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Abstract

During technological breakthrough, the uncertain nature of innovation often gives rise
to unanticipated leader firms that coincidentally outpace their rivals. Do these unanticip-
ated leaders continue to disseminate ideas to the industry after they achieve product market
advantage? Using newly digitized corporate lab-level data and a unique natural experiment
based on pre-Fairchild semiconductor choices, I test the corporate response to a plausibly
unanticipated head start in the American late 1950s’ microchip breakthrough. I find: 1) The
head start quickly creates early leaders in the microchip industry, marked by persistent influx
of citations and significant expansion of product lines. 2) The leader labs persistently produce
more advanced inventions and new product designs in their leading research fields. 3) Rather
than fencing off these research fields, the leaders disproportionately disclose technical details
as public knowledge in industrial associations. The voluntary knowledge diffusion is likely
strategic and vertical. I find that the leaders selectively disclose fabrication techniques that
may attract downstream users, while limiting the release of experimental details that could
benefit horizontal product rivals. 4) The vertical diffusion from leaders is mostly detected
from in-person conferences arranged by the Institute of Radio Engineer (IRE), in which the
"regional section" policy likely localizes the leader knowledge diffusion to engineers in close
vicinity. I find Marshallian externalities indeed likely emerge in leader lab locations.

∗London School of Economics and Political Science. Email: j.zeng15@lse.ac.uk

1



1 Introduction
Innovation plays a pivotal role in driving economic development, and the expan-

sion of technology clusters is often propelled by periods of groundbreaking discoveries
(Romer, 1990; Schumpeter, 1942; Nelson and Winter, 1982). During revolutionary tech-
nological change, early leaders may crucially facilitate the diffusion of breakthroughs.
A notable anecdote is how Fairchild Camera and Instrument Corp, an early-mover in
microchip, advanced the aggregate technology frontier of micro-electronics industry and
sparked the Silicon Valley (Klepper, 2010; Berlin, 2005). Alternatively, however, if early
industrial leaders are more engaged in the acquisition of patent monopoly right, then
their incentives to preempt and exclude rivals from new markets may lead to stagnated
productivity growth and declining business dynamism (Argente et al., 2020; Williams,
2013; Akcigit and Ates, 2023). Therefore, understanding how breakthroughs reshape
market structure is a crucial first step to informing the optimal policy in new tech-
nological revolution. However, there is still insufficient evidence to explain why firms
occasionally disclose crucial techniques to the industry and facilitate cluster formation,
especially during early technology breakthroughs.

This paper aims to unveil whether early technology leaders in breakthrough in-
novation continue to innovate and disseminate ideas after they achieve product market
advantage over their rivals, and how the early technology leadership impacts high-tech
cluster formation. However, the head start of firms into breakthrough innovation is
highly endogenous. To robustly pin down the trajectory of early technology leaders, I
focus on one of the most important technological breakthroughs in the US technology
history - the 1950s’ Fairchild microchip breakthrough1. The context of the US micro-
chip breakthrough offers distinctive advantage to study early-mover R&D performance:
firstly, the head start of corporate labs in each downstream research field, which has
the potential to creatively combine with semiconductor technology, is found to be de-
pendent on the choice of two major semiconductor materials (Silicon and Germanium)
before Fairchild emerged. The two semiconductors share similar properties and were
close substitutes before the breakthrough (Berlin, 2005; Reid, 2001). Moreover, I find
that the ex ante choice of two semiconductors among corporate labs and research fields
is orthogonal to most observable corporate and technological characteristics. After mi-
crochip breakthrough, Silicon is quickly proven to be the right material for microchip
due to superior oxide properties. The identification assumption is that corporate labs
holding Silicon patents in a given research field would experience a quasi-exogenous
head start over other germanium patent holders in the same research field after the
breakthrough. I leverage the setting, and conduct a corporate lab×research field level

1Figure A.1 showcases how the early takeoff of high-tech clusters (e.g., Silicon Valley) was associated
with the 1957 microchip breakthrough.
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difference-in-differences estimation to compare dynamic R&D outcomes between Sil-
icon (head start), and Germanium (counterfactual head start) groups, conditional on
the same research field.

Furthermore, I digitize and compile several novel datasets to measure R&D out-
comes, including micro product data from each electronics manufacturer, advanced
physics publications, historical patents micro data, and corporate industrial confer-
ence/working paper/proceeding publications. Using word embedding techniques, I run
a cross-walk between their textual descriptions and patent classification scheme. Then,
I merge these geo-located data to each corporate R&D lab. This allows me to separ-
ately estimate the impact of corporate labs’ head start in microchip research on various
R&D outcomes, ranging from research ("R") to development ("D") of products, within
each specific research field. The corporate conference publication micro data also allow
me to capture the disclosure of techniques at a granular lab×research field level. The
above data enable me to understand whether early industrial leaders during technology
breakthrough continue to radically innovate and disseminate ideas to the industry after
they achieve relative product market advantage. I further rule out several caveats that
may jeopardise my estimates, including simulaneous shock of the NASA Space Act,
the likelihood that close research fields are strategic substitutes, and negative spillover
(e.g., business stealing and R&D duplication).

Several interesting findings are unveiled. Firstly, the Silicon head start triggers
significant creative combination of microchip technology toward the research field where
Silicon patents were held. The head start quickly creates early leaders in the microchip
industry, marked by persistent influx of citations and significant expansion of product
lines. The leader corporate labs persistently produce more radical inventions and new
product designs in their leading research fields, rather than a one-off acquisition of
monopoly rights. However, there was no significant effect on the "Pasteur’s Quadrant",
measured by corporate publications of advanced physics research. Therefore, the early
leader R&D seemed highly "applied" by nature, and the reward for obtaining a head-
start in microchip breakthrough seemed to concentrate only on the "development" phase
of "R&D" process. The finding coincides with the miracle of rapid expansion of product
varieties in microchip sectors just after the breakthrough (Klepper, 2010). By 1968, the
market size of commercial-use microchip had trumped the military market spurred by
NASA procurement (Berlin, 2005; Orton, 2009). New microchip designs were released
on a yearly basis from companies such as Texas Instruments and Fairchild (Berlin,
2005).

Furthermore, I demonstrate that after the initial head start, early technology
leaders significantly disclose technical details to industrial association, such as the In-
stitute of Electrical and Electronics Engineers (IEEE). I demonstrate that the knowledge
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sharing is unlikely to be spontaneous and automatic knowledge spillover; instead, the
knowledge disclosure is likely strategic and vertical: the early leaders selectively disclose
fabrication techniques that may attract downstream users, while limiting the release of
experimental details that could benefit horizontal product rivals. I also demonstrate
that the leader labs are more likely to disclose fabrication techniques when the product
designs from their parent firms are likely to become dominant. I argue that the volun-
tary knowledge diffusion is likely associated with the increased product varieties during
technology breakthrough, in which the firm of each design competes to become the
dominant design. In a simple conceptual model, early leaders could have an incentive
to lower the relative adoption costs for potential downstream users by releasing certain
technical details as public knowledge. However, once crucial details are disclosed in
public, they also become quasi-public goods that can be absorbed by rivals, explaining
why the disclosure appears to be vertical and selective. Furthermore, I rule out several
alternative caveats, including the concern that early leaders may publish original find-
ings on IEEE platform, rendering the measure of knowledge disclosure a noisy measure
of innovation.

Lastly, I find that the vertical diffusion from leaders is mostly detected from
in-person conferences arranged by the Institute of Radio Engineer (IRE), in which
the "regional section" policy that requires IRE members to participate within section
meetings likely localizes the leader knowledge diffusion. In the Silicon lab located
county×research field pairs, the cumulative stock of inventors and corporate assignees
are catalyzed to a larger extent, compared with the scenario when there are only Ger-
manium labs. This is a sign that the channels of leader knowledge diffusion are likely to
remain localized due to search frictions across space. As a result, early leader located
clusters are likely to experience a rise of Marshallian externalities due to the concen-
tration of vertical knowledge diffusion. This could raise the R&D performance of local
labs in a persistent way. Robustness checks further demonstrate that the creation of
such "Silicon Valleys" is a generalizable phenomenon beyond California and west coast
states2.

This research contributes to the literature on economic geography, economic his-
tory and knowledge spillover. Scholars have sought to understand the genesis of high-
tech cluster formation and early industrial takeoff (Gross and Sampat, 2022; Mokyr
et al., 2022; Kantor and Whalley, 2022; Saxenian, 1994; Giorcelli and Li, 2021). One
way to approach the superstar cluster miracle is through the theory of agglomeration
economies, whereby co-location of technologically related firms is regarded essential for
new ideas to develop and recombine due to spatial frictions in knowledge exchange

2Other typical early-mover labs, such as IBM in Poughkeepsie, were also catalysts of local cluster
take-off.
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(Glaeser, 1999; Catalini et al., 2018; Atkin et al., 2022; Koh et al., 2022; Jaffe et al.,
1993; Asheim and Gertler, 2006). Prior work has also shown that breakthrough in-
novation often imposes extraordinary influence on the churning of high-tech industries
across space, and even facilitate the making of new high-tech clusters (Kerr, 2010; Dur-
anton, 2007). However, in the prior literature, knowledge spillover is often treated as
a spontaneous and automatic externality which firms have limited control on (Fadeev,
2023). There is also limited evidence to understand how a plausibly unanticipated
head start in technological breakthrough impacts firm outcomes and cluster formation.
I contribute to this literature by providing a causal estimate of the degree of voluntary
knowledge disclosure when firms achieve a head start in technological breakthrough.
I demonstrate how the voluntary vertical knowledge disclosure from leader labs may
likely explain the rise of Marshallian externalities in leader lab locations.

I also contribute to a series of insightful work by Klepper (1996, 2002, 2010) on the
evolution of oligopoly structure during early industrial development. Technology break-
through (or discontinuities) often changes the trajectory of technology and marks the
beginning of a new product cycle (Dosi, 1982). Klepper (1996) discusses the competi-
tion and shake-out dynamics of firms from heterogeneous entry cohorts in new product
cycles. Klepper (2010) further takes the early rise of Silicon Valley as an example, and
explains the cluster takeoff through the perspective of spin-off dynamics. However, the
mechanics of knowledge diffusion is still relatively simplified due to the availability of
data. The recent work by Giorcelli and Li (2021) demonstrates that spillover in early
industrial development is indeed significant, both horizontally and vertically. I contrib-
ute to the literature by seeking to unpack the blackbox of knowledge diffusion, and the
extent to which leader firms may internalize the externality from new technology. I also
discuss how heterogeneous diffusion strategies may lead to diverse downstream product
market performance.

This research also provides novel causal evidence to the literature on competition,
innovation and growth (Aghion et al., 2001; Acemoglu and Akcigit, 2012; Akcigit and
Ates, 2021, 2023). In modern Schumpeterian theories, firms innovate to escape from
Schumpeterian competition, especially when they are at technological par with their
rivals (Aghion et al., 2001, 2005). When firms progressively obtain greater market
share, the innovation intensity is likely to fall (Aghion et al., 2005; Acemoglu and
Akcigit, 2012), or the mode of R&D will switch to less radical research (Akcigit and
Kerr, 2018). Recent work by Akcigit and Ates (2023) further relates the declining
business dynamism to declining knowledge diffusion between leaders and followers. I
contribute to this debate by examining whether early industrial leaders strategically
reduce the amount of knowledge disclosure, and curb the rate of innovation once they
obtain product market advantage over rivals.
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The remainder of this article is organized as below: section 2 introduces the
setting, data and research design. Section 3 serves as a stage one analysis: I discuss
how the Silicon head start quickly creates early leaders in each research field after the
breakthrough. Section 4 proceeds to the stage two analysis: I discuss whether early
technology leaders continue to innovation after they achieve product market advantage
over rivals. Section 5 presents the discussion on knowledge diffusion from these early
industrial leaders. Section 6 presents the broader impact on agglomeration. Section 7
excludes several alternative logic and section 8 ends with a brief conclusion.

2 The takeoff of American microchip industry

2.1 Setting

The microchip breakthrough of the 1950s marks one of the most radical innova-
tions in American history (Figure 1). After Fairchild Semiconductor emerged in 1957
(Figure 2), the early microchip industry experienced a rapid influx of circuit innovators,
a rapid rise of circuit manufacturers, and a rapid transition of manufacturers from "old
tech" such as vacuum tubes to the new general-purpose technology. The early devel-
opment of new markets also provides an ideal experimental setting to trace out the
trajectory of early industrial leaders, and observe their dynamic R&D outcomes and
strategic interactions with rivals, especially when the product cycle progresses to later
stages.

Estimating the causal effect of a head start in microchip breakthrough on corpor-
ate outcomes is empirically challenging. Firstly, by definition, technology leadership
is highly research field specific. While Fairchild Semiconductor Division is a leader in
bipolar integrated circuit, the company is not a leader in mainframe computer; while
Intel is a leader in microprocessor and memory device, the company is not a leader
in personal computer. Secondly, anticipatory effects may populate the pre-treatment
observations as forward-looking firms may react upon new technological opportunities
ahead of technological breakthrough. The third empirical challenge underlies simultan-
eous demand shocks, such as the 1958 NASA Space Act3 that raised both the demand
for telecommunication products and the productivity of microelectronics sectors closely
related to space industries (Kantor and Whalley, 2022). The last empirical challenge
lies in the endogeneity of corporate entry decision into new technology. Therefore, the
ideal natural experiment must suffice the condition that all confounders are either bal-
anced or time-invariant between head start and follower firms. Moreover, the chance of
obtaining the head start should be quasi-random such that simultaneous shocks would

3For the purpose of confronting the 1957 launch of Soviet Sputnik I satellite, NASA released waves
of post-1958 large procurement contracts to develop American space industries.
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not exhibit a systematic pattern. To overcome this, I propose a unique natural experi-
ment to robustly identify the causal effect of a head start in the microchip breakthrough
on the subsequent corporate R&D outcomes.

Figure 1: Radicalness of the microchip breakthrough.
Note: Patent radicalness is defined by the degree to which a patent predates its similar patents.
More specifically, I compute the measure by counting the share of Google Patent Similar Documents
granted later than the given patent. The "All patents" plot shows the density curve for all patents
during 1920-1980. The "NIHF Award inducted patents" plot shows the density curve only for the
National Inventors Hall of Fame inducted patents during 1920-1980. Bandwidth = 0.05.

The natural experiment is based on the uncertain nature of innovation during the
late 1950s’ American microchip breakthrough, in which the choice of semiconductor
material among corporate labs and research fields was found to be orthogonal to most
observable covariates until Fairchild Semiconductor emerged. Shortly before Fairchild
emerged, two types of semiconductors with almost identical properties - Silicon and
Germanium - co-existed for semiconductor research4. Within 1 year after the founding
of Fairchild Semiconductor in 1957, the Fairchild engineers came up with a revolution-
ary idea, called planar technique, which coated Silicon oxide layer on top of Silicon
substrate to protect complex circuits from impurities. The same workflow did not work
out for Germanium because of inferior oxide properties (Ye, 2016). The emergence of
Fairchild Semiconductor triggered a chain of discoveries that quickly brought Silicon to
the front stage as the perfect and the only (back then) material for microchip-based
innovations. The key identification assumption is hence that after Fairchild emerged,

4In Appendix Figure C.1, I also plot the dynamic trends of Silicon and Germanium usage in
semiconductor research over time to quantitatively support this claim.
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(a) Surge of corporate patentees (b) Rapid entry of "new tech" manufacturers

(c) Rapid exit of "old tech" manufacturers (d) Increasing conference publications

Figure 2: The early growth of American microchip industry.
Note: Producer data are digitized and collected from the Institute of Radio Engineer membership
directory. Patent data are collected from USPTO and Google Patents. Conference publications data
are collected from IEEE Xplore.
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corporate labs that held only Germanium patents in a given research field would face
creative destruction by the microchip breakthrough, and hence they lose the head start
on that research field, compared with corporate labs that held Silicon patents on the
same research field. For the Silicon patent holders, the microchip breakthrough exert a
force of creative construction on their research, which would provide them with a head
start to leverage the microchip technology or implement follow-on innovation on the
Fairchild’s microchip in the given research field. This creates a quasi-exogenous, within
firm variation in the head start of corporate labs into microchip-related research (Figure
3a). I show that when a lab chooses Germanium on a certain research field, it leads to
around 41.3% decline in microchip-related patents by the year of 1965 on that research
field, which is equivalent to a (conservatively estimated) 3 years delay in the timing
to combine the microchip technology into that research field. Moreover, balanced tests
confirm that the pre-Fairchild characteristics of Silicon and Germanium-based labs, and
their performance in respective research fields, were indeed comparable.

The setting has two additional unique advantages. Firstly, the anticipation of
firms ahead of the advent of Fairchild Semiconductor is considered minimal according
to archival evidence: the discovery of the "planar" idea was driven not by years of
cumulative trial-and-errors corporate research, but instead it was triggered by the re-
sentful breakaway within a group of genius engineers. William Shockley, a Nobel Prize
Physics laureate but authoritarian manager, hindered his engineers5 from exploring
other new technology possibilities except for his dedicated project on four-layer diode
(Berlin, 2005; Reid, 2001). In 1957, eight talented engineers broke away from Shockley
due to personal resentment and formed the Fairchild semiconductor. With unfettered
freedom for semiconductor research in the new company, the eights soon unlock the
true potential of semiconductors: within just less than half a year since the breakaway,
Jean Hoerni (one of the eights) noted down a novel idea in Dec. 1957 to dope semicon-
ductor oxide layer on top of a clean semiconductor (namely, the planar technique) as
a solution to carve down complex circuits while preventing contamination of complex
junctions (Berlin, 2005; Orton, 2009). The formation of this idea soon unlock unpreced-
ented potential in semiconductor technology and officially kicked off the decades-long
transformation of human race to the modern computer age.

Secondly, the historical context provides a distinctive setting to comprehend the
role of technology rivalry among early industrial leaders, and how it impacted market
structure. In 1958, along with the discovery of the planar-based microchip idea, a paral-
lel, non-planar-based microchip was invented by Texas Instruments (Berlin, 2005; Reid,
2001). The co-discovery and legal dispute over the "first" microchip patent spurred a

5The team was consisted of Jean Hoerni, the aforementioned engineer who came up with planar
idea; as well as Robert Noyce and Gordon Moore, who brought the planar idea to new height and
invented the first Silicon-based microchip.
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patent war between the two companies, resulting in intensified technology rivalry in the
form of legal impediment to the licensing of conflicted patents toward other companies.
The patent war lasted until 1966 when Texas Instruments reached a licensing agree-
ment with Fairchild and brought an end to the legal dispute6. By investigating how
the exposure to the patent war waged by the two early-movers in microchip (Fairchild
& Texas Instruments) impacted other early-movers, I unveil how the attempt to limit
technology diffusion trigger the response of competing rivals.

2.2 Data sources

I compile multiple novel historical data from the following sources, and allocate
them to each corporate R&D lab:

Historical US patent data: USPTO provides comprehensive bibliography inform-
ation of all inventions granted since 1976, and OCR (Optical Character Recognition) -
extracted textual data for patents granted before 1976. I obtain these aforementioned
data and compiles patent forward citations, references, CPC (Cooperative Patent Clas-
sification) classes, and inventor names. For patent locations, I compile inventor loca-
tions from PatCity (Bergeaud and Cyril, 2022) and HistPat (Petralia et al., 2016) and
merge them with the USPTO patent database. The above datasets have geocoded the
locations for each historical inventor before 1976;

Corporate R&D labs: Parent firms and locations of corporate R&D labs are col-
lected from the Corporate Author Headings used by the US Atomic Energy Commission
in cataloging reports (United States Atomic Energy Commission, 1970), which includes
information on the specific location of each R&D establishment as well as the hierarch-
ical relationships between the facilities and the corresponding firms;

Historical product data for electronics manufacturer: I collect, digitize and build a
novel site-product level database from Yearbooks of Institute of Radio Engineers (1953-
1963), IRE membership directories, and the directory of electronics manufacturers from
1953-1963 (Institute of Radio Engineers, 1963) (Figure 4). New product manuals pub-
lished by each firm in each business unit are also digitized and collected from the
Electronics Industries trade journal (also known as the Tele-Tech). The trade journal
is a professional magazine released by Chilton Co., a company famous for providing
market research services for readers such with professional background in electronics
and automotive.

IEEE conference publications: I download from IEEE Xplore (ieeexplore.ieee.org)
the abstracts and bibliographic data for historical IEEE conference publications (in-

6Hence, rather than licensing directly from Fairchild, other companies needed to invent their own
versions of microchip-related patents to adopt the technology into production.
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(a) Timeline.

(b) Workflow to define Silicon/Germanium groups.

Figure 3: Introduction of empirical setting.
Note: Figure 3a displays time frame of events. Figure 3b displays the structure of data.
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cluding conferences, meetings, conventions and symposium) for 1900-2000.

Advanced physics basic research publications: I download historical abstract and
bibliography data for all publications in American Physics society during the year of
1940-1980 (https://www.aps.org/).

Besides these data, I collect county socio-economic indicators from Historical,
Demographic, Economic, and Social Data compiled by Inter-university Consortium for
Political and Social Research (ICPSR) (Haines, 2010). I also collect NASA prime
procurement data over 1958-1968 from NASA Historical Data Book (Nimmen et al.,
1976) to build a county-level control.

2.3 Data construction

Corporate R&D labs. The list and locations of research establishments are collec-
ted from Corporate Author Heading (CAH) (see Figure C.3 in Appendices), coordinated
by the Committee on Scientific and Technical Information, Federal Council for Science
and Technology. Unlike a simple collection of author affiliations, the CAH report was
carefully examined and has cross-referenced the identities of each United States corpor-
ate authors based on the COSATI standard, in order to "facilitate exchange of scientific
and technical information among government agencies" (United States Atomic Energy
Commission, 1970). The report incorporates an extensive range of R&D establishments
(corporate authors) that published before 1970. I digitize the location and names of
each corporate author and merge them with Google Patent assignees. Owing to the lack
of more granular patentee affiliation data, all R&D establishments affiliated to the same
assignee, located within the same county, are merged and treated as one single corpor-
ate R&D lab. All patents, advanced physics publications, and products developed by
the same corporate patentee u at county c are thereby allocated to the corresponding
lab v retrieved from CAH.

Research field. I indicate research field by each granular Cooperative Patent
Classification (CPC) class (i.e., the part before "/". I term it as 6-digit patent class
hereafter.). One advantage of using CPC codes to indicate technology fields of patents
is that it provides a nested hierarchical classification structure to arrange categories of
technology fields. The issue of having a critical piece of technology under-represented by
a given patent class can be much more salient when I use coarsened categories (such as
3-digit CPC, 3-digit USPC, or NBER patent sub-category) to capture technology fields.
For example, both the traditional telegraphy and modern microprocessor are located in
the same NBER sub-category or 3-digit USPC category. The nature of invention can
be massively heterogeneous even within a single 4-digit CPC sub-category (e.g., semi-
conductor devices (H01L)). For example, the progress from transistor (H01L29/00) to
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(a) Digitized new product manuals. (b) Digitized product lines.

(c) Digitized new product manuals.

Figure 4: Newly digitized product-level datasets.
Note: Data source: IRE Membership directory & Electronics Industries.
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integrated circuit with bipolar transistors on a single substrate (H01L27/0755) was
already a revolutionary breakthrough that won Jack Kilby the Nobel Prize in Physics
and National Hall of Fame Inventors Award. CPC codes for each historical US patent
are collected from the Google Patents, in which the classification scheme is realigned ret-
rospectively so that the nature of technology in the same patent class is consistent over
time. One concern of using such a granular, 6-digit patent class is the risk of between-
field R&D substitution (or negative spillovers) across closely-related research fields. A
broad set of spillover checks are displayed in section 3, which suggest that between-
research field spillovers are instead positive and statistically insignificant. Hence, these
concerns are at worst a downward bias of the estimate of early-mover advantage, which
is unlikely to jeopardise the validity of my natural experiment design.

Pre-Fairchild semiconductor choice. I trace the use of Silicon/Germanium in
each corporate lab and research field (6-digit patent class) by semi-manually searching
through all textual data from their historical patents. The detailed workflow is further
explained step-by-step in Appendix C.2. All patents with priority date from 1954 (the
year both Silicon and Germaniun had started mass production) to 1957 are searched7.
Figure 3b presents an example of the data: As Bell Lab (Morris county) had not used
Silicon and only used Germanium in bipolar integrated circuit (H01L27/00) within the
time range, I classify the lab×research field pair [Bell Lab (Morris county) × bipolar
integrated circuit] as in the Germanium group (i.e., all else equal, engineers from Bell
Lab (Morris county) were expected to experience delay in conducting planar-based
microchip research on bipolar integrated circuit). As Bell Lab (Morris county) had
used Silicon in the other research fields from the example I show in Figure 3b, I classify
these lab×research field pairs as in Silicon group (i.e., all else equal, engineers from Bell
Lab (Morris county) were not expected to experience delay in conducting planar-based
microchip research on solid state device and substation equipment).

Outcome variables. The key outcome of interest is the R&D performance of each
corporate lab on each research field. Furthermore, the novel datasets I collected enable
me to separate the "R" and "D" in R&D activities. Therefore, the impact of head
start in microchip research on corporate R&D activities can be accurately decomposed
according to stages of research. I use abstracts data for conference/physics publications
and textual description data of CPC codes to build a cross-walk8 between research fields

7To avoid mechanical issues from counting the same patent in both left- and right-hand sides of
patent regression, inventors that filed these pre-Fairchild Si/Ge patents are excluded out of all patent-
based dependent variables. All the following estimates on patent outcome regressions should therefore
be interpreted as the effect of a head start in microchip research on the universe of corporate inventors
that were not directly involved in pre-Fairchild Silicon/Germanium research.

8I first use word embedding approach to convert each token into a numeric coordinate. Then, I
weight each token by TF-IDF (Term Frequency - Inverse Document Frequency) score, and compute
a weighted average of all tokens in each single abstract/CPC description document. Therefore, each
abstract/CPC text description document is converted to a numeric coordinate. Lastly, I compute
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(6-digit CPC codes) and IEEE/advanced physics publication data. Only the matches
with cosine similarity score above 90% of the universe of all possible matches are kept
as successful cross-walks. Similarly, I use TF-IDF (Term Frequency - Inverse Document
Frequency)9 weighted keyword matching to create a cross walk between 133 electronics
product categories (Figure 4) and CPC codes, so that only meaningfully important
product-CPC code matches are obtained. The list of compiled product categories is
displayed in Appendix C.1.

As a result, I focus on five major outcome variables at the corporate lab×research
field level: (1) count of product lines (measured by product modules) to capture product
market performance; (2) Life-long citations of the most cited patent to capture of "local"
technology frontier of each lab in each research field; (3) Number of advanced physics
publications to capture basic research progress; (4) Number of new product manuals to
capture newly commercialized innovation (new product designs); (5) Number of IEEE
conference/meeting paper/proceeding publications to capture public knowledge disclos-
ure. Specifically, I further divide the IEEE publications into two categories: the ones
mentioning fabrication details that could be of interest to downstream users, and the
ones that mention experimental details that could be related to corporate trade secrets.
Additional analyses further divide the variable into conference/convention/symposiums
publications, where face to face communication is needed; and the general journal pub-
lications. The exercise will be explained in following sections.

2.4 Baseline model specification

The baseline model takes the form of equation (1):

Yvft = α + βHead startvf × 1{t ≥ 1957} + µvf + λut + Xvt + εvft (1)

where v is an index for corporate lab. f is an index for research field. t is an index for
year. u stands for the parent firm of lab v. 1{t ≥ 1957} is a post-Fairchild time dummy,
coded as 1 when the calendar year has progressed beyond the emergence of Fairchild
Semiconductor in 1957. Head startvf is a binary variable indicating whether or not
a given corporate lab×research field pair belongs to Silicon/Germanium group. For
better exposition of the head start (Silicon (dis-)advantage in R&D), I set Germanium
group as the benchmark (0) and Silicon group as the "treated" (1). µvf are corporate
lab×research field two-way fixed effects, which absorb 1{t ≥ 1957}, Head startvf , and
all the time-invariant confounders. εvft is the error term. λut is two-way firm×year FE.

pair-wise cosine similarity scores between abstracts and CPC text description document.
9TF-IDF is an approach to weight the importance of each token in a document based on Term

Frequency and Inverse Document Frequency.
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The inclusion of λut absorbs all unobservable firm-level confounders such as size, debts
and revenues and overall R&D spending. The time period runs from 1953 to 1965, and
the panel is balanced in nature as I keep only the corporate labs that had survived
through the entire research period10.

As robustness checks, I include a set of controls (for simplicity, I term the set of
controls weighted by coefficients as Xvt) including: 1) a binary NASA county variable
interacted with year fixed effects: the NASA variable is coded as 1 when the county c

where lab v was located would be awarded a prime NASA contract in 1958-1968; 2) a
binary county-level advanced physics institute/university variable interacted with year
fixed effects: the binary institute/university variable is coded as 1 when the lab is loc-
ated in the top 10% counties c where most advanced physics publications were produced
during 1953-1957; 3) the number of advanced physics publications in lab×research field
vf at year t. Robustness check has ensured that the advanced physics publications
control indeed follows parallel trend. Yvft is a set of dependent variables explained
earlier.

Another concern endangering this identification strategy is somewhat similar to
exclusion restriction - the choice of Silicon over Germanium may impact outcomes
through other channels, regardless of any head-start in microchip research. This may be
concerning if the use of Silicon before Fairchild implies a higher share of foresighted in-
ventors (e.g., more potential Noyces and Moores), or more weight on explore over exploit
in doing Silicon research. These unobservable factors may raise patenting and hence
bias upward the effect of a head start in microchip research. To test for whether these
concerns exist, I further conduct a falsification test by keeping only those lab×research
field pairs in which no microchip-related patents are detected. Upon this modified
sample of de facto never-adopters (or late-mover in the microchip breakthrough), the
effect of Silicon choice becomes both statistically and economically near 0 on all R&D
outcome variables (detailed falsification tests are displayed in Appendix section D.2. On
the one hand, the test verifies that apart from an early head start in microchip research,
there were no any other obvious channels by which pre-Fairchild semiconductor choice
could change R&D performance (exclusion restriction); on the other hand, the test rules
out the concern that some unobservable latent traits in Silicon labs could induce sim-
ultaneous increase in R&D performance after Fairchild Semiconductor emerged. Fur-
thermore, I will also discuss a series of alternative explanation for the estimated effect
in section 3, and none of the alternative logic seems to vastly jeopardise the estimated
early-mover advantage in R&D.

10The post period may be adjusted in individual exercise performed later.
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2.5 Stylized facts

The sample distribution is mapped in Figure 5. The spatial distribution of
lab×research field pairs is relatively balanced, which is a piece of suggestive evidence
that there were no obvious first-nature geographical characteristics biasing the selec-
tion of labs into Silicon and Germanium before Fairchild Semiconductor emerged. To
systematically test for the quasi-random selection assumption, Figure 6 displays the
mean differences of covariates across Silicon and Germanium groups before Fairchild
Semiconductor emerged. Evidence shows that the use of Silicon/Germanium in each
corporate lab and research field seemed uncorrelated with prior innovation capacities,
ex ante locational characteristics, and pre-Fairchild R&D outcome variables.

(a) Silicon (b) Germanium

Figure 5: Distribution of sample.
Note: The number indicates the count of corporate lab×research field pairs.

Figure 7 plots the trends of key outcome variables, respectively for Silicon and
Germanium groups over time. A constant value equivalent to pre-1957 mean from each
group is subtracted from each outcome variable to better compare the dynamic trends.
The binned scatter pre-trends of the two groups indeed overlap in scale before Fairchild
Semiconductor emerged, which supports the parallel trend assumption.

Figures 7a and 7b show that Silicon patent holders on average experience greater
citations influx from other firms, and greater expansion of their product lines after the
breakthrough. Figure 7c shows that Silicon labs also produce more new product manu-
als, a proxy for newly commercialized innovation, than Germanium labs do. Several
surprising facts are also unveiled. Rather than reducing the rate of innovation after a
sizable advantage in the product market, the Silicon labs continue to produce radical
new patents, measured by patents granted earlier than 50% of its Google Similar Doc-
uments (Figure 7d). Moreover, compared with Germanium labs, the Silicon labs also
release more technical details in IEEE on the research fields where they hold Silicon
patents before the breakthrough (Figure 7e). The evidence casts interesting question
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Figure 6: Balancing test
Note: Figure 6 reports the corporate lab×research field level t-tests for covariate mean differ-
ences. The year of each covariate is taken at the closest year before Fairchild Semiconductor
emerged, depending on data availability. "Patent stock" is defined as cumulative count of all
patents invented during 1953-1957. "Past tech similarity to microchip" is a technology-class
level indicator, measuring the fraction of patents similar to microchip patents (according to
Google Patent: Similar Documents) from each research field during 1953-1957 (for details,
see C.1). "NASA contractor county" is a binary county-level variable, coded as 1 when the
county where a lab belongs to would receive a prime contract during 1958-1967. "Advanced
physics institute/university" is a binary county-level variable, coded as 1 when the lab is
located in the top 10% counties where most advanced physics publications were produced
during 1953-1957. Covariates from "Log total population" to "Median age" are county-level
indicators. Due to considerable efforts needed for the data collection of "Non-experiment
group", for "Flow of new patents", "Citation weighted new patents" and "Product categories
on each CPC", I only display the mean differences of Silicon and Germanium groups. Mean
differences values are standardized in units of standard deviations. "Non-experiment group"
refers to all the other corporate lab×research field pairs in which neither Silicon nor Ger-
manium semiconductor had been detected in patents during 1954-1957. Standard error is
clustered at the county×research field level and confidence intervals are reported at the 95%
level.
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(a) New citations received (b) Count of product lines

(c) New product manuals (d) Flow of radical innovation

(e) Release of technical details (f) Life-long citations of the most-cited patent

Figure 7: Demeaned scatter plot on key outcome variables.
Note: Figures display the time trend of mean values for each key outcome variable. Before the
aggregation to group-level means, each observation is a corporate lab×research field×year unit. A
constant value equivalent to pre-1957 mean from each group is subtracted from each outcome
variable to better compare the dynamic trends.
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on the standard innovation models where the problem of market failure often leads to
the classic incentive problem in private R&D spending. Lastly, Figure 7f plots the time
trends for life long citations of the (cumulative) most-cited patent as a proxy for the
local technology possibility frontier for each lab. The preliminary evidence suggests the
Silicon labs experienced a decade-long, persistent advancement of the lab-level techno-
logy frontier in respective research fields.

Moving from micro to a more aggregated perspective, Figure 8 displays the cu-
mulative stock of inventors and corporate patent assignees over time in the "head
start" counties×research fields where Silicon lab×research fields are located before the
breakthrough, and "non head start" counties×research fields where only Germanium
lab×research fields are located before the breakthrough. Preliminary evidence shows
that the head start clusters experience rapid expansion in both measures after the
microchip breakthrough.

(a) Cumulative stock of inventors (b) Cumulative stock of corporate patentees

Figure 8: Takeoff of Silicon lab located county×research field pairs.
Note: Figure 8a displays the count of total new patents per year in each county×research field.
Figure 8b displays the cumulative count of corporate patentees in each county×research field. All
dates are taken from patent priority dates.

Causal evidence is presented in the following sections to unveil the trajectory of
early technology leaders in microchip breakthrough.

3 The rise of early technology leaders

3.1 Silicon and early exposure to microchip breakthrough

After the microchip breakthrough, how significant is the head start of Silicon pat-
ent holders over their Germanium rivals in the same research field? Additionally, are
Silicon patent holders more likely to anticipate the arrival of Fairchild and the sub-
sequent breakthrough? I illustrate the extent of the head start by quantifying the
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timing of each lab’s exposure to microchip within their respective research fields11

(Microchipvft). Then, I regress Microchipvft on the Silicon dummy as illustrated in
equation (2):

Microchipvft |t=T = ζ0 + ζ1Siliconvf + θu + Xvf + εvf (2)

where Microchipvft |t=T incorporates: 1) a binary variable indicating whether lab v

have developed a microchip-related12 patent in year t = T on research field f (Table 1
columns (1) - (3)); 2) the cumulative count of microchip-related patents in year t = T ,
lab v, on research field f (Table 1 column (4)); 3) the year (priority date) of the first
microchip-related patent of lab v on research field f (Table 1 column (5)). The coeffi-
cients from columns (1), (3) - (5) are all positive and statistically significant at 1% level,
which suggests that the Silicon patent holders are indeed associated with significantly
earlier exposure to microchip technology, irrespective of the indicator chosen to capture
the exposure. For example, by 1965, there has been an around 18.2% increase in the
probability for Silicon patent holders to develop at least 1 patents related to micro-
chip in each research field where they held Silicon patents before Fairchild emerged.
This is equivalent to an approximately 41.3% increase in the stock of microchip-related
patents by 1965, and a conservatively estimated13 3-year advantage in producing the
first microchip related patent. In column (2), I fix T = 1957, and the result suggests
that before Fairchild emerges, Silicon patent holders were not disproportionately pro-
ducing microchip-related patents in the research fields where they held Silicon patents.
Therefore, no evidence is found to suggest significant pre-Fairchild anticipation of the
microchip breakthrough among the selected lab×research field pairs.

3.2 The rise of early industrial leaders

In this section, I unveil to what extent the power of creative construction and de-
struction shapes the market selection for early industrial leaders after the early product

11I restrict the sample to the research fields where inventors have already patented with semicon-
ductor before Fairchild emerged.

12The reason of using microchip related patents is that the keyword "microchip" was not widely used
at the early stage of microchip era. For example, Texas Instruments preferred the term "integrated
circuit" and Fairchild preferred "semiconductor circuit complexes". To capture early efforts in microchip
research as much as possible, I first identify a set of "confident" microchip patents using keyword
detection of a combination of terms such as "transistor", "integrate", "circuit", "semiconductor" and
"oxide layer". And then I collect similar patents to these "confident" microchip patent from Google
Patents Similar Documents.

13This is a conservative estimate because Table 1 column (5) is conditional on the labs that have at
least patented once with microchip technology throughout the entire research period.

21



Table 1: Pre-Fairchild semiconductor choice and the speed of applying microchip to new
patents.

(1) (2) (3) (4) (5)
Entry status Entry status Entry status IHS(Cuml.

count)
Entry year

t=1965 t=1957 t=1965 t=1965 t=1965

Silicon 0.182*** 0.017 0.159*** 0.413*** -3.011***
(0.038) (0.013) (0.041) (0.088) (0.712)

Firm FE N N Y Y Y
Controls N N Y Y Y
Obs. 1061 1061 1039 1039 494
R2 0.039 0.001 0.172 0.241 0.186

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Dependent variables are: a binary variable indic-
ating whether or not lab v has started microchip patents in research field f by 1965 (columns (1) and (3))
and by 1957 (column (2)); inverse hyperbolic sine of lab v’s cumulative stock of microchip-related patents
in research field f by 1965 (column (4)); lab v’s year of the first microchip-related patent in research
field f (column (5)). "t=X" means only a cross-section of sample in year X are kept. "Controls" indicate
whether or not a set of control variables are included. The controls include: 1) a NASA county dummy
interacted with year fixed effects; 2) an advanced physics institute/university county dummy interacted
with year fixed effects; 3) count of advanced physics publications for each year in each lab×research field.

market shake-out. Does the head start predict early technology leadership in the micro-
chip industry? To illustrate this, I estimate equation (1) by first taking new citations
received from other firms as an outcome variable. Patent citation has attracted mixed
interpretation from recent years. For example, citations are often commonly viewed as
a proxy for knowledge flows, either intentional or unintentional (Jaffe et al., 1993; Hall
et al., 2001; Fadeev, 2023). Citations can also be a noisy indicator of actual knowledge
diffusion, as they may be affected by idiosyncratic choices from the assigned patent
examiners (Kuhn et al., 2023; Hall et al., 2001). I hence step back from giving cita-
tion measure a concrete conceptual definition, and interpret the influx of citation in a
given firm as a signal that the firm’s knowledge stock is likely satisfying more potential
demand in the market for ideas. I present estimates of β from the dynamic version of
equation (1) in Figure 9. Static estimates are displayed in Table 2. In Panel A, Figure
9b shows that after the breakthrough, Silicon labs instantly attract a greater amount of
external citations compared with Germanium labs in the same research field, and the
effect persists throughout the entire first 8 years. The influx of citations to the Silicon
labs is economically sizable: columns (1) - (3) from Table 2 shows that the surge of
citation influx is not sensitive to the controls and the effect on average amounts to
1.761 (approximately 32.4%) more citations. The finding suggests that after the break-
through, knowledge stock from Silicon labs is increasingly more demanded than that of
Germanium labs in the market for ideas, conditional on the same research field.

Next, I unveil the product market performance of corporate labs by switching
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the outcome variable to the count of product lines on each research field. Figure 9a
shows that the head start not only predicts significant leadership measured by the
attraction of citations, but also a surge of product lines in Silicon labs, compared with
the Germanium labs that patent in the same research field. On average, the head
start raises 1.764 (equivalent to 32.4%) more product lines after the breakthrough. The
finding confirms that after an around 2 years’ lag, the head start gives Silicon labs a
significant product market advantage over the Germanium rivals in the same research
field.

Table 2: Baseline results: the rise of early industrial leaders after microchip breakthrough.

New citations received Count of product lines
(1) (2) (3) (4) (5) (6)
Yvft Yvft IHS(Yvft) Yvft Yvft IHS(Yvft)

Silicon × Post 1.777*** 1.761*** 0.324*** 0.482*** 0.482*** 0.137***
(0.368) (0.352) (0.053) (0.159) (0.157) (0.037)

µvf Y Y Y Y Y Y
λut Y Y Y Y Y Y
Controls N Y Y N Y Y
Mean(Yvft|Silicon) 4.415 4.415 4.415 2.803 2.803 2.803
Obs. 13507 13507 13507 10390 10390 10390
R2 0.770 0.774 0.757 0.869 0.872 0.885

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Dependent variables are: new forward citations
received for each year in each lab×research field pair (columns (1) - (3)); count of product lines for each
year in each lab×research field pair (columns (4) - (6)). IHS(Yvft) indicates that the dependent variables
are in the form of inverse hyperbolic sine. "Controls" indicate whether or not a set of control variables
are included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2)
an advanced physics institute/university county dummy interacted with year fixed effects; 3) count of
advanced physics publications for each year in each lab×research field.

Panel B of Figure 9 checks if the advantage of Silicon labs in product market
could reflect any other alternative explanations. For example, the pre-Fairchild choice
of Silicon over Germanium may impact Silicon lab outcomes through other channels
beyond the head start in microchip. I restrict the sample by including only labs that
have never adopted microchip in the focal research field f , or any other closely related
research fields in the same 4-digit CPC class of f . If any latent properties of Silicon
labs induce greater product market performance or greater external demand for ideas,
the estimated impact of the head start should remain sizable on the two outcomes even
after the sample restriction. Figure 9c and 9d display the results after sample exclusion.
The effects of choosing Silicon over Germanium mostly shrink to statistically and eco-
nomically near 0 when only the microchip "never-adopters" are kept. The tests verify
that the head start indeed mostly reflects an early-mover advantage in the microchip
breakthrough, but unlikely the other pre-Fairchild latent confounders.
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A. Full sample

(a) Count of product lines (b) New citations received

B. Conditional on lab×research fields where no microchip patents are observed

(c) Count of product lines (never-adopter) (d) New citations received (never-adopter)

Figure 9: Head start and the rise of early technology leaders.
Note: Panel A shows the dynamic effects of the head start on corporate outcomes, and how
the effect shrinks to near zero when no microchip is actually used throughout the research
period. Standard errors are clustered at the research field level. Confidence intervals are
displayed at the 95% level. Each observation is a corporate lab×research field×year unit. For
Panel B, the sample consists only of labs that have never adopted microchip in the focal
research field f , or any other closely related research fields in the same 4-digit CPC class of f .
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3.3 Caveats of alternative mechanisms

Caveats of R&D allocation. However, so far the empirical model has not yet
factored in the reallocation of R&D factors between corporate labs and between research
fields. Such reallocation could lead to over-estimation of the "net effect" of head start if
the following scenarios occurred: (1) Local congestion: conditional on the same research
field and all else being equal, if co-located labs share the same local factor market and
the supply of inventors is inelastic, the rise of R&D in one lab could divert researchers
away from the other co-located labs, resulting in a decline in R&D from the co-located
Germanium labs after the microchip breakthrough; (2) Within-firm R&D re-allocation:
a corporate manager may re-assign more R&D tasks from Germanium labs to Silicon
labs after the microchip breakthrough, resulting in a decline in R&D from Germanium
labs affiliated to the same firm; (3) Between-research field substitution: if close research
fields are likely to be strategic substitutes, the rise in R&D in "head start" research fields
(i.e., where a given lab held Silicon patents and then develops a head-start after the
microchip breakthrough) may draw R&D from the other research fields (i.e., where the
the same lab has no head start in microchip research). Alternatively, if close research
fields are likely to be strategic complements, the rise in R&D in one field may facilitate
R&D from the other close research fields. The former case could render the coefficients
from Table 2 an over-estimation of early technology leadership.

Appendix Table D.7 further checks for the above three types of hidden interac-
tions, and all these "spillover" estimates remain statistically insignificant. Hence, no
evidence seems to support the above hypotheses. For patent outcomes, all three types
of spillovers are positive. Hence, the between-lab, between-technology reallocation is at
worst a downward bias of the estimate of early-mover advantage on patent inventions,
which is unlikely to jeopardise the validity of my natural experiment design.

Regarding outcomes of product development, the only slight caveat underlies the
scenario of within-firm allocation. While the coefficient is negative, the estimate re-
main statistically insignificant and the magnitude (around -5.9%) does not outweigh
the estimated effect from Table 2 (13.7%). The test suggests that conditional on the
same research field, a firm was likely to internally re-assign production away from its
Germanium labs to its Silicon labs after microchip breakthrough. Therefore, the estim-
ated rise of product development in early-mover labs should be interpreted with slight
caution as it could incorporate some extent of the demise of commercialization in the
non head start labs from the same firm.

The NASA Space Act. One important caveat is that simultaneous demand shocks
from NASA 1958 Space Act may favor leaders in microchip research. If NASA procure-
ment disproportionately benefit early industrial leaders, estimates from equations 1 may
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be upward-biased, even when parallel trend assumption holds. Analyses from Tables 2
and Figure 9 seem to some extent ease the concern when NASA controls are included,
and the estimates are not sensitive to such inclusion. However, fixed effects cannot rule
out lab-specific demand and productivity shocks that were time variant. Robustness
checks that simply remove prime NASA contractors out of the sample are also not suf-
ficient, due to the rise of massive subcontracting since 1960s. To test this alternative
channel, I collect all NASA patents during 1957-1980, and calculate the textual similar-
ity between these NASA patents and all the other non-NASA patents. All labs that had
ever filed a patent with textual similarity to NASA >0.8 are defined as doing research
related to NASA. Then, I exclude all these lab×research fields from the sample. Based
on this sub-sample, I rerun equation (1). Estimates are displayed in Panel A, Table
E.4 in Appendix, and the estimated product market advantage for the Silicon group
remains consistent with Table 2.

Moreover, the Small Business Investment Act was established in 1958 to advocate
for public contracts to place increasing emphasis on small firms and technology fol-
lowers that were underrepresented in the technology and scientific industries. Recent
studies also show that publicly funded innovations tend to produce greater spillovers
for smaller firms (Dyevre, 2023). If NASA contracts indeed facilitated the performance
of Germanium labs more than Silicon labs14, the Space Act could therefore introduce
a downward bias, rendering my estimates at worst a conservative reflection of early
leadership. In Appendix Table E.4, Panel B, I conduct a set of heterogeneity tests to
examine the effects within and outside of NASA prime contractor locations. The results
show that being located in a NASA prime contractor location indeed closes the product
market performance gap between Silicon and Germanium labs.

4 Do early leaders persistently innovate?
One of the most striking aspects of the modern US economy is the decreasing

innovation incentives among industrial leaders (Akcigit and Ates, 2021; Argente et al.,
2020). Although patents from industrial leaders are still rising, recent work shows that a
large proportion of these patents tend to be strategic: leaders patent to deter rivals from
entering new markets, often with limited commercialization efforts behind these patents
(Argente et al., 2020). The dynamics can be captured by a creative destruction model
with step-by-step innovation, where a leading firm progressively loses the incentive to
innovate once it outpaces its rivals in a technology race and gains a larger share of
the product market (Akcigit and Ates, 2023; Aghion et al., 2001). However, contrary
to view of the stagnated business dynamism, a rapid expansion of the US commodity

14Early technology leaders were often reluctant to engage directly with military or state bureaucracy
to avoid red tape and over-intervention in R&D (Berlin, 2005).
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microchip market was witnessed in mid 1960s. By 1968, the market size of commercial-
use microchip had trumped the military market spurred by NASA procurement (Berlin,
2005; Orton, 2009). New designs were continuously released on a yearly basis from top
industrial leaders such as Texas Instruments and Fairchild (Berlin, 2005). Such rapid
product development following microchip breakthrough was highly unlikely without
persistent learning, innovation and spillover from early industrial leaders, as the creation
of application sectors and complementary assets should be gradual and incremental
(Helpman and Trajtenberg, 1994, 1996).

Do the leader firms continue to innovate after they achieve product market advant-
age over their rivals? To illustrate this, I modify the baseline equation (1) as equation
(3):

Yvft = α + β1Siliconvf × 1{1957 ≤ t ≤ 1961} + β2Siliconvf × 1{1962 ≤ t ≤ T}+

µvf + λut + Xvt + εvft (3)

where the post period is further split into two sub-periods based on the emergence
of product market advantage estimated by Figure 9a, using 1961 as the cutoff. For
the dependent variable, I use the following outcomes: 1) the life-long citations of the
cumulatively most-cited patent of lab v in research field f in each year. The variable
provides a proxy for the citations achieved by each lab’s "best" patent by a given year on
each research field; 2) the flow of new product manuals released by lab v in research field
f in each two-year period. The variable provides a proxy for the newly commercialized
innovation in the form of new product designs.

Figure 10a and 10b reports the dynamic estimates and Table 3 reports the static
ones. For the equation on life-long citations outcome, I further extend the post period
to year + 12 to check for whether the innovation from leader labs likely disappears in
the long run.

4.1 Persistent advance of lab technology frontier

Figure 10 and Table 3 estimate the dynamic and static versions of model (3)
with OLS. The tests of pre-trends from Figure 10a suggest no signs of violation of the
parallel trend assumption. Columns (1) - (3) sequentially include the controls and take
the form of inverse hyperbolic sine. Such modifications produce negligible changes on
the economic significance of my estimates. Results show that for the first period before
1961, the head start leads to a persistent advancement in the quality of best patent
in Silicon labs’ leading research fields. The effect is equivalent to an around 16.2%
increase in the citations to the most cited patent, compared with citations received by
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the "best" patent of Germanium labs in the same research fields. Moreover, after 1962
when product market advantage is significantly detected, the head start advances the
frontier of lab to a even larger extent: for the second period after 1961, the citations on
the most cited patent increase by 19.9% for the early leaders. Figure 10a further plots
out the dynamic effects to the longer run. The evidence shows that for the corporate
labs that develops a head start in research field f , they likely persistently innovate and
produce new patents more demanded by the industry.

4.2 New product designs

The persistent innovation from early leaders is not only reflected by patent cita-
tions. The early leaders likely continue to commercialize their innovations and produce
new designs to the market, which prospers the product varieties in the microchip in-
dustry. Table 3, columns (4) - (6) show that early leaders indeed produce significantly
more product designs in their leading research fields where the head start is achieved.
And the effect is even more significant after the product market advantage becomes
certain. Column (6) takes the inverse hyperbolic sine transformation, and the effect is
equivalent to an around 13.5% increase in the flow of new product manuals. Figure 10b
plots the dynamic effect on product development. The result shows that taking new
product designs as a proxy for commercialized innovation, the effect is minimal from
the start, but it peaks after the Silicon labs develops product market advantage over
their rivals.

4.3 Radical innovation

In growth theory with heterogeneous firms and heterogeneous innovation, the
larger firms are often presumed to undertake less radical innovation that generates new
clusters of innovation while rendering the old ones obsolete; instead, they are presumed
to develop more incremental innovation that generates process improvement (Akcigit
and Kerr, 2018). However, this does not seem to be the case during the early microchip
breakthrough. The evidence I have summarized so far shows that early leaders carry out
even more new product designs and more "advanced" patents after they progressively
obtain a larger product market advantage over time. Do new patents from early leaders
become progressively less radical? To answer this question, I construct two new outcome
variables: 1) flow of radical inventions, defined by patents granted earlier to > 50% of
their Google Similar Documents; 2) flow of ordinary innovations, defined by patents
granted earlier than to ≤ 50% of their Google Similar Documents.

Figure 10c estimate the dynamic effects of head start on the flow of radical in-
novation, which suggests no sign of pre-trend. Figure 10d further compares dynamic
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(a) Life-long citations of the most-cited patent (b) New product manuals

(c) Radical innovation (d) Radical vs ordinary innovation

Figure 10: Dynamic effects of corporate head start on R&D outcomes.
Note: Figure shows the dynamic effects of the head start on multiple corporate R&D outcomes.
Standard errors are clustered at the research field level. Confidence intervals are displayed at the
95% level. Each observation is a corporate lab×research field×year unit.
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Table 3: Head start and long-run corporate R&D during microchip breakthrough.

Panel A. Persistent innovation & idea commercialization.
Life-long citations of most-cited pat. New product manuals

(1) (2) (3) (4) (5) (6)
Yvft Yvft IHS(Yvft) Yvft Yvft IHS(Yvft)

Silicon × 1{1957 ≤ t ≤ 1961} 2.199*** 2.134*** 0.162** 0.137 0.122 0.031
(0.467) (0.466) (0.078) (0.089) (0.090) (0.037)

Silicon × 1{1962 ≤ t ≤ T} 4.368*** 4.384*** 0.199** 0.352*** 0.355*** 0.135***
(0.690) (0.693) (0.081) (0.103) (0.106) (0.049)

Lab×research field FE Y Y Y Y Y Y
Firm×year FE Y Y Y Y Y Y
Controls N Y Y N Y Y
Mean(Yvft|Silicon) 23.667 23.667 23.667 0.619 0.619 0.619
Obs. 17408 17408 17408 5195 5195 5195
R2 0.934 0.935 0.827 0.775 0.779 0.797

Panel B. Radical and ordinary innovation
Flow of radical innovation Flow of ordinary innovation

(7) (8) (9) (10) (11) (12)
Yvft Yvft IHS(Yvft) Yvft Yvft IHS(Yvft)

Silicon × 1{1957 ≤ t ≤ 1961} 0.430*** 0.416*** 0.198*** 0.125** 0.122** 0.082**
(0.092) (0.089) (0.039) (0.062) (0.061) (0.033)

Silicon × 1{1962 ≤ t ≤ T} 1.187*** 1.189*** 0.384*** 0.415*** 0.408*** 0.202***
(0.256) (0.253) (0.068) (0.094) (0.093) (0.041)

Lab×research field FE Y Y Y Y Y Y
Firm×year FE Y Y Y Y Y Y
Controls N Y Y N Y Y
Mean(Yvft|Silicon) 1.007 1.007 1.007 0.458 0.458 0.458
Obs. 9351 9351 9351 9351 9351 9351
R2 0.535 0.545 0.599 0.520 0.525 0.558

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each observation
is a corporate lab×research field×year unit. Dependent variables are: count of life-long citations of the most-cited
patent for each year in each lab×research field (columns (1) - (3)), count of new product manuals for each 2 years in
each lab×research field (columns (4) - (6)); count of radical innovations for each 2 years in each lab×research field pair
(columns (7) - (9)), count of ordinary innovations for each 2 years in each lab×research field pair (columns (10) - (12)).
IHS(Yvft) indicates that the dependent variables are in the form of inverse hyperbolic sine. "Controls" indicate whether
or not a set of control variables are included. The controls include: 1) a NASA county dummy interacted with year
fixed effects; 2) an advanced physics institute/university county dummy interacted with year fixed effects; 3) count of
advanced physics publications for each year in each lab×research field.
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effects of the head start on the flow of radical innovation, versus the effects on the flow
of ordinary innovation. Outcomes in Figure 10d are converted into inverse hyperbolic
sine to better compare the two effects. Results show that: 1) Comparing early leaders
with the counterfactual early leaders, there is no sign that Silicon labs have progress-
ively curbed the rate of radical innovation. Instead, Silicon labs persistently undertake
more radical innovation than the Germanium labs in the same research field, even after
product market advantage become significant. 2) Comparing radical innovation with
ordinary innovation, there is no sign that Silicon labs have progressively switched to-
ward the latter over time. Instead, Panel B, Table 3 shows that the effects of head start
on radical innovation (19.8%, 38.4%) trump the effects on ordinary innovation (8.2%,
20.2%) in both the two post periods. The early leaders in the microchip industry has
at least maintained the rate of radical innovation since the microchip breakthrough.

4.4 Channels of persistent innovation

The persistence of innovation could be attributed to three possible mechanisms
through which early-mover advantage impacts R&D. (1) Firstly, the head start during
technology breakthrough may imply higher likelihood of winning the microchip patent
race in each downstream research field. Hence, the "champion" firms could become
more able to appropriate future innovation rents from research fields where they had
head-start over rivals, while avoiding the Schumpeterian competition that dissipates
rents from innovation. (2) Secondly, the head start in microchip research could fa-
cilitate the formation of intangible capital through within-firm learning and training.
The accumulation of intangible capital and skills could thereby facilitate persistent
innovation. (3) Thirdly, the head start in microchip research could induce strategic
interactions between the leader firms and their rivals beyond simply the Schumpeterian
competition. Strategic response to rivals could also intensify R&D investment.

The first mechanism alone is unlikely to fully explain the dynamic leadership ad-
vantage in R&D. In Figure 10, the time paths of effect on all innovation outcomes
trace out a pattern with stable, progressive rise, instead of a one-off increase just after
Fairchild Semiconductor emerged. In section 7, I further exclude the alternative explan-
ation that early-mover advantage on patent inventions was only from the "champion"
of patent race in each research field. Combining the above evidence, the results imply
that early-movers’ post-Fairchild surge of patents was unlikely the result of a one-off
acquisition of proprietary right.

If the second mechanism (i.e., learning and intangible capital) holds, the head
start in microchip research should impact firm R&D performance beyond production
of patents. To examine this, I also look at the outcome of corporate basic research and
then I check on the effect of the head start varies with corporate human capital.
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Corporate basic research mainly serves three purposes: 1) reducing the marginal
costs of internal inventions (Arora et al., 2023); 2) forming corporate human capital
(Arora et al., 2023); 3) enabling more effective commercialization of firm innovation
(Akcigit et al., 2021). In the specific context of my research, the US universities and
basic research institutes were laggard behind global scientific frontier led by advanced
physics institutes from Europe (Arora et al., 2021a). Therefore, firms had an extra
incentive to internalize basic research functions. If the head start in microchip stimu-
lated corporate basic research, and hence facilitated the accumulation of human capital
within corporate labs, early-mover advantage in R&D could be persistent. Appendix
Figure D.2 shows that, comparing with Germanium labs on the same research field,
Silicon labs on average produced slightly lower advanced physics papers per year on the
given research field where they obtained head start. When I implement a heterogen-
eity check with respective to the number of senior engineers in each lab, the estimates
also remain statistically similar Appendix Table E.6. There is therefore no significant
evidence that star scientist or corporate basic research determine the success of early
technology leaders.

In the following section, I test the third mechanism by unveiling a likely strategic
attempt from leader firms to control the diffusion of knowledge in public, and how the
voluntary diffusion may determine their product market success.

5 Voluntary knowledge diffusion from early leaders

5.1 A simple conceptual framework

Ideas are non-rival by nature (Arrow, 1972). The presence of knowledge spillovers
may discourage private R&D (Bloom et al., 2013; Arora et al., 2021b; Akcigit and
Ates, 2021). Therefore, firms often have an incentive to impede knowledge spillouts by
hiding critical trade theory from patents (Fadeev, 2023). However, if an early technology
leader internalizes the response of downstream users, which could either innovate upon
the leader’s dominant design or seek cheaper, competing designs from rivals, then the
leader firms potentially has an incentive to outcompete their rivals by vertically diffusing
more technical details related to their designs toward potential users. The relative
costs for potential downstream users to choose the leader’s design could fall after such
voluntary disclosure of critical details. As the disclosed knowledge from leaders also
likely becomes quasi-public goods, the rivals would also learn from the early leader’s
design and hence refine their own competing design. Therefore, the diffusion from
early leaders will theoretically rise until a point when the marginal costs of knowledge
leak-out matches the marginal benefit of winning over downstream users from rivals.
Such strategies are not rare during early industrial take-off, as seen in the royalty-free
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declaration by Tesla to build complementary assets and downstream application sectors
in the electric vehicle sector. For the context of early microchip industry, I will first
provide causal evidence that unveils a generic pattern of vertical voluntary knowledge
diffusion from early technology leaders. Next, I will provide in-depth case studies of
the two most advanced leaders, Fairchild and Texas Instruments, and demonstrate how
the decision to diffuse may potentially ignite drastically diverse response from rivals.

5.2 Public knowledge disclosure

Figure 11 and Table 4 present evidence of such strategies: within the first 4 years
when leader product market advantage is still uncertain, I detect no statistically sig-
nificant rise of knowledge disclosure on fabrication techniques from Silicon labs. From
year 5 onward, Silicon labs are significantly disclosing more new technical details regard-
ing fabrication processes than Germanium labs do on the same research field (Figure
11a). However, a cautionary remark should be noted as the outcomes only capture
the observable knowledge disclosure from IEEE, but not the informal disclosure hap-
pening through informal meetings. Section 6 complements the analysis by looking at
the county-level estimates, on which I discuss how the informal disclosure from early
leaders could potentially target engineers in close adjacency.

If the pattern of knowledge disclosure follows the theoretical prediction, several
features should be observed from data. Firstly, the leader labs are likely to selectively
disclose knowledge that reduce marginal costs from downstream users, but not the
knowledge that could benefit rivals competing for the dominant design. To test for this
prediction, I switch the outcome variable as the release of experimental details in IEEE
from lab v in research field f in year t. Results from Figure 11b and column (3), Table
4 confirms the prediction. Silicon labs indeed do not disproportionately disclose details
of their experiments from their leading research fields.

Secondly, the leader labs should be more likely to raise the voluntary vertical
diffusion on a leading research field when the product designs from their parent firms
are likely to become dominant. To test this prediction, I run a heteorgeneity-by-market
share check in Figures 11c, 11d, and Panel B, Table 4. Results show that whether the
leader lab disclose new fabrication details to public is highly dependent on whether
their parent firms have ex ante product lines on their leading research field before the
breakthrough. The heterogeneity does not appear when I switch the outcome as the
release of experimental details.

Two concerns may remain: firstly, if the leaders publish original findings on IEEE
platform, the measure of knowledge disclosure could be conflated with the measure of
innovation. To rule out this concern, I first re-do the analysis by conditioning on the
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(a) Release of fabrication details (b) Release of experiment details

(c) Vertical diffusion by market share (d) Horizontal diffusion by market share

(e) Vertical diffusion via face-to-face (f) Vertical diffusion via publications

Figure 11: Voluntary knowledge disclosure.
Note: Figure shows dynamic effects of the head start on voluntary knowledge diffusion.
Standard errors are clustered at the research field level. Confidence intervals are displayed at
the 95% level. Each observation is a corporate lab×research field×year unit.
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Table 4: Voluntary knowledge disclosure from leader corporate labs.

A. Voluntary knowledge disclosure
(1) (2) (3) (4) (5) (6)

Release of
fabric.

Release of
fabric.

pre
microchip
adoption

Release of
experim.

Release of
fabric.

(residual-
ized)

Release of
fabric. via

face-to-
face

Release of
fabric. via
publica-

tions

Silicon × 1{1957 ≤ t ≤ 1961} 0.026 0.010 0.026 -0.005 0.018*** 0.008
(0.022) (0.022) (0.034) (0.022) (0.007) (0.021)

Silicon × 1{1962 ≤ t ≤ 1965} 0.157*** 0.023 0.048 0.091** 0.116*** 0.041
(0.047) (0.024) (0.037) (0.041) (0.027) (0.027)

Lab×research field FE Y Y Y Y Y Y
Firm×year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Mean(Yvft|Silicon) 0.389 0.248 0.513 0.000 0.087 0.301
Obs. 8312 7226 8312 8312 8312 8312
R2 0.750 0.725 0.793 0.002 0.485 0.711

B. Vertical diffusion heterogeneity by market share
(7) (8) (9) (10) (11) (12)
Release of fabric. Release of fabric. Release of fabric.

(residualized) via face-to-face

Parent firms’ pre-1957 product lines related to research field f:
> 0 = 0 > 0 = 0 > 0 = 0

Silicon × Post 0.178*** -0.007 0.106** -0.031 0.118*** -0.004
(0.052) (0.016) (0.046) (0.020) (0.023) (0.007)

Lab×research field FE Y Y Y Y Y Y
Firm×year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Mean(Yvft|Silicon) 0.594 0.061 0.000 0.000 0.135 0.011
Obs. 5056 3200 5056 3200 5056 3200
R2 0.760 0.654 0.024 0.393 0.523 0.348

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each observation is a
corporate lab×research field×year unit. Panel A tests the effect of head start on corporate release of technical details.
Dependent variables are: count of IEEE publications on fabrication details for each 2 years in each lab×research
field pair (columns (1), (2), (7) and (8)), count of IEEE publications on experiment details for each 2 years in each
lab×research field pair (column (3)); the residualized count of IEEE publications on fabrication details for each 2
years in each lab×research field pair (column (4), (9) and (10)); count of IEEE conference publications on fabrication
details for each 2 years in each lab×research field pair (columns (5), (11) and (12)), count of IEEE non-conference
publications on fabrication details for each 2 years in each lab×research field pair (columns (6)). Column (2) is
conditional on the observations of which lab v have not yet utilized microchip on research field f in year t. Panel B
tests the effect heterogeneity by prior market share. Columns (7), (9) and (11) are conditional on the labs of which
parent firm u had already developed product lines on research field f during 1953-1957; columns (8), (10) and (12)
are conditional on the labs of which parent firm u had not developed any product lines on research field f during
1953-1957. "Controls" indicate whether or not a set of control variables are included. The controls include: 1) a
NASA county dummy interacted with year fixed effects; 2) an advanced physics institute/university county dummy
interacted with year fixed effects; 3) count of advanced physics publications for each year in each lab×research field.
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observations in periods when the first microchip-related patent has not yet been inven-
ted by each lab in research field f before year t + 1. The exercise illustrates whether
knowledge disclosure could potentially pre-date the actual exposure to microchip break-
through from each lab. Evidence from column (2), Table 4 shows that the effect of head
start on disclosure indeed shrinks to statistically insignificant. Next, I find that the ex-
istence of leader knowledge disclosure remains robust after residualizing the outcomes
by regressing the disclosure variable on new patent flow (Column (4), Table 4). The
above tests likely rule out the first concern.

The second concern is the risk of mis-measuring disclosure. When firms publish in
conference/meeting paper publications on IEEE, the purpose may not be the disclosure
of information, but instead it may be to leverage their publications as a ticket to attend
the IEEE conferences. I check this hypothesis by matching each lab×research field pair
to all the another labs working in the same research field from my sample. In doing so,
I create a set of focal lab×target lab×research field triads. Next, I investigate whether
the head start of a "focal lab" on the research field raises the frequency of "target lab"
to attend IEEE conferences. Appendix Table E.7 presents the result, and the estimate
is statistically near 0, indicating that the outcome is unlikely explained by scouting,
but more likely by disclosure.

5.3 Counterfactuals without public knowledge disclosure

The conceptual framework also predicts that the vertical knowledge disclosure
from the "candidates" of dominant designs may facilitate rapid expansion of down-
stream application sectors since the microchip breakthrough, due to lower marginal
cost of using the technology. To verify this mechanism, I further restrict the sample
to research fields that are not covered by the scope of IEEE, the largest professional
association for knowledge exchange. Then, I re-estimate the key results conditional on
the scenario in which the largest platform of knowledge disclosure is absent. Table 5
shows that when IEEE coverage is absent, the disclosure of technical details via IEEE
mechanically shrinks to near 0. However, it does not prevent Silicon labs from obtain-
ing their technology leadership: the head start still leads to sizable influx of citations
(column (4)), significant radical innovation (column (2)), and persistent advance in the
local technology frontier (column (3)).

However, the absence of IEEE platform tends to shut down the channels for leader
labs to achieve downstream product market advantage (column (5)): the effect on the
count of product lines shrink to statistically near 0 in both two post periods. Moreover,
the Silicon labs no longer commercialize their innovations better than the Germanium
labs do, conditional on the same research field.
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Table 5: Conditional on research fields without IEEE conference coverage.

A. Voluntary knowledge disclosure
(1) (2) (3) (4) (5) (6)

Release of
fabric.

Flow of
radical in-
novation

Life-long
cit.

New
citations
received

Count of
product

lines

New
product
manuals

Silicon × 1{1957 ≤ t ≤ 1961} -0.006 0.264** 2.571*** 0.418 0.136* -0.071
(0.013) (0.116) (0.766) (0.383) (0.080) (0.060)

Silicon × 1{1962 ≤ t ≤ 1965} 0.014 0.578* 3.805*** 1.312** 0.051 -0.006
(0.011) (0.333) (1.034) (0.566) (0.165) (0.060)

Lab×research field FE Y Y Y Y Y Y
Firm×year FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs. 4815 4815 8959 6955 5350 2675
R2 0.371 0.512 0.923 0.705 0.887 0.702

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each observation
is a corporate lab×research field×year unit. Only observations of which research fields have no IEEE coverage
throughout the entire period are kept. Dependent variables are: the residualized count of IEEE publications on
fabrication details for each 2 years in each lab×research field pair (column (1)), count of radical innovations for each
2 years in each lab×research field pair (column (2)), count of citations of the most-cited patent for each year in each
lab×research field pair (column (3)), new citations received from different firms for each year in each lab×research
field (columns (4)), count of product lines for each year in each lab×research field (column (5)), count of new
product manuals for 2 years in each lab×research field (column (6)). "Controls" indicate whether or not a set of
control variables are included. The controls include: 1) a NASA county dummy interacted with year fixed effects;
2) an advanced physics institute/university county dummy interacted with year fixed effects; 3) count of advanced
physics publications for each year in each lab×research field.

Case studies evidence Additionally, I supplement the above analyses by propos-
ing two case studies: in the first one, I unveil how competing leaders respond to the
impediment to technology diffusion15, proxied by a large scale impediment of licensing
during 1962-1965, with even more intense radical innovation and commercialization of
new designs. In the second case, I estimate how co-presenting with Fairchild, a typ-
ical leader that deeply engages in conference publications, may lead to a shift toward
Fairchild’s microchip design. Findings are displayed in appendix sections D.4 and D.8.
The phenomenon is probably caused by a rapid expansion of product varieties during
early product life cycle (Klepper, 1996), and a expanding technology space where the
marginal cost of exploring alternative designs is relatively lower. This offers downstream
users a wide range of options to choose from. In a nutshell, the evidence shows how
the attempt to limited technology diffusion may instead lead to greater expansion of
competing product designs which potentially jeopardise the leader advantage in product
market.

15As explained earlier in the context setting, the patent lawsuit from Texas Instruments impeded
the licensing microchip-related patents to all actual or imaginary rivals (Lojek, 2007).
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6 Catalysts of agglomeration (TBC)
How localized is the vertical knowledge diffusion? At the centre of agglomeration

theories underlies the key notion that knowledge and information exchange decays with
distance due to frictions in social interactions (Storper and Venables, 2004). The role
of distance could localize the diffusion from leaders to close vicinity, and hence cata-
lyze local Marshallian externalities. To test this, I rerun the equation (3), and switch
the outcome as count of IEEE publications related to fabrication techniques via formal
conferences/symposiums/conventions arranged by Institute of Radio Engineer. Figure
11e displays the result. In Figure 11f, I further displays the estimates when outcome
switches to general publications in which no in-person meetings are needed. Findings
show that the vertical diffusion from leaders is mostly detected from in-person con-
ferences arranged by the Institute of Radio Engineer, rather than general publications
where no face-to-face meetings are necessary. As mentioned above, the publications
outcome only captures the observable disclosure via formally documented meetings.
Does the unobservable disclosure, which mostly come via information meetings and
gatherings, likely follow the same pattern? The institutional context of the Institute of
Radio Engineer provides a likely mechanism that localizes these information meetings
and gatherings further in close geography: by 1963, the institute divide members from
United States into more than 70 "regional sections" to better facilitate the exchange of
knowledge (Institute of Radio Engineers, 1963). According to the policy, each regional
section is expected to arrange at least 5 meetings per year; otherwise, the regional
section faces the risk of cancellation (Institute of Radio Engineers, 1963).

Stylized facts presented in Figure 8 support the creation of Marshallian external-
ities. To verify this, I conduct a county×research field level regression taking the form
of equation (4):

Ycft = α +
1955∑

j=1940
δj1{t = j} × Siliconcf +

1980∑
k=1957

δk1{t = k} × Siliconcf + µcf + γt + εcft (4)

where c stands for county. The dependent variable Ycft is the cumulative count of
corporate patentees in county c, research field f in year t. Siliconcf is the treatment
dummy, coded as 1 when the county c had a record of using Silicon on research field f

during 1954-1957, and 0 if only Germanium was used. 1{cf ∈ Silicon} can be inter-
preted as a proxy for whether county c was an Silicon lab located county on research
field f before Fairchild Semiconductor emerged. Figure 12a displays the dynamic ef-
fects of equation (4). Evidence from Figure 12a shows that early-mover places indeed
experienced a sizable expansion in the local pool of corporate patentees. To verify if the
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persistent entry of new corporate patentees was indeed related to head start in microchip
breakthrough, I run a falsification test in Figure 12b, in which only county×research
fields where the first microchip patent had not been started before 1962 are kept. After
restricting the sample to these de facto late-mover places, the dynamic trend of agglom-
eration in Figure 12a is reversed. The above evidence lends support to the hypothesis
that early-mover labs played a pivotal role in catalyzing early agglomeration forces.
(More analyses will be carried out to test the effect heterogeneity to the enforcement
of "regional sections" policy.)

(a) Full sample (b) Placebo early-mover places.

Figure 12: Early-mover places as incubator of follow-on corporate patentees.
Note: Each observation is a county×research field pair. Standard errors are clustered at the
county×research field level. Confidence intervals are displayed at the 95% level. In figure 12b, only
county×research field pairs in which the first microchip patent had not been started until 1962 are
kept.

7 Other alternative explanations
In previous sections, I have already shown that the observed effects from the head

start is unlikely to be biased upward by the NASA Space Act, concerns of exclusion
restriction, and mis-measurement of public knowledge disclosure. In this section, I
further conduct a series of robustness checks to rule out several alternative explanations
for the observed leader R&D patterns during the microchip breakthrough.

7.1 Specificity to California

Is the effect specific to Silicon Valley, an agglomeration that has pioneered the
global frontier ICT technologies ever since 1960s? To test for this channel, I rerun
equation (1) and exclude all the labs from California and Texas (states where Fairchild
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and Texas Instruments were located) (Columns 3-4 in Appendices Table E.1). The
effect still remains positive and significant.

7.2 The triumph of large agglomerations?

Another potential explanation is that prior military contracts (Gross and Sam-
pat, 2022) could have explained the early formation of clusters, and then spur the early
leaders in the microchip breakthrough. In Appendix section E.4, I test this view by
first looking at the sorting bias of these early-movers. Evidence shows that most of the
early leaders in microchip instead emerge in counties with relatively smaller population
in 1950. Next, I run a heterogeneity check to see if the estimates of key results change
across counties with higher population density and overall population. The result sug-
gests slightly negative linkages between the effects of head start and various ex ante
population measures.

7.3 Does winner take all?

In the previous sections, I unveiled how head start in microchip research facilitated
firm learning, altered firm strategies, and catalyzed agglomeration economies. However,
an alternative explanation is that early-mover advantage in R&D was simply a reward
of winning the microchip patent race (i.e., winner takes all (Bobtcheff et al., 2017;
Fudenberg et al., 1983; Hill and Stein, 2019)). To test for this alternative explanation,
I construct a “non-champion” sub-sample by first obtaining the "champion" corporate
labs with the highest cumulative microchip-related patents in each research field in
1965; then I exclude these "champion" corporate lab×research fields out of the full
sample. The equation (1) is re-estimated on this “non-champion” sub-sample, and
the estimates are displayed in Appendix Table E.2. The result suggests that patent
race is not a game of first-mover-takes-all; instead, even when an innovator missed out
proprietary right of patenting microchips in a new research field, the Silicon head start
on that research field still brought the innovator closer to technological frontier and
facilitates idea commericalization.

8 Conclusion
This paper unveils that an approximately 3 years head start of a corporate lab

over the rival in the same research field triggers persistent R&D, learning, product
development and vertical knowledge disclosure to the public, as opposed to a one-off
acquisition of patent proprietary right. Once a corporate lab achieves a head start after
the microchip breakthrough, the early-mover advantage in both the rate and radical-
ness of subsequent applied research persists. The early leaders also continue to product
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new product designs on their leading research fields. Furthermore, the likely strategic
knowledge sharing enables early industrial leaders to consolidate the dominant design
over their rivals. As knowledge diffusion decays with distance, early technology leaders
play a pivotal role in catalyzing early agglomeration forces across space.
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Appendices

A Historical context
The Shockley breakaway Early in 1948, Santa Clara, a county located in the north

of California, which is commonly referred to as the birthplace of the great "Silicon
Valley" today, was still far from being called a superstar region that stands at the
frontier of cutting edge technology. In late 1940s, the war-time research contracts
had kicked off the development of cutting-edge telecommunication technologies in a
variety of emerging agglomerations, including northern California, Houston, Dallas and
Cleveland. As one of these locations, Santa Clara had not yet achieved the status of
a thriving hub for innovation and entrepreneurship that it enjoys today. It was during
this time that two key events unfolded, which ultimately jump-started Silicon Valley
and set the stage for modern American semiconductor technology.

William Shockley, a Nobel laureate and a pioneer in solid-state physics, played a
pivotal role in spawning the seed of future growth in Silicon Valley. In 1955, Shockley,
along with a team of talented engineers, founded the Shockley Semiconductor division
in Mountain View, California. His division attracted some of the brightest minds in
the field. Shockley’s semiconductor division, however, faced numerous challenges, both
technological and managerial. His authoritarian leadership created a tense working en-
vironment. Although his engineers had foreseen that smaller, programmable microelec-
tronic devices were the future of semiconductor technology, these early research efforts
were largely discouraged as Shockley was dedicated to his four-layer-diode project - in
which few Shockley employees saw any future. In Oct. 1957, the personal resentment
between Shockley and his genius engineers finally led to a break-away, which soon left
profound impact on the progress of American technologies. This group of dissenting
employees, known as the "Traitorous Eight," left Shockley’s division to establish their
own company, Fairchild Semiconductor.

With unfettered freedom for semiconductor research in the new company, the
eights soon unlock the true potential of semiconductors: within just 2 months since
the Shockley breakaway, Jean Hoerni (one of the eights) noted down a novel idea in
Dec. 1957 to dope semiconductor oxide layer on top of a clean semiconductor (namely,
the planar process), which provided a solution to carve down complex circuits while
preventing contamination of complex junctions. The formation of this idea soon un-
lock unprecedented potential in semiconductor technology and officially kicked off the
decades-long transformation of human race to the modern computer age. After a year
of refinement and in May 1959, the first US patent for this technique was filed to the
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USPTO office and in July 1959, the breakthrough patent of microchip was filed by
Robert Noyce (one of the eights) based on Hoerni’s planar idea. The planar-microchip
idea has been so pervasive in almost every segment of modern high-tech sectors ever
since its invention to even today.

Silicon v.s. Germanium: the horse-race in semiconductor In a timeline parallel
to the breakaway of the "Fairchild Eight," a technology horse race between two types
of semiconductors was silently ongoing. In 1948, William Shockley, John Bardeen and
Walter Brattain in Bell Lab first invented the transistor - a small device to amplify cur-
rent in circuits. This marked the moment when Silicon, an abundant semiconductive
element from the Earth’s crust, and Germanium, another element with highly similar
semiconductive properties and lying just above Silicon in the periodic table, occupied
the central stage in the early spark of information age. Germanium, with its super-
ior electrical conductivity at room temperature, initially gained widespread acceptance
within manufacture stage in the early years (1948-1953) for the first commercial tran-
sistor radios and early computer systems. In 1954, the first practical Silicon-based tran-
sistor were demonstrated to public in an IEEE conference by Gordon Teal, a director
of Texas Instruments. This marked a significant milestone in semiconductor technology
history as it paved the way for the mass production of Silicon transistors. Between
1954-1957, the two material co-existed for use in both the inventions and in the mass
production of transistor devices.

Just two months after the Fairchild eights broke away from Shockley and started
the exploration of faster and smaller electronic devices, the Hoerni’s planar idea came,
which not only spurred the microchip but also revolutionized the use of Silicon. Semi-
conductor oxide had been viewed as redundancy in semiconductor devices, because it
grew naturally on the surface of pure semiconductors and needed to be washed away to
net out the impurities (Orton, 2009). With Hoerni’s planar approach, Silicon oxide can
be used to protect the underneath Silicon junctions from contamination and electrical
leakage and hence paved the way for miniaturization and mass integration of transistors
within a single piece of Silicon microchip (Berlin, 2005). However, the same process
cannot be replicated upon Germanium because of inferior oxide properties (for example,
the oxide growing process is difficult to control and the oxide is water soluble.) (Ye,
2016). Figure C.1 shows that soon after Fairchild Semiconductor emerged, the horse
race between Germanium and Silicon had a clear winner. Germanium, although signi-
ficant in the early stages of semiconductor development, couldn’t overcome its incom-
patibility with single-crystalline microchips and gradually faded into the background
since 1960s. Silicon, as an ideal material to realize the microchip breakthrough, became
the foundation of modern semiconductor technology and kick-started the United States
invention golden age.
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(a) Cross-county comparison conditional on the same technology (H01L29/00)

(b) Cross-technology comparison conditional on the same county (Santa Clara)

Figure A.1: Trends of patent statistics pre- and post-Fairchild Semiconductor
emerged.
Note: The vertical dashed line indicates the year of 1957 when Fairchild Semiconductor
Division emerged. Patent dates are evaluated at the priority datea

aPriority date is the earliest filing date in a family of patent applications. Therefore, a
priority date is often the most proximate date to capture the timing of new idea discovery.
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B A simple model (TBC)
.....

C Data appendix

C.1 Supplementary data

Patent locations Each patent is geo-coded based on the inventor-declared locations
in patent bibliography information (see Figure C.2a in Appendices). The workflow
allocates the location information provided from PatCity (Bergeaud and Cyril, 2022)
and HistPat (Petralia et al., 2016) to each inventor, and prioritizes the location with a
higher accuracy score. The order of the assignment workflow is specified as follows:

Order 1: USPTO: for all patents granted after 1976;

Order 2: HistPat: accuracy band = High;

Order 3: PatCity: accuracy band = High;

Order 4: HistPat: accuracy band = Medium;

Order 5: PatCity: accuracy band = Medium;

Order 6: HistPat: accuracy band = Low.

Similarity to microchip Similarity to microchip is calculated at the research field
level. The indicator is defined as the fraction of patents similar to microchip patents
in a research field. Similar patents are defined by collecting the Google Patent "Similar
Documents" record for all microchip patents, and the patents with microchip patents
in their "Similar Documents" record.

List of product categories The 133 electronics product modules collected and
compiled from Yearbooks of Institute of Radio Engineers (1953-1963) (Institute of Radio
Engineers, 1963) include:

[1] Aerospace Navigation & Test [2] Amateur [3] Amplifiers [4] Antenna Accessor-
ies [5] Attenuators [6] Audio Frequency Test [7] Automatic Control [8] Batteries [9]
Bio-Medical [10] Blowers & Cooling Fans [11] Bridges [12] Broadcast Receivers [13]
Broadcast Transmitters [14] Cabinets, Consoles & Enclosures [15] Cable & Wire [16]
Capacitors [17] Carrier Current [18] Ceramics [19] Chassis & Racks [20] Chemicals &
Compounds [21] Circuits [22] Coils [23] Computer Accessories [24] Connectors [25] Con-
sulting Engineers [26] Control [27] Converters [28] Cooling Devices [29] Core Materials
[30] Crystals & Accessories [31] Decades [32] Delay Lines [33] Distribution [34] Educa-
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tion [35] Electro-Optical & Photographic [36] Electronic Control [37] Electronic Control
Equip [38] Emergency Communications [39] Energy Conversion Devices [40] Equalizers
[41] Fabricators & Custom Builders [42] Facsimile [43] Ferrimagnetic Materials [44] Fil-
ters [45] Fuses [46] Gasses & Vapors [47] General Laboratory & Supplies [48] General
Test [49] Generators [50] Geophysical Apparatus [51] Graphic Recorders [52] Hardware
& Findings [53] Heating [54] Hermetic Seals [55] Indicating Instruments (Panel Meters
& Timers) [56] Induction Heating [57] Industrial Sound Systems [58] Infrared [59] In-
sulating & Shielding Materials [60] Jacks & Plugs [61] Laboratories & Custom Builders
[62] Laboratories Standards Of Frequency & Time [63] Lacquers, Paints, Compounds
& Waxes [64] Lights & Displays (Indicator) [65] Loudspeakers [66] Machinery [67] Mag-
netic Amplifiers [68] Marine [69] Materials & Fabrication Distribution [70] Materials,
[71] Materials, Electrooptical [72] Materials, Ferrimagnetic [73] Materials, Semicon-
ductor [74] Measurement [75] Metals [76] Meters (Indicating Instruments) [77] Micro-
phones [78] Microwave [79] Mobile [80] Molded Products [81] Monitor [82] Motors [83]
Nuclear [84] Oscilloscopes [85] Phonograph, Pick-Ups, Record Changers, Etc [86] Pilot
& Indicator Lights [87] Plastic Moldings [88] Point-To-Point [89] Power Circuit Com-
ponents [90] Prime Movers [91] Printed & Packaged Circuits [92] Production Aids [93]
Publishing [94] Radar-Microwave Receivers [95] Receivers [96] Recorders [97] Rectifiers
[98] Rectifiers, Vacuum Tube [99] Regulators [100] Relays [101] Resistors [102] Services
For The Broadcaster [103] Servo-Mechanisms [104] Shielding Materials [105] Single Side-
band [106] Sockets [107] Solder [108] Sound Systems [109] Studio [110] Switches [111]
Telegraph & Teleprinter [112] Telemetering [113] Television [114] Terminals [115] Test
& Measuring [116] Thermal Devices [117] Thermostats [118] Tools [119] Transducers
[120] Transformers [121] Transmission & Distribution [122] Transmitters [123] Tubes,
Entertainmenttype [124] Tubes, Industrial-Type [125] Tubes, Receiving [126] Tubes,
Rectifying [127] Tubes, Special Purpose [128] Tubes, Transmitting [129] Tubing [130]
Tuners [131] Utilization [132] Vacuum Tube [133] Waveguides & Accessories.

C.2 Defining Silicon and Germanium groups

To start with, I classify corporate lab×research field pairs into two groups based
on the pre-Fairchild use of semiconductor material (observed in patent texts).

Step 1: Extracting the original components of a patent Early historical patents
did not display a clear structure in texts, and hence the review of "prior arts" is often
combined with the description of original work conducted by the patent inventors.
The key challenge of this step thereby lies in the extraction of accurate information
from historical patent documents and how to leave out confounding information (e.g.,
discussion of prior arts) that did not represent the actual innovation of a patent. To
overcome this, I employ a variety of regular expressions and separates patent claims
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(a) Choice of Silicon v.s. Germanium (b) Oxide patents

Figure C.1: Patents using Silicon and Germanium over time.
Note: The first vertical dashed line marks 1954, and the second vertical dashed line marks 1957.

from historical patent texts, where the inventors declared the most original part of the
invention that warrant intellectual property protection (see Figure C.2b in Appendices).
An additional feature of patent texts is that crucial structures or components of a
graphed design are often indexed with numbers for inventors to further elaborate on (for
details see Figure C.4 in Appendices). I exploit this feature and extract the texts with
these structures and extract all the sentences that incorporate such numeric elements
(e.g., Figure C.4b in Appendices). I further compile all the above textual information,
which is supposed to capture the most original ingredients of a patent. Based on this,
I proceed with the following natural language processing workflow.

Step 2: Detecting semiconductor choices If a corporate R&D lab has a provi-
sional semiconductor patent shortly before Fairchild discovered the disruptive idea for
planar-based microchip, the post-Fairchild efforts for that lab are more likely to be
path-dependent on that specific semiconductor material which are utilized in ongoing
research. Based on the extracted "original textual information" following step 1, I con-
duct keyword detection on these strings to capture the semiconductor choice of each
granted patent. All patents with priority dates starting between 1954-1957 (after both
Silicon and Germanium transistors entered mass production and before Shockley break-
away) are collected. A patent i is defined as using Silicon if the term "Silicon" appears
in the patent claim or graph descriptive texts of her patent in research field f . If the
patent had not declared Silicon in the claims and graph descriptions of the patent p

on research field f , but mentions the term "Germanium", the patent is defined as Ger-
manium patents. For patents that mention neither material within the above machine
extracted "original textual information", I conduct a manual classification on these re-
maining ambiguous patents based on whether one semiconductor was valued more than
the other in key structures of the invention, and hence manually subdivides these pat-
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(a) Inventor location & assignee (b) Claims

Figure C.2: An example of patent bibliography and claims in Robert Noyce’s patent
on microchip (US2981877).
Note: Data source: USPTO.

Figure C.3: Corporate Author Heading.
Note: Data source: Corporate Author Headings Used by the US Atomic Energy
Commission in Cataloging Reports. United States Atomic Energy Commission,
Division of Technical Information.
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ents into Silicon and Germanium groups. Lastly, to rule out irrelevant resin-related
patents where the term "Silic", "Silicone", "Silicon Oil" etc are frequently referred to,
this detection of "Silicon" is conditional on patent full texts having matched a regular
expression related to "semiconductor."

Step 3: Assigning corporate lab×research field pairs into Silicon and Ger-
manium groups The focal sample for lab-level analyses is defined by searching all the
aforementioned corporate lab×research field pairs {c,f}, in which the lab v had success-
fully applied at least one of the two kinds of semiconductors into corresponding research
fields f between 1954-1957. The Silicon group therefore consists of the subsample in
which lab v had started research16 using Silicon in research field f during 1954-1957;
the Germanium group consists of the subsample in which lab v had not engaged in
Silicon-based semiconductor research, but had utilized Germanium semiconductor on
research field f during 1954-1957. I further condition the remaining sample on the "sur-
vivor" (or "stayer") labs, defined as the labs that had patented at least once before 1954
and at least once after 1967. The final sample consists of 643 corporate lab×research
field pairs for Silicon group and 402 corporate lab×research field pairs for Germanium
group.

(a) Patent graph (b) Graph components indexed in text

Figure C.4: An example of patent graph descriptive texts in Robert Noyce’s patent on
microchip (US2981877).
Note: Data source: USPTO.

16The date that a research project is started is approximated by patent priority date.
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Figure C.5: An example of Google Patents Similar Documents.
Note: Data source: Google Patents.

Table C.1: A sample of NIHF Inductees.

Inventor Awarded invention U.S. Patent No.
Thomas Alva Edison Electric Lamp 223898
Nikola Tesla Electro-Magnetic Motor 381968
William B. Shockley; Walter H.
Brattain; John Bardeen

Transistor 2502488;2524035

George R. Stibitz Digital Computer 2668661
Robert N. Noyce Integrated Circuit 2981877
Jean A. Hoerni Method of Manufacturing Semiconductor

Devices
3025589

Gordon Moore Method for Fabricating Transistors 3108359
Jack S. Kilby Integrated Circuit 3138743
Robert H. Dennard Dynamic Random Access Memory (DRAM) 3387286
Steve Wozniak Personal Computer 4136359

Note: Data source: National Inventors Hall of Fame.
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Table C.2: A sample of CPC patent class - IEEE publication crosswalk.

Research field (Patent
class)

Cosine
similarity

Titles of the 5 most similar IEEE publications

Transistor 0.9249088 Proposed process modifications for dynamic bipolar memory to reduce
emitter-base leakage current

0.9211423 The insulated-gate field-effect transistor
0.9161273 Computerized Model for Response of Transistors to a Pulse of Ionizing

Radiation
0.9159416 The silicon insulated-gate field-effect transistor
0.9156585 A New Semiconductor Tetrode-The Surface-Potential Controlled Tran-

sistor

Digital computer 0.9596612 Computer Architecture for Process Control
0.9520213 Automation and data bases in an industrial laboratory
0.9485689 Design Aspects of Computer Control in Discrete Manufacturing
0.9478114 Automation of computer panel wiring
0.9468003 The Illinois Pattern Recognition Computer-ILLIAC III

Data storage 0.9458047 A High-Speed Permanent Storage Device
0.9374053 Digital Measurement of Ferrite Hysteresis Loops
0.9370347 Storage devices
0.9355929 Soniscan: A ferroacoustic thin-film memory
0.9348686 Semipermanent Storage by Capacitive Coupling

Obtaining Gallium 0.9645047 Gallium-arsenide high-temperature diodes
or Arsenide 0.9645047 Double diffused gallium arsenide transistors

0.8945064 Current instabilities in gallium arsenide
0.8939393 The Electroacoustic Gain Interaction in III-V Compounds: Gallium Ar-

senide
0.8896928 High voltage, high Q epitaxial gallium arsenide diodes

Synchronous motors 0.9788419 Synchronous Starting of Generator and Motor
or generators 0.9227040 Harmonics of the Salient-Pole Synchronous Machine and Their Effects

0.9026061 Characteristics of a synchronous inductor motor
0.8830651 Measurement of the Subtransient Impedances of Synchronous Machines
0.8826016 Overvoltages in Polyphase Induction Motors During Single-Phase Oper-

ation

Television systems 0.9503268 A Portable Color TV Camera System
0.9467243 Video Processing in the PC-100 Color Television Camera
0.9462234 A Digitally Controlled Miniature Color Camera
0.9446854 A Multi-Camera Network Using Radio-Linked Double-System Sound

Synchronization
0.9433047 Television Mobile-Unit Design

Note: .
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Table C.3: A sample of CPC patent class - American Physical Society publications crosswalk.

Research field (Patent
class)

Cosine
similarity

Titles of the 5 most similar American Physical Society publications

Transistor 0.9236749 Analysis of the Tunneling Measurement of Electronic Self-Energies Due
to Interactions of Electrons and Holes with Optical Phonons in Semi-
conductors

0.9140938 Acoustoelectric interaction of surface phonons in semiconductors: Iso-
tropic approximation

0.9130029 Transition from Electrode-Limited to Bulk-Limited Conduction Pro-
cesses in Metal-Insulator-Metal Systems

0.9112310 Internal Field Emission at Narrow Silicon and Germanium XXXXX
Junctions

0.9100799 Metallic Interfaces. II. Influence of the Exchange-Correlation and Lattice
Potentials

Digital computer 0.9221531 Computer Programs for Electronic Wave-Function Calculations
0.8943759 Analytic Wave Functions. II. Atoms with XXXX Electrons
0.8908075 Computer renormalization-group technique applied to the Hubbard

model
0.8808629 The Electronic Structure of XXXXX
0.8714705 Photoproduction of XXXXX Mesons in Hydrogen

Nitrates of sodium, 0.9515612 The Optical Constants of Sodium and Potassium
potassium or alkali 0.9472586 Ferroelectricity in Potassium Nitrate at Room Temperature
metals 0.9281366 Cyclotron Resonance in Potassium Tantalate

0.9254999 Sodium Chloride at Very High Pressures
0.9214754 Enhancement of the $F$- and $V$-Bands in Sodium Chloride Containing

Calcium

Optical device 0.9348301 Optical Detection of Magnetic Resonance in Alkali Metal Vapor
moderating light 0.9340387 Electromagnetic response in strong magnetic fields. II. Particle polariz-

ation and mode structure for parallel propagation
0.9298490 New Kapitza heat-transfer model for liquid XXXXX
0.9289458 Sidebands of the XXXX-Center-Induced Infrared Absorption Spectra of

Alkali-Halide Crystals
0.9273539 Filamentary Tracks Formed in Transparent Optical Glass by Laser Beam

Self-Focusing. II. Theoretical Analysis

Note: .
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Table C.4: A sample of CPC patent class - product module crosswalk.

Research field (Patent
class)

Cosine similarity Titles of the 5 most similar product modules

Transistor 0.8896392 Semiconductor device
0.8748108 Ceramics
0.8732234 Magnets
0.8700579 Voltage regulator
0.8677803 Power supplies

Vacuum tubes 0.8115727 Tubes, receiving
0.7670012 Vacuum tube parts
0.7455317 Tubes, industrial type
0.7323446 Tubes, transmitting
0.7248049 Sockets

Cathode ray/electron 0.9175377 Cathode-Ray Oscilloscope
beam tubes 0.8682057 Circuits

0.8634396 Magnets
0.8607054 Relays
0.8548090 Microwave components/radar test/communication

Synchronous motors 0.7714706 Motors
or generators 0.7305673 Transformers

0.7144562 Generators
- -
- -

Digital computer 0.9064396 Computer & subsystems
0.8768654 Circuits
0.8656022 Recorders
0.8656022 Converters
0.8464447 Relays

DC-AC power input 0.9194738 Transformers
conversion 0.8873087 Power supplies

0.8838387 Amplifiers
0.8790170 Rectifiers
0.8752302 Converters

Frequency (spectra) 0.8580460 Measurement
measurement 0.8525186 Audio/radio frequency test

0.8385479 Filters
0.8232363 Microwave components/radar test/communication
0.8228763 General test

Note: .
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D Supplementary evidence

D.1 Radical and ordinary patents

Table D.1: Radical and ordinary patents.

A. Radical innovation
(1) (2) (3) (4) (5)

>50% >60% >70% >80% >90%

Silicon × Post 0.863*** 0.687*** 0.486*** 0.308*** 0.127***
(0.167) (0.142) (0.106) (0.073) (0.034)

µvf Y Y Y Y Y
λut Y Y Y Y Y
Controls Y Y Y Y Y
Obs. 8312 8312 8312 8312 8312
R2 0.522 0.504 0.492 0.465 0.391

B. Ordinary innovation
(1) (2) (3) (4) (5)

<50% <40% <30% <20% <10%

Silicon × Post 0.265*** 0.156*** 0.106*** 0.033* 0.007
(0.074) (0.050) (0.034) (0.018) (0.005)

µvf Y Y Y Y Y
λut Y Y Y Y Y
Controls Y Y Y Y Y
Obs. 8312 8312 8312 8312 8312
R2 0.537 0.511 0.490 0.422 0.282

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Dependent variables are: count of radical
innovations for each 2 years in each lab×research field pair (panel A), count of ordinary innovations
for each 2 years in each lab×research field pair (panel B). The criteria for defining radical and ordinary
patents are adjusted in each column. ">X%" means that the patent is granted earlier than X% of
its Google Patents similar documents; "<X%" means that the patent is granted later than X% of its
Google Patents similar documents. "Controls" indicate whether or not a set of control variables are
included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an
advanced physics institute/university county dummy interacted with year fixed effects; 3) count of
advanced physics publications for each year in each lab×research field.
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D.2 Testing exclusion restriction

Table D.2: Falsification test on corporate R&D outcomes.

Conditional on de facto late-movers in microchip:
(1) (2) (3) (4) (5) (6)

New
patent
flow

Citation
weighted
new pat.

Radical
innovation

Ordinary
innovation

Count of
product

lines

New
product
manuals

Silicon × Post 0.057 0.998 0.067 -0.001 0.067 0.115
(0.053) (0.633) (0.087) (0.035) (0.182) (0.151)

µvf Y Y Y Y Y Y
λut Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs. 4914 4914 3024 3024 3780 1890
R2 0.546 0.396 0.554 0.488 0.889 0.799

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. The sample consists only of "de facto late-mover"
labs, defined as the labs which have never adopted microchip in the focal research field f , or any other
closely related research fields in the same 4-digit CPC class of f . Dependent variables are: count of new
patents for each year in each lab×research field pair (column (1)); count of citation weighted new patents for
each year in each lab×research field pair (column (2)); count of radical innovations for each 2 years in each
lab×research field pair (column (3)), count of ordinary innovations for each 2 years in each lab×research
field pair (columns (4)), count of product modules for each year in each lab×research field (columns (5)),
count of new product manuals for 2 years in each lab×research field (column (6)). "Controls" indicate
whether or not a set of control variables are included. The controls include: 1) a NASA county dummy
interacted with year fixed effects; 2) an advanced physics institute/university county dummy interacted
with year fixed effects; 3) count of advanced physics publications for each year in each lab×research field.
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Table D.3: Falsification test on voluntary knowledge diffusion.

Conditional on de facto late-movers in microchip:
(1) (2) (3) (4) (5)

Release of
fabric.

Release of
experim.

Release of
fabric. (re-
sidualized)

Release of
fabric. via
face-to-face

Release of
fabric. via

publications

Silicon × Post -0.026 -0.009 -0.033 0.014 -0.040
(0.031) (0.034) (0.032) (0.010) (0.030)

µvf Y Y Y Y Y
λut Y Y Y Y Y
Controls Y Y Y Y Y
Obs. 3024 3024 3024 3024 3024
R2 0.752 0.791 0.168 0.476 0.700

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. The sample consists only of "de facto late-
mover" labs, defined as the labs which have never adopted microchip in the focal research field f , or any
other closely related research fields in the same 4-digit CPC class of f . Dependent variables are: count
of IEEE publications on fabrication details for each 2 years in each lab×research field pair (column
(1)), count of IEEE publications on experiment details for each 2 years in each lab×research field
pair (column (2)); the residualized count of IEEE publications on fabrication details for each 2 years
in each lab×research field pair (column (3)); count of IEEE conference publications on fabrication
details for each 2 years in each lab×research field pair (columns (4)), count of IEEE non-conference
publications on fabrication details for each 2 years in each lab×research field pair (columns (5)).
"Controls" indicate whether or not a set of control variables are included. The controls include: 1) a
NASA county dummy interacted with year fixed effects; 2) an advanced physics institute/university
county dummy interacted with year fixed effects; 3) count of advanced physics publications for each
year in each lab×research field.
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(a) Radical innovation (b) Ordinary innovation

(c) Count of product lines (d) New product manuals

(e) Release of fabrication details (f) via face-to-face

Figure D.1: Falsification test.
Note: Figure shows dynamic effects of the head start on multiple corporate R&D outcomes,
and how the effects from the head start shrink to near zero when no microchip is actually
used. Standard errors are clustered at the research field level. Confidence intervals are
displayed at the 95% level. Each observation is a corporate lab×research field×year unit. For
the "Conditional on de facto late-movers" event study plot, the sample consists only of labs
that have never adopted microchip in the focal research field f , or any other closely related
research fields in the same 4-digit CPC class of f .

61



Table D.4: Estimating pre-Fairchild selection bias for new product manuals.

(1) (2) (3) (4)
New product manuals IHS(New product manuals)

Silicon 0.029 0.032 0.027 0.028
(0.042) (0.044) (0.026) (0.027)

Research field FE Y Y Y Y
λut Y Y Y Y
Controls N Y N Y
Obs. 833 833 833 833
R2 0.437 0.470 0.441 0.484

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level.
Each observation is a corporate lab×research field×year unit. Only pre-1957 observations are kept
to estimate the size of selection bias. Dependent variables are count of new product manuals for
2 years in each lab×research field (columns (1) and (2)), and the same variable taking the inverse
hyperbolic sine transformation (columns (3) and (4)). "Controls" indicate whether or not a set of
control variables are included. The controls include: 1) a NASA county dummy interacted with
year fixed effects; 2) an advanced physics institute/university county dummy interacted with year
fixed effects; 3) count of advanced physics publications for each year in each lab×research field.

D.3 Corporate basic research as time-varying confounders

Figure D.2: Time-varying change of corporate basic research in Silicon and Germanium
groups.
Note: Standard errors are clustered at the research field level. Confidence intervals are displayed at
the 95% level. Each observation is a corporate lab×research field×year unit.
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D.4 The 1960s microchip patent war

Figure D.3: Patent appeal of the 1960s microchip patent war.
Note: Data source: Casetext.
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(a) New patent flow (b) Radical innovation

(c) Count of product lines (d) New product manuals

Figure D.4: Intense corporate response to the 1960s’ TI patent war.
Note: Figure shows dynamic effects of the head start on multiple corporate R&D outcomes, and how
the effects from the head start varies in research fields with high/low exposure to the 1960’s
microchip patent race. Standard errors are clustered at the research field level. Confidence intervals
are displayed at the 95% level. Each observation is a corporate lab×research field×year unit.
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Yvft = α + β1Head startvf × 1{1957 ≤ t ≤ 1961} + β2Head startvf × 1{1962 ≤ t ≤ 1965}+

β3Patent racef × Head startvf × 1{1957 ≤ t ≤ 1961} + β4Patent racef × Head startvf

× 1{1962 ≤ t ≤ 1965} + β5Patent race × γt + µvf + λut + Xvt + εvft (5)

Table D.5: Backfired patent race: response of non-TI corporate labs to TI’s patent war.

(1) (2) (3) (4)
New

patent
flow

Radical
innova-

tion

Count of
product

lines

New
product
manuals

Silicon × 1{1957 ≤ t ≤ 1961} 0.260** 0.306** 0.533* -0.069
(0.115) (0.149) (0.300) (0.160)

Silicon × 1{1962 ≤ t ≤ 1965} 0.351** 0.442** 0.023 0.162
(0.171) (0.223) (0.380) (0.152)

Patent Race × Silicon × 1{1957 ≤ t ≤ 1961} 0.353*** 0.332** 0.394** 0.210
(0.085) (0.136) (0.165) (0.155)

Patent Race × Silicon × 1{1962 ≤ t ≤ 1965} 1.210*** 1.725*** 1.261*** 0.442**
(0.189) (0.275) (0.448) (0.201)

Patent Race×Year FE Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Controls Y Y Y Y
Mean(Yvft|Silicon) 0.672 0.898 2.782 0.643
Obs. 9399 5784 7230 3615
R2 0.575 0.567 0.874 0.792

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Only research fields patented by Texas Instru-
ments are kept. "Patent race" is a research field level, time-invariant binary variable. It is coded as
1 when the research field of Texas Instruments is overlapped with Fairchild before the 1963 litigation,
and 0 when no overlap is detected. Only the corporate labs affiliated not with Texas Instruments or
Fairchild are included in the sample. Upon the baseline equation, Patent race × Silicon × Post, and
Patent race × Year FE are included. Patent race × Head start are absorbed by µvf . Dependent variables
are: count of new patents for each year in each lab×research field pair (column (1)), count of radical
innovations for each 2 years in each lab×research field pair (columns (2)), count of product modules for
each year in each lab×research field (columns (3)), count of new product manuals for 2 years in each
lab×research field (column (4)). "Controls" indicate whether or not a set of control variables are included.
The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an advanced phys-
ics institute/university county dummy interacted with year fixed effects; 3) count of advanced physics
publications for each year in each lab×research field.
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Table D.6: Backfired patent race: response of non-TI corporate labs to TI’s patent war.

(1) (2) (3) (4)
Radical

innovation
Ordinary

innovation
Count of
product

lines

New
product
manuals

Silicon × 1{1957 ≤ t ≤ 1961} -0.033 0.010 0.192 -0.338***
(0.114) (0.039) (0.243) (0.124)

Silicon × 1{1962 ≤ t ≤ 1965} 0.046 0.011 -0.588* -0.273**
(0.225) (0.051) (0.301) (0.124)

Litigation risk × Silicon × 1{1957 ≤ t ≤ 1961} 1.282*** 0.202*** 1.589*** 1.470***
(0.165) (0.060) (0.228) (0.161)

Litigation risk × Silicon × 1{1962 ≤ t ≤ 1965} 3.592*** 0.139** 4.084*** 2.175***
(0.422) (0.057) (0.726) (0.236)

Litigation risk × Year FE Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Controls Y Y Y Y
Mean(Yvft|Silicon) 0.804 0.123 2.600 0.582
Obs. 7576 7576 9470 4735
R2 0.553 0.344 0.876 0.790

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. "Litigation risk" is a research field level, time-invariant
continuous variable ranging from 0 - 1. It captures the exposure of research fields to conflicted terms mentioned
in the Noyce v Kilby patent appeal, with 1 indicating the highest exposure. Upon the baseline equation,
Litigation risk × Silicon × Post, and Litigation risk × Year FE are included. Litigation risk × Head start are
absorbed by µvf . Dependent variables are: count of radical innovations for each 2 years in each lab×research
field pair (column (1)), count of ordinary innovations for each 2 years in each lab×research field pair (columns
(2)), count of product modules for each year in each lab×research field (columns (3)), count of new product
manuals for 2 years in each lab×research field (column (4)). "Controls" indicate whether or not a set of control
variables are included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2)
an advanced physics institute/university county dummy interacted with year fixed effects; 3) count of advanced
physics publications for each year in each lab×research field.

D.5 Non-negative spillover and strategic complementarity
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Table D.7: Spillover checks.

A. Spillover of head start to co-located labs
(1) (2) (3) (4) (5) (6)
New patent flow Citation weighted new pat. Count of product lines

Yvft IHS(Yvft) Yvft IHS(Yvft) Yvft IHS(Yvft)

Siliconcf × Post 0.262** 0.088 2.036** 0.141 0.567 0.159*
(0.130) (0.058) (1.032) (0.113) (0.393) (0.083)

µvf Y Y Y Y Y Y
λut N N Y N N Y
Controls N Y Y N Y Y
Obs. 6015 6015 6015 6015 4010 4010
R2 0.568 0.585 0.446 0.518 0.875 0.894

B. Are close research fields strategic complements or substitutes?
(7) (8) (9) (10) (11) (12)
New patent flow Citation weighted new pat. Count of product lines

Yvft IHS(Yvft) Yvft IHS(Yvft) Yvft IHS(Yvft)

SiliconvF × Post 0.161 0.065 1.085 0.114 0.927*** 0.256***
(0.099) (0.045) (0.996) (0.103) (0.335) (0.074)

µvf Y Y Y Y Y Y
λut N N Y N N Y
Controls N Y Y N Y Y
Obs. 6015 6015 6015 6015 4010 4010
R2 0.567 0.585 0.446 0.518 0.876 0.895

C. Between-lab reallocation within the same parent firm
(13) (14) (15) (16) (17) (18)
New patent flow Citation weighted new pat. Count of product lines

Yvft IHS(Yvft) Yvft IHS(Yvft) Yvft IHS(Yvft)

Siliconuf × Post 0.145 0.075* 0.977 0.160* -0.207 -0.059
(0.090) (0.042) (0.936) (0.089) (0.331) (0.091)

µvf Y Y Y Y Y Y
λut N N Y N N Y
Controls N Y Y N Y Y
Obs. 5985 5985 5985 5985 3990 3990
R2 0.567 0.585 0.445 0.517 0.875 0.893

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each observation
is a corporate lab×research field×year unit. Only the counterfactual head start group (Germanium corporate
lab×research field pairs) is kept as the sample. For panel A, "Silicon" is a county×research field level treatment
dummy. The value takes 1 when the county×research field had patented with Silicon during 1954-1957, and 0
otherwise. Similarly, for panel B, "Silicon" is a lab×higher-order research field (4-digit CPC class) level treatment
dummy; for panel C, "Silicon" is a parent firm×research field level treatment dummy. The estimates capture
the magnitude of spillover from certain "treated" labs to respective "untreated" labs. Dependent variables are:
count of new patents for each year in each lab×research field pair (columns (1), (2), (7), (8), (13), (14)), citation
weighted count of new patents for each year in each lab×research field pair (columns (3), (4), (9), (10), (15), (16)),
and count of product modules for each year in each lab×research field (columns (5), (6), (11), (12), (17), (18)).
"Controls" indicate whether or not a set of control variables are included. The controls include: 1) a NASA
county dummy interacted with year fixed effects; 2) an advanced physics institute/university county dummy
interacted with year fixed effects; 3) count of advanced physics publications for each year in each lab×research
field.
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D.6 Sensitivity to non-linear estimation method

Table D.8: Restimation of key results based on QML Poisson fixed effect regression.

(1) (2) (3) (4) (5) (6)
New patent flow Radical innovation

Silicon × Post 0.940*** 0.940*** 0.964*** 1.048*** 1.048*** 1.079***
(0.250) (0.250) (0.253) (0.267) (0.267) (0.269)

Firm FE×Post Y N N Y N N
Silicon Y Y Y Y Y Y
λut N Y Y N Y Y
Controls N N Y N N Y
Obs. 13068 11355 11355 7853 6884 6884

(7) (8) (9) (10) (11) (12)
Count of product lines Release of fabric. via face-to-face

Silicon × Post 0.133*** 0.133*** 0.172*** 0.613** 0.613** 0.683**
(0.049) (0.049) (0.044) (0.298) (0.298) (0.304)

Firm FE×Post Y N N Y N N
Silicon Y Y Y Y Y Y
λut N Y Y N Y Y
Controls N N Y N N Y
Obs. 9212 7959 7959 4641 2776 2776

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level.
Each observation is a corporate lab×research field×year unit. Dependent variables are: count of
new patents for each year in each lab×research field pair (columns (1) - (3)), count of radical
innovations for each 2 years in each lab×research field pair (columns (4) - (6)), count of product
modules for each year in each lab×research field (columns (7) - (9)), count of IEEE conference
publications on fabrication details for 2 years in each lab×research field (columns (10) - (12)).
"Controls" indicate whether or not a set of control variables are included. The model is estimated
with clustered Poisson. To avoid non-concavity in non-linear estimation, a "Silicon" dummy are
inserted in place of µvf . The controls include: 1) a NASA county dummy; 2) an advanced physics
institute/university county dummy; 3) count of advanced physics publications for each year in
each lab×research field.
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D.7 Continuous measure of Silicon exposure

Table D.9: Restimation of key results with continuous Silicon exposure.

(1) (2) (3) (4)
New patent

flow
Radical

innovation
Count of

product lines
Release of
fabric. via
face-to-face

# of pre-Fairchild Silicon patents × Post 0.256*** 0.394*** 0.072*** 0.041***
(0.023) (0.046) (0.021) (0.007)

µvf Y Y Y Y
λut Y Y Y Y
Controls Y Y Y Y
Obs. 13507 8312 10390 8312
R2 0.537 0.540 0.871 0.493

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. The sample consists of exactly the same lab×research
field pairs as in the baseline model (Table ??). "# of pre-Fairchild Silicon patents" is a continuous "Head
start" variable, indicating the count of Silicon patents in each lab×research field during 1953-1957. Dependent
variables are: count of new patents for each year in each lab×research field pair (column (1)), count of radical
innovations for each 2 years in each lab×research field pair (column (2)), count of product modules for each
year in each lab×research field (column (3)), count of IEEE conference publications on fabrication details for
2 years in each lab×research field (column (4)). "Controls" indicate whether or not a set of control variables
are included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an
advanced physics institute/university county dummy interacted with year fixed effects; 3) count of advanced
physics publications for each year in each lab×research field.
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D.8 A case study: meeting with the Fairchild

Figure D.5: Share of patents irrelevant to microchip after co-presenting work with
Fairchild.
Note: Standard errors are clustered at the research field level. Confidence intervals are displayed at
the 95% level. Each observation is a corporate lab×research field×year unit.
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E Ruling out alternative explanations

E.1 Specificity to the Silicon Valley

Table E.1: Specificity to California.

(1) (2) (3) (4) (5) (6)
Drop SC Drop ties

with SC
East
coast

Drop SC Drop ties
with SC

East
coast

New patent flow Radical patents

Silicon × Post 0.564*** 0.466*** 0.506*** 0.885*** 0.722*** 0.747***
(0.113) (0.109) (0.103) (0.176) (0.152) (0.154)

µvf Y Y Y Y Y Y
λut Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs. 13325 10725 9373 8200 6600 5768
R2 0.523 0.489 0.549 0.521 0.512 0.531

(7) (8) (9) (10) (11) (12)
Drop SC Drop ties

with SC
East
coast

Drop SC Drop ties
with SC

East
coast

Count of product lines Release of fabric. via face-to-face

Silicon × Post 0.490*** 0.579*** 0.520*** 0.084*** 0.090*** 0.097***
(0.160) (0.204) (0.182) (0.017) (0.020) (0.019)

µvf Y Y Y Y Y Y
λut Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs. 10250 8250 7210 8200 6600 5768
R2 0.871 0.849 0.886 0.487 0.434 0.509

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level.
Corporate labs located in Santa Clara county are excluded from columns (1), (4), (7) and (10).
Corporate labs that had ever collaborated with inventors from Santa Clara are excluded from
columns (2), (5), (8) and (11). Only corporate labs located in east coast states are kept in columns
(3), (6), (9) and (12). Each observation is a corporate lab×research field×year unit. Dependent
variables are: count of new patents for each year in each lab×research field pair (columns (1) -
(3)), count of radical innovations for each 2 years in each lab×research field pair (columns (4)
- (6)), count of product modules for each year in each lab×research field (columns (7) - (9)),
count of IEEE conference publications on fabrication details for 2 years in each lab×research field
(columns (10) - (12)). "Controls" indicate whether or not a set of control variables are included.
The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an advanced
physics institute/university county dummy interacted with year fixed effects; 3) count of advanced
physics publications for each year in each lab×research field.
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E.2 Winner takes all

Table E.2: Excluding the champion lab from each research field.

(1) (2) (3) (4)
New patent flow Radical

innovation
Count of

product lines
Release of
fabric. via
face-to-face

Silicon × Post 0.641*** 1.021*** 0.663*** 0.101***
(0.108) (0.174) (0.234) (0.020)

Controls Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Obs. 7176 4416 5520 4416
R2 0.590 0.583 0.874 0.544

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level.
Each observation is a corporate lab×research field×year unit. I construct the sample by first
obtaining the "champion" corporate labs with the highest cumulative microchip-related patents
in each research field until 1965; then I exclude these top corporate labs from each research field.
Dependent variables are: count of new patents for each year in each lab×research field pair (column
(1)), count of radical innovations for each 2 years in each lab×research field pair (column (2)), count
of product modules for each year in each lab×research field (column (3)), count of IEEE conference
publications on fabrication details for 2 years in each lab×research field (column (4)). "Controls"
indicate whether or not a set of control variables are included. The controls include: 1) a NASA
county dummy interacted with year fixed effects; 2) an advanced physics institute/university county
dummy interacted with year fixed effects; 3) count of advanced physics publications for each year
in each lab×research field.
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Table E.3: First-mover (dis-)advantage.

(1) (2) (3) (4) (5)
New patent

flow
Radical

innovation
New

product
manuals

Count of
product

lines

Release of
fabric. (re-
sidualized)

Silicon × Post 0.654*** 1.006*** 0.103 0.046 0.062
(0.192) (0.283) (0.192) (0.235) (0.070)

µvf Y Y Y Y Y
λut Y Y Y Y Y
Controls Y Y Y Y Y
Mean() 1.112 1.450 0.772 3.158 0.000
Obs. 4043 2488 1555 3110 2488
R2 0.608 0.601 0.846 0.891 0.094

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level.
Each observation is a corporate lab×research field×year unit. I only keep lab×research fields
in which lab v had produced patents similar to microchip before Fairchild emerged. Dependent
variables are: count of new patents for each year in each lab×research field pair (columns (1) and
(5)), count of radical innovations for each 2 years in each lab×research field pair (columns (2) and
(6)), count of product modules for each year in each lab×research field (columns (3) and (7)),
count of IEEE conference publications on fabrication details for 2 years in each lab×research field
(columns (10) and (12)). "Controls" indicate whether or not a set of control variables are included.
The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an advanced
physics institute/university county dummy interacted with year fixed effects; 3) count of advanced
physics publications for each year in each lab×research field.
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E.3 NASA Space Act

Table E.4: Sensitivity to NASA Space Act.

A. Excluding potential NASA (sub-)contractors.
(1) (2) (3) (4)

New patent
flow

Radical
innovation

Count of
product lines

Release of
fabric. via
face-to-face

Silicon × Post 0.546*** 0.850*** 0.490*** 0.089***
(0.119) (0.192) (0.165) (0.021)

Controls Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Obs. 8879 5464 6830 5464
R2 0.513 0.539 0.906 0.535

B. Effect heterogeneity by prime NASA contractor counties.
(5) (6) (7) (8)

New patent
flow

Radical
innovation

Count of
product lines

Release of
fabric. via
face-to-face

Silicon × Post 0.738*** 1.150*** 0.532** 0.053***
(0.169) (0.250) (0.256) (0.020)

NASA County × Silicon × Post -0.303** -0.444** -0.072 0.033
(0.150) (0.217) (0.253) (0.024)

NASA County × Year FE Y Y Y Y
Controls Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Obs. 13507 8312 10390 8312
R2 0.522 0.520 0.872 0.482

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Panel A checks if key estimates are sensitive to the
exclusion of potential NASA (sub-)contractor labs from places with prime NASA contracts during 1958-
1968. Potential NASA (sub-)contractors are defined as labs with patents similar to NASA patents. Panel A
checks if the effects are heterogeneous to counties with high/low exposure to NASA prime contracts. Upon
the baseline equation, NASA County × Silicon × Post, and NASA County × Year FE are included. NASA
County × Head start are absorbed by µvf . Dependent variables are: count of new patents for each year
in each lab×research field pair (columns (1) and (5)), count of radical innovations for each 2 years in each
lab×research field pair (columns (2) and (6)), count of product modules for each year in each lab×research
field (columns (3) and (7)), count of IEEE conference publications on fabrication details for 2 years in each
lab×research field (columns (10) and (12)). "Controls" indicate whether or not a set of control variables are
included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an advanced
physics institute/university county dummy interacted with year fixed effects; 3) count of advanced physics
publications for each year in each lab×research field.
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E.4 The triumph of not-that-large cities

Table E.5: Heterogeneity to 1950 county population.

(1) (2) (3) (4)
New patent

flow
Citation
weighted
new pat.

Radical
innovation

Cumulative
# of

microchip
pat.

Silicon × Post 0.519*** 5.025*** 0.822*** 0.952***
(0.108) (1.071) (0.166) (0.226)

ln(1950 pop. density) × Silicon × Post -0.350*** -3.798*** -0.645*** -0.673***
(0.115) (1.056) (0.168) (0.233)

ln(1950 pop. density) × Year FE Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Controls Y Y Y Y
Obs. 13507 13507 8312 17663
R2 0.523 0.417 0.521 0.442

(5) (6) (7) (8)
New patent

flow
Citation
weighted
new pat.

Radical
innovation

Cumulative
# of

microchip
pat.

Silicon × Post 0.505*** 4.922*** 0.806*** 0.926***
(0.103) (1.025) (0.158) (0.221)

ln(1950 total pop.) × Silicon × Post -0.071* -0.784* -0.103* -0.088
(0.038) (0.419) (0.053) (0.071)

ln(1950 total pop.) × Year FE Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Controls Y Y Y Y
Obs. 13507 13507 8312 17663
R2 0.523 0.416 0.520 0.443

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Dependent variables are: count of new patents
for each year in each lab×research field pair (columns (1) and (5)), count of radical innovations for each
2 years in each lab×research field pair (columns (2) and (6)), count of product modules for each year
in each lab×research field (columns (3) and (7)), count of IEEE conference publications on fabrication
details for 2 years in each lab×research field (columns (4) and (8)). "ln(1950 pop. dens)" indicates
log population density of each county from the 1950 census. "ln(1950 total pop.)" indicates log total
population of each county from the 1950 census. The interaction terms - county population variables
× Head start - are absorbed by µvf . "Controls" indicate whether or not a set of control variables
are included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2)
an advanced physics institute/university county dummy interacted with year fixed effects; 3) count of
advanced physics publications for each year in each lab×research field.
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(a) Home county total patent stock

(b) Home county log population

(c) Entry cohort and new patent flow

Figure E.1: Negative sorting across space.
Note: The horizontal axes from both figures denote the entry cohort of corporate labs into microchip
research, measured by year of first microchip patent from each lab. The vertical axes of E.1a and
E.1b presents characteristics of counties where each cohort of labs were located before Fairchild
Semiconductor emerged. Figure E.1a displays the cumulative count of patents in corresponding
lab-located counties in 1957; the vertical axis of E.1b presents the total population in corresponding
lab-located counties in 1950.
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E.5 Senior engineers and corporate absorptive capacity

Table E.6: Effect heterogeneity by count of senior IRE members.

(1) (2) (3) (4)
New patent

flow
Radical

innovation
Count of

product lines
Release of
fabric. via
face-to-face

Silicon × Post 0.488*** 0.769*** 0.391 0.061***
(0.110) (0.145) (0.256) (0.022)

IRE senior members × -0.020 -0.039** -0.005 0.002
Silicon × Post (0.014) (0.017) (0.017) (0.002)

IRE senior members × Year FE Y Y Y Y
Controls Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Obs. 7423 4568 5710 4568
R2 0.493 0.515 0.882 0.495

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. "IRE senior members" is a lab-level variable,
indicating the count of IRE senior members in a given corporate lab during 1953-1956. The interaction
term IRE senior members × Head start are absorbed by µvf . Dependent variables are: count of new
patents for each year in each lab×research field pair (column (1)), count of radical innovations for
each 2 years in each lab×research field pair (column (2)), count of product modules for each year in
each lab×research field (column (3)), count of IEEE conference publications on fabrication details for
2 years in each lab×research field (column (4)). "Controls" indicate whether or not a set of control
variables are included. The controls include: 1) a NASA county dummy interacted with year fixed
effects; 2) an advanced physics institute/university county dummy interacted with year fixed effects;
3) count of advanced physics publications for each year in each lab×research field.

77



E.6 Scouting via conferences

Table E.7: Scouting through conferences.

(1) (2) (3) (4)
Release of fabric. Release of fabric. via face-to-face
of matched rivals of matched rivals

Yvft IHS(Yvft) Yvft IHS(Yvft)

Silicon × 1{1957 ≤ t ≤ 1961} -0.015 -0.059 -0.011 -0.009
(0.045) (0.067) (0.011) (0.009)

Silicon × 1{1962 ≤ t ≤ 1965} 0.048 -0.061 0.028 0.015
(0.080) (0.049) (0.031) (0.020)

Controls Y Y Y Y
µvf Y Y Y Y
λut Y Y Y Y
Obs. 18720 7234 18720 18720
R2 0.428 0.435 0.204 0.217

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the research field level. Each
observation is a corporate lab×research field×year unit. Dependent variables are: count of overall IEEE
publications on fabrication details for 2 years from matched competing labs in the same research field
(columns (1) and (2)); count of IEEE conference publications on fabrication details for 2 years from matched
competing labs in the same research field. "Controls" indicate whether or not a set of control variables are
included. The controls include: 1) a NASA county dummy interacted with year fixed effects; 2) an advanced
physics institute/university county dummy interacted with year fixed effects; 3) count of advanced physics
publications for each year in each lab×research field.
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