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Abstract

Monitoring systems for diseases and pests are active in most countries, detecting early signs
of potentially disastrous outbreaks in time for preventative action. These monitoring systems
are costly, however, and identifying their economic value requires estimating damages from
outbreaks in empirical settings where monitoring is neither uniform nor exogenous. We estimate
the value of monitoring systems for the desert locust—known to devour entire agricultural
fields—and their impact on human well-being. Our analysis uses data from 1985 to 2020 across
Sub-Saharan Africa, the Middle East and South Asia, including locust monitoring records and
data from the Demographic and Health Surveys. We leverage conflict and weather events in
locust breeding areas to detect the effects of monitoring interruptions on locust swarm outbreaks.
We then reconstruct the spatial patterns of locust migrations to propagate these effects on
locust swarm outbreaks beyond breeding areas. Finally, we show that in-utero exposure to a
locust swarm reduces height-for-age by 0.36 standard deviations and increases the probability
of stunting by 7 percentage points (a 16% increase). Taken together, these estimates allow
us to quantify the effects of a change in monitoring effort on subsequent locust swarms and on
human health. We calculate that in the absence of effective locust monitoring, an additional 238
thousand children per birth cohort in the affected countries would experience stunting, creating
economic losses of US$11.9 billion per year. This implies a benefit-cost ratio of over 300 for
locust monitoring budgets.
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“O locusts, if you
Are seeking a place to winter,
You can find shelter in my heart.”

—Hsu Chao c.1200

1 Introduction

Disaster prevention relies on two essential components: protective investments to mitigate or adapt

to disaster impacts, and the ability to monitor conditions in order to target those investments. For

some disasters, monitoring may be achieved by a passive system of in situ instruments, while for

others, persistent and costly surveillance efforts must be maintained. Examples of the latter are

monitoring systems for human, plant and animal diseases and pests, which are active in most coun-

tries. These systems aim to detect potentially disastrous outbreaks early, allowing for preventative

action on containment. These monitoring systems are costly, however. For example, the Global

Polio Eradication Initiative’s surveillance costs exceed $79 million per year (Duintjer Tebbens et

al. 2019), and governments pledged $418 million in 2006 to strengthen early warning systems for

avian influenza (Roberts 2006). Measuring the economic value of these investments in monitoring

requires estimating the damage from outbreaks when monitoring fails, in empirical settings where

monitoring is neither uniform nor exogenous, particularly in developing countries. This problem

is even more difficult in the case where monitoring succeeds, since the challenge is to identify the

costs of the counterfactual outbreak that never occurred.

This paper focuses on the desert locust, one of the most destructive agricultural pests across

Central and North Africa, the Middle East, and South Asia (Zhang et al. 2019). Locusts live

primarily in low population density groups in remote desert areas, far from human activity. They

periodically enter a frenzied stage of reproduction and feeding in gigantic swarms, through a process

called “gregarization.” Their regional footprint is characterized by swings between “recession”

years—during which they live in their solitary phase in the desert—and “plague” years. During

“plague” years, traveling swarms leave breeding areas and migrate across vast regions, consuming

almost all vegetation in their path, decimating crops, and posing a major threat to food security.

A typical swarm could number as many as five billion individual locusts, cover an area of 100 km2

(roughly 70% larger than Manhattan), and consume the same amount of crops each day as seven
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to eight million people (Latchininsky 2013; Roussi 2020; Spinage 2012).1

Efforts in locust surveillance and control have varied, as have the frequency of plagues. In the

middle of the 20th century, the Anti-Locust Research Centre was created (Uvarov 1943; Waloff

and Popov 1990; Yates 2019), beginning a systematic effort to observe, understand, record, and

eventually control locust plagues, thus protecting the food supply of millions of people in the

historical plague areas. Two important milestones occurred in the middle of the century—the

advent of modern pesticides and the use of planes for airborne spraying (MacCuaig 1958; Gunn

1960). Preventative measures, occurring before locusts form swarms or move to areas populated

by humans, had a dramatic effect on the prevalence and frequency of locust plagues. Between

1861 and 1960 there were seven major locust plagues, some lasting decades, with only 22 recession

years during the 100 year period. Between 1961 and 2000, there were only two plagues and six

upsurges, none lasting longer than 4 years with 31 recession years out of the 40 year period. Due

to a combination of pesticide resistance, waning international effort (Roussi 2020), and changing

weather patterns due to climate variability and climate change (Salih et al. 2020), a number of

devastating plagues and upsurges have continued to occur, roughly once per decade, including a

major upsurge in 2019-2021. Management and monitoring of locust outbreaks ultimately passed to

the Food and Agriculture Organization (FAO), which maintains a regional observational network.

Despite the vast threat to the food supply of millions of people, the socioeconomic effects of locusts,

as opposed to their biology and control methods, have not been a major topic of research, in contrast

to other drivers of food insecurity and famines.2

In this paper, we document the value of locust monitoring systems, which combine surveillance

and preventative control actions, using 36 years of locust monitoring data. This context poses three

key challenges: (1) locust monitoring is endogenous to locust conditions and monitoring capacity,

(2) locust monitoring and impacts are connected over large distances, as the activities of locusts in

core breeding areas, far removed from centers of agricultural activity, have consequences in distant

locations through the development of swarms and their migration out of breeding areas, and (3)

reporting of monitoring efforts is likely more incomplete in impact areas relative to breeding areas.
1 Estimates suggest that in a 100 km2 area, a locust swarm would consume approximately 10,000 tons of vegetation

per day, on average. We assume that a person eats about 1.3 kg of food per day.
2 In addition to the seminal work by Sen (1982), more recent work has examined the Great Famine in China (Meng

et al. 2015), the potato famine in Ireland (O’Rourke 1994), the era of famines in India (Burgess and Donaldson
2010), and how famines in general are becoming less frequent (Gráda 2007).
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We address these challenges as follows. First, we exploit conflict and weather as shifters of locust

monitoring effort in breeding areas, to document the impact of changes in monitoring effort on

locust prevalence. Second, we document how these monitoring failures might lead to locust swarm

outbreaks that spread outside of breeding areas by identifying locust migration patterns over space.

Third, we estimate the effect of resulting swarm outbreaks on human health, using reported swarm

dynamics in breeding areas to overcome non-classical measurement error in the locust data. Overall,

we document how monitoring operations affect swarm outbreaks, how locust swarms spread over

space, and how swarm outbreaks affect human health in populated areas.

We begin by documenting a discontinuity in monitoring effort across country borders, demon-

strating that locust monitoring is incomplete and that there are systematic patterns underlying

variation in monitoring data. We then show that the onset of conflict in locust breeding areas

reduces the likelihood of locust monitoring by 3 percentage points (from an average of 28% state-

month observations benefiting from monitoring). Despite this suppression of monitoring, to which

locust data recording is tied, conflict that occurs during a year of good rainfall results in a 6.4

percentage point higher occurrence of recorded swarms (over a baseline of 3.8% of state-month

observations documented as having a locust swarm present). This conflict-induced monitoring in-

terruption also leads to subsequent increases in swarm likelihood in other countries (specifically,

areas in other countries but within the same breeding areas experience a 0.3 percentage point

increase in swarm likelihood, over the 3.8% baseline).

Next, we use a LASSO to detect the stable spatiotemporal connections between locust breeding

areas and the affected regions we study. This allows us to predict locust presence outside of

breeding areas along migration pathways, which allows us to infer locust presence without relying

on imperfect monitoring data. For the next stage of our analysis, this gets around two empirical

issues that would result from simply estimating the association between monitoring, locusts, and

human health in a given location. First, monitoring effort itself is likely endogenous to weather and

social processes that affect human health, resulting in nonrandom missing observations. Secondly,

given that locust presence is partly determined by local weather, the association between locusts

and human health is confounded by multiple other channels (including infectious disease) through

which weather can drive changes in human health.

We combine these locust presence data with survey data from 50 Demographic and Health

4



Surveys in 16 locust-affected countries over 27 years to yield a dataset of 416,890 child observations.

We estimate outcomes of locust plagues on children’s height-for-age Z-scores (HAZ), the most

reliable measure of longer-term nutritional deficits that can be measured through household surveys

(Onis and Branca 2016). Children exposed to swarms while in-utero are 0.36 standard deviations

shorter and 16% more likely to suffer from stunting. The large magnitude of these effects is

consistent with the declines seen during acute food emergencies or famines.

Taken together, our estimates allow us to quantify the effects of a change in monitoring effort on

subsequent locust swarms and on human health. We calculate that in the absence of effective locust

monitoring, the affected countries would experience an increased stunting rate of 0.6 percentage

points (an additional 238 thousand children per birth cohort in 2020) and a decrease of 0.05% of

GDP (US$11.9 billion per year). This implies a benefit-cost ratio of over 300 for the FAO’s locust

monitoring budget.

Our primary contribution is to the literature on the economics of disaster prevention, mitigation,

and adaptation. Most studies in this literature have focused on estimating the economic or social

costs of disasters (e.g., Anttila-Hughes and Hsiang 2013; Hsiang and Jina 2014; Rosales-Rueda

2018) or understanding to what extent insurance can mitigate losses from disasters (e.g., Carter

et al. 2014). Most closely related to this study are a small number of papers that estimate the

value of preventative actions (Davlasheridze et al. 2017) or disaster control (Baylis, Boomhower, et

al. 2023), or the value of weather or hurricane forecasts (Molina and Rudik 2022; Burlig et al. 2024;

Shrader et al. 2023). We contribute to this literature by studying a problem where monitoring is

costly and endogenous. As we note above, a wide class of problems share this feature, but previous

evidence on the value of such systems is limited to modelling exercises (Roberts et al. 2009; Herida

et al. 2016). We provide the first causal estimate of the value of monitoring for disaster prevention.

Our study also relates to a small but growing literature on the social and economic consequences

of plant pests, and specifically, locusts. A few studies evaluate the impacts of locusts on child health,

either for single countries or epidemics (Conte et al. 2023; Linnros 2017) or, most similar to this

study, for all countries with georeferenced anthropometric survey data (Le and Nguyen 2022), or

focusing specifically on infant mortality (He and Lam 2024). These studies largely corroborate the

effects on child health we discuss in the final stage of our analysis. Related, Banerjee et al. (2010)

find similar results in a historical context from the Grape phylloxera, a plant pest that destroyed
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grapevines in late 19th century France. These adverse shocks to income and nutrition during infancy

and early childhood (Almond and Currie 2011) can also have far-reaching consequences later in

life (De Vreyer et al. 2015; Baker et al. 2020). Our results complement those of Marending and

Tripodi (2023), who rely on wind direction to predict the migration paths of locusts in Ethiopia,

confirming that locusts affect agricultural outcomes and, specifically, farmer’s profits. Other studies

also document the negative correlation between conflict and records of locust swarms in the FAO

data (Torngren Wartin 2018; Biscaye 2023).

The rest of the paper proceeds as follows. Section 2 discusses the biology of locusts and the

history of monitoring and control. Section 3 details the locust data and other data sources used in

this paper. Section 4 describes how the locust data suffers from systematic measurement error in

the cross-section. Section 5 documents the relationship between surveillance and control activities

and the likelihood of locust outbreaks. Section 6 describes how locust outbreaks propagate across

space. Section 7 describes two approaches to analyse the impact of locust swarms on human well-

being, and presents the results from these analyses. Section 8 provides a calculation of the value

of locust monitoring activities. Section 9 concludes.

2 The Cycles of Locusts Infestations

Locusts are short-horned grasshoppers of the insect order Orthoptera. There are about a dozen

species of locusts, and what distinguishes them from the thousands of other grasshopper species,

is that they exhibit density-dependent changes in behavior and morphology. At low population

densities, they adopt a solitary and sedentary behavior. At high population densities, they become

gregarious, and form voracious swarms that can travel fast and far (Latchininsky 2013).

The journey of the desert locust, Schistocerca Gregaria, starts in arid and semi-arid areas

contained in a narrow band north of the Equator, going from the Atlantic Ocean to Northern India

(see Figure 1). Breeding occurs in bare sandy soil that is sufficiently wet. Once eggs hatch, desert

locusts pass through a series of stages, from wingless young called hoppers, to flying adults that

eventually mature and breed (Symmons and Cressman 2001a). They are polyphagous i.e. can

consume many types of vegetation, including all agricultural crops (Latchininsky 2013).

When the right conditions form—typically an amount of rain that allows for intense breeding,
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Figure 1: Locust breeding areas during recession years
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MIGRATION AND SEASONAL DISTRIBUTIONS

Since both day-flying swarms and night-flying solitary individuals are displaced
downwind, the seasonal changes in the mean wind flow bring locusts into particular
zones during particular seasons (see Fig. 16). For example, locusts move southwards
from northwest Africa into the Sahel of West Africa at the beginning of the summer.
During the autumn, they move northwards again but low temperatures at night limit the
movement of night-flying solitaries compared with day-flying swarms.

Downwind displacement tends to bring locusts into an area during the season when
rain is most likely, for example, the Sahel of West Africa and the Sudan in the summer
and the Red Sea coasts in the winter. Once the rain falls, the locusts will mature and
breed. By the time the new generation of adults is capable of sustained flight, the
seasonal wind pattern may well have changed and breeding conditions become poor.
The locusts will then migrate rapidly, often over very great distances, to another area.

All this is true only in a very general way. Often there are movements that take place
during periods of particular winds rather than coinciding with the prevailing wind flow.
Moreover, rare and even unprecedented movements continue to occur. This is one
reason why, in any given year, only part of the seasonal breeding area will be infested.
The other major reason for unsuccessful breeding will be failure of the seasonal rains.

Figure 16. Within the recession area, locusts move with the winds. These bring
them into particular zones during the summer (the Sahel and the Indo-Pakistan
desert) and during the winter/spring (northwest Africa, along the Red Sea and
Baluchistan).

Locust season Rainfall season Hatching Fledging

Spring (long rains) February – May March – June May – August
Summer June – September July – September August – October
Winter (short rains) October – January October – January November – February

Winter/spring breeding areas
and resulting migration

Summer breeding areas
and resulting migration

Recession area

Spring breeding areas Summer breeding areas

● Northwest Africa ● Sudan, Eritrea, Ethiopia
● Iran, Pakistan ● East Africa*
● Interior of Saudi Arabia and Yemen ● Sahel, West Africa
● Somalia Peninsula and East Africa* ● Indo-Pakistan border

Winter breeding areas

● Red Sea and Gulf of Aden coasts
● Somali Peninsula and East Africa*

* during plagues

Notes: Map shows the desert locust’s summer (grey) and winter/spring (yellow) breeding areas. Arrows
indicate corresponding migration patterns. Thick black line outlines the recession area (typical habitat).
Source: FAO. Reproduced from Symmons and Cressman (2001a).

followed by a decrease in rain that suppresses vegetation—locusts find themselves to be in high

numbers, and increasingly crowding around isolated vegetation clumps.3 This increased proximity

triggers their transition from a solitarious phase to a gregarious phase (Sword et al. 2010): hoppers

form marching bands, which are particularly voracious and, upon reaching the adult stage, convert

to flying swarms that migrate at a rapid pace.

Swarms vary in size and density: the average density of a settled swarm is about 50 million

locusts per km2, but this figure can vary between 20 million and 150 million (Symmons and Cress-

man 2001b); in flight, swarming locusts tend to spread out, forming a cloud that can extend over

1,000 km2 (Spinage 2012). Once a swarm forms, it travels every day during the daytime, under rea-

sonable temperature and wind conditions. With a flight speed ranging between 16 and 19 km/hour,

and a flight duration of 9-20 hours, a swarm can easily move 100 km or more during a single day.

Locust swarms usually travel downwind, at an average speed that is slightly lower than the actual

wind speed (Cressman and Stefanski 2016). This downwind displacement tends to bring them into

zones of convergence where rain is generated, which provides favorable conditions for feeding and

breeding. Locusts do not always follow the prevailing winds: for example, migration after summer

breeding in Western Africa follows the rarer and warmer southerly winds that take them to North
3 Rainfall over 25 mm in two consecutive months is usually assumed to be enough for locust breeding and develop-

ment (Cressman and Stefanski 2016).
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Africa (Cressman and Stefanski 2016). Overall, broad seasonal migration patterns are relatively

predictable, while predicting the precise location of a swarm requires more detailed information on

wind, weather, and soil moisture conditions.

The devastation swarms have brought about has been documented for millennia, but looking

back on more recent plagues—a plague is “a period of one or more years of widespread and heavy

locust infestation” (FAO 2001)—enables to better grasp the extent of the damage locust bands and

swarms can cause. For instance, Foster (2015) argues that the famine that hit Syria during World

War I and claimed the lives of half a million people (out of 3-4 million inhabitants) was in part

caused by a particularly destructive locust infestation. Over the course of 6-7 months, it is argued,

locusts devoured at least 536,000 tons of food, which amounted for the winter 1915 harvest to a

10-15% reduction in production, and for the summer-fall 1915 harvest to a catastrophic 60-100%

drop. Indeed, current FAO estimates suggest an adult locust can consume 2 grams of fresh food

(about its own weight) per day, which for a 40 million locust-strong swarm (about 1 km2 wide)

amounts to 80 metric tons of food per day, i.e., as much as the daily consumption of 35,000 people

(FAO 2015). The extent of damage from a locust plague is scale-dependent: total crop losses may

be negligible at the scale of the economy, but the impact is usually disastrous for individual farmers

or cooperatives (Latchininsky 2013).

Until the 1960s, plagues were frequent and long. Based on FAO data spanning 1910-2006, Joyce

I. Magor et al. (2008) observe that plague conditions were affecting some part of the desert locust

range on average four years out of five, with each plague lasting at least 8 years. After 1965 and

the deployment of locust preventive control strategies by the newly created FAO, plagues would be

shorter (two years at most), leaving more years of locust recession (“period without widespread and

heavy infestations by swarms,” Cressman and Dobson (2001)) or swarm-free between consecutive

plagues. They also note that the spatial expanse of plagues has been much reduced since the 1960s.

Desert locust swarms are known to have immense destructive capacity, but research on their

impact on agricultural outcomes has been limited partly because of the lack of consistently measured

crop yield data across time and space. In a survey that took place after the 2020 plague in Ethiopia,

close to 60% of the households reported observing desert locust swarms on their farm, of which

18% reported complete crop destruction by desert locusts (Ilukor and Gourlay 2021). Another

recent study by Chatterjee (2022) documents declines in wheat production in India following locust
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swarms. A few papers have successfully been able to detect locust crop damage (for the oriental

locust) using measures of greenness such as NDVI (normalized difference vegetation index) and

LAI (leaf area index) (Tian et al. 2008; Ma et al. 2005).

3 Data

The primary goals of the analysis are to study how monitoring and control operations affect swarm

outbreaks, and study how swarm outbreaks affect the well-being of exposed human populations.

In particular, we use armed conflict as a shifter of monitoring and control operations to overcome

their endogeneity, and we develop a proxy for the presence of locust swarms in populated areas

to overcome non-classical measurement error in locust reporting. To achieve this, we collect data

on locust reports, weather, armed conflict incidence, and repeated cross-sectional surveys of the

exposed populations. In what follows, we summarize each data source.

3.1 Locust Monitoring Data

Locust monitoring data comes from the FAO Locust Hub website. This dataset records sightings of

four categories of locusts (hoppers, bands, adults, and swarms), as well as locust control operations,

and ecology observations on vegetation and soil moisture conditions.4 The data are collected by

experienced locust officers performing survey and control operations, additional field staff, and can

also come from local self-reporting. It is collected in real-time via GPS-connected devices, or in

near real-time, especially for earlier records entered manually and later shared via radio, fax, or

email. Records are shared with national locust centers, and then centralized and validated by the

FAO’s Desert Locust Information Service.

Locust monitoring data started in 1985, and we exploit records made until 2020. Figure 2a

plots the annual count of locust reporting events, by record type, for the duration of the sample

(1985-2020). Overall, the most frequent type of record is ecology observations: out of all reporting

events (unique date and location when at least one record is made), 88% include observations on

ecology. This is followed by adult locust observations (25%) and control operations (18%), while
4 Hoppers are “Desert Locust solitarious hoppers (wingless nymphs)”, bands are “Desert Locust hoppers (wingless

nymphs) that form a band”, adults are “any type or maturity of Desert Locust adults that do not form a group
or concentration”, and swarms are “any maturity of Desert Locust adults that form a swarm” (FAO).
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swarm observations are made 7% of the time. Figure 2b shows the spatial extent of swarm reporting

events. Out of all reporting events that include swarm observations, 62% also include a control

observation. In general, swarm observations tend to be more frequently associated with control

observations over breeding areas.

Figure 2: Spatiotemporal Coverage of Data in the FAO Locust Hub

(a) Locust Observations Over Time
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(b) Spatial Distribution of Swarm Observations
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Notes: (a) Locust observations by year, and by record type. (b) Each dot represents a single locust swarm observation.
Source: Food and Agriculture Organization Locust Hub.

3.2 Locust Breeding Areas

At times of low densities (recession years), locust breeding is restricted to “breeding areas”, extend-

ing from Mauritania and southern Morocco eastwards through Arabia to the Rajasthan Desert in

India (J. Magor et al. 2008, also see Figure 1). These areas are typically where swarm outbreaks

first originate. Accordingly, breeding areas have been the focus of much preventive surveillance

and control efforts, in an attempt to limit locust population increases early on in the gregarization

process (Piou et al. 2017).

Some of our analyses exploit locust and monitoring dynamics in breeding areas, which requires

outlining their boundaries. In order to identify breeding areas at high resolution and in a way

that reflects locust ecology in our study time period, we use a statistical approach that relies on

the locust monitoring data, and confirm that the spatial pattern we obtain matches with coarser

historical maps like that provided by the FAO (Figure 1). Specifically, we run a spatial cluster

analysis on breeding locust observations made in recession years—that is, the 29 years in the 1985-

2020 time period that are not major outbreak years.5 This helps exclude breeding along swarm
5 Excluded years are 1987, 1988, 2003, 2004, 2018, 2019, and 2020.
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migration routes, which is likely to be more intensively observed and reported in major outbreak

years. Breeding areas are seasonal, meaning that one area might be active in the summer, while

another is active in the spring. Following Symmons and Cressman (2001a), we split the year into

three breeding seasons: spring (February-May), summer (June-September), and winter (October-

January), and apply spatial clustering to each season separately.

We start by evaluating breeding intensity by location and season. To overcome spatio-temporal

variability in reporting, we split our study region into a 0.25 degree grid, and classify each grid

cell as a “breeding” location in a particular season and year if any observation of breeding locusts

falls within that grid cell and season-year. We then calculate, for each each grid cell and breeding

season, the proportion of recession years when breeding occurs. This gives us a measure of breeding

intensity that varies by grid cell and season. We run multiple clustering algorithms (kmeans,

dbscan, hdbscan, and hclust), which cluster grid cells based on latitude, longitude, and breeding

intensity, and vary their parameter values across realistic ranges. For each season, we choose the

clustering result that minimizes within-cluster distance and maximizes distance between clusters,

and we visually check that the clusters (i.e. breeding areas) obtained match patterns documented

by the FAO. For example, Figure 3a shows spring season breeding areas, obtained by using the

kmeans algorithm with four clusters. The best summer clusters are obtained with the kmeans or

dbscan algorithms and winter clusters with the hdbscan algorithm (Figure A1). We sometimes

need to restrict analyses to breeding areas using administrative boundaries. Figure 3b shows a

spatial envelope of the spring breeding areas obtained using admin 1 boundaries (see Figure A1 for

summer and winter versions).

3.3 Weather Data

Weather data comes from ERA5, a reanalysis for global climate and weather from European Centre

for Medium-Range Weather Forecasts (ECWMF)—the fifth generation reanalysis data product of

the global climate. This dataset is considered to be one of the most accurate reanalysis weather

datasets available, which is of particular importance in our geographic setting, where in situ weather

monitoring is relatively rare. We use the hourly estimates on precipitation, maximum, and min-

imum of two meters temperature. We calculate the mean of two meters temperature from the

maximum and minimum values. We transform the hourly data on precipitation and mean of two
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Figure 3: Outlining Locust Spring Breeding Areas

(a) Best Clustering Output for the Spring Season (b) Admin-1 Envelope Applied to Spring Clusters

Notes: See main text for details.

meters temperature into daily weather data. We use these data to create a local weather time

series for each DHS cluster (see Appendix B for more details). In Figure 4, we plot the standard-

ized precipitation values for the monthly time series in each breeding area. There is very strong

seasonality in rainfall patterns, with long dry periods and bursts of rain, as well as variability across

years—with some years experiencing very sharp precipitation shocks.

3.4 Conflict Data

Our conflict data comes from the Uppsala Conflict Data Program (UCDP). The UCDP provides a

global geocoded dataset that contains information about conflict events from 1989 to the present.

Each observation is an event where there was use of force, either by an organized actor against

another organized actor or against civilians, that resulted in at least one death. The UCDP data is

more consistently coded and has more accurate geographical information compared to other data

sources on conflict with global coverage (Eck 2012). In Figure A2, we map the total incidence of

conflict events across 5-year time intervals. There is variation in conflict incidence and intensity

over time and space in our sample. There is also overlap between conflict locations and breeding

areas at the first administrative unit level.

We aggregate the UCDP data to create a monthly panel at the subnational administrative unit

level. An outstanding issue is that multiple events in the data pertain to the same ongoing conflict,

meaning that we need some definition of the start, end, and duration of a conflict. We follow

previous work by Miguel et al. (2004) and Ge et al. (2022) and define the onset of a conflict as any

12



Figure 4: Variation in Precipitation Across Locust Breeding Areas

Notes: We plot the monthly time series of standardized precipitation value for each of the breeding areas. We
standardize each precipitation time series separately.

time period in a subnational region where a conflict event occurs after 12 months of no recorded

conflict event. We define a conflict ending, the offset, as a time period in a subnational region that

had at least one conflict event in the past 12 months, but where there is no event in the 12 following

months. We also construct a dummy variable that captures ongoing conflict, that equals one if a

conflict started in the subnational region at least 12 months ago that has still not ended.

3.5 Household Survey Data

Microdata on children’s health are from the Demographic and Health Surveys (DHS). We use all

standard DHS surveys from countries affected by locust for which children’s anthropometric data

are available, generating a sample of 416,890 child-level observations in 50 surveys from 16 countries

between 1992 and 2018. We calculate each child’s anthropometric status using their height and

weight following the NCHS/CDC/WHO International Reference Standard (De Haen et al. 2011)

intended to provide a single measure of child nutritional outcomes comparable across ages and
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sex-at-birth. We then exclude from the analysis a small number of observations (2.6%) that are

flagged for having improbable height-for-age z-scores values.6

Figure 5: Spatiotemporal Coverage of Data in the DHS
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Notes: (a) Map of the location of the DHS clusters, with colors denoting the number of children surveyed in each
cluster. (b) The number of children surveyed across all the DHS surveys in the sample by birth year.
Source: Demographic Health Surveys.

4 Heterogeneity in Monitoring Across Country Borders

Like many non-automated and costly surveillance systems, locust monitoring is incomplete: this

means that the absence of a locust observation in a particular place and time can either reflect low

surveillance or reporting effort or the actual absence of locust activity. In this section, we provide

suggestive evidence of endogenous variation in the locust monitoring data.

The nature of the locust monitoring system suggests that monitoring is likely endogenous to

surveillance willingness (itself likely tied to suspected locust conditions) and capacity. While the

FAO provides training on locust control and assists countries with equipment, resources, and tech-

nical support during outbreaks and plagues, locust surveillance is primarily the responsibility of

national governments. Much of the locust monitoring data collection process thus depends on the

willingness and capability of governments to carry out monitoring activities. In particular, countries

of varying state capacity likely exert different levels of monitoring.

We first illustrate the likely endogeneity of monitoring data to state capacity, by documenting
6 As per DHS guidelines, height-for-age z-score with an absolute value larger than 6 are considered invalid.
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how monitoring effort and locust detection can change sharply across national borders. We use a

spatial regression discontinuity design approach on three outcomes: green or greening observations,

which proxy for monitoring effort, locust observations, and precipitation. In Figure 6, we show

graphically how each outcome changes across three pairs of country borders in western, central and

eastern Africa. Given that environmental conditions are unlikely to change abruptly at country

borders, and that locust swarms transcend national boundaries, we would expect the number of

locust observations to vary smoothly across the boundary—especially over small distances where

locust conditions are likely to remain stable. Despite very large confidence intervals, the discon-

tinuous jumps in the reporting of green or greening conditions, and the count of locusts close to

national borders, combined with the absence of discontinuous jumps for precipitation, point to

differences in monitoring efforts across countries. The border between Niger and Nigeria captures

an extreme case where there is effectively no reporting around the border inside Nigeria.

Following the descriptive evidence on sharp changes at the borders between countries, we es-

timate the magnitude of these border discontinuities for all country pairs in our study region. In

Figure 7, we plot regression discontinuity coefficients corresponding to green/greening observations

for each country pair, either against regression discontinuity coefficients corresponding to locust

observations, or precipitation. This general exercise recovers the same notion as the descriptive

plots above: there are sharp discontinuities in green/greening observations at many national bor-

ders, denoting sharp changes in monitoring effort across countries. In addition, countries that make

fewer reports about environmental conditions are also those that report locust less frequently, which

highlights how endogenous monitoring affects locust observations. In contrast, with respect to pre-

cipitation, there is no similar relationship. Any differences in precipitation across country border

fail to predict reported differences in green/greening conditions. Perhaps more importantly, for

cases where there are virtually no differences in precipitation (values around zero on the x-axis in

Figure 7b), there is a wide spread in the differences in reporting of green/greening conditions—

capturing variation in effort even when environmental conditions are highly similar. Overall, this

section documents evidence of endogeneity in reporting effort and locust observations. In the next

section, we document that in addition to this cross-sectional variation in monitoring effort, we also

observe monitoring suppression following armed conflict events.
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Figure 6: Descriptive Evidence for Sharp Changes in Monitoring Effort Across Country Borders
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Notes: We first calculate whether there is any green/greening observation, and any locust observation in every year
and month across a 0.05° grid. Similarly, we calculate monthly total precipitation across a 0.25° grid. If a grid cell
resides in multiple countries, we run a separate calculation on every country fraction and weigh the result by the
fraction size. We then use the share of year-months when a green/greening report is made as the RDD outcome
(first row), the share of year-months when any locust report is made (second row), or the average of monthly total
precipitation (third row). The distance between each grid cell and the border is calculated using the grid cell centroid.
The regression discontinuity design plots above use 5 km bins and 4th-degree polynomial curves.
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Figure 7: RDD Coefficients Across All Country Pairs
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Notes: Each dot shows an RDD coefficient estimated at a border of two countries for the green or greening reports (y-
axis) versus for any locust report (x-axis). A three-percent jitter is applied to all points to make it easier to observe
the mass of points around (0,0). In panel 7a, one outlier at (0.028, 0.138) is excluded for visual clarity. We see
that locust reporting declines sharply across country border when the reporting on environmental conditions—which
proxies for reporting effort—drops sharply as well. In panel 7b, sharp changes in environmental conditions do not
correlate with actual environmental discontinuities, as shown by precipitation on the x-axis.
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5 Local Relationship Between Surveillance, Control & Swarm Out-

breaks

In this section, we document the relationship between monitoring activities and the likelihood of

locust outbreaks. The key challenge in estimating how monitoring operations affect locusts is that

the surveillance part of monitoring is likely endogenous to the expected level of locusts, which would

increase following heavy rains that make conditions more favorable to swarm outbreaks. Similarly,

control operations likely respond to observed locust conditions, but observing realized locust levels

relies on surveillance efforts. To evaluate the effectiveness of locust surveillance and control efforts

requires a quasi-experimental shifter. In what follows, we use the term “monitoring” to refer to

surveillance operations (excluding control), and thus refer thereafter to the impact of conflict on

“monitoring and control”.

5.1 Descriptive Statistics Tying Armed Conflict to Locust Monitoring

As we document below, armed violent conflict suppresses monitoring and control operations. Our

empirical approach uses the fact that: (i) conflict interrupts monitoring and control; and (ii)

interruption of monitoring and control only matters when weather conditions are right for locust

swarms to form. We then show that recent conflict events that occur when precipitation levels are

high result in excess swarms. We focus on the interaction of the conflict and precipitation shocks,

while controlling separately for the direct effects of precipitation and any direct effects of conflict

on monitoring or (perhaps less plausible) on locusts themselves.

We motivate this approach by documenting the most recent outbreak of locusts in 2019, which

has been attributed to monitoring failures caused by the onset of civil war in Yemen in 2014

(Showler and Lecoq 2021)—although conflict erupted even before the official onset of 2014 (Gros

et al. 2015). In Figure 8, we plot the national-level time series for precipitation, conflict, and locust

monitoring. Two key insights emerge from this descriptive figure. First, before 2010, when conflict

levels were effectively at zero, there were no long lulls in reporting of locust activity, yet after 2010,

we notice three periods in which none of the admin-1 units reported any monitoring activity. The

second takeaway from this figure is that these three periods of suppressed reporting are correlated

with large spikes in conflict counts. The monitoring lulls do not appear to be explained by drought
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conditions, which could have explained why no monitoring occurred, as precipitation levels appear

to follow similar seasonality as before. In what follows, we examine whether this pattern is more

widely observed throughout our sample.

Figure 8: Conflict and Monitoring in Yemen Following the Onset of Civil War
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Notes: Summarizing precipitation, conflict, and locust reporting across admin-1 units in Yemen around the onset of
the civil war. The three national-level time series show that while high precipitation levels did occur after conflict
counts increased, locust monitoring declined sharply during periods in which conflict activity spiked—consistent with
the recent literature that attributes the 2019 locust outbreak to the monitoring failures linked to the civil war in
Yemen (Showler and Lecoq 2021).

5.2 Regressing Locust Monitoring & Control Operations on Local Conflict

Our analysis begins with quantifying the interruptions to monitoring and control activities caused

by conflict. Armed conflicts pose a major challenge for consistent monitoring and control operations

in breeding areas. For the time period of 1986 to 2002, Showler (2003) lists 14 salient examples

of conflicts that directly or indirectly interrupted locust survey and control and claims that such

interruptions were a chief reason for the upsurges and plagues observed during the same time

period. Thus, episodes of conflict may be seen as a shifter in locust monitoring. However, lapses

in monitoring and control should only lead to excess locust activity when the weather conditions

are favorable to locusts.

To analyze the effect of conflict on monitoring, we create a monthly panel of locust outcomes

for each admin-1 unit that also overlaps with a breeding area, and combine this data with our

monthly panel data for conflict events. We estimate the following specification:
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Yat = ConflictatΘ + λa + δst + ηbm + εat (1)

Where Yat is the outcome for admin-1 unit a, in month t. Our main focus is how monitoring

changes during times of armed conflict and after. We measure monitoring effort as any ecology

or locust report, regardless of life stage and gregarization status. Alternatively, we focus on the

ecology reports as an outcome that should capture monitoring efforts even in the absence of locusts.

For each outcome, we construct two variables: a dummy variable that is equal to one whenever

there is a non-zero count of reports, and the number of days in the time period t in which at least

one report was made. The dummy variable focuses on the extensive margin of monitoring, while

the days variable helps us study monitoring effort intensity. We construct the same two variables

for control operations.

We use the conflict data to construct a variety of variables, Conflictat, that capture the duration

of the conflict. The simplest form of this uses a dummy variable that is equal to one if there is

a reported armed conflict event in the admin-1 a at time t. An alternative univariate approach

that captures previous conflict conditions is to calculate the mean number of months in the past

12 months that have had a conflict event. When no conflict has occurred for the past year, this

variable is equal to zero, while if conflict conditions happened in 10 out of the 12 recent months, it

will be equal to 0.83. Accounting for how short-lived conflicts (under a year) might have different

effects than long-lived conflicts (over a year), we define two variables: Onsetat is a dummy variable

that equals one if a conflict started at any period from t to t − 12 in admin-1 a, and Ongoingat is

a dummy variable that equals one if a conflict had started more than t − 12 periods ago, and has

still not ended. To define an onset event, we use the first reported conflict event after a period of

at least 12 months where no conflict was reported. Similarly, we define an offset event, Offsetat, as

a dummy variable that indicates that a conflict ended in period t in admin-1 a if no conflict was

reported from t + 1 to t + 12. In the most saturated version of this regression, when we include

three dummy variables for conflict onset, ongoing conflict, and conflict offset, the omitted category

pools the time periods without conflict—that are at least one year after a conflict.

To account for different baseline reporting propensities and locust suitability, we include admin-

1 fixed effects, λa. To flexibly capture temporal trends and seasonality, we control for breeding area
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season-by-year-by-month fixed effects δst, as well as specific breeding area-by-month fixed effects,

ηbm. The former allows for pooled shocks at the monthly level that can vary by the three seasons

that define breeding areas (spring, summer, and winter). The latter controls for the seasonality

of a specific breeding area (e.g. the summer breeding area in West Africa). Because an admin-1

can overlap with several breeding areas, there is many-to-one mapping between admin-1 units and

breeding areas, such that admin-1 units are used in estimating more than one fixed effect.

5.3 Conflict Suppresses Locust Monitoring Efforts

Armed conflict conditions sharply reduce locust monitoring in meaningful magnitudes that are

precisely estimated. In Table 1, we report coefficients from estimating Equation (1). In Panel A,

we report results for any monitoring, broadly defined (see previous subsection). Whether we use

the dummy for contemporaneous conflict (columns 1 and 5), the share of months in the recent year

that had conflict events (columns 2 and 6), the onset and ongoing dummies (columns 3 and 7),

or the inclusion of the offset dummy (columns 4 and 8), we recover the same fundamental result

across both measures of monitoring: Monitoring declines during times of conflict.

A month with contemporaneous conflict lowers the likelihood of any monitoring occurring by

0.032 percentage points (column 1), reflecting a decline of 11.7% relative to the mean level of

non-zero monitoring incidence. This effect triples in magnitude if all the previous 12 months had

non-zero conflict events (column 2). If we separate short- and long-lived conflicts, we find that a

conflict event in the recent year lowers any monitoring likelihood by 0.03 percentage points, and

conflicts that have been ongoing for over a year, further suppress any monitoring by 0.055 percentage

points. These effects are all precisely estimated, allowing us to reject the null hypothesis of conflict

having a zero effect on any monitoring at significance levels well below one percent. When we

account for the offset of a conflict (conflict conditions end for at least one year following an onset),

we find that, on average, monitoring returns to baseline levels.

The observed declines in the any monitoring dummy are capturing a complete cessation of

monitoring efforts. However, monitoring activity could fall from high or medium levels to non-zero

levels following a conflict shock. We document this intensive margin of monitoring effort in columns

5 to 8 of Panel A in Table 1. These results demonstrate that even if monitoring continues during

conflict, the number of days on which reports occur declines.
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Table 1.
Estimating the Disruption & Suppression of Monitoring due to Conflict

Panel A. Any Monitoring
Dummy Days

(1) (2) (3) (4) (5) (6) (7) (8)

Conflict dummy -0.032** -0.433***
(0.012) (0.125)

Conflict dummy[0,-12] -0.090** -1.248***
(0.031) (0.335)

Onset [0, -12] -0.030** -0.028** -0.213 -0.134
(0.009) (0.009) (0.122) (0.125)

Offset [0, -12] -0.004 -0.151
(0.009) (0.151)

Ongoing (≥ 13mos.) -0.055** -0.055** -0.794** -0.806**
(0.018) (0.018) (0.249) (0.248)

Observations 48,858 47,230 47,287 47,287 48,858 47,230 47,287 47,287
R2 0.364 0.370 0.370 0.370 0.394 0.398 0.398 0.398
Mean Dep. Var. 0.273 0.276 0.276 0.276 1.955 2.004 2.001 2.001

Panel B. Any Ecology
Dummy Days

(1) (2) (3) (4) (5) (6) (7) (8)

Conflict dummy -0.031** -0.385**
(0.011) (0.145)

Conflict dummy[0,-12] -0.087** -1.244**
(0.031) (0.372)

Onset [0, -12] -0.027** -0.023** -0.123 -0.064
(0.009) (0.009) (0.116) (0.117)

Offset [0, -12] -0.007 -0.113
(0.009) (0.150)

Ongoing (≥ 13mos.) -0.055** -0.055** -0.846** -0.855**
(0.017) (0.017) (0.263) (0.261)

Observations 48,858 47,230 47,287 47,287 48,858 47,230 47,287 47,287
R2 0.374 0.377 0.378 0.378 0.387 0.391 0.391 0.391
Mean Dep. Var. 0.240 0.246 0.245 0.245 1.748 1.803 1.801 1.801

Notes: Each column reports the coefficients from one regression, capturing the effects of conflict incidence (Conflict dummy),
the share of previous 12 months with conflict, any conflict onset in previous 12 months, any conflict offset in previous 12
months, and ongoing conflict. Each regression includes admin-1 fixed effects, as well as breeding area season-by-year-by-
month, and specific breeding area-by-month fixed effects. Standard error is clustered by admin-1.
* 0.10 ** 0.05 *** 0.01
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One immediate concern is that reporting is lower because of a true decline in locust activity that

is somehow systematically correlated with conflict. We rule this out by focusing on a set of locust

reports that fall under the ecology reporting group. These reports focus on the environmental

conditions that might be favorable to locust, and occur regularly even if no locusts are observed.

In Panel B of Table 1, we report effectively the same pattern as in Panel A—confirming that the

sharp declines in any monitoring are predominately driven by lower levels of monitoring and not

lower levels of locusts.

5.4 Excess Locust Activity Following Favorable Weather Conditions & Moni-

toring Failures

Lapses in monitoring and control are concerning in general, but potentially even more severe if they

happen when environmental conditions are favorable for solitarious locust to become gregarious.

In other words, monitoring and control failures should only lead to excess locust activity when

the weather conditions are right. To test this hypothesis, we interact recent conflict with recent

precipitation and show that the interaction of conflict with precipitation predicts additional locusts,

after controlling for the direct effects of recent precipitation and the monitoring suppression effects

of conflict. Explicitly, we estimate a modified version of Equation (1):

Yat =
∑

k∈{0,5,10}
β1,kConflict × Precip. Shockt=0−k,...,−4−k

at +
∑

k∈{0,5,10}
β2,kConflictt=0−k,...,−4−k

at +

∑
k∈{0,5,10}

β3,kPrecip. Shockt=0−k,...,−4−k
at + λa + δst + ηbm + εat (2)

Where the outcomes are defined as they were before, though we add control and swarm report

outcomes to the monitoring effort outcome. We now define three new explanatory variables, for

three relative time periods. Starting from the precipitation shock, we define Precip. Shockat as the

share of recent months that have had a positive precipitation shock. Our baseline definition uses

rainfall events either above the median level or the 75th percentile of precipitation, defined using

the local climatology at the admin-1 level. We construct this variable for the contemporaneous

month up to the fourth lagged month (t = 0, ..., −4), as well as for two additional lagged periods
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(t = −5, ..., −9 and t = −10, ..., −14). This allows us to pool the dynamic effects of precipitation

to three periods of interest. We choose five months for each period based on results we obtain by

regressing an indicator for reported swarms on lagged precipitation shocks, while excluding periods

of armed conflict and no reported monitoring of locust to ensure the estimation is not attenuated

by suppressed reporting (see Online Appendix).

We define the conflict variable, Conflictat in the same way such that it captures the share of re-

cent months that have had conflict events. Finally, the interaction variable, Conflict × Precip. Shockat,

is the share of months that have had simultaneous conflict events and precipitation shocks—the

exact combination of conditions that suppress monitoring, and give rise to favorable environmen-

tal conditions for locusts. We report the estimation results from this specification in Table 2, for

monitoring, control, and swarms measured as a dummy variable for non-zero levels of reporting.
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Table 2: Estimating Conflict and Weather Impacts on Swarm Outbreaks

Any Monitoring Control Swarm

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

C × P50[0,−4] -0.005 0.035 0.028 0.029 0.025 0.039**
(0.036) (0.030) (0.021) (0.024) (0.017) (0.020)

C × P50[−5,−9] 0.096** 0.019 0.040*
(0.039) (0.024) (0.023)

C × P50[−10,−14] 0.043 0.012 0.033
(0.037) (0.018) (0.022)

C × P75[0,−4] 0.043 0.078** 0.049** 0.059** 0.044*** 0.064***
(0.038) (0.031) (0.021) (0.024) (0.017) (0.019)

C × P75[−5,−9] 0.112*** 0.045** 0.059***
(0.039) (0.022) (0.022)

C × P75[−10,−14] 0.080** 0.036** 0.049**
(0.036) (0.018) (0.022)

C [0,−4] -0.051** -0.063*** -0.075*** -0.088*** -0.014 -0.009 -0.025** -0.027* -0.001 -0.008 -0.011 -0.022**
(0.023) (0.021) (0.023) (0.021) (0.012) (0.014) (0.012) (0.014) (0.008) (0.011) (0.008) (0.011)

C [−5,−9] -0.028 -0.032 -0.017 -0.028* -0.022 -0.030**
(0.025) (0.025) (0.016) (0.016) (0.015) (0.014)

C [−10,−14] -0.050** -0.070*** -0.002 -0.014 -0.008 -0.016
(0.023) (0.022) (0.012) (0.011) (0.013) (0.013)

P50[0,−4] 0.176*** 0.170*** 0.091*** 0.105*** 0.063*** 0.071***
(0.017) (0.016) (0.010) (0.011) (0.009) (0.009)

P50[−5,−9] 0.005 0.047*** 0.028***
(0.018) (0.010) (0.009)

P50[−10,−14] 0.074*** 0.036*** 0.028***
(0.017) (0.008) (0.008)

P75[0,−4] 0.210*** 0.213*** 0.118*** 0.132*** 0.067*** 0.074***
(0.020) (0.020) (0.016) (0.017) (0.010) (0.011)

P75[−5,−9] 0.005 0.045*** 0.014
(0.022) (0.012) (0.010)

P75[−10,−14] 0.062*** 0.021** 0.018**
(0.020) (0.009) (0.009)

Observations 46,901 42,865 46,901 42,865 46,901 42,865 46,901 42,865 46,901 42,865 46,901 42,865
R2 0.371 0.375 0.371 0.375 0.210 0.220 0.212 0.221 0.178 0.186 0.177 0.185
Mean Dep. Var. 0.279 0.283 0.279 0.283 0.053 0.055 0.053 0.055 0.037 0.038 0.037 0.038

Notes: Each column reports the coefficients from one regression, capturing the effects of the share of recent months with both conflict and precipitation shocks (C × P ),
share of recent months with conflict (C), and share of recent months with precipitation shocks (P ). Each regression includes admin-1 fixed effects, as well as breeding area
season-by-year-by-month, and specific breeding area-by-month fixed effects.Standard error is clustered by admin-1.
* 0.10 ** 0.05 *** 0.01
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We continue to observe that conflict suppresses monitoring, as well as control operations (Table

2, columns 1 to 8). As we would expect, precipitation shocks lead to higher levels of monitoring

and control as local FAO offices realize that environmental conditions for locusts are favorable,

and when they monitor the breeding areas, on average, they detect more locusts. When conflict

and precipitation shocks occur simultaneously, captured by the interaction term, we observe that

monitoring increases, especially following lagged periods of potentially consequential periods of

conflict and high precipitation (columns 2 and 4). For example, if in the previous five to nine

months, the admin-1 experienced conflict and high levels of rainfall (above median or above the

75th percentile), then monitoring would be 0.096 or 0.112 higher, reflecting an increase of 34%

or 40% relative to a mean level of 0.28. For control operations, we see a similar spike following

precipitation shocks, and a somewhat more muted response during times of conflict, albeit a negative

effect. Following recent incidence of conflict and high rainfall (from t = 0 to t = −4), we see an

increase in control operations, but it is only precisely estimated when we define the precipitation

shock as being above the 75th percentile level (columns 7 and 8).

The propensity to report non-zero swarms increases after periods of conflict and precipitation

shocks (columns 9 to 12). This increase is larger, relative to the mean likelihood of a swarm, than the

relative increase in monitoring alone. In other words, while we see monitoring recovering following

the interaction of conflict and high precipitation, swarm detection increases even more once we take

into account that swarms are a rarer event in the data than monitoring. Relative to the mean level of

non-zero swarm incidence in the data, periods of conflict and high precipitation result in more than

a doubling of the propensity to report a swarm. In addition, the likelihood of observing any swarms

strongly increases with high precipitation, and weakly decreases with conflict. This confirms the

previous results regarding monitoring, conflict, and precipitation. Conflict suppresses monitoring,

which in turn leads to fewer swarm observations. High precipitation induces monitoring—because

conditions are favorable for swarm formation—and results in the detection of more swarms.

5.5 Suggestive Evidence for Negative Externalities Following Monitoring Fail-

ures

The above results help to establish the local effects of conflict and precipitation shocks on monitor-

ing, control, and swarm activity. Here we broaden the spatial scope and test whether conflict across
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countries that happens within the same breeding area results in locust spillovers. The intuition

here is that if conflict in one country suppresses its monitoring, then a neighboring country that

shares a locust breeding area might not receive an early warning signal. Instead, the neighboring

country might experience a migration of a swarm from the breeding area in the country that is

experiencing conflict, necessitating a stronger control response.

We test for this spatial spillover channel by estimating a regression where we focus on a focal

admin-1 unit, and how either local conflict within that unit, conflict in the country in which the

unit resides in, or conflict outside of that country—but that is linked to the same breeding areas as

the focal admin-1—affect monitoring, locust presence, and control operations. In other words, we

are estimating how remote conflict affects local locust activity while controlling for local conflict

conditions. To do so, we define a triplet of dummy variables—conflict onset, ongoing conflict, and

conflict offset—as we have defined them for Equation (1) for each of the three spatial bands: the

focal admin-1 (FA), outside the admin-1 but inside the breeding area-country (BA-C), and outside

of the country of the focal admin-1 but overlapping with the same breeding area (BA). Due to the

computational intensity of the specification and the data, we simplify the fixed effects such that

we control for admin-1 and breeding area season fixed effects, as well as year and month-of-year

fixed effects to account for pooled shocks and seasonality. This leads to the following regression

specification in which we estimate nine coefficients of interest:

Yat =β1OnsetF A
at + β2OffsetF A

at + β3OngoingF A
at +

β4OnsetBA−C
at + β5OffsetBA−C

at + β6OngoingBA−C
at +

β7OnsetBA
at + β8OffsetBA

at + β9OngoingBA
at +

λa + δs + +γy + ηm + εat (3)

Conflicts in more remote areas, yet within connected breeding areas, result in more reports of

locust activity once the conflict ends and monitoring returns to its previous baseline level. In Table

3, we report the estimation results for Equation (3). We observe, as before, that conflict suppresses

monitoring. Both the first year of conflict onset and conflicts that continue beyond a year reduce

any monitoring or any ecology reports (focal admin-1 and BA-country band coefficients, columns
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1 and 2). This monitoring suppression occurs both from conflicts within the focal admin-1 and

within the country of the admin-1. In fact, we observe that the onset of a conflict in the country of

the focal admin-1 suppresses reports of monitoring, ecology, all types of locust, as well as control

operations (BA-country band coefficients, columns 1 to 7).

After a conflict ends in the country that neighbors that of the focal admin-1, we see that the focal

admin-1 meaningfully increases its reporting of locust activity by more than 3% across a variety of

outcomes (BA band offset coefficient, columns 3 to 6). These increases are precisely estimated, and

they align with an increase of control operations by 9.3% relative to their mean level (column 7). We

interpret this as suggestive evidence for spatial spillovers that result from monitoring failures—one

country that fails to monitor locust conditions because local conflict suppresses monitoring leads

to the neighboring country facing increased locust activity. The last row of coefficients in Table 3

suggests that when a conflict in the neighboring country is severe, proxied by its duration, the focal

admin-1 “lowers its guard” and locust reports decline sharply across all outcomes. This potentially

reflects the notion that in the absence of an early warning from the neighboring country, the focal

admin-1 misses a timely signal about developing locust conditions.
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Table 3.
Spatial Spillovers Across Countries Within Overlapping Breeding Areas

(1) (2) (3) (4) (5) (6) (7)
Any Any Any Swarm Swarm Any Control

Monitoring Ecology Locust or Band Gregarious

Focal admin-1

Onset -0.024** -0.016* -0.008 0.003 0.006 0.008 0.003
(0.010) (0.010) (0.010) (0.005) (0.007) (0.007) (0.006)

Offset -0.002 -0.003 -0.002 -0.002 -0.005 -0.005 -0.005
(0.009) (0.009) (0.009) (0.005) (0.007) (0.007) (0.006)

Ongoing -0.043** -0.036* -0.020 0.010 0.015 0.013 0.002
(0.018) (0.021) (0.017) (0.008) (0.010) (0.011) (0.009)

BA-country band

Onset -0.015*** -0.012*** -0.011*** -0.007*** -0.012*** -0.013*** -0.005**
(0.004) (0.004) (0.004) (0.002) (0.002) (0.003) (0.002)

Offset -0.000 -0.001 0.003 -0.003 -0.000 0.001 -0.000
(0.004) (0.004) (0.003) (0.002) (0.003) (0.003) (0.002)

Ongoing -0.027* -0.041** -0.001 0.014** 0.014** 0.011 0.001
(0.014) (0.016) (0.011) (0.006) (0.007) (0.008) (0.007)

BA band

Onset -0.002 -0.002 -0.002 -0.002 -0.004** -0.005*** -0.001
(0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

Offset -0.000 0.001 0.008*** 0.003** 0.004** 0.005*** 0.005***
(0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

Ongoing -0.068*** -0.059*** -0.052*** -0.035*** -0.041*** -0.050*** -0.036***
(0.011) (0.014) (0.009) (0.005) (0.006) (0.007) (0.006)

Observations 44,662 44,662 44,662 44,662 44,662 44,662 44,662
R2 0.263 0.272 0.188 0.091 0.101 0.114 0.111
Mean Dep. Var. 0.285 0.255 0.163 0.038 0.052 0.060 0.054

Notes: Estimation results for the specification in Equation (3). Each column reports the coefficients from one regression,
capturing the effects of conflict onset, ongoing conflict, and conflict offset within the admin-1 (focal admin-1), outside
of the admin-1 but within the same country (BA-country band), and outside of the country but within the same
breeding area (BA band). Each regression includes admin-1 and breeding area season fixed effects, as well as year and
month-of-year fixed effects. Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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6 Propagation of Locust Activity Across Space

In the previous section, we documented that conflict in breeding areas interrupts monitoring and

that when the conflict episode is concurrent with a precipitation shock, this leads to an increase in

the probability that a locust swarm is observed within the same breeding area. However, swarm

outbreaks affect human well-being beyond breeding areas, once they escape and reach locations

where populations live and agricultural activities take place. From locust ecology expertise and

the literature, we know that swarms move from remote breeding areas to more densely populated

areas along relatively stable migration routes, determined to a large extent by continent-scale

prevailing wind patterns (Cressman and Stefanski 2016, also see Figure 1). In this section, we

seek to reconstruct these teleconnections between swarm outbreaks in breeding areas and exposure

to swarms beyond breeding areas. This will allow us to (1) propagate swarms across space, to

link monitoring and control impacts on swarm outbreaks in breeding areas, with health impacts of

swarm outbreaks outside of breeding areas; and (2) create a proxy for the presence of locust swarms

outside breeding areas, based on breeding area dynamics and teleconnections, which overcomes non-

classical measurement error in locust reporting (see section 7).

We use a data-driven approach to reconstruct migration-driven teleconnections in swarm dy-

namics. Specifically, we use locust monitoring data to identify, for any location, the breeding areas

that “feed” locusts to this location, and the temporal lag structure that characterizes each con-

nection. We start by splitting our study region into a 5 degree grid to allow for subregion-specific

teleconnection models. For each grid cell, we run a separate LASSO regression that selects from

a pool of contemporaneous and lagged locust activity in breeding areas—we refer to this as the

“LASSO stage.” The dependent variable in this regression is a monthly time series of locust swarm

presence dummies in a given grid cell. The set of predictors that LASSO selects from are monthly

time series of locust swarm presence dummies across all spring, summer, and winter breeding areas;

both the contemporaneous time series, and up to six monthly lags are included. There is no further

structure imposed, so that each grid cell can be linked to more than one breeding area, and to more

than one lag for each breeding area. This LASSO stage provides us with a set of lagged dummies

from different breeding areas, which are most predictive of locust swarm activity in a given grid

cell.
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To visualize the reconstructed propagation of swarms across space, we reverse the outcome of

the LASSO regressions. In Figure 9, we show one spring breeding area (blue dots) and all the

grid cells it “sends locusts to” across a monthly timeline. From contemporaneous time (lag 0) to a

6-month lag, it shows the recipient grid cells whose LASSO model chose the dummy predictor from

that breeding area with the corresponding lag. Some propagation-like patterns are visible, with

recipient grid cells moving away from the focal breeding area with increasing lags, though spatial

patterns are noisy, which could be due in part to correlations among all possible LASSO predictors.

Figure 9: Inferring Locust Swarm Teleconnections using LASSO

Notes: Set of 5 degree grid cells (brown squares) “teleconnected” to a spring breeding area (blue dots,
corresponding to spring breeding cluster “3”, see Figure 3) at different monthly lags from lag 0 to lag 6.

To evaluate more systematically the credibility of the reconstructed propagation patterns, we

show the selection probability of breeding area predictors as a function of the distance between

origin breeding areas and destination grid cells, separately for each lag level. We expect shorter

lags to be selected with higher probability than longer lags at short distances and for that ordering

to reverse as distance increases. This pattern is visible in Figure 10, where the selection probability

is higher for shorter lags when the distance is small, and the ordering flips as the distance between

origin breeding area and destination grid cell increases. In addition, selection probability decreases
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with distance overall.

Figure 10: LASSO predictor selection by grid cell distance from breeding areas.

Notes: Each grey dot corresponds to a (breeding area, grid cell, lag) triplet, placed at either 100%
(breeding area predictor selected for that grid cell at that lag level), or 0% (predictor not selected). Each
colored line is a locally smoothed curve correspond to a specific lag level. The (breeding area, grid cell)
pairs that are closer than 300 km have been excluded from this graph due to sparsity.

Overall, predicted monthly swarm time series at the grid cell level are well aligned with observed

monthly swarm time series (Table 4 and Figure C1). We come back to these teleconnections in

section 7 when constructing a proxy for human exposure to locusts, and in section 8 when evaluating

the back-of-the-envelope value of early warning systems.
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Table 4: Observed Swarms vs. Predicted Swarms

Observed Swarm Dummy

(1) (2)

Pred. Swarm Values 0.996*** 0.995***
(0.002) (0.002)

Fixed Effects
Grid cell ✓ ✓
Year ✓
Month ✓
Year×Month ✓

Notes: Each column reports the coefficients from one re-
gression, regressing observed swarm dummy values at the
grid-year-month level on predicted swarm values generated
by the lasso model. Fixed effects vary by column. Standard
errors are clustered by grid cell.
* 0.10 ** 0.05 *** 0.01
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7 The Impact of Locusts Outbreaks on Human Well-Being

We have demonstrated that monitoring and control activities in breeding areas are interrupted by

conflict and if this coincides with weather conditions that are favorable for locust breeding, it is

more likely that a locust swarm will form. Next, we showed that locust activity in remote breeding

areas predicts swarms outside of breeding areas. In this section, we analyze what this means for

human well-being.

The main goal of this section is to estimate the causal short-term and long-term implications

of locust swarm exposure for human well-being. The purpose of this step is to document the

human costs of swarms that escape breeding areas into more populated areas and is essential for

our understanding of the value of locust surveillance and control. Our main outcome is children’s

height-for-age, a marker of a child’s early nutritional environment that is linked to cognitive and

economic outcomes later in life (Case and Paxson 2008a; 2008b).7 As such, height-for-age is one

way of measuring the potentially far-reaching human impacts of exposure to desert locust swarms.

Our main analysis focuses on children living in rural areas.

7.1 Fixed Effects Estimation

Our first approach uses the plausibly exogenous combination of the required environmental con-

ditions that lead to locust infestations. Each locust infestation event provides us with a natural

experiment where certain locations are exposed to the locust shock. Using the history of locust

records that spans over four decades, we construct the location-specific time series of locust expo-

sure.

To determine if an individual in our DHS data was exposed to a desert locust swarm outbreak,

we first need to establish the spatial extent of a locust swarm. Specifically, we need to answer how

large of an area is affected when we observe a locust swarm in one location. This is important

because monitoring of locusts is resource-constrained, and unlike a hurricane, for example, there is

neither precise tracking of their trajectory over time nor an underlying physical process that lends

itself naturally to modeling. We turn to a data-driven approach and base the spatial extent of a

locust swarm on the spatial clustering of swarms in across space using Ripley’s K-function, giving
7 In Appendix C, we provide support for the idea that locust swarms affect food security by establishing a link

between locust outbreaks and food emergency declarations.
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us a cutoff at 150 km. This procedure is described in detail in Online Appendix B.

Second, we need to decide how to account for the different timing of exposure. This is particu-

larly important when considering the effects on children, as in-utero exposure might have a larger

impact than post-birth exposure (Almond and Currie 2011). Our treatment assignment rule flags

a child surveyed at time t as exposed while in-utero if any swarm was observed within 150km from

the DHS cluster during the nine months before birth, and as exposed after birth if the swarm is

observed in the nine months post-birth. In robustness checks, we also evaluate exposure in 9 to 18,

and 18 to 27 months after birth.8

Our assignment of treatment relies on the presence of a swarm within a 150 km radius of a

DHS cluster. We focus on the presence of a swarm because we consider the extensive margin of

swarm presence to be measured with higher accuracy relative to the intensive margin of the density

of swarms. In addition, the evidence for spatial clustering of swarms supports the notion that if

we observe one swarm in the region, there are likely more swarms that could be unobserved in

the data. However, the choice of assigning treatment based on a distance threshold presents a risk

of violating the stable unit treatment value assumption (SUTVA). Children in DHS clusters that

have swarms detected further than 150 km might still be affected by the locust outbreak. This is

especially true if an observed presence of a locust swarm 200 km from the DHS cluster is highly

indicative of an unobserved swarm closer to the DHS cluster. In robustness tests, we extend the

150 km threshold, run “donut” versions of the analysis, and allow the treatment effect to vary by

distance.

Our interest is to study how locust exposure affects the outcome of child i, of birth cohort b,

born in month m, observed in DHS cluster d, in administrative level a, in country c, in region

r, surveyed in year t, and in month n. We estimate how the outcome yibmd responds to a locust

swarm shock by using the following regression specification:

yibmd =β1Locustpre−9−months
bmd + β2Locustpost−9−months

bmd +

f(weatherbmd) + λa + δrb + ηrm + ωrt + θrn + εibmd (4)

8 Exposure before conception might still have an impact during pregnancy and after birth.
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We account for any time-invariant cross-sectional variation in anthropometric scores, human

capital accumulation, and other demographic outcomes by including fixed effects at the first ad-

ministrative unit-level (admin 1), λa.9 We flexibly control for time-trends by including year of

birth fixed effects, δrb, as well as year of DHS survey fixed effects, ωrt, which we allow to vary

by WHO region. To capture seasonality, we include month of birth fixed effects (ηrm), as well as

month of survey fixed effects (θrn), which we also allow to vary by WHO region. We also account

for local weather conditions by including f(weatherbmd) that flexibly controls for temperature and

precipitation.10 Any unobserved heterogeneity is captured by the error term, εibmd. We cluster our

standard errors at the admin-1 level.

There are two main concerns with the fixed effects identification strategy: non-random exposure

to locust swarms within a locality, and non-classical measurement error.

First, while the panel fixed effects regression in Equation (4) accounts for local weather condi-

tions, time-invariant factors, and pooled seasonality and time trends at the WHO region level, it

does not account for non-random exposure to locusts within admin-1 regions. While the sequence

of events that trigger a locust swarm outbreak might be considered “as-good-as random,” the lo-

cations that end up exposed are not entirely random, meaning that there may be a cross-sectional

component to the likelihood of ever experiencing a locust swarm. However, we argue that the

uncertainty around the timing of a locust outbreak provides a valid natural experiment: neither

the affected population nor the FAO can fully predict when an outbreak will occur. Moreover, the

sequence of contagion across space is not deterministic. Under these assumptions, untreated chil-

dren in locations that periodically experience a locust outbreak can approximate the counterfactual

outcomes for treated children in those locations. One limitation of the fixed effects approach is that

outcomes in locations that never experience a locust outbreak might not approximate non-exposure

counterfactuals for the treated population.

Our second concern is that in this setting, measurement error almost certainly results in false

negatives where we fail to observe a locust swarm in the data. A swarm observation in the data

almost surely reflects a true detection of a swarm, however, not all swarms are necessarily observed,
9 This is the first level below the country level, meaning the most coarse sub-national level.
10 We define child year-of-birth precipitation quartiles globally and temperature-day bins as follows (deg. Celsius):

<11, 11-14, 14-17, 17-20, 20-23, 23-26, 26-29, 29-32, 32-35, >35, using 17-20 as the reference bin. We include
1-period lags and leads of precipitation quartiles and temperature-day bins.
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and swarms that are observed are not necessarily observed each time they land in a new location.

This issue of false negatives in the data is further complicated by a potential correlation between

swarm intensity and likelihood of measurement. It is plausible that the monitoring and recording

capacity of locust presence declines more in areas that are more severely affected during a locust

infestation. One way in which such a correlation might arise is because shocks to monitoring

capacity likely also affect locust control, resulting in more intense exposure to treatment. This

means there might be a positive correlation between worse outcomes and the likelihood of false

negatives. We would effectively assign these most severely hit locations as part of the control

group, attenuating our estimates, or even reversing the sign of the effect. In what follows, we

describe how we can use what we documented in section 6, namely that desert locust activity in

breeding areas predicts swarms outside of breeding areas, to address the concerns covered above.

We use a proxy for locust swarm exposure in order to address these two potential threats to

the baseline identification strategy.

In addition to the non-random exposure and non-classical measurement error issues we discuss

above, there are three other threats to our identification strategy that we consider. First, there

might be unobserved local responses to locust outbreaks that affect our outcomes of interest. For

example, local outbreaks could lead to large insecticide spraying campaigns that could have their

own detrimental impacts on health. To rule out that we are attributing the presence of a locust

swarm to insecticide exposure we also run regressions where we include dummies for swarm presence

as well as insecticide spraying. Other responses that could affect local agricultural productivity

could occur if countries cease cloud seeding flights in order to reduce soil humidity levels—critical

for the next generation of locust eggs to hatch—yet we did not find any reports of changes to cloud

seeding in response to swarm outbreaks. Second, for our admin-1 level fixed effect to capture,

among other factors, the mean relationship between agricultural productivity and the outcomes

of interest, we are also assuming that we observe locations in our sample in their post-adaptation

equilibrium, such that they do not engage in crop switching or adopt new varieties. We consider

this a plausible assumption because these societies have been exposed to locust for centuries, and

no new locust-resilient crop varieties have been developed during our sample period. Finally, our

empirical approach also relies on the effect of a locust swarm to fade out within a few years, such

that conditions are back to their baseline level by the time a new locust outbreak occurs.
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7.2 Using Locust Activity in the Teleconnected Breeding Areas as a Proxy for

Local Swarm Exposure

As described above, our identifying assumption might be violated due to residual cross-sectional

differences, endogenous responses, or non-classical measurement error. To address these concerns,

we use the fact that variation in locust activity outside of breeding areas is driven by locust activity

in remote breeding areas via long-distance migration patterns (see section 6) to construct a proxy

for local locust swarm exposure.

In section 6, we generated an individual LASSO model of locust swarm presence in every

5-degree grid cell, based on lags of locust swarm activity across teleconnected breeding areas.

Following methods in Belloni et al. 2012; Chen et al. 2023; Lennon et al. 2022, we use each

LASSO model to generate a monthly time series of predicted swarms in every grid cell, and use

these predicted swarm values as a proxy for observed swarms in all the DHS clusters that are

located in that grid cell. The exclusion restriction is that locust swarms that occur in remote, yet

teleconnected, breeding areas are only correlated with the outcomes of interest through local locust

swarm presence, conditional on local weather. In Figure 11, we show evidence of spatial separation

between breeding areas and the DHS clusters where we measure impacts. We further check that

the impact exposure zones (150 km radius around DHS cluster centroids) do not completely overlap

with LASSO “recipient” grid cells that contain breeding area pixels (this is a conservative check

since several of these red grid cells only overlap with the edge of a breeding area and predicted

locust incidence in these cells is determined by locust incidence further away).

We begin by confirming that our proxy for locust presence captures meaningful variation in

exposure to locusts, focusing on the time period around birth. We regress a dummy variable that

indicates the presence of a locust swarm within 150 km from the DHS cluster during the time period

of interest – either nine months before or nine months after birth – on the mean predicted values

in the grid cell for the two time periods. We include the same fixed effects and control variables as

in Equation (4), giving us the following specification:

Locustk−months
ibmd =β1(Mean Predicted Values)pre−9−months

bmd + β2(Mean Predicted Values)post−9−months
bmd +

f(weatherbmd) + λa + δrb + ηrm + ωrt + θrn + εibmd (5)
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Figure 11: Overlaying Locust Breeding Areas and DHS Clusters

(a) Breeding Area Centroids and DHS Cluster
Points

(b) 5 degree grid cells and 150 km Buffers Around
DHS Cluster Points

Notes: (a) Breeding area pixels include spring, summer, and winter breeding locations (see 3.2 for details on method-
ology). (b) The 5 degree grid cells are the same ones used to derive teleconnections between origin breeding areas
and destination grid cells. The cells are highlighted in red when they overlap with at least one breeding area pixel.

where the main regressors are now the predicted values we obtained from the grid cell regressions

described in Section 6. If we were to use our proxy in as an instrumental variable, we would then

proceed to run a second stage regression of the outcome on the first stage predicted values. However,

because of the non-classical measurement error in this setting, the coefficient we obtain from the

second stage is potentially inflated. This occurs because the first stage coefficient becomes more

attenuated with more false negatives—the exact type of non-classical measurement error we are

concerned about. The second stage effectively scales the reduced form coefficients by the first stage

coefficients, which means our denominator is attenuated, relative to the case of zero measurement

error. For any given level of the reduced form estimate, and non-zero rate of false negatives, our

second stage estimate will get inflated. We verify this through a simulation where we increase the

rate of false negatives by turning some locust swarms dummy values from one to zero. As a result,

we instead use the predicted values as a proxy for local swarm activity, and estimate the following

reduced form specification:

yibmd =β1(Mean Predicted Values)pre−9−months
bmd + β2(Mean Predicted Values)post−9−months

bmd +

f(weatherbmd) + λa + δrb + ηrm + ωrt + θrn + εibmd (6)

Our proxy that relies on locust swarm observations in breeding areas that are teleconnected to
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DHS clusters results in a strong first stage. In Table 5, we report the coefficients from Equation (5)

for both the nine months pre- and post-birth locust exposure. The results for both coefficients show

a very precisely estimated positive effect of the mean predicted values on the local locust swarm

dummy. In particular, the mean predicted values in the nine months pre-birth are predictive of the

local swarm presence dummy pre-birth, and the same holds for the nine months post-birth. The

mean predicted values in the nine months pre-birth are also predictive of the local swarm presence

dummy post-birth, but the reverse does not hold. Both regressions have an F-stat above 50. We

report regressions with either admin-1 fixed effects, as we do throughout the analysis (column 2

and 3), as well as grid fixed effects because we use the grid cells to generate the predicted values.

Table 5.
First Stage Results for Locust Exposure Around Birth

Adm1 Fixed Effects Grid Cell Fixed Effects

9m pre-birth 9m post-birth 9m pre-birth 9m post-birth

̂9m pre-birth 0.717*** 0.255*** 0.715*** 0.296***
(0.113) (0.060) (0.311) (0.066)

̂9m post-birth -0.038 0.800*** -0.038 0.841***
(0.063) (0.131) (0.182) (0.134)

Observations 341,862 341,862 341,862 341,862
SW F Stat. 55.162 55.162 61.315 61.315
SW F Stat. 133.317 133.317 145.119 145.119

Notes: Estimation results from Equations (5). Columns report first stage results. Each
regression includes admin-1 fixed effects, birth year, interview year, birth month, and
interview month fixed effects, which are allowed to differ across WHO regions. Sample
includes all rural DHS clusters. Observations are weighted using DHS sample weights (see
main text for more details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01

7.3 Exposure to Locust Outbreaks Lowers Standardized Height in Exposed

Children

In this section, we describe the main estimation results for the impact of exposure to locust swarms

on height-for-age, using the fixed effects and reduced form approaches. Children who were exposed

to a locust swarm around the time of their birth experience a negative shock to their growth and

development, as reflected in their standardized height-for-age. In Table 6, we report the estimation
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results using the fixed effects (FE) specification in Equation (4), as well as the reduced form (RF)

specification in Equation (6). Experiencing a locust swarm exposure while in-utero lowers height-

for-age by 0.36 standard deviations (column 1). Exposure in the nine months after birth lowers

height-for-age by 0.22 standard deviations. These are meaningful reductions in growth as reflected

in the higher likelihood for stunting—being two standard deviations below the mean height-for-

age—in a population with a mean height-for-age of -1.6. Swarm exposure either in-utero or nine

months after birth increases the likelihood of stunting by 0.7 percentage points, reflecting an increase

of 16.3% relative to the mean 43% prevalence of stunting in the sample (column 3).

The predicted locust swarm reduced form results largely agree with the fixed effects results. In

columns 2 and 4 of Table 6, we find precisely estimated effects on height-for-age and stunting in

the same directions as in columns 1 and 3 for both in-utero exposure, and in the nine months after

birth. The coefficients in columns 2 and 4 are much larger, yet they cannot be directly interpreted

without considering the distribution of the predicted values. For in-utero exposure, moving from

the 25th to the 75th percentile value in our sample, 0.06 and 0.31, results in a reduction in height-

for-age by 0.27 standard deviations. Repeating this calculation for the stunting dummy results in

a 6 percentage point increase for in-utero exposure.

To benchmark our results, we compare how height-for-age and stunting are affected following a

food emergency declaration. In Table C2 in Appendix C, we report the correlation between a food

emergency declaration, and the outcomes from Table 6. We find that a food emergency declaration

leads to a 0.3 standard deviation reduction in height-for-age, and an 8.5 percentage points increase

in the likelihood of stunting. These estimates are very close to our estimated effects of locust swarm

exposure, which supports the idea that locust outbreaks lead to local food insecurity, as we report

in Table C1. To put our estimates into an even broader perspective, Dell (2010) finds increased

childhood stunting by 6 percentage points in locations formerly subjected to the mita (a forced labor

system) in Peru; Filmer et al. (2023) find that shocks in food prices, especially those of perishable

nutritious goods (eggs), increase child stunting by 11 percentage points (Philippines); finally, in

Rwanda, Akresh et al. (2011) determine that in-utero exposure to the civil war reduced height-for-

age z-scores by 1.05 standard deviations, whereas in-utero exposure to crop failure decreased that

of girls by 0.86 standard deviations.

In the Online Appendix, we report additional results that support our interpretation of the
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Table 6
Locust Exposure Around Birth & Children’s Height

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Swarm Exposure, 9m pre-birth -0.359*** 0.067***
(0.083) (0.016)

Swarm Exposure, 9m post-birth -0.218*** 0.070***
(0.046) (0.014)

Mean Pr. Val. 9m pre-birth -1.084*** 0.239***
(0.223) (0.059)

Mean Pr. Val. 9m post-birth -0.668*** 0.175***
(0.176) (0.053)

Observations 341,862 341,862 341,862 341,862
R2 0.104 0.104 0.070 0.070

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1
fixed effects, birth year, interview year, birth month, and interview month fixed effects,
which are allowed to differ across WHO regions. Sample includes all rural DHS clusters.
Observations are weighted using DHS sample weights (see main text for more details).
Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01

results. In Figure C2 and Table C3, we document the scope of SUTVA violations and how those

might attenuate our main estimates. In Table C4, we verify our results are robust to excluding

India, and focusing on African countries only. In Table C6, we show that our main results are

not sensitive to the inclusion of more granular unit fixed effects such as admin-2, DHS cluster,

and mother fixed effects. In Tables C7 and C8, we demonstrate that as expected, the negative

impacts of swarm exposure are concentrated in rural DHS clusters. In Table C9, we rule out the

potential concern that we are picking up the effects of control operations in the form of insecticide

spraying. Finally, in Table C10, we report heterogeneity of the results by sex-at-birth, and find

that male fetuses experience a larger penalty relative to female ones—suggesting that there are

different scarring and selection effects on male and female fetuses.

7.4 Examining Selection & Scarring Effects

Our analysis thus far has focused on growth and development, proxied by height-for-age. The

finding on a negative shock to height-for-age from exposure to a locust swarm around the timing

42



of birth suggests a strong scarring effect, either in-utero, or in early infancy that does not fully

recover even years after the exposure. The magnitude of the effects we find also raises the question

of whether in the presence of such severe shocks do children and infants experience higher mortality.

Mortality can occur both after or before birth. If mortality in-utero (fetal death) occurs at

a high rate, and there is selection against those who might have had lower height-for-age, this

can result in a reversal of the sign—swarm outbreaks leading to positive effect on height-for-age

(Deaton 2007). Here we examine how the effects on height-for-age compare to the effect on infant

mortality, under-five mortality, and the number of births per woman.

We fail to find a precisely estimated effect on infant mortality or under-five mortality in the full

sample (Table 7, Panel A. columns 2 and 3). However, we do find a drop of 0.07 births per-mother,

reflecting a decline of 4.1% relative to the mean in the sample (Table 7, Panel A. column 4). This

lower birth rate effect increases by an order of magnitude to a drop of 0.216, a 12.8% change, when

we focus on the earlier part of the sample of 1987 to 2000 (Table 7, Panel B. column 4). In that time

period, the effects on height-for-age are much more muted in their magnitude and precision (Table

7, Panel B. column 1). Similarly, we fail to detect any change in infant or under-five mortality

(Table 7, Panel B. columns 2 and 3).

When we focus on the latter part of the sample, 2001 to 2018, we find larger effects on height-

for-age (Table 7, Panel C. column 1). We estimate that the likelihood of infant mortality increase

by 0.8 percentage points if the child was exposed to a locust swarm in-utero, reflecting a 13.3%

increase relative to the mean prevalence of infant mortality (Table 7, Panel C. column 2). We do

not find evidence of a change to under-five mortality or the number of births per-woman.

Combined, these effects suggest that earlier in the sample, selection effects dominated scarring

effects. The number of births per-woman were substantially lower in exposed admin-1 areas, con-

sistent with a higher fetal death rate (selection). In the presence of higher selection, we would not

expect to see a strong effect on height-for-age, if weaker fetuses who would have obtain a lower

height-for-age were negatively selected. In the latter period, when we no longer observe suggestive

evidence for selection, we see more evidence of scarring in the form of more severe impacts on

height-for-age, and infant mortality.
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Table 7.
Examining Selection Versus Scarring Channels

H4A IM U5M BR
(1) (2) (3) (4)

Panel A. All Birth Years

Swarm Exposure, 9m pre-birth -0.359∗∗∗ 0.004 0.006 -0.070∗∗

(0.083) (0.003) (0.004) (0.034)
Swarm Exposure, 9m post-birth -0.218∗∗∗ 0.001 0.005 0.005

(0.045) (0.003) (0.005) (0.029)

Observations 341,862 501,557 501,557 4,581
Mean Dep. Var. -1.605 0.060 0.072 1.693
R2 0.104 0.013 0.030 0.189
Panel B. Birth Years 1987-2000

Swarm Exposure, 9m pre-birth -0.172∗ -0.003 0.004 -0.216∗∗∗

(0.103) (0.005) (0.008) (0.075)
Swarm Exposure, 9m post-birth 0.067 0.001 0.008 0.036

(0.085) (0.007) (0.009) (0.056)

Observations 61,913 94,933 94,933 1,283
R2 0.198 0.021 0.051 0.286
Panel C. Birth Years 2001-2018

Swarm Exposure, 9m pre-birth -0.407∗∗∗ 0.008∗ 0.007 -0.001
(0.063) (0.004) (0.004) (0.039)

Swarm Exposure, 9m post-birth -0.259∗∗∗ 0.001 0.004 0.008
(0.068) (0.003) (0.004) (0.035)

Observations 279,948 406,624 406,624 3,283
R2 0.097 0.008 0.015 0.216

Notes: Estimation results from Equation (4). Column (1) includes results for height-
for-age, column (2) for infant mortality dummy, column (3) for under-5 children mor-
tality dummy, and column (4) for the number of births divided by the number of
women at the admin-1 level. Each regression includes admin-1 fixed effects, birth year,
interview year, birth month, and interview month fixed effects, which are allowed to
differ across WHO regions. Sample consists of all rural DHS clusters. Observations
are weighted using DHS sample weights (see main text for more details). Standard
errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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8 The Value of Early Warning Systems

In this section, we combine our estimates, along with findings on the economic damages of stunt-

ing, to conduct a back-of-the-envelope calculation regarding the value of monitoring locusts. We

calculate that in the absence of effective locust monitoring, the affected countries would experience

an increased stunting rate of 0.6 percentage points and a decrease of 0.05% of their GDP.

Conflict onset decreases monitoring by 2.4 percentage points during the month, and during

the month of offset we find an increase in swarms of 0.3 percentage points (in other parts of the

breeding area). We convert these to 9-month likelihoods of exposure to make them comparable

to the effects of swarms in-utero on subsequent child stunting. Since the monthly sample mean of

swarm presence is 3.8%, the baseline likelihood of swarm exposure in-utero is 29.4%. If monitoring

were reduced from its current mean of 28.5% of months to zero, monthly swarm frequency would

rise from the 3.8% baseline to 7.4% (0.285 * (0.003/0.024)), meaning the likelihood of in-utero

exposure would rise to 49.8%. This is a 20.3% rise in a child’s risk of exposure to a swarm in-utero.

Since exposure to a swarm during one month in-utero increases stunting likelihood by 2.9

(0.263/9) percentage points, then an elimination of monitoring would increase stunting likelihood

for all in-utero children by 0.6 percentage points.

In 2020, 40 million children age 0-1 lived in areas exposed to locusts in our data. Our estimates

imply that the absence of monitoring would result in an additional 238 thousand children stunted,

from that cohort alone. We then appeal to Galasso and Wagstaff (2019) which uses a development

accounting framework to estimate the effects of stunting in the workforce on GDP, through chan-

nels of decreased educational attainment, decreased height, and decreased cognitive skills. Their

preferred specification suggests that a 1% increase in the stunting rate of the workforce reduces

GDP by 0.155%.

In 2020, the countries that experienced some amount of locusts in our data had a total popu-

lation aged 0-1 of 69.6 million. The increased number of stunted children in our calculation above

implies a change in the stunting rate (with all children in the sample countries in the denomina-

tor) of 0.34 percentage points, which would decrease GDP by 0.05%. Since the combined GDP

of the sample countries is 22.4 trillion (US$PPP), the decrease in GDP would be US$11.9 billion.

This would be the yearly global GDP loss of eliminating all monitoring efforts. Since the average
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yearly budget for monitoring and control is around $39m per year, this implies a benefit-cost ratio

of around 300 for monitoring and control investment, when considering only the benefits due to

reduced stunting.11

There is a temporal lag between policy action (monitoring and control to prevent locust swarms)

and the benefits we model (increased productivity in the workforce through avoided stunting). To

adjust the estimated benefit-cost ratio to account for discounting, we calculate the discount factor

that should be applied to the benefits to account for the fact that they materialize over the working

lives of children born at the time of the policy action. At an extremely conservative discount rate

of 7%, benefits should be discounted with a factor 0.12. Even this very conservative adjustment

leaves a cost-benefit ratio of approximately 36:1. A discount rate of 2%, more typical of social

benefit calculations, gives a discount factor of 0.49 and a cost-benefit ration of 147:1.

9 Discussion

With climate change affecting conditions in breeding areas and as well as the wind patterns gov-

erning where the locust migrates, outbreaks may become more frequent and widespread (Salih

et al. 2020). Despite significant progress made in recent decades in preventing outbreaks, the

2020-2022 locust infestation demonstrated that the desert locust remains a threat to agricultural

production in low-income countries.

This paper provides a systematic evaluation of the value of early warning systems put in place to

monitor these outbreaks, an exercise consisting of three steps. First, we demonstrate how exogenous

breaks in monitoring and control activities results in locust outbreaks. We connect outbreaks in

breeding areas by tracing out the spatial and temporal patterns of locust swarms. Finally, we show

that pre and postnatal exposure to locust swarms adversely affects human well-being, as measured

by anthropometric status.
11 $39 million is the average yearly outlay from 2002-2022 from all bilateral and multilateral donors to all devel-

oping countries for “Plant and post-harvest protection and pest control.” While this likely includes activities
beyond locust monitoring and control, it provides a conservative estimate for the benefit-cost ratio.
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Appendix

A Data Appendix

A.1 Locust breeding areas

Figure A1: Outlining Locust Summer and Winter Breeding Areas

(a) Best Clustering Output for the Summer Season (b) Admin-1 Envelope Applied to Summer Clusters

(c) Best Clustering Output for the Winter Season (d) Admin-1 Envelope Applied to Winter Clusters

Notes: See main text for details.
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A.2 Conflict Data

Figure A2: Spatiotemporal Variation in Armed Conflict

Notes: Summarizing armed conflict incidence across seasons and time periods. Solid orange lines denote the bound-
aries of locust breeding areas.
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B Methods Appendix

B.1 Construction of the Weather Data

Weather data comes from ERA5, a reanalysis for global climate and weather from European Centre

for Medium-Range Weather Forecasts (ECWMF). We use the hourly estimates on precipitation,

maximum, and minimum of two meters temperature. We calculate the mean of two meters tem-

perature from the maximum and minimum values.

We transform the hourly data on precipitation and mean of two meters temperature into daily

weather data. We adjust the time from standardized into local timezone to get better measures

of the daily values of each variable. With the adjusted local timezone daily data, we calculate the

monthly total precipitation and number of days in each temperature bin between 1 to 99 percentile.

To aggregate the data at each DHS cluster, we created a polygon buffer of 150 kilometers around

each cluster point. We put weights on each intersecting grid cells for the aggregation. We aggregated

the monthly data for total precipitation and the number of days in each temperature bin at DHS

clusters using the weights.

B.2 Determining the spatial extent of local locust exposure

To determine the spatial extent of locust exposure, we evaluate the spatial clustering of the locust

point data by using Ripley’s K-function (Goreaud and Pélissier 1999; Haase 1995). The main

intuition behind this method is that we are assessing whether a point has a higher density of

neighboring points around it—the K value—relative to what we would expect given the mean

concentration of all points in the study area if all points were randomly distributed across space.12

In Figure B1a, we report that the difference between the observed and expected K values increases

with distance, and peaks around the cutoff of 150km. When the observed K is higher than the

expected K, which is calculated under the assumption of complete spatial randomness, the data

are considered to be spatially clustered. In Figure B1b, we estimate the function separately in each

year and plot the distribution of the intersection of the observed and expected K values.

We choose the threshold of 150km as a conservative threshold. Even though the observed K

value is higher than the expected one as far out as 350km there is a clear change in the deviation
12 The following provides a succinct review of the Ripley’s K function method: https://pro.arcgis.com/en/pro-

app/3.0/tool-reference/spatial-statistics/h-how-multi-distance-spatial-cluster-analysis-ripl.htm
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from observed to expected K values at 150km.

Figure B1: Assignment of Treatment Status Using Spatial Clustering

(a) Evidence for Spatial Clustering of Locust
Swarms
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Notes: (a) We use all years and countries in the sample to assess the degree of spatial clustering of
swarm events using Ripley’s K function. There is evidence of spatial clustering that extends as far as
350km, however, we use 150km as the threshold to define exposure because the observed K function peaks
at 150km and remains flat thereafter. (b) We repeat the estimation of the Ripley’s K function for all
countries, year-by-year, and plot the distribution of the point of intersection between the observed and
expected K values. Here the distribution peaks at 250km, yet 150km shows up as the first instance with
more than 10% of density, while K values below 50 km only account for 5% of the density.
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C Results Appendix

C.1 Predicted Swarm Time Series Using Reconstructed Teleconnections

In the main text, we describe how we use the LASSO to construct predicted swarm values that

link grid cells with breeding areas. In Figure C1, we provide a simple descriptive result that

summarizes the correlation between the observed swarm dummies in each grid cell, at the monthly

level, and the predicted values from the LASSO procedure. Three stylized facts arise here. First,

the correlation between observed and predicted values is positive, and almost linear (captured by

the local polynomial red line fit). Second, very low predicted values can occur even when there are

observed swarms. Finally, as the predicted values get close to one, they always correctly predict a

truly observed swarm. Even though the correlation is not perfect—some swarms get assigned with

low predicted values, and vice-versa—we observe a strong pattern of positive correlation between

the two, validating that the predicted values are a useful proxy for swarm presence.

C.2 Locust Outbreaks and Food Security

For locust swarms to have an impact on nutritional status, they must impact access to food. We

provide support for this claim by studying the effect of locust outbreaks on food emergency dec-

larations. Food emergencies and famines are often not the result of insufficient aggregate food

supplies, but of issues with food distribution systems (Sen 1982; Meng et al. 2015). If agricultural

production data were available at a subnational level, we would have been able to test for the rela-

tionship between locust outbreaks and food production—unfortunately, such data are not available

for most of the countries in our sample. Instead, we use data on food emergency declarations from

the Emergency Events Database (EM-DAT). Our goal it to test whether locust outbreaks increase

the likelihood of a food emergency declaration. Food emergencies are declared at the national level,

or at the admin-1 level. We use both types of declarations in our sample, which spans 1985 to 2020,

and include 13 declarations at the national level, and 156 declarations at the admin-1 level. When

a declaration is at the national level, we consider each admin-1 as treated.

The following specification uses the dummy variable for a food emergency declaration, at an

admin-1 a, country c, WHO region r, and year t, to run a linear probability model as a function of

locust swarms:
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Figure C1: Observed Swarms Versus Predicted Swarms
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Notes: Correlation between the observed swarm dummy and the predicted swarm value using the LASSO procedure
described in Section 6.

(Food Emergency Declaration)acrt = β(Locust)act + δrt + λa + εacrt (7)

We construct the (Locust)act variable to either be a dummy for the presence of a locust swarm

in the admin-1 area in a given year, and/or lags of locust swarm presence. Alternatively, we split

the non-zero count of locust swarms into terciles. We include WHO-region-by-year fixed effects

to account for flexible time trends that absorb pooled shocks such as droughts, and geopolitical

instabilites that affects the region.13 Any unobserved heterogeneity is absorbed by the error term,
13 The WHO divides the countries in our sample to the following regions: Africa (Burkina Faso, Cameroon, Chad,

Cote d’Ivoire, Ethiopia, Guinea, Kenya, Mali, Niger, Nigeria, Senegal), Eastern Mediterranean (Egypt, Jordan,
Morocco, Pakistan), and South-East Asia (India). The results presented here and in what follows are robust to
different definitions of the regions.
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εacrt. We cluster the standard errors at the admin-1 level.

Table C1.
Food Emergency Declaration & Locust Swarms

(1) (2) (3)

Swarm exp. (t) 0.023∗∗∗ 0.026∗∗∗

(0.008) (0.008)
Swarm exp. (t − 1) -0.012

(0.0088)
Swarm exp. (t − 2) 0.016∗∗

(0.008)
Swarm Count (L) 0.016

(0.011)
Swarm Count (M) 0.034∗∗∗

(0.013)
Swarm Count (H) 0.024∗∗

(0.012)

Observations 4,871 4,605 4,881
Mean Dep.Var. 0.072 0.077 0.072
R2 0.52 0.53 0.52

Notes: Results from the specification in Equation (7). All
regression include admin-1 fixed effects, and WHO-region-
by-year fixed effects. Standard errors clustered at the
admin-1 level.
* 0.10 ** 0.05 *** 0.01

The results in Table C1 show a strong correlation between the presence of a locust swarm and

a declaration of a food emergency. We estimate that the presence of a locust swarm in an admin-1

area increases the likelihood of a food emergency declaration for the area by 2.3 percentage points

(column 1), reflecting an increase of 32% relative to the mean of 7.2%. Including lagged exposure

does not make the effect size disappear (column 2). Finally, when splitting the count of non-zero

swarm events into terciles, we find that the positive relationship between locust swarms and food

emergency declaration is driven by the second and third terciles (column 3). In other words, we

only observe this positive correlation when there is a high number of reported swarms, which would

happen during an outbreak event.
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Table C2.
Height-for-Age & Food Emergency Declaration

Standardized Height Stunting Dummy

(1) (2)

Food Emergency Declaration -0.305∗∗ 0.085∗∗∗

(0.135) (0.032)

Observations 410,072 410,072
R2 0.102 0.068

Notes: Estimation results from running a regression of height-for-age outcomes on a
dummy variable for there being a food emergency declaration in the admin-1 region of
the DHS cluster. Each regression includes admin-1 fixed effects, birth year, interview
year, birth month, and interview month fixed effects, which are allowed to differ across
WHO regions. Sample includes all rural DHS clusters. Observations are weighted
using DHS sample weights (see main text for more details). Standard errors are
clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01

C.3 Examining the Scope for SUTVA Violations

In the main text, we discuss how the data-driven choice of the 150 km threshold to define swarm

exposure might result in SUTVA violations. In short, it is still plausible that DHS clusters for

which we observe a swarm further away than 150 km are still experiencing some negative impacts

from that swarm, especially if that remote swarm is indicative of an undetected or unreported

swarm closer to the DHS cluster (a false negative). In our assignment of swarm exposure we would

treat the DHS cluster as part of the control group, which could potentially attenuate our estimates.

Here we demonstrate that we can detect effects even when we account for swarm exposures that

extend beyond 150 km.

We estimate a similar specification to the one in Equation (4), but including mutually exclusive

dummies for swarm exposure in 100 km distance bins. Specifically, we include four dummies for

swarm exposure in the nine months pre-birth, and four dummies for swarm exposure in the nine

months post-birth. Each dummy is equal to one if we observe a swarm in the 0-100, 100-200,

200-300, and 300-400 km ranges in each period. We report the estimation results in Figure C2.

We estimate the proximity to observed swarms results in higher impacts on height-for-age and the

likelihood of stunting, but the we still recover coefficients that suggest that exposure even up to

400 km might have an negative impact.
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Figure C2: Locust Exposure Around Birth & Children’s Height: Exposure Distance Bins
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Notes: Estimation results from Equation (4). Each regression includes admin-1 fixed effects, birth year, interview

year, birth month, and interview month fixed effects, which are allowed to differ across WHO regions. Sample includes

observations from rural households. Observations are weighted using DHS sample weights (see main text for more

details). Standard errors are clustered at the admin-1 level.

To further address how this might affect attenuation in the main sample and baseline specifica-

tion, we re-estimate our model while excluding DHS clusters that are within 150 to 300 km or 150

to 400 km. In Table C3, we report results for both the swarm dummies and the predicted swarm

values versions of the result. Overall, we recover larger coefficients (in absolute values) relative

to the sample where we do not exclude these “donut” DHS clusters. The change in effect size is

meaningful, yet we cannot reject that the coefficients are statistically different than one another.

C.4 Sample & Specification Variations

Excluding India In the main text, we pool all the DHS countries with swarm exposure across

Africa and Asia. In Asia, the only country for which we have both swarm exposure data and

geocoded DHS data are India. India reflect a large number of children observations in the sample,

making up 42% of the pooled sample. We test for the robustness of our results when excluding

India from the sample. In Table C4, we report results separately for India only, and for countries

in Africa only. In short, this estimation demonstrates that our main results are driven by the non-

India sample. In Panel A, we fail to detect any impacts of swarm exposure on children’s heights.

In Panel B, we estimate results that are very close to those we report in the main text.
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Excluding Movers In the main text, we include the data from all the interviews in each rural

DHS cluster, even for those who answer they have ever moved and migrated. Because migration

is a potential endogenous response to swarm exposure, we report results that exclude any records

where the mother has answered they migrated to the surveyed village. Despite shrinking the sample

size by 70.1%, from 341,862 to 99,777 records, we estimate similar results to those in the baseline

sample. Exposure to swarms lowers height-for-age and increases the stunting likelihood, albeit the

coefficients are a bit smaller (in absolute values), yet we cannot reject that they are the same at

the 95% confidence level.

Specification Sensitivity In the main text, we include admin-1 fixed effects in our baseline

specification. Here we examine how including more granular fixed effects affect our results. In

Table C6 we report three variations to the unit fixed effects. We either include admin-2, DHS

cluster, or mother fixed effects. Each subsequent choice of fixed effects nests the one above it

(admin-2 nest admin-1, DHS clusters nest admin-2, and mother fixed effects nest DHS clusters).

We recover nearly identical results across all three fixed effects versions, and those are nearly

identical to the results we report in the main text. In short, the choice of unit fixed effects does

not appear to meaningfully affect the results. However, including mother fixed effects does reduce

the sample size by 20.6%, from 341,862 in the main sample to 271,552, as this specification limits

the sample to mothers for which we observe at least two separate births.

Urban DHS Clusters In the main text, we report results for the sample of children in DHS

clusters that are classified as rural—as we expect the majority of locust swarm exposure to be

concentrate in rural and not urban areas. Here we report results that also use data from the

urban DHS sample. In Table C7, we report two sets of results. In Panel A, we estimate the same

baseline specification for swarm exposure dummies and predicted swarm values using the urban

sample only. We estimate smaller effect sizes, and only for the exposure that occurs during the nine

months pre-birth. In Panel B, we combine the rural and urban data, and estimated a specification

with a pooled effect as well as an interaction with a rural dummy variable. This specification

allows us to easily test whether the effect in rural areas is meaningfully and precisely estimated to

be different than in urban areas. We find that rural areas experience a larger negative impact in all

cases, using either swarm dummies or predicted swarm values, in either the pre-birth or post-birth
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periods. These findings validate our prediction that local food insecurity due to swarm outbreaks

should have a larger effect in rural than in urban areas. For completeness, we report the results for

the first stage in the urban sample in Table C8.

Accounting for Locust Control Operations In the main text, we discuss how control operations—

most likely to be insecticide spraying—might confound our analysis. In other words, the effect we

observe could potentially be driven by the exposure to insecticides, and not due to the degraded food

security conditions. Here we directly test for the effect of exposure to control operations. Specifi-

cally, we define the control exposure dummy in the same way as the swarm exposure dummy—we

set it to one if we observe a control operation point in the FAO data within 150 km of the DHS

cluster in a given year-month combination. Unlike swarm detection, we expect false negatives to

be less of a concern with respect to control operations.

We do not find evidence that support the notion that negative effect we estimate can be at-

tributed to control operations (insecticide spraying). We estimate three specifications and report

them in Table C9. First, we only include the dummy variables for control exposure in the months

before and after birth (columns 1 and 4). Then we include both control and swarm exposure dum-

mies (columns 2 and 5). Finally, we include control exposure dummies and predicted swarm values

(columns 3 and 6). We failed to detect meaningful and precisely estimated negative health impacts

from exposure to control operations. More importantly, we do not detect meaningful changes to our

estimates for swarm exposure or predicted swarm values when we account for control operations.

Sex-Specific Effects In the main text, we do not report results that examine heterogeneity by

sex-at-birth. In Table C10, we report estimation results that pool the effects for males and females,

and include an interaction term with a female dummy variable. In each case, whether using swarm

exposure dummies or swarm predicted values, we find that there is meaningful heterogeneity by

sex-at-birth—male births experience a larger penalty relative to female births. This might suggest

that female fetuses are experiencing a larger negative selection, resulting in higher rates of fetal

deaths.
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Table C3
Locust Exposure Around Birth & Children’s Height When Excluding Donut DHS Clusters

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Panel A: Excluding 150-300km Exposures

Swarm Exposure, 9m pre-birth -0.490*** 0.064**
(0.170) (0.030)

Swarm Exposure, 9m post-birth -0.302*** 0.115***
(0.079) (0.018)

Mean Pr. Val. 9m pre-birth -0.886*** 0.161**
(0.279) (0.073)

Mean Pr. Val. 9m post-birth -1.262*** 0.323***
(0.209) (0.073)

Observations 314,123 314,123 314,123 314,123
R2 0.103 0.104 0.070 0.070
Panel B: Excluding 150-400km Exposures

Swarm Exposure, 9m pre-birth -0.553*** 0.070**
(0.198) (0.032)

Swarm Exposure, 9m post-birth -0.259*** 0.112***
(0.087) (0.021)

Mean Pr. Val. 9m pre-birth -0.635** 0.068
(0.294) (0.084)

Mean Pr. Val. 9m post-birth -1.269*** 0.308***
(0.257) (0.078)

Observations 303,233 303,233 303,233 303,233
R2 0.103 0.103 0.069 0.070

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1 fixed effects, birth
year, interview year, birth month, and interview month fixed effects, which are allowed to differ across WHO
regions. Sample includes all rural observations but excludes all observations exposed to a swarm between 150
and 300 km (panel A) and 150 and 400 km (panel B). Observations are weighted using DHS sample weights
(see main text for more details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C4
Locust Exposure Around Birth & Children’s Height When Excluding India

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Panel A: Only India

Swarm Exposure, 9m pre-birth -0.126 0.086**
(0.135) (0.032)

Swarm Exposure, 9m post-birth 0.000 0.000
(.) (.)

Mean Pr. Val. 9m pre-birth -0.176 0.040
(0.380) (0.161)

Mean Pr. Val. 9m post-birth -0.031 0.002
(0.804) (0.230)

Observations 157,939 157,939 157,939 157,939
R2 0.072 0.072 0.044 0.044
Panel B: Only Countries in Africa

Swarm Exposure, 9m pre-birth -0.347*** 0.065***
(0.072) (0.011)

Swarm Exposure, 9m post-birth -0.253*** 0.082***
(0.051) (0.010)

Mean Pr. Val. 9m pre-birth -1.362*** 0.307***
(0.227) (0.046)

Mean Pr. Val. 9m post-birth -0.567*** 0.160***
(0.197) (0.058)

Observations 224,972 224,972 224,972 224,972
R2 0.143 0.144 0.103 0.104

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1 fixed effects,
birth year, interview year, birth month, and interview month fixed effects, which are allowed to differ
across WHO regions. Sample includes observations from households in Southeast Asia (panel A)
and Africa (panel B). Observations are weighted using DHS sample weights (see main text for more
details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C5
Locust Exposure Around Birth & Children’s Height: Excluding Movers

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Swarm Exposure, 9m pre-birth -0.224*** 0.032**
(0.068) (0.014)

Swarm Exposure, 9m post-birth -0.116** 0.055***
(0.054) (0.019)

Mean Pr. Val. 9m pre-birth -0.918*** 0.233***
(0.221) (0.054)

Mean Pr. Val. 9m post-birth -1.169*** 0.312***
(0.274) (0.085)

Observations 99,777 99,777 99,777 99,777
R2 0.153 0.154 0.122 0.124

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1
fixed effects, birth year, interview year, birth month, and interview month fixed effects,
which are allowed to differ across WHO regions. Sample includes observations from house-
holds in which the mother has never moved. Observations are weighted using DHS sample
weights (see main text for more details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C6
Locust Exposure Around Birth & Children’s Height With Various Unit Fixed Effects

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Panel A: Admin-2 Fixed Effects

Swarm Exposure, 9m pre-birth -0.349*** 0.065***
(0.077) (0.015)

Swarm Exposure, 9m post-birth -0.213*** 0.068***
(0.046) (0.013)

Mean Pr. Val. 9m pre-birth -1.167*** 0.261***
(0.274) (0.074)

Mean Pr. Val. 9m post-birth -0.718*** 0.189***
(0.163) (0.051)

Observations 341,813 341,813 341,813 341,813
R2 0.125 0.125 0.086 0.087
Panel B: DHS Cluster Fixed Effects

Swarm Exposure, 9m pre-birth -0.372*** 0.072***
(0.085) (0.017)

Swarm Exposure, 9m post-birth -0.261*** 0.079***
(0.044) (0.013)

Mean Pr. Val. 9m pre-birth -1.476*** 0.327***
(0.308) (0.084)

Mean Pr. Val. 9m post-birth -0.986*** 0.245***
(0.195) (0.059)

Observations 341,525 341,525 341,525 341,525
R2 0.258 0.258 0.203 0.203
Panel C: Mother Fixed Effects

Swarm Exposure, 9m pre-birth -0.325*** 0.069***
(0.083) (0.021)

Swarm Exposure, 9m post-birth -0.232*** 0.080***
(0.059) (0.021)

Mean Pr. Val. 9m pre-birth -1.295*** 0.317***
(0.330) (0.082)

Mean Pr. Val. 9m post-birth -0.688*** 0.217***
(0.178) (0.046)

Observations 271,553 271,553 271,553 271,553
R2 0.480 0.481 0.460 0.460

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-2 (panel A),
DHS cluster (panel B), and mother (panel C) fixed effects, birth year, interview year, birth month,
and interview month fixed effects, which are allowed to differ across WHO regions. Sample includes
all rural DHS clusters. Observations are weighted using DHS sample weights (see main text for more
details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C7
Locust Exposure Around Birth & Children’s Height

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Panel A: Urban Households

Swarm Exposure, 9m pre-birth -0.153** 0.019
(0.067) (0.019)

Swarm Exposure, 9m post-birth -0.074 0.034
(0.095) (0.025)

Mean Pr. Val. 9m pre-birth -0.848*** 0.250***
(0.270) (0.078)

Mean Pr. Val. 9m post-birth -0.315 0.071
(0.212) (0.056)

Observations 135,010 135,010 135,010 135,010
R2 0.088 0.088 0.052 0.052
Panel B: All Households, Rural Interaction

Swarm Exp., 9m pre-birth -0.078 -0.002
(0.062) (0.016)

Swarm Exp., 9m pre-birth × Rural -0.298*** 0.074***
(0.095) (0.026)

Swarm Exp., 9m post-birth 0.067 0.014
(0.082) (0.018)

Swarm Exp., 9m post-birth × Rural -0.328*** 0.062***
(0.079) (0.021)

Mean Pr. Val. 9m pre-birth 0.141 -0.062
(0.334) (0.080)

Mean Pr. Val. 9m pre-birth × Rural -1.383*** 0.355***
(0.318) (0.087)

Mean Pr. Val. 9m post-birth 0.506** -0.153**
(0.211) (0.066)

Mean Pr. Val. 9m post-birth × Rural -1.366*** 0.376***
(0.237) (0.067)

Observations 476,872 476,872 476,872 476,872
R2 0.103 0.103 0.069 0.069

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1 fixed effects, birth year,
interview year, birth month, and interview month fixed effects, which are allowed to differ across WHO regions.
Sample includes observations from rural households (panel A) and all households (panel B). Observations are
weighted using DHS sample weights (see main text for more details). Standard errors are clustered at the admin-
1 level.
* 0.10 ** 0.05 *** 0.01
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Table C8.
First Stage Results for Locust Exposure Around Birth in Urban Sample

Adm1 Fixed Effects Grid Cell Fixed Effects

9m pre-birth 9m post-birth 9m pre-birth 9m post-birth

Mean ̂9m pre-birth 0.703*** 0.157*** 0.695*** 0.174***
(0.100) (0.061) (0.101) (0.057)

Mean ̂9m post-birth 0.031 1.046*** 0.023 1.059***
(0.041) (0.118) (0.039) (0.119)

Observations 135,010 135,010 135,010 135,010
SW F Stat. 41.917 41.917 41.697 41.697
SW F Stat. 83.451 83.451 95.733 95.733

Grid FE ✓ ✓
Admin-1 FE ✓ ✓

Notes: Estimation results from Equations (5). Columns 2, 3, 5, and 6 report first stage results.
Columns 1 and 4 report reduced form results. Each regression includes admin-1 fixed effects,
birth year, interview year, birth month, and interview month fixed effects, which are allowed to
differ across WHO regions. Sample includes all urban DHS clusters. Observations are weighted
using DHS sample weights (see main text for more details). Standard errors are clustered at the
admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C9
Locust Exposure Around Birth & Children’s Height

Standardized Height Stunting Dummy

(1) (2) (3) (4) (5) (6)
FE FE RF FE FE RF

Control Exposure, 9m pre-birth -0.217** -0.055 -0.147* 0.032 -0.001 0.016
(0.097) (0.061) (0.082) (0.020) (0.014) (0.016)

Control Exposure, 9m post-birth -0.093 0.023 -0.028 0.023 -0.017 0.006
(0.079) (0.079) (0.075) (0.018) (0.014) (0.017)

Swarm Exposure, 9m pre-birth -0.329*** 0.069***
(0.081) (0.016)

Swarm Exposure, 9m post-birth -0.226*** 0.077***
(0.061) (0.015)

Mean Pr. Val. 9m pre-birth -1.006*** 0.236***
(0.200) (0.054)

Mean Pr. Val. 9m post-birth -0.615*** 0.155***
(0.191) (0.056)

Observations 328,425 326,868 326,868 328,425 326,868 326,868
R2 0.103 0.104 0.104 0.069 0.070 0.070

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1 fixed effects, birth year,
interview year, birth month, and interview month fixed effects, which are allowed to differ across WHO regions.
Sample includes all rural DHS clusters. Observations are weighted using DHS sample weights (see main text for
more details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C10
Locust Exposure Around Birth & Children’s Height

Standardized Height Stunting Dummy

(1) (2) (3) (4)
FE RF FE RF

Swarm Exp., 9m pre-birth -0.440*** 0.091***
(0.089) (0.017)

Swarm Exp., 9m pre-birth × Female 0.168*** -0.049***
(0.045) (0.012)

Swarm Exp., 9m post-birth -0.251*** 0.082***
(0.057) (0.014)

Swarm Exp., 9m post-birth × Female 0.065 -0.025**
(0.050) (0.011)

Mean Pr. Val. 9m pre-birth -1.320*** 0.321***
(0.272) (0.070)

Mean Pr. Val. 9m pre-birth × Female 0.493*** -0.170***
(0.156) (0.036)

Mean Pr. Val. 9m post-birth -0.786*** 0.205***
(0.217) (0.057)

Mean Pr. Val. 9m post-birth × Female 0.244* -0.063***
(0.133) (0.024)

Observations 341,862 341,862 341,862 341,862
R2 0.104 0.104 0.070 0.070

Notes: Estimation results from Equations (4) and (6). Each regression includes admin-1 fixed effects,
birth year, interview year, birth month, and interview month fixed effects, which are allowed to differ
across WHO regions. Sample includes all rural DHS clusters. Observations are weighted using DHS
sample weights (see main text for more details). Standard errors are clustered at the admin-1 level.
* 0.10 ** 0.05 *** 0.01
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Table C11
Reported Monitoring Interruptions & Conflict

Reported Monitoring Interruption (Y = .048)

(1) (2) (3) (4) (5) (6) (7) (8)

Conflict Event 0.085*** 0.036* 0.085*** 0.078*** 0.077*** 0.036* 0.022 0.022
(0.025) (0.021) (0.025) (0.024) (0.024) (0.021) (0.015) (0.015)

Observations 20,592 20,592 20,592 20,592 20,592 20,592 20,592 20,592
R2 0.016 0.139 0.018 0.071 0.072 0.141 0.195 0.197

Fixed Effects
Country ✓ ✓ ✓ ✓
Month ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the country level.
* 0.10 ** 0.05 *** 0.01
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Table C12
Swarm Exposurea and Food Prices: Only Staple Foods

Log(price)

(1) (2) (3) (4) (5)
Panel A: Excluding Zimbabwe

Swarm Exposure -0.029* -0.030** -0.032*** 0.023** 0.126***
(0.016) (0.013) (0.011) (0.011) (0.016)

Observations 60,349 60,349 60,347 60,347 60,348
R2 0.957 0.972 0.981 0.982 0.955

Fixed Effects
Market ✓ ✓
Product Group ✓
Year ✓ ✓
Month ✓ ✓
Year×Month ✓
Product×Year ✓
Product×Month ✓
Market×Product Group ✓

Panel B: Excluding ≥ 2019

Swarm Exposure 0.085*** 0.089*** 0.078*** 0.054*** -0.085***
(0.026) (0.021) (0.017) (0.018) (0.027)

Observations 50,327 50,327 50,326 50,325 50,326
R2 0.962 0.975 0.984 0.983 0.959

Fixed Effects
Market ✓ ✓
Product Group ✓
Year ✓ ✓
Month ✓ ✓
Year×Month ✓
Product×Year ✓
Product×Month ✓
Market×Product Group ✓

Notes: Standard errors are clustered at the market level. * 0.10 ** 0.05 *** 0.01
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