (Cross-sectional data: parameter estimation) Let θ(y) ∈ Θ(y), where

Θ(y) is a compact convex subset of Rdθ and dθ is the dimension of θ(y). Suppose Assump-

tions 2.1–2.3 hold. Then, for y ∈ {0, 1},√
N (y)

(
Σ
(y)
N

)1/2 (
θ̂
(y) − θ(y)

)
d→ N (0, Idθ)
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In addition, θ̂
(1)

and θ̂
(0)

are asymptotically independent.

The convergence rate is slower than the standard parametric rate of
√
N , since the tail

estimator only accounts for observations in the tail, where the number of tail observations

increases at a slower rate than the total number of observations.

To select the threshold x
(y)
N , we follow a common empirical practice that uses empirical

quantiles (e.g., 90% or 95%) as potential thresholds, and then checks the chosen threshold

through graphic diagnostics, such as a log-log plot. While the literature offers various

methods for threshold estimation,11 our experiments in the Monte Carlo simulations and

empirical example suggest that parameter estimates are relatively robust within a range

of threshold values. Intuitively, in a log-log plot, such as Figure 1, the threshold x
(y)
N acts

as the starting point for slope estimation. If two potential threshold values are close to

each other within the downward-sloping region, the choice between the two would only

minimally affect the estimated slope.

Given θ̂
(y)

, we can obtain the conditional probability π (x, z) similar to equations (6)

and (7) in the simplest model.

π (x, z) ∼ 1

1 +
P(Y=0,X≥x(0)|Z=z)
P(Y=1,X≥x(1)|Z=z)

α(0)(z)

α(1)(z)

(
x
(0)
N

)α(0)(z)

(
x
(1)
N

)α(1)(z)
xα

(1)(z)−α(0)(z)

.

Due to the data limitation in the tail, a more practical approach might involve parametric

estimation of P
(
Y = y,X ≥ x

(y)
N |Z = z

)
. Nevertheless, we omit a detailed discussion

here, as we focus on the panel data analysis in Section 3 below, where this term can be

entirely canceled out.

Analogous to Proposition 2.1, if we further assume that f ′
X|Y,Z (x|y, z) is non-increasing

for sufficiently large x, we have that as x → ∞, the extreme elasticity is now

δ (x, z) =
(∂π(x, z)(1− π(x, z)))

∂x

x

π(x, z) (1− π(x, z))
→ −

∣∣∣z′ (θ(1) − θ(0)
)∣∣∣ .

A consistent estimator is obtained by substituting θ̂
(y)

in place of θ(y).

11For example, Guillou and Hall (2001) select the threshold by minimizing the asymptotic MSE, and

Clauset, Shalizi, and Newman (2009) propose methods based on maximizing the marginal likelihood, as

well as minimizing the distance between the power-law model and empirical data.
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3 Panel data

Our methodology offers significant advantages in panel data setups, particularly in address-

ing unobserved individual heterogeneity. For instance, in the context of country defaults,

different countries could have various cultural and historical backgrounds that might not

be fully captured by observed data, leading to unobserved individual heterogeneity. In the

analysis of extreme events, this heterogeneity could manifest as unobserved unit-specific

tail thickness and RV functions.12

This section focuses on panel data with large N and small T . To build intuition,

we begin in Section 3.1 by considering a simplified case without additional covariates Zi.

We then incorporate these covariates in Section 3.2 and derive the asymptotic for the

common parameters and extreme elasticity. Later on, we will extend our discussions to

models with large T in Section 4.1, time-varying additional covariates in Section 4.2, and

dynamic panel data in Section 4.3.

3.1 Baseline model and conditional MLE

Suppose we observe a panel dataset {Yit, Xit} for i = 1, ..., N and t = 1, ..., T . For

illustrative purposes, let T = 2 (though our method is applicable to any T ≥ 2), and Xit

be a scalar extreme covariate.

As Xit approaches infinity, unobserved individual heterogeneity could reflect in unit-

specific tail thickness and RV functions. Assume the unit-specific tail indices take the

following additive form

α̃
(y)
i = α(y) + λi, (11)

where α(y) represents the common component depending on y ∈ {0, 1}, and λi denotes

the unit-specific component. For example, Jondeau and Rockinger (2003) show that the

tail indices of stock market returns exhibit heterogeneity across regions, and Einmahl and

He (2023) find cross-country heterogeneity in the tails of Covid-19 cases and deaths. The

additive form helps us cancel out the unobserved unit-specific tail thickness, as will soon

be demonstrated.

Let Pi be the probability measure given unit-specific quantities. Specifically, Pi(·) =
P
(
· ; λi, {L(y)

i }
)
, where λi is the unit-specific tail thickness as defined above, and L(y)

i (·)
is the unit-specific slowly varying function as specified below. Similarly, the subscript i

12For panel data with observed heterogeneity only, it would be essentially captured by a pooled estimator

with observed covariates as the cross-sectional case in Section 2.2.
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in Fi,Xit|Yit
below indicates that the distribution is also conditioned on these unit-specific

quantities. Note that we are working within a fixed effects framework where
{
λi, {L(y)

i }
}

are considered fixed for each unit i and can be arbitrarily correlated with the covariates of

i, which makes the panel data setup richer but more challenging than the cross-sectional

case.

Based on a simplified version of Assumption 3.1 in Section 3.2 on the model setup,

we assume that {Yit, Xit} are independent across units and stationary across time. This

stationarity enables us to eliminate individual effects for tail observations. Furthermore,

the conditional independence condition ensures that for y1, y2 ∈ {0, 1},

Pi (Yi1 = y1, Yi2 = y2|Xi1, Xi2) = Pi (Yi1 = y1|Xi1) · Pi (Yi2 = y2|Xi2) . (12)

We rewrite the conditional probability of unit i using Bayes’ theorem similar to the

cross-sectional case.

πi (x) = Pi (Yit = 1|Xit = x)

=
fi,Xit|Yit

(x|1)Pi (Yit = 1)

fi,Xit|Yit
(x|1)Pi (Yit = 1) + fi,Xit|Yit

(x|0)Pi (Yit = 0)
.

Here the subscript i in πi (x) indicates potential heterogeneity across i, and the absence

of a t index reflects the stationarity condition.

To proceed, we again apply the Pareto approximation at the tail by assuming that

1−Fi,Xit|Yit
(·|y) ∈ RV−α̃

(y)
i

. Equivalently, we can write 1−Fi,Xit|Yit
(x|y) = x−α̃

(y)
i L(y)

i (x) ,

for some slowly varying function L(y)
i (x). This slowly varying function does not change

over t, given that {Yit, Xit} are stationary across t. From the RV condition and assuming

that fi,Xit|Yit
(x|y) is non-increasing for sufficiently large x, we have the approximation

xfi,Xit|Yit (x|y)
1−Fi,Xit|Yit (x|y)

→ α̃
(y)
i . It follows that as x → ∞,

πi (x) ∼
1

1 + Pi(Yit=0)
Pi(Yit=1)

α̃
(0)
i

α̃
(1)
i

1−Fi,Xit|Yit (x|0)
1−Fi,Xit|Yit (x|1)

=
1

1 + Pi(Yit=0)
Pi(Yit=1)

α̃
(0)
i

α̃
(1)
i

L(0)
i (x)

L(1)
i (x)

x−α̃
(0)
i

x−α̃
(1)
i

.

Let us look into each term one by one. First, x−α̃
(0)
i

x−α̃
(1)
i

= xα
(1)−α(0)

, since λi enters

additively into the tail indices in equation (11) and can be canceled out. Second,
L(0)
i (x)

L(1)
i (x)

→

L∗
i , which does not depend on x asymptotically due to the slowly varying nature of L

(y)
i (x).

Third, Pi(Yit=0)
Pi(Yit=1)

α̃
(0)
i

α̃
(1)
i

could depend on λi in a complicated, possibly nonlinear manner, as λi
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enters into the conditioning sets. In the end, let Ai =
Pi(Yit=0)
Pi(Yit=1)

α̃
(0)
i

α̃
(1)
i

L∗
i . As x → ∞, we can

approximate the conditional probability πi(x) as follows

πi (x) ∼
1

1 +Ai · xα(1)−α(0)
, (13)

Without further assumptions, Ai cannot be consistently estimated in small-T panels

due to the incidental parameter problem. However, we can eliminate Ai by conditioning

on the event Yi1 + Yi2 = 1. Based on the conditional independence in equation (12), as

x1, x2 → ∞,

Pi (Yi1 = 1|Yi1 + Yi2 = 1, Xi1 = x1, Xi2 = x2) (14)

=
1

1 + Pi(Yi1=0|Xi1=x1)Pi(Yi2=1|Xi2=x2)
Pi(Yi1=1|Xi1=x1)Pi(Yi2=0|Xi2=x2)

=
1

1 + πi(x2)(1−πi(x1))
πi(x1)(1−πi(x2))

∼ 1

1 +
(
x1
x2

)α(1)−α(0)
.

The key idea here parallels the panel data Logit model, which we will further compare in

Remark 3.1 below.

Further suppose that f ′
i,Xit|Yit

(x|y) is non-increasing for sufficiently large x, then α∗ =

α(1) − α(0) is closely related to the extreme elasticity:

δi(x) =
∂ (πi (x) (1− πi (x)))

∂x

x

πi (x) (1− πi (x))
→ −|α∗| ,

as x → ∞. We can estimate α∗ by conducting the conditional MLE on tail observations

α̂∗ = argmax
α∗

N∏
i=1

 1

1 +
(
Xi1
Xi2

)α∗


Yi1


(
Xi1
Xi2

)α∗

1 +
(
Xi1
Xi2

)α∗


1−Yi1

× 1 {Yi1 + Yi2 = 1, Xi1 ≥ x1N , Xi2 ≥ x2N}︸ ︷︷ ︸
=1{Ξi}

,

where xtN for t = 1, 2 denotes the tail threshold for each time period, such that xtN → ∞
as N → ∞. For simplicity, one can set x1N = x2N = xN in implementation.

Remark 3.1 We now compare our setup with the classic panel Logit model. The follow-

ing discussion is also in line with Remark 2.1 for the cross-sectional case. For instance,

equation (1) in Honoré and Kyriazidou (2000), with a slight change in notation, can be

represented as:

P (Yit = 1|Xit = x;Ci) =
1

1 + exp (−(xβ + Ci))
, (15)
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and accordingly

P (Yi1 = 1|Xi1 = x1, Xi2 = x2, Yi1 + Yi2 = 1) =
1

1 + exp (−(x1 − x2)β)
. (16)

Comparing the expressions in (13) and (14) with those in (15) and (16) leads to several

useful observations.

First, the classic Logit model is characterized by the exponential function of x, while

ours is by a power function of x. However, by applying a log transformation to x, our

method essentially uses the same conditional likelihood function as the panel Logit model,

but on tail observations. Our parameter of interest α∗ corresponds to −β in the panel

Logit model, and as shown in Section 4.1 for large T , our − logAi corresponds to their Ci

as well.

Our derivation thus provides a theoretical justification for and elucidates the explicit

assumptions underlying the intuitive practice of taking the log of Xit when handling ex-

treme observations. In practice, we can estimate α∗ by conducting the conditional MLE

for panel Logit models on tail observations, using logXit as a regressor, where the negative

of the coefficient on logXit serves as the estimate for α∗.

Second, as discussed in Section 2.1, our method adopts a semiparametric approach,

focusing on tail behavior. Especially, our approach avoids imposing parametric assump-

tions on the entire error distribution, making it more robust to potential misspecification.

Of course, this robustness comes at the cost of reduced sample size, as we only utilize the

large Xit observations.

3.2 Estimation and asymptotics

In this subsection, we derive the asymptotic normality of our estimator in the panel data

setup. Extending the baseline model in Section 3.1, we introduce additional covariates Zi

that capture potential observed heterogeneity, so the unit-specific tail thickness becomes

α̃
(y)
i (z) = z′θ(y) + λi > 0, (17)

and the corresponding RV condition is 1 − Fi,Xit|Yit,Zi
(·|y, z) ∈ RV−α̃

(y)
i (z)

. We focus on

the time-invariant Zi in this subsection, and the case with time-varying Zit is discussed in

Section 4.2.

Let Ci denote the unit-specific assemble of functions
{
β
(y)
i (·), C(y)

i (·), D(y)
i (·)

}
in the

unit-specific distribution Fi,Xit|Yit,Zi
: see Assumption 2.2 for more details. As {λi, Ci} are
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fixed for each i, we denote Pi as the probability measure given {λi, Ci}, that is, Pi(·) =

P(· ; λi, Ci). Similarly, we denote Ei(·) = E(· ; λi, Ci).
First, we adopt the following assumptions on the model setup.

Assumption 3.1 (Panel data: model assumptions) Suppose we have:

(a) {Yi1, Yi2, Xi1, Xi2, Zi} are independent across i.

(b) For each i, {Yit, Xit} are stationary across t = 1, 2.

(c) For each i, Yi1 ⊥ Yi2|Xi1, Xi2, Zi.

(d) For each i, Pi (Yit = 1|Xi1, Xi2, Zi) = Pi (Yit = 1|Xit, Zi) for t = 1, 2.

(e) 1
N

∑N
i=1 Pi [Pi(Yit = 1|Zi) ∈ (0, 1)] > p for some p > 0, for all N sufficiently large.

In condition (a), due to the unobserved unit-specific heterogeneity, the covariates and out-

comes are i.n.i.d. across units. Condition (b) ensures stationarity that helps us eliminate

the individual effects for tail observations. Conditions (c) and (d) guarantee conditional

independence, which implies that for y1, y2 ∈ {0, 1},

Pi (Yi1 = y1, Yi2 = y2|Xi1, Xi2, Zi) = Pi (Yi1 = y1|Xi1, Zi) · Pi (Yi2 = y2|Xi2, Zi) . (18)

Condition (e), similar to Assumption 2.1 (b) for cross-sectional models, ensures non-

degenerating probabilities. However, it is somewhat weaker than Assumption 2.1 (b):

intuitively, while Assumption 2.1 (b) requires non-degenerate probabilities almost surely,

condition (e) only requires a non-degenerate proportion of switchers, i.e., units with Yit

changing over time. The statement is more complicated due to the need to account for

i.n.i.d. observations.

Second, we assume the following tail condition.

Assumption 3.2 (Panel data: tail approximation) For i = 1, · · · , N , for y ∈ {0, 1},
and almost surely for z ∈ supp(Zi):

(a) The conditional cdf Fi,Xit|Yit,Zi
(x|y, z) satisfies that

1− Fi,Xit|Yit,Zi
(x|y, z) = C

(y)
i (z)x−α̃

(y)
i (z)

(
1 +D

(y)
i (z)x−β

(y)
i (z) + o

(
x−β

(y)
i (z)

))
,

as x → ∞, where functions C
(y)
i (z) > 0,

∣∣∣D(y)
i (z)

∣∣∣ ≤ D < ∞, α̃
(y)
i (z) > 0 satisfying

equation (17), and β
(y)
i (z) ≥ β > 0, for some constants D and β.
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(b) The remainder term satisfies that supz,i

{
xβ

(y)
i (z)o

(
x−β

(y)
i (z)

)}
→ 0, as x → ∞.

(c) The conditional pdf fi,Xit|Yit,Zi
(x|y, z) is non-increasing in x ≥ x, for some x > 0.

Please refer to the discussion after Assumption 2.2 for a detailed explanation. Compared to

Assumption 2.2, we now have all these functions as unit-specific, indexed by i. Especially,

we can accommodate a unit-specific scale parameter, given by
[
C

(y)
i (Zi)

]1/α(y)(Zi)
, in

the Pareto tail approximation. These unit-specific functions will be absorbed into Ai in

equation (19) below, and then differenced out for small T or estimated for large T .

Then, L(y)
i (x, z) = C

(y)
i (z)

(
1 +D

(y)
i (z)x−β

(y)
i (z) + o

(
x−β

(y)
i (z)

))
is the correspond-

ing slowly varying function, and
L(0)
i (x,z)

L(1)
i (x,z)

→ L∗
i (z). Define θ∗ = θ(1) − θ(0), and Ai =

Pi(Yit=0|Zi)
Pi(Yit=1|Zi)

α̃
(0)
i

α̃
(1)
i

L∗
i (Zi). As x → ∞,

πi(x, z) = Pi (Yit = 1|Xit = x, Zi) ∼
1

1 +Ai · xZ
′
iθ

∗ . (19)

Note that as Pi(·) = P(· ; λi, Ci), Ai can be viewed as the fixed effects that can potentially

depend on the observed heterogeneity Zi and unobserved heterogeneity {λi, Ci} in an

arbitrary way.

For small T , we again eliminate Ai by conditioning on Yi1 + Yi2 = 1 and construct the

conditional MLE as follows:

θ̂
∗
= argmax

θ∗∈Θ

N∏
i=1

 1

1 +
(
Xi1
Xi2

)Z′
iθ

∗


Yi1


(
Xi1
Xi2

)Z′
iθ

∗

1 +
(
Xi1
Xi2

)Z′
iθ

∗


(1−Yi1)

1{Ξi}, (20)

where event Ξi = {Yi1 + Yi2 = 1, Xi1 ≥ xN , Xi2 ≥ xN}, for some threshold xN → ∞ as

N → ∞. Again, this can be implemented via the conditional MLE for panel Logit models,

applied to tail observations and using Zi logXit as regressors.

Finally, analogous to the cross-sectional case, the number of units contributing to the

conditional likelihood, NΞ =
∑N

i=1 1{Ξi}, is a random variable, and we define the following

non-random sequence to capture the asymptotic proportion of these units (see Lemma 1

in the Appendix):

ξN =
2

N

N∑
i=1

Ei

[
x
−α̃

(1)
i (Zi)−α̃

(0)
i (Zi)

N C
(1)
i (Zi)C

(0)
i (Zi)

]
.

Assumption 3.3 (Panel data: estimation) Let θ∗ ∈ Θ, where Θ is a compact convex

subset of Rdθ and dθ is the dimension of θ∗. For y ∈ {0, 1}, suppose we have:
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(a) NξN → ∞, as N → ∞.

(b) Let M
(y)
i (Zi) = |Zi|C(1)

i (Zi)C
(0)
i (Zi)

∣∣∣D(y)
i (Zi)

∣∣∣ ∣∣∣∣1− β
(y)
i (Zi)

α̃
(y)
i (Zi)

∣∣∣∣. Then,√
N
ξN

· 1
N

∑N
i=1 Ei

[∣∣∣log Xi1
Xi2

∣∣∣M (y)
i (Zi)x

−α̃
(1)
i (Zi)−α̃

(0)
i (Zi)−β

(y)
i (Zi)

N

]
→ 0, as N → ∞.

(c) ΣN = 1
N

∑N
i=1 Ei

 (
Xi1
Xi2

)Z′
iθ

∗

(
1+

(
Xi1
Xi2

)Z′
i
θ∗

)2

(
log Xi1

Xi2

)2
ZiZ

′
i

∣∣∣∣∣∣Ξi

→ Σ(θ∗), as N → ∞, where

Σ(θ∗) is a finite positive definite matrix.

(d) For all i, Ei

[∣∣∣log Xi1
Xi2

∣∣∣2+κ
∥Zi∥2+κ

]
< M for some κ,M > 0.

This assumption is analogous to Assumption 2.3 for the cross-sectional case, although the

notation here is more involved, notably with the 1
N

∑N
i=1(·) terms accommodating i.n.i.d.

observations across i. Condition (a) ensures that the number of observations contributing

to the likelihood tends to infinity as the cross-sectional sample size increases, where ξN is

the average probability of event Ξi given xN . Condition (b) introduces undersmoothing to

eliminate asymptotic bias. Conditions (c) and (d) guarantee the validity of the Lindeberg-

Feller CLT and uniform LLN for i.n.i.d. observations.

Under these assumptions, we establish the asymptotic normality of our estimator for

panel data models. The proof builds on Wang and Tsai (2009), with significant extensions

to accommodate both panel data structures and i.n.i.d. random variables. See also Hoadley

(1971) for MLE asymptotics in the i.n.i.d. case. Here we extend it to tail analysis, where

the number of tail observations grows at a slower rate than N .

Theorem 3.1 (Panel data: common parameters) Let NΞ =
∑N

i=1 1{Ξi}. Suppose

Assumptions 3.1–3.3 hold. Then,√
NΞΣ

1/2
N

(
θ̂
∗ − θ∗

)
d→ N (0, Idθ) .

Moreover, if we further have f ′
i,Xit|Yit,Zi

(x|y, z) is non-increasing for sufficiently large

x, the extreme elasticity is given by

δi (x, z) =
∂ (πi(x, z)(1− πi(x, z)))

∂x

x

πi(x, z) (1− πi(x, z))
→ −

∣∣z′θ∗∣∣ ,
which can be consistently estimated by plugging in θ̂

∗
.
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4 Extensions

4.1 Panel data with large T

Our previous panel data analysis has focused on short panels with fixed T . In such cases,

unit-specific parameters cannot be consistently estimated, and hence we eliminate them by

conditioning on the sum of Yit over time, which is a sufficient statistic for the individual

parameters. When T is large, we are able to estimate these parameters, although the

incidental parameter problem could lead to an asymptotic bias.

Based on equation (19) in Section 3.2, let Ãi = − logAi, and we have that, as x → ∞,

Pi (Yit = 1|Xit = x, Zi) ∼
1

1 +Ai · xZ
′
iθ

∗ =
1

1 + exp
(
−Ãi + log x · Z ′

iθ
∗
) . (21)

Given this asymptotic equivalence, we can resort to panel Logit estimators for large N

and large T . For example, as shown in Example 2 in Fernández-Val and Weidner (2018),

the MLE estimates of {θ∗, {Ãi}} are jointly consistent and satisfy

θ̂
∗ − θ∗

a∼ N
(
B

N
,
H−1

NT

)
.

as N,T → ∞, where B denotes the asymptotic bias due to the incidental parameter.

Analytic bias correction or jackknife can be applied to eliminate the bias for inference. See

also Stammann, Heiss, and McFadden (2016). Once {θ∗, {Ãi}} are consistently estimated,

we can proceed to estimate the average partial effects (APEs) and provide unit-specific

forecasts based on estimated Pi (Yit = 1|Xit = x, Zi) as defined in equation (21).

4.2 Panels with time-varying covariates Zit

In empirical studies, the additional covariates Z may vary over time. For instance, in the

context of country defaults, factors such as global business cycles could play a significant

role. Then, the unit-specific tail indices in equation (17) becomes α̃
(y)
i (zit) = z′itθ

(y) + λi,

and Ai in equation (19) becomes Ait =
Pi(Yit=0|Zit)
Pi(Yit=1|Zit)

α̃
(0)
i (Zit)

α̃
(1)
i (Zit)

L∗
i (Zit).

Note that we cannot difference out Ait as in equation (19). However, under regularity

conditions, θ∗ can be estimated using a local (conditional) likelihood estimator (Tibshirani

and Hastie, 1987; Honoré and Kyriazidou, 2000). Intuitively, it introduces an additional

kernel weight term that controls the distances across Zit. Without loss of generality,
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assuming T = 2 for simplicity, the estimator for θ∗ is given by

θ̂
∗
= argmax

θ∗∈Θ

n∑
i=1

k
(dz)
h (Zi1, Zi2)

{
(1− Yi1) log

Xi1

Xi2
· Z ′

i1θ
∗ + log

(
1 +

(
Xi1

Xi2

)Z′
i1θ

∗)}
1{Ξi}

where k
(dz)
h (zi1, zi2) = 1

hdz

∏dz
d=1 k

(
zi1,d−zi2,d

h

)
indicates a multidimensional kernel with

k(·) being the kernel function and h being the bandwidth.

4.3 Dynamic panel data model

In this subsection, we extend our analysis to dynamic panel data, incorporating predeter-

mined variables such as lagged dependent variables to capture potential persistence. We

begin by examining the case with small T , and then briefly discuss the case with large T .

Without loss of generality, let us assume the first order Markov property: for each

i = 1, · · · , N ,

Xit, Yit | Xi,1:t−1, Yi,1:t−1, Zi = Xit, Yit | Yi,t−1, Zi,

given {λi, Ci}, where Ci is a unit-specific assemble of functions in Fi,Xit|Yit,Yi,t−1,Zi
, similar

to the tail approximation in Assumption 2.2. Likewise, Pi indicates the corresponding

probability measure given {λi, Ci}.
The first order Markov property implies the stationarity of the conditional joint dis-

tribution Yit, Yi,t−1, Xit | Zi, which is essential to the following derivation. Recall that

previously we applied Bayes’ theorem by partitioning the data into two subsets based on

Yit = 0 and Yit = 1. With dynamics, we must now further partition the data according to

the transition dynamics. In the first other Markov case, there are four transition patterns:

0 → 0, 0 → 1, 1 → 0, and 1 → 1. Therefore, we partition the data into four subsets by

(Yit, Yi,t−1) = (y, y−), and characterize Bayes’ theorem as follows

Pi (Yit = y|Xit = x, Yi,t−1 = y−, Zi = z)

=
fi,Xit|Yit,Yi,t−1,Zi

(x|y, y−, z)Pi (Yit = y|Yi,t−1 = y−, Zi = z)∑
y,y−

fi,Xit|Yit,Yi,t−1,Zi
(x|y, y−, z)Pi (Yit = y|Yi,t−1 = y−, Zi = z)

.

Similar to equation (17), we introduce unit-specific tail thickness as

α̃
(yy−)
i (z) = z′θ(yy−) + λi.

Then, we have 1− Fi,Xit|Yit,Yi,t−1,Zi
(·|y, y−, z) ∈ RV

α̃
(yy−)

i (z)
.

To ensure identification, our previous analysis for static panels is equivalent to nor-

malizing θ(0) = 0 and estimating θ∗ = θ(1). Now, for a similar reason, we normalize
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θ(00) = 0. Given the presence of four transition patterns, a minimum of five periods of

data Yi = (Yi1,Yi2,, Yi3,, Yi4, Yi5)
′ are required. We consider the following four events,

which collectively encompass all transition patterns, allowing us to eliminate unit-specific

terms as before:

E1 : Yi = (0, 0, 1, 1, 0)′ , E2 : Yi = (0, 1, 1, 0, 0)′ ,

E3 : Yi = (1, 1, 0, 0, 1)′ , E4 : Yi = (1, 0, 0, 1, 1)′ .

Given the stationarity of the conditional joint distribution Yit, Yi,t−1, Xit | Zi implied by

the first order Markov assumption, as xt → ∞ for t = 1, · · · , 5,

Pi

(
E1

∣∣∣∪4
e=1Ee, {Xit = xt}5t=1 , Zi = z

)
∼ x−z′θ(01)

3 x−z′θ(11)

4 x−z′θ(10)

5x−z′θ(01)

3 x−z′θ(11)

4 x−z′θ(10)

5 + x−z′θ(01)

2 x−z′θ(11)

3 x−z′θ(10)

4

+ x−z′θ(11)

2 x−z′θ(10)

3 x−z′θ(01)

5 + x−z′θ(10)

2 x−z′θ(01)

4 x−z′θ(11)

5

 .

Subsequently, the conditional MLE for
(
θ(01), θ(10), θ(11)

)
can be constructed in a similar

manner to the static panel case discussed in Section 3.2. Note that unit i contributes to

the conditional likelihood only if Xit appears in the tail for at least five periods. This

poses empirical challenges for the data, suggesting it would be more suitable for datasets

with a larger N , and a fixed but slightly larger T .

For large T , the bias correction in Fernández-Val and Weidner (2018) remains appli-

cable to the dynamic panel data models, so the estimator in Section 4.1 remains valid.

5 Monte Carlo simulations

We conduct two sets of Monte Carlo simulation experiments. Experiment 1 examines

cross-sectional data and focuses on the estimation performance. This exercise provides

intuitive insights into when and how the proposed estimator outperforms the alternatives.

Experiment 2 investigates panel data with large N and large T ,13 and focuses on the

pseudo out-of-sample forecasting performance, aligning more closely with the empirical

example of bank loan charge-off rates.

13We also conducted Monte Carlo simulations in panel data with large N and small T in a previous

version of this paper. Results from these simulations are available upon request.
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5.1 Alternative estimators

We compare the proposed estimator with four alternatives: a Logit estimator using all

observations, a Logit estimator using only tail observations, a local linear estimator, and

a local Logit estimator, where the first two are parametric estimators and the last two are

nonparametric ones.

For cross-sectional data, let β = (β0, β1)
′. First, the Logit estimator is characterized

as

Yi = 1(β0 + β1Xi − εi ≥ 0), εi ∼ standard logistic.

Second, the local linear estimator is given by

β̂(x) = argmin
β

N∑
i=1

kh(Xi − x) [Yi − β0 − β1(Xi − x)]2 ,

Ê[Yi|Xi = x] = β̂0(x),

where kh(·) is a kernel function with bandwidth h. We employ a Gaussian kernel here,

i.e., kh(·) = 1
hϕ(

·
h), where ϕ(·) is the standard normal pdf, and choose the bandwidth

based on Silverman’s rule of thumb h ≈ 1.06σ̂N−1/5, where σ̂ is the standard deviation

of the Xis and N is the sample size. The results are robust with respect to a range of

bandwidth choices. Finally, the local Logit estimator is a flexible nonparametric estimator

that specifically accounts for binary outcomes Yi. Let pi(β, x) =
1

1+exp[−(β0+β1(Xi−x))] . The

local Logit maximizes the locally weighted log-likelihood function

β̂(x) = argmax
β

N∑
i=1

kh(Xi − x) [Yi log pi(β, x) + (1− Yi) log (1− pi(β, x))] ,

Ê[Yi|Xi = x] = pi(β̂(x), x).

For panel data, the Logit estimator is given by

Yit = 1(β0 + β1Xit + Ci − εit ≥ 0), εi ∼ standard logistic,

where Ci captures unobserved individual heterogeneity. In panels with large N and large

T , {β0, β1, {Ci}} can again be jointly estimated using a fixed effects estimator with bias

corrections (Fernández-Val and Weidner, 2018; Stammann, Heiss, and McFadden, 2016).

For the local linear and local Logit estimators, the setup is more flexible

Yit = g (Xit, Ci, εit) ,
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where the function g and the distributions of Ci and εit could be unknown. We incor-

porate a correlated random effects structure, which allows for the unobserved individual

heterogeneity to be correlated with the covariates Xit (and Zi) and thus may help enhance

the performance of these alternatives in finite samples. More specifically, suppose there

is a sufficient statistic Vi which could be multi-dimensional, such that Ci|Xi,1:T = Ci|Vi.

One commonly used example of Vi is the time sum of Xit, i.e., Vi =
∑

tXit. Then, Vi can

be included in the conditioning set for the local linear and local Logit estimators, so we

essentially run a nonparametric regression to estimate the conditional mean E[Yi|Xi, Vi]:

see details in Liu, Poirier, and Shiu (2024) for general nonlinear panel data models. With-

out loss of generality, let Vi be a scalar for notation simplicity. Now β = (β0, β1, β2)
′,

pit(β, x) =
1

1+exp[−(β0+β1(Xit−x)+β2(Vi−v))] , and

Local linear: min
β

N∑
i=1

kh(Xit − x)kh(Vi − v) [Yit − β0 − β1(Xit − x)− β2(Vi − v)]2 ,

Local Logit: max
β

N∑
i=1

kh(Xit − x)kh(Vi − v) [Yit log pit(β, x) + (1− Yit) log (1− pit(β, x))] .

Furthermore, for all these estimators, we can also incorporate additional covariates Zi,

and the formulas are similar to those above.

5.2 Experiment 1: cross-sectional data

Experiment 1 is based on cross-sectional data, where we focus on the comparison of esti-

mation performance across estimators.

The Monte Carlo design is summarized in Table 1. The data are generated from

a threshold-crossing model with both Xi and εi following Student-t distributions.14 As

discussed in Section 2.1, the degree of freedom of the t distribution converges to the tail

index α asymptotically. Here we consider a range of α values from 0.5 to 2. As elaborated

in Proposition 2.2, in the tail, α(0) → αX + αε ranges from 1 to 4, α(1) → αX varies from

0.5 to 2, and the extreme elasticity −
∣∣α(1) − α(0)

∣∣→ −αε spans from −2 to −0.5.15 From

14We use the difference in medians (medX −medε) as the threshold to keep the samples more balanced

between Yi = 0 and 1.
15In many economic datasets, the tail index α typically falls between 1 and 2. For example, in a

review paper, Gabaix (2009) mentioned that “it seems that the tail exponent of wealth is rather stable,

perhaps around 1.5,” referencing Klass, Biham, Levy, Malcai, and Solomon (2006). Also, Clauset, Shalizi,

and Newman (2009) remarked that the tail index usually lies between 1 and 2 (note that the α in their

notation corresponds to α− 1 in ours).
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Table 1: Monte Carlo design - Experiment 1

Model: Yi = 1 (Xi − εi ≥ medX −medε)

Covariate: Xi ∼ |tαX |, αX = 0.5, 1, 1.5, 2

Error term: εi ∼ |tαε |, αε = 0.5, 1, 1.5, 2

Sample Size: N = 10000

# Repetitions: Nsim = 1000

the Monte Carlo setup, we can clearly see that the structure of Bayes’ theorem serves not

as the data-generating process but as a useful tool to disentangle information from the

tail. The sample size of N = 10000 is directly comparable with our empirical data sets on

bank loan charge-off rates, which comprises 8538 banks in the baseline sample. For each

experimental setup, we execute 1000 Monte Carlo simulations.

Our tail estimator for α(y) is based on the “rank-1/2” estimator in Gabaix and Ibrag-

imov (2011), which can be viewed as a refinement of the classical Hill estimator and often

performs well in finite samples. Then, we estimate the conditional probability π(x) using

the sample analog of equations (6) and (7). We also compare with alternative estimators

described in Section 5.1. For both the tail estimator and the Logit estimator with tail

observations, we set the cutoffs x
(y)
N at 97.5% of the distributions of X for Y = 0 and

1 separately.16 In the main text, we plot the comparisons regarding estimated param-

eters, conditional probability, and extreme elasticity, for the specification with αX = 1

and αε = 1. Comprehensive tables covering all model specifications are provided in the

Appendix for detailed reference: see Table 6 for parameter estimation, Table 7 for extreme

elasticity, Table 8 for conditional probability, and Table 9 for partial effects. The main

messages are similar across different values of tail indices.

Figure 1 depicts a log-log plot from one of the 1000 Monte Carlo simulations, illustrat-

ing that tail observations align with a downward sloping line, distinguishing them from

the flatter non-tail region. This pattern suggests that the proposed tail estimator would

be able to effectively capture the tail behavior. The estimated tail indices (red solid lines)

closely match their true asymptotic values (black dashed lines). Figure 2 further shows

16The tail estimator is robust with respect to a range of cutoffs x
(y)
N . As evident from the log-log plot

in Figure 1, the downward patterns are strong with the slopes remaining stable across a range of cutoffs,

which is common in many empirical data as well.
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Figure 1: Log-log plot - Experiment 1

Notes: Based on one sample from specification with αX = 1 and αε = 1. In the tail, α(0) → 2 and α(1) → 1

are indicated by the black dash lines. The estimated α̂(0) and α̂(1) are indicated by the red solid lines.

the distributions of the parameter estimates from all 1000 Monte Carlo simulations. The

distributions are both bell-shaped and centered around the true asymptotic values indi-

cated by the blue vertical lines. Notably, α(1) more precisely estimated than α(0), as the

former corresponds to more extreme covariates.

Figure 3 presents the estimated conditional probabilities for X at 90%, 95%, 97.5%,

and 99% of its distribution. The true conditional probability P (Y = 1|X = x) is given by

the blue vertical lines. As described in the DGPs, these conditional probabilities increase

with the evaluation point x. The proposed tail estimator dominates all other alternatives,

centered around the true probabilities with low variance as well. The variance of the tail

estimator decreases as the evaluation point x increases, reflecting reduced uncertainty as

the conditional probability approaches one.

In contrast, the Logit estimators are largely biased due to the model misspecification

that fails to account for the heavy tail. The direction of the bias depends on the relative

positions of the estimation sample and the evaluation points. When the estimation sample

includes all observations, the “Logit, all X” estimator shows an upward bias. This occurs

because the estimation sample is overweighted by non-tail observations, and thus the tail

evaluation points are too extreme given the misspecified thin tail logistic distributions,

which leads to an overestimation of the probability of Y = 1 in the tail evaluation points.

Conversely, when the estimation sample includes tail observations only, the “Logit, tail X”
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Figure 2: Parameter estimation - Experiment 1

Notes: Specification with αX = 1 and αε = 1, so in the tail, α(0) → 2 and α(1) → 1, indicated by the blue

vertical lines.

tends to exhibit a downward bias (except at the 99% percentile). The reason is that given

the logistic model’s misspecified assumption of a thinner tail, some tail evaluation points

can appear relatively moderate compared with the tail observations (with cutoffs at 97.5%

of the distributions of X for Y = 0 and 1 separately), resulting in an underestimation of

the probability of Y = 1.

The local Logit estimator performs reasonably well for less extreme evaluation points,

such as when x is at the 90% percentile, but it exhibits significant bias and variance at

more extreme points. The local linear estimator is even more flexible, and thus yields

even larger variance across all these evaluation points. Due to their poor estimation per-

formance and relatively long computation times, we omit these nonparametric estimators

from Experiment 2 and the empirical example below, except for the baseline case in Table

4.

Figure 4 plots the estimated extreme elasticities evaluated at 97.5% of the distribution

of X, and the key messages are similar—the Logit estimators induce excessive bias, the

nonparametric estimators suffer from high variance, whereas the proposed tail estimator

flexibly and efficiently capture the tail behavior and yields the most accurate estimates.
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Figure 3: P̂ (Y = 1|X = x) - Experiment 1

Notes: Specification with αX = 1 and αε = 1. Each row evaluates the probability at a specific percentile

of the distribution of X (90%, 95%, 97.5%, and 99%). The true P (Y = 1|X = x) is indicated by the blue

vertical lines.

Figure 4: Extreme elasticity estimation - Experiment 1

Notes: Specification with αX = 1 and αε = 1, so the extreme elasticity −
∣∣∣α(1) − α(0)

∣∣∣ ≈ −αε = −1,

indicated by the blue vertical lines. Evaluated at 97.5% of the distribution of X.
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Table 2: Monte Carlo design - Experiment 2

Model: Yit = 1 (Xit − εit ≥ medX −medε)

Covariate: Xit ∼ |tλi
|, λi = max{αX + λ̃i, 0},

αX = 1, 1.5, 2, λ̃i ∼ 0.2N(−0.25, 0.12) + 0.8N(0.25, 0.12)

Error term: εit ∼ |tαε |, αε = 1, 1.5, 2

Sample Size: N = 10000, T = 100

# Repetitions: Nsim = 1000

5.3 Experiment 2: panel data

Experiment 2 examines panel data with large N and large T , emphasizing the pseudo

out-of-sample forecasting performance, which is closely related to the empirical analysis

of bank loan charge-off rates.

The Monte Carlo design is modified from the cross-sectional case in Experiment 1

and described in Table 2. Now we incorporate the unit-specific tail thickness λi for Xit,

where the underlying distribution of λi is bimodal. For the tail estimator, we resort to

the bias corrections as in Fernández-Val and Weidner (2018) and Stammann, Heiss, and

McFadden (2016). Further information can be found in Section 4.1. Additionally, details

on the alternative estimators are outlined in Section 5.1. The cutoffs for both the tail

estimator and “Logit, tail X” are the 90% of the X distributions in this experiment and

the empirical analysis below, noting the tail estimator’s robustness over a range of cutoffs

as discussed in footnote 16.

The accuracy of density forecasts is evaluated using the log predictive score (LPS),

as recommended by Amisano and Giacomini (2007). The LPS is calculated as LPS =
1

N†
f

∑
i∈N †

f
log p̂(yi,T+1|D), where yi,T+1 is the outcome at time T + 1, and p̂(yi,T+1|D) is

the predictive likelihood based on the estimated model and observed data D. N †
f is the set

of units forecasted, which meet the following criteria: (1) Xit exceeds the 90th percentile in

the estimation sample, (2) Yit switches values over time among these tail observations, and

(3) Xi,T+1 also falls within the tail during the forecasting period. To assess the significance

of LPS differences, I integrate the tests from Amisano and Giacomini (2007) for density

forecasts and Qu, Timmermann, and Zhu (2023) for panel data.

In Table 3, each subpanel’s first row presents extreme elasticity estimates from the
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Table 3: Parameter estimation and forecast evaluation - Experiment 2

αX = 1 αX = 1.5 αX = 2

αε = 1

α̂∗ -1.05 (0.03) -1.06 (0.03) -1.07 (0.03)

LPS ·N †
f

Tail -113 -235 -318

Logit, tail X -148 *** -47 *** -8 ***

Logit, all X -480 *** -89 *** -38 ***

αε = 1.5

α̂∗ -1.53 (0.06) -1.53 (0.04) -1.52 (0.04)

LPS ·N †
f

Tail -37 -106 -172

Logit, tail X -50 *** -43 *** -7 ***

Logit, all X -267 *** -64 *** -33 ***

αε = 2

α̂∗ -2.02 (0.09) -1.98 (0.06) -1.95 (0.05)

LPS ·N †
f

Tail -15 -55 -102

Logit, tail X -13 *** -35 *** -7 ***

Logit, all X -135 *** -55 *** -20 ***

Notes: α̂∗ is estimated by the tail estimator, averaged across Nsim = 1000 repetitions, with corresponding

standard errors across repetitions in the parentheses. The forecasts are assessed by the LPS and a test

integrating Amisano and Giacomini (2007) and Qu, Timmermann, and Zhu (2023). For the tail estimator,

the table reports the exact values of LPS · N†
f (averaged across Nsim = 1000 repetitions). For other

estimators, the table reports their differences from the tail estimator. The tests compare other estimators

with the tail estimator, with significance levels indicated by *: 10%, **: 5%, and ***: 1%.

tail estimator, which are close to the true values, −αε. Subsequent rows compare forecast

accuracy among estimators and show that the tail estimator consistently outperforms both

“Logit, tail X” and “Logit, all X” across all specifications. Although “Logit, tail X” is

better than “Logit, all X,” it still performs worse than the tail estimator, especially with

smaller αX and αε, where heavy tails are more pronounced. Therefore, it is important

to distinguish the tail from the middle of the sample as well as account for heavy tail

patterns. This is also demonstrated in Figure 5, which displays scatter plots of the LPS

from 1000 Monte Carlo repetitions in the setup with αX = 1 and αε = 1.
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Figure 5: Log predictive score - Experiment 2

Notes: Specification with αX = 1 and αε = 1. Each circle represents one Monte Carlo repetition. Note

that the x- and y-scales are substantially different.

6 Empirical example: housing prices and bank riskiness

Charge-off rates serve as an indicator of bank losses. A bank could be riskier for a particular

type of loan if its corresponding charge-off rates exceed a certain threshold. In our analysis,

we focus on a panel of small banks with assets less than $1 billion, similar to Liu, Moon,

and Schorfheide (2023). Since the banks are small, it is reasonable to assume that they

operate predominantly in local markets. In this empirical example, we examine the impact

of substantial local housing price declines on the riskiness of small banks, considering that

this channel played a pivotal role during the 2007-2008 financial crisis.

6.1 Data and sample

In this empirical example, we focus on the setup in equation (21) in Section 4.1 for panel

data models with large N and large T . The binary outcome Yit is a risk dummy based

on the loan charge-off rate for a specific loan type of bank i in quarter t. Yit = 1 if the

charge-off rate is greater than a threshold c. We present results for c = 0 in the main text

and relegate robustness checks for alternative c values to the Appendix. The qualitative

findings are consistent across different levels of c. The extreme regressor Xit is given by

decreases in local housing prices. To convert the extreme values to the right tail, we
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define Xit as the deflation rate of the local housing price in the previous quarter.17 The

additional covariate Zi represents the average quarterly change in the local unemployment

rate, accounting for the local economic conditions.

Our data are obtained from the following sources. Bank balance sheet data at a quar-

terly frequency, such as loan charge-off rates, are constructed based on the Call Reports

from the Federal Reserve Bank of Chicago.18 We define the local market at the county

level, utilizing the annual Summary of Deposits from the Federal Deposit Insurance Corpo-

ration to determine the local market for each bank.19 Housing price indices at a quarterly

frequency (all transactions, not seasonally adjusted) are sourced from the Federal Housing

Finance Agency, and the 3-digit zip code data are converted to the county level using the

HUD USPS ZIP Code Crosswalk from the Department of Housing and Urban Develop-

ment.20 Finally, the county-level unemployment rates are obtained from the Bureau of

Labor Statistics website. The original data are seasonally adjusted at a monthly frequency,

and we aggregate them to a quarterly frequency by time averaging.

Our baseline sample focuses on the Residential Real Estate (RRE) charge-off rates.

The estimation sample spans from 1999Q4 to 2009Q3, comprising N = 8538 small banks

across 40 quarters.21 There are N †
e = 2642 banks in the tail for more than one period and

contributing to the likelihood, that is, Xit is above the 90th percentile of the estimation

sample and Yit switches values across time for these tail observations. We perform a pseudo

out-of-sample forecast for the period of 2009Q4. There are N †
f = 2098 banks that satisfy

the conditions for N †
e and additionally have Xi,T+1 fall in the tail during the forecast

17As the 90th percentiles of Xit are positive in our analyzed samples, logXit is well-defined in the tail.
18Please refer to Appendix D in Liu, Moon, and Schorfheide (2023) for details on constructing loan

charge-off rates from the raw data.
19We calculate the deposits received by each bank from every county and link the bank to the county

from which it received the highest amount of deposits. We also assess the robustness of our analysis by

constructing weighted averages of the covariates, using deposit proportions from each county as weights.

The results are very similar, which can be attributed to the concentration of deposits across counties and

the similarity in covariate values among neighboring counties.
20We use the 2010Q1 Crosswalk—the earliest available one that is close to our empirical time periods. We

also experimented with the county-level Zillow Home Value Index (ZHVI), and the results are qualitatively

similar.
21The selection process for a subset of observations from the raw data in each sample is conducted as

follows: First, we exclude banks with average non-missing domestic total assets above $1 billion. Second,

we exclude banks whose target charge-off rates are missing for all time periods in the sample. In the baseline

RRE sample, this process results in the elimination of 583 banks in the first step and an additional 162

banks in the second step.
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Figure 6: Log-log plot - banking application, baseline sample

Notes: Baseline sample: RRE, forecasting period = 2009Q4, T = 40.

period.22

For robustness check, we also consider (non-farm) non-residential commercial real es-

tate (CRE) charge-off rates, various time dimensions in the estimation samples ranging

from 32 to 48 quarters, and different forecasting periods T + 1 = 2009Q3 and 2009Q4.

The main results remain consistent across these setups. Based on the sample statistics in

Table 10 for all samples, as well as the log-log plot in Figure 6 for the baseline sample,23

we see that Xit|Yit = y indeed exhibits heavy right tails, so our tail estimator would be

more appealing.

6.2 Results

Table 4 compares forecasting performance across estimators. The estimators are similar

to those in the Monte Carlo simulation experiment 2: see Sections 5.1 and 5.3 for more

details. The proposed tail estimator is the overall best. “Logit, tail X” ranks second, yet

still significantly worse than the tail estimator, indicating the importance of carefully ad-

dressing the tail behavior. “Logit, all X” ranks third, indicating the presence of significant

nonlinearity and possible distinct pattern in the tail compared to the middle range. Local

22To account for banks’ endogenous exit choices, one could further consider an extension to a panel

Tobit model as in Liu, Moon, and Schorfheide (2023), which is left for future research.
23Fitted lines, such as those in Figure 1, are not plotted here, because the lines could be unit-specific

due to observed heterogeneity Zi and unobserved heterogeneity {λi, Ci}.
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Table 4: Forecast evaluation - banking application, baseline samples

RRE CRE

Tail -1433.72 -1134.48

Logit, tail X -18.66 *** -23.49 ***

Logit, all X -160.25 *** -54.26 ***

Local Logit -429.20 *** -516.43 ***

Notes: Forecasting period = 2009Q4, T = 40. The forecasts are assessed by the LPS and a test integrating

Amisano and Giacomini (2007) and Qu et al. (2020). For the tail estimator, the table reports the exact

values of LPS ·N†
f . For other estimators, the table reports their differences from the tail estimator. The

tests compare other estimators with the tail estimator, with significance levels indicated by *: 10%, **:

5%, and ***: 1%.

Logit yields the least accurate forecasts, suggesting that while it captures nonlinearity, the

nonparametric approach could be too noisy with the limited data available in the tail.

Table 11 in the Appendix provides further details on the parameter and APE estimates

based on the tail estimator. First, the coefficient on logXit is always significant, with val-

ues around 0.95–1.15 for the RRE samples and around 1.2–1.4 for the CRE ones. The

negative of this coefficient can be roughly viewed as the homogeneous part of the extreme

elasticity, and the estimated values suggest the potential presence of heavy tails. Second,

the coefficient on Zi logXit is mostly positive, being larger and significant for the RRE

samples, while smaller and insignificant for the CRE ones. This difference aligns with

intuitive expectations: higher unemployment increases could directly amplify the impact

of a housing price drop on the risk associated with residential real estate loans, whereas

changes in unemployment rates may not directly impact the risk profile of non-residential

commercial real estate loans. Third, the estimated APEs are around 0.15 for the RRE

samples and 0.13 for the CRE ones, which could be interpreted as that in the tail, a 1%

decrease in housing prices in the previous quarter corresponds to approximately a 0.15

(0.13) increase in the probability of high risk, i.e., Yi,T+1 = 1, for RRE (CRE) loans. Fi-

nally, unobserved heterogeneity exhibits a greater dispersion than observed heterogeneity,

as the sample variances of the estimate Ãi are around 1 while the sample variances of

θ̂Z logXZi logXit range from 0.1–0.3.

Tables 11 and 12 in the Appendix also show that our results are robust with respect
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Figure 7: Predictive probability of high risk, average by county, baseline sample

Notes: Baseline sample: RRE, forecasting period = 2009Q4, T = 40.

to the threshold c = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1,24 to both CRE and RRE loans, to the

estimation sample’s time dimension T = 32, 36, 40, 44, 48, and to the forecasting period

being 2009Q3 and 2009Q4.

Figure 7 plots the average predictive probability of high risk across counties, with

darker shades indicating higher risk levels in those counties. Notably, Florida and the

Great Lakes regions appear as areas with elevated risk. This heterogeneity in risk may

arise from observed heterogeneity Zi, such as variations in local housing prices and local

unemployment rates, as well as unobserved heterogeneity {λi, Ci}, which could be captured

by Ãi, where larger values of Ãi are associated with higher risk: see equation (21).

Accordingly, in Table 5, we regress the estimated Ãi on bank characteristics, following

Liu, Moon, and Schorfheide (2023). The “Initial” column uses bank characteristics at

24As the threshold c increases, the coefficient on Zi logXit becomes less significant, particularly becoming

insignificant when c = 1. This is because a larger c reduces the occurrence of Yit = 1, leading to fewer

banks in the tail with Yit switching values across time. Then, the effective sample size for estimation N†
e

substantially decreases, resulting in noisier estimates.

40



the initial period 1999Q4, ensuring that these regressors are exogenous to subsequent

dynamics. The “Average” column uses bank characteristics given by their time averages

over the estimation period, incorporating more recent attributes of the banks. The findings

across both columns are in general consistent. We see that larger banks (measured by log

assets), those that specialize in RRE loans (measured by RRE loans to total loans ratio),

in lending activities (measured by loan to assets ratio), or with more diversified earnings

(measured by the share of non-interest income to total income) tend to have a greater

capacity for assuming riskier RRE loans, reflected in a higher Ãi. On the other hand,

higher profitability (measured by return on assets) and operational efficiency (measured

by overhead costs to assets ratio) correspond to a lower Ãi and thus reduced risk. The

credit quality (measured by ALLL to total loans ratio) and the capital-asset ratio do not

have significant effects in the regression using initial bank characteristics.

7 Conclusion

This paper proposes a novel semiparametric method based on Bayes’ theorem and RV

functions. It models heavy tail behavior through a Pareto approximation, while maintain-

ing flexibility in the relationship between the outcome and covariates outside of the tail

region.

This method is particularly useful in panel data models, accounting for unobserved

unit-specific heterogeneity. We show that under regularity conditions, our objective func-

tion asymptotically aligns with a panel Logit regression on tail observations using logXit

as a regressor. Then, various established econometric techniques could be applicable,

which could be convenient for empirical research. Specifically, in panels with large N

and small T , the unobserved unit-specific tail thickness and RV functions can be can-

celed out via the conditional MLE; in panels with large N and large T , bias correction

methods (Fernández-Val and Weidner, 2018; Stammann, Heiss, and McFadden, 2016) can

be employed, facilitating the estimation of unit-specific parameters and the prediction of

unit-specific future outcomes. Furthermore, we also extend our method to dynamic panel

data models with lagged outcomes.

The practical implications of this method potentially span both microeconomics and

macroeconomics studies, particularly valuable in light of recent extreme events. For ex-

ample, one may be interested in analyzing the effect of large sovereign debts on country

default risks, or assessing the impact of extreme weather on productivity at various geo-
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Table 5: Heterogeneity and bank characteristics, baseline sample

Initial Average

Log assets 0.20*** 0.19***

(0.03) (0.03)

Loan frac. 0.28*** 0.68***

(0.10) (0.11)

Capital-assets -0.65 -2.05***

(0.56) (0.60)

Loan-assets 0.83*** 1.77***

(0.18) (0.19)

ALLL-loan 2.61 15.01***

(3.18) (3.45)

Diversification 1.00** 2.79***

(0.44) (0.50)

Ret. on assets -30.53*** -36.51***

(9.62) (11.66)

OCA -19.34** -60.19***

(9.05) (12.30)

Intercept -3.68*** -4.25***

(0.37) (0.38)

Observations 2257 2633

R2 0.05 0.12

Adjusted R2 0.05 0.12

F Statistic 15.49*** 45.46***

Notes: Baseline sample: RRE, forecasting period = 2009Q4, T = 40. Regression of Ãi bank characteristics.

In the “Initial” column, bank characteristics are given by their values at the initial period 1999Q4. In

the “Average” column, bank characteristics are given by their time averages over the estimation sample.

Significance levels are indicated by *: 10%, **: 5%, and ***: 1%.
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graphic and even individual levels.
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