When Do Endogenous Portfolios Matter for HANK?

Adrien Auclert Matthew Rognlie Ludwig Straub Tomáš Ťapák

Stanford Northwestern Harvard Stanford

Portfolios in heterogeneous-agent macro

- * Large part of het-agent macro literature assumes exogenous portfolios * Agents choose consumption & savings s.t. idiosyncratic & aggregate risk * May save in *accounts* of differing liquidity... [liquidity vs. return] * ... but cannot choose the *mix* of assets in those accounts [risk vs. return] * Almost all "HANK" literature makes this assumption. Some findings: deficit-financed transfers have large & persistent output effects * nominal asset exposures matter for aggregate effects of monetary policy
- * **Q**: what changes when agents can **choose portfolios** to hedge aggregate risk?

Hence, perturbation is usually inapplicable for portfolio-choice models."

"By comparison, perturbation is done around a point of no aggregate shocks (the steady state), where the portfolio decision is indeterminate.

– Fernandez-Villaverde and Levintal (2024)

l'his paper

- * New method to solve for endogenous portfolios in the sequence space [Auclert-Bardóczy-Rognlie-Straub 2021; vs. recent Bhandari-Bourany-Evans-Golosov in state space] * With enough assets, second-order perturbation analysis delivers aggregate risk-
- sharing condition across agents:
 - * to first order, expected marginal utility varies w/shock by same proportion
- * With this condition, can solve for first-order impulse responses:
 - * computation uses same objects as exogenous-portfolio method
 - * just add simple "correction" to sequence-space Jacobian!
 - * can back out implied portfolios and risk premia
- Can extend method to case with fewer assets, portfolio restrictions, etc.

Application to HANK

- * Take a "canonical" HANK model (Auclert, Rognlie, Straub JPE/ARE) * Let households optimally choose assets, compare with exogenous portfolios
- * When do endogenous portfolios matter?
 - * Sometimes not at all [monetary policy shock example: exogenous portfolios are a natural hedge]
 - Sometimes not, but only provided we constrain portfolios [deficit-financed shock example: hedging portfolios are implausible]
 - * Sometimes a lot, and with reasonable optimal portfolios [nominal bonds example: hedging achievable with real bonds]
- * Key question: can high-MPC agents hold large gross positions?

Risk-sharing in a general setting with risk and heterogeneity

General setting

- * Heterogeneous households *i* can allocate wealth a_i to K + 1 assets * Asset k has supply A^k ; stochastic payoff $x^k(\epsilon)$, $\epsilon \equiv (\epsilon_1, ..., \epsilon_Z)$ (Z shocks) * Assume $\epsilon_7 = \sigma \bar{\epsilon}_7$, with $\bar{\epsilon}_7$ independent, mean 0, var $\bar{\sigma}_7^2$; common scaling σ * Given value function W_i , prices p^k , problem of household *i* is: $\max_{\substack{\{a_i^k\}}} \mathbb{E}_{\epsilon} \quad W_i \left(\sum_{\substack{k=0}}^{K} x^k (\epsilon) \right)$
- * Can embed in larger dynamic problem (letting everything vary with σ)

Deriving first-order condition

* Problem is:

$$\max_{\{a_i^k\}} \mathbb{E}_{\epsilon} \left[W_i \left(\sum_{k=0}^K x^k(\epsilon) a_i^k, \epsilon \right) \right] \text{ s.t. } \sum_{k=0}^K p^k a_i^k = a_i$$

* Implies classic first-order condition:

E

$$\begin{bmatrix} x^{k}(\epsilon) & W'_{i}(\epsilon) \\ \hline p^{k} & \gamma_{i} \end{bmatrix} = 1 \quad \forall i, k$$

* Expectation of asset-specific return times household-specific SDF is always 1

Perturbation around $\sigma = 0$

- * Given σ , equilibrium is a_i^k , p^k s.t. FOCs hold and asset markets clear * At $\sigma = 0$ (no risk), we get $\frac{x^k}{p^k} =$
- * Rates of return on all assets equalized at *R*, portfolio choice indeterminate! * Now consider **perturbation** of model around $\sigma = 0$
- - * to first order in σ , no effect on a_i^k, p^k, γ_i [symmetry: σ and $-\sigma$ identical] * but second order in σ , get risk premia and well-defined $a_i^k(\sigma)$ as $\sigma \to 0$ [as in Tille-van Wincoop 2010, Devereux-Sutherland 2011, Coeurdacier-Rey 2013, etc.]

$$=\frac{\gamma_i}{W'_i}\equiv R$$

Second-order perturbation

Subtract FOC for asset 0 from asset

asset 0 from asset k to get
$$\mathbb{E}_{\epsilon}\left[\left(\frac{x^{k}(\epsilon)}{p^{k}} - \frac{x^{0}(\epsilon)}{p^{0}}\right)\frac{W'_{i}(\epsilon)}{\gamma_{i}}\right] = 0 \quad \forall i, k$$

* Then differentiate twice with respect to σ :

$$\sum_{z=1}^{Z} \left(\frac{dx^k / x^k}{d\epsilon_z} - \frac{dx^0 / x^0}{d\epsilon_z} \right) \frac{dW'_i / W'_i}{d\epsilon_z} \bar{\sigma}_z^2 = -(r^k - r^0)$$

* [r^k is one-half 2nd derivative of expected return wrt σ , over R]

From last slide

 $\sum_{z=1}^{Z} \left(\frac{dx^{k}/x^{k}}{d\epsilon_{z}} - \frac{dx^{0}/x^{0}}{d\epsilon_{z}} \right)$

* Collect parentheses in $\mathbf{X} = [X_{k_7}]$, define $[\lambda_i]_7 = d \log W'_i / d\epsilon_7$, $\Sigma = \text{diag}(\bar{\sigma}_7^2)$:

* If enough assets (K = Z) and **X** has full rank, then λ_i is same for all *i*! * **Risk-sharing condition:** $d \log W'_i/d\epsilon_7$ equals common λ_7 for all agents

(Locally) Complete markets case

$$\frac{dW'_i/W'_i}{d\epsilon_z}\bar{\sigma}_z^2 = -(r^k - r^0)$$

 $\mathbf{X}' \Sigma \lambda_i = -\mathbf{r}$

* can use to **test** for portfolio optimality, or **solve** for optimal portfolios

Applying the risk-sharing condition

* Suppose \bar{a}_i^k is exogenous portfolio; let t_i be excess return from other portfolio:

$$t_i \equiv \sum_{k=0}^{K} x^k(\epsilon) (a_i^k - \bar{a}_i^k) \text{ and } \bar{W}_i(t_i, \epsilon) \equiv W_i \left(\sum_{k=0}^{K} x^k(\epsilon) \bar{a}_i^k + t_i, \epsilon\right)$$

* Now can write risk-sharing condition as:

* Think of this as solving for **transfers** $dt_i/d\epsilon_7$ contingent on shocks

* Market clearing requires aggregate $dt_i/d\epsilon_z$ to be zero, use this to solve $\lambda_z \& dt_i/d\epsilon_z$

"Transfer" exposure to shocks under endogenous portfolios, to achieve aggregate risk-sharing

Direct exposure to shocks under exogenous portfolios $\frac{d\bar{W}'_i/\bar{W}_i}{d\epsilon_z} + R\frac{\bar{W}''_i}{\bar{W}'_i}\frac{dt_i}{d\epsilon_z} = \lambda_z$

Where we stand now

- * In "complete markets case" where assets span shocks, risk-sharing condition
- * Given exogenous-portfolio exposures $d \log W'_i / d\epsilon_7$, can solve jointly for:
 - * Shock-contingent transfers $dt_i/d\epsilon_7$
 - * Common post-transfer exposure $d \log W'_i / d\epsilon_7 = \lambda_7$
- * If desired (and if we have **X**) can also back out:
 - * Actual portfolios from $[p^k(a_i^k \bar{a}_i^k)]_{k=1}^K = \mathbf{X}^{-1}\mathbf{t}$
 - * Asset risk premia from $[r^k r^0]_{k=1}^K = -\mathbf{X}'\Sigma\lambda$
 - * (actual risk premium of k over 0 will be $(r^k r^0)\sigma^2$)

Implementation in heterogeneous-agent models

What's left to do

* Can solve for transfers $dt_i/d\epsilon_7$ given exposures $d\log W_i/d\epsilon_7$ * But in a fully-articulated equilibrium setting: * $d \log W'_i / d\epsilon_7$ are determined endogenously in GE ... * this will affect transfers $dt_i/d\epsilon_7$... * ... but transfers $dt_i/d\epsilon_7$ will matter for GE and thus $d \log W_i/d\epsilon_7!$ * How do we resolve this apparent fixed-point problem? * Solution: make this feedback part of our sequence-space Jacobians

Modifying the sequence-space Jacobian

- * Intertemporal MPC matrix M:
 - * M_{ts} gives agg consumption response at t to e.g. wage change at s... * ... where risk is realized at date 0

 - * other sequence-space Jacobians analogous, just different inputs / outputs
- * Now, wage change at s is shock that affects all W'_i , implies date-0 transfers
 - * these transfers change distribution of assets coming into date 0
 - * which has implications for consumption at future *t*, implying a correction \mathbf{M}^{corr} and a corrected intertemporal MPC matrix $\mathbf{M} \equiv \mathbf{M} + \mathbf{M}^{corr}$

Obtaining corrected sequence-space Jacobian

- * Just a slight tweak to "fake news algorithm" [Auclert-Bardóczy-Rognlie-Straub 2021]
- * As we iterate backward, calculate (under exogenous portfolios) effect of income at date *s* on date-0 \bar{W}'_i
- * Calculate implied transfers and effect \mathcal{D}_s on date-0 distribution
- * Use expectation functions \mathscr{C}_t to find effect on later consumption:
- Flexibility here: can limit transfers to subset of agents (e.g. no lowwealth agents), enforcing limited participation

$$\mathbf{M}^{corr} = \begin{pmatrix} \mathscr{E}'_0 \mathscr{D}_0 & \mathscr{E}'_0 \mathscr{D}_1 & \cdots \\ \mathscr{E}'_1 \mathscr{D}_0 & \mathscr{E}'_1 \mathscr{D}_1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Example: how does this change M matrix?

Algorithm with corrected sequence-space Jacobians

- * Same as standard sequence-space Jacobian algorithm, but where Jacobians are recalculated to include "complete-market corrections" like M^{corr}
- * Solve all first-order GE impulse responses using these Jacobians
 - * then, with these calculated, can back out implied transfers and λ_7 ...
 - * and given asset returns (also determined in GE), further back out underlying asset portfolios, risk premia
- * Altogether, we're solving for:

Oth order portfolios \leftrightarrow 1st order impulses \leftrightarrow 2nd order risk premia

Application to HANK

"Canonical" HANK model

* Households face uninsurable risk to e_{it} , solve problem:

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) - v(t_{it}) = 0$$

$$c_{it} + p_t s_{it} + b_{it} \le (p_t + d_t) s_{it}$$

- * s_{it} stocks (price p_{t} , dividends d_{t}), b_{it} bonds, assume EIS = 1
- * Production from labor $Y_t = N_t$, constant markups, so constant wage and dividend shares of income
- * Can embed any period of hh problem into framework from earlier, we'll consider impulse to shock at date 0

- $(n_{it}) \quad \text{s.t.} \quad p_t s_{it} + b_{it} \ge 0$
- $_{1} + (1 + r_{t-1})b_{it-1} + e_{it}(1 \tau_{t})w_{t}n_{it}$

- * Fiscal policy sets τ_t , spends G_t and has debt B_t , with $B_{t} = (1 + r_{t})$
- * Sticky nominal wages, implying:
 - Labor rationed, equal allocation r
 - * Phillips curve for inflation π_t (not needed to solve for real quantities)
- * Monetary policy sets real rate r_t , using nominal rule $i_t = r_t + \pi_{t+1}$
- * Assume steady state with B = 0, exogenous portfolios = 100% stocks
- * Consider shocks to $\{G_t\}, \{B_t\}, \{r_t\}$

Model continued

$$(-1)B_{t-1} + G_t - \tau_t Y_t$$

rule
$$n_{it} = N_t = Y_t$$

Example 1: balanced-budget $\{G_t\}$ shock

No effect from portfolio choice!

Why? Risk-sharing condition already holds with exogenous portfolios, since everyone's consumption unchanged (see Intertemporal Keynesian Cross).

Also, stock prices constant -> no difference between bonds and stocks

Example 2: monetary policy $\{r_t\}$ shock

No effect from portfolio choice!

Risk-sharing condition already holds with exogenous portfolios, since everyone's consumption moves by same proportion (Werning 2015 neutrality)

Example 3: deficit-financed transfer $\{B_t\}$ shock

Now, big effect from endogenous portfolios, with much smaller output effect.

But... how is this possible when stocks move so little in response to the shock?

Under the hood: crazy portfolio shares!

We didn't restrict gross positions in assets: borrowing constraint applied only to net position!

So "complete markets" transfers achieved with ultra-levered shortselling by the poor.

With portfolio constraints... (no short sales, 1.5x leverage limit)

Constrained endogenous portfolio now ~same as exogenous portfolio: no effect!

Reason: high-MPC agents can't take much of a position either way.

(Implemented with iterative modification to algorithm, which checks and imposes constraints.)

Portfolios look more reasonable now...

Example 4: monetary shock, nominal bonds

Now no gov debt or markups, instead Huggett model with baseline nominal debt.

Endogenous portfolio negates effects of inflation, because high-MPC debtors switch borrowing from nominal to real debt.

Key: high-MPC debtors hold large gross positions (debt) here.

Recap of quantitative examples

- * Balanced-budget $\{G_t\}$ shock:
 - * households already hedged, returns the same so portfolios indeterminate
- * Monetary policy $\{r_t\}$ shock:
- * households already hedged with uniform all-equity portfolio (Werning) * Deficit-financed transfer $\{B_t\}$ shock:
- * households not hedged, want crazy positions, little effect if these not permitted * Monetary policy $\{r_t\}$ shock in Huggett model with default nominal bonds: * households not hedged, optimal portfolios replace nominal with real debt

More shocks than assets+1: the incomplete markets case

Incomplete markets case: the projection principle

of asset returns X:

- * Risk premia are the same as with complete-markets \mathbf{t}_{i}^{CM}
- responses to all shocks jointly!
- * Also, X endogenous, so there is nonlinear fixed point

* With incomplete markets, project complete-market transfers on column space

 $\mathbf{t}_i = \mathbf{X}' (\mathbf{X}' \Sigma \mathbf{X})^{-1} \mathbf{X}' \Sigma \mathbf{t}_i^{CM}$

* By linearity, projection applies to corrections M^{corr}, but need to solve impulse

Full algorithm for incomplete markets

- * Precalculate all complete-market corrections **M**^{corr} (and other Jacobians)
- * Given return matrix X:
 - * Calculate projection matrix $\mathbf{P}_{\mathbf{X}} \equiv \mathbf{X}'(\mathbf{X}'\Sigma\mathbf{X})^{-1}\mathbf{X}'\Sigma$
 - * Calculate $\mathbf{M}^{corr,z,z'}$ for shocks z, z' by $\mathbf{M}^{corr,z,z'} = P_{\mathbf{X}}^{z,z'} \cdot \mathbf{M}^{corr}$
 - * Create $(Z \times T) \times (Z \times T)$ Jacobians **M**, with original Jacobians **M** as main diagonal blocks, and **M**^{*corr*,*z*,*z*^{*'*} added to each *z*, *z*^{*'*} block, and solve system}
 - * Update return matrix **X** and repeat until convergence
- * If stacked system too large: preconditioned iterative methods work well

mostly on this shock, for which exogenous portfolios already a good hedge!

Conclusion

- * Simple modification of sequence-space Jacobian algorithm gives us:
 - * impulses with endogenous portfolios and second-order risk premia
 - * can add portfolio constraints, incomplete markets
- * In HANK, endogenous portfolios do not always matter!
 - but when exogenous portfolios are a bad hedge, and high-MPC agents can hold large gross positions, they do
- Plenty of future work! [larger quantitative examples, two-account models with endogenous portfolios in each account, 3rd-order perturbation to get time-varying portfolios...]

