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A growing proportion of the world’s population lives in developing cities, where rain-
fall routinely causes disruptive flooding. Linking all person-level, geolocated deaths
in Mumbai, India, with sub-daily local rainfall measurements, we reveal that rainfall
shocks cause a substantial portion of Mumbai’s overall mortality, comparable to the
death rate from all cancers. Impacts are concentrated amongst children, women, and
slum residents, and are worse when heavy rainfall coincides with a high tide. These
estimates reshape our understanding of the drivers of urban mortality, and have impli-
cations for urban planning policy and the projected costs of sea level rise and climate
change.
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1 Introduction

Over 4.5 billion people live in cities, representing over half the world’s population. The
United Nations forecasts this number to grow to 6.7 billion by 2050, with nearly 90% of
the increase taking place in Asia and Africa (UN DESA, 2018). This growing urban pop-
ulation is increasingly exposed to dangerous weather, a trend that will accelerate under
future climate change (Tuholske et al., 2021; Rentschler et al., 2023). The combination
of urbanisation and extreme weather poses significant socioeconomic challenges,! which
may lead to increases in excess mortality (Picarelli et al., 2017; Guan et al., 2021). Yet these
challenges remain poorly understood and understudied, especially with regard to cities
in the developing world (Bryan et al., 2020). On one hand, greater wealth and access to
infrastructure may protect urban populations from the harms of extreme weather. On
the other, urban populations face unique public health burdens linked to high densities
and sanitation, and also wide inequalities in who bears these burdens (Marx et al., 2013;
Collier and Venables, 2017; Henderson and Turner, 2020; Kuddus et al., 2020).

Rainfall shocks, in which a large amount of rain falls in a short duration, are the dominant
driver of urban flooding in many low- and middle-income cities. However, our under-
standing of the effects of rainfall and urban flooding is limited by the paucity of sufficiently
granular data on both weather and human well-being (Jha et al., 2012; Gandhi et al., 2022).
While a considerable body of work has focused on major flooding events including those
caused by tropical cyclones (Elliott et al., 2015; Hsiang and Jina, 2014; Kocornik-Mina et al.,
2020), the accumulated impact of smaller-scale, frequently occurring, and localised events
is suspected to be comparably large but is rarely accounted for (UNISDR, 2013). In recent
years, academic economics researchers (Guiteras et al., 2015; Donaldson and Storeygard,
2016; Chen et al., 2017; Patel, 2024) and disaster relief agencies (Schumann et al., 2023)
have turned to satellite-based data sources to understand flooding and its impacts. How-
ever, it is widely recognised that densely built urban areas limit successful flood detection
by satellites (Islam and Meng, 2022; Schumann et al., 2023).? Further, existing studies that
focus on highly aggregated weather and outcome measures are neither able to represent

specific hazardous weather conditions (e.g., the occurrence of heavy rainfall during a high

IThese include inequality, crime, traffic congestion, communicable diseases, and environmental hazards
(Henderson and Turner, 2020; Kuddus et al., 2020).

There are several reasons for this. Satellite sensors have difficulty distinguishing between water and
impervious smooth surfaces that are common in urban areas. The urban built environment also introduces
confounding geometric factors such as layover and shadows. Additionally, features such as narrow streets
limit the ground surface visible to the sensors. Hydrologists also face difficulties with modelling urban
flooding due to its granular and often discontinuous spatial extent, shallow depth, and short-lived duration
(Tanim et al., 2022).



tide period within a day) nor capture unequal harms across segments of an urban popu-
lation. Thus, current research likely presents policy makers with a distorted view of the
health impacts of urbanisation and extreme weather.

In this paper, we overcome these measurement challenges, and provide the first estimates
of the mortality impacts of rainfall in an urban setting— Mumbai, India. We create a new
dataset that links sub-daily rainfall measurements from a dense network of rain gauges
with the universe of person-level mortality records identified by residential address. To
causally identify the impacts of rainfall on mortality, we exploit random spatial variation
in the incidence of rainfall shocks across the city within a given day— an artefact of Mum-
bai’s climatology. Importantly, we also highlight the vastly unequal effect of these rainfall
shocks based on person-level characteristics such as age, gender, and slum residence.

We find a steeply increasing relationship between rainfall and mortality. For instance,
relative to a day with no rainfall, a day with 50mm of rainfall causes a 0.7% increase in
mortality over the subsequent 5 weeks, while a day with 150 mm of rainfall causes a 2.2%
increase in mortality over the same period.> The temporal profile of excess mortality from
a high rainfall day exhibits strong effects both in the contemporaneous week and in sub-
sequent weeks, suggesting that deaths may be caused both by immediate factors as well
as by vector- and water-borne diseases that develop and spread over longer time horizons
(Patankar, 2015). Our results imply that on average 7% to 10% of all monsoon season (i.e.,
June-September) deaths in Mumbai from 2006 to 2015 were caused by rainfall shocks— a
share that is comparable to the city’s overall share of deaths from all cancers. Given their
magnitude, they reshape our understanding of the key drivers of urban mortality.

The harms from rainfall disproportionately affect vulnerable or disadvantaged groups,
even within populations living in the same locality. Children under 5 years are the worst
affected age group, with rainfall shocks explaining around 20% of their monsoon season
deaths from 2006 to 2015. We find that women are more affected than men, consistent with
literature that highlights gender inequality in the impacts of weather and climate change
for both physiological and social reasons (Fruttero et al., 2023). Furthermore, starkly un-
equal effects are seen across slum and non-slum populations, which account for roughly
55% and 45% of the city’s population respectively. A 150mm rainfall day causes a 2.9%
increase in overall 5-week mortality for those residing in slums, but only a 1.1% increase

for those not residing in slums.

SBetween 2006 and 2015, there were an average of 27 days per year in which at least one location in
Mumbai experienced 50mm or more of rainfall, and 5 days per year in which at least one location had more
than 150mm (see Table 3 for more details).



Because urban flooding in Mumbai is mainly pluvial, an increase in rainfall can be ex-
pected to translate directly into increased flood hazard, all else being equal (Ranger et al.,
2011). Although we are not able to directly observe flooding, two aspects of our results
suggest that flooding is the key channel through which rainfall leads to excess mortality.
First, we find that for both slum and non-slum populations, the mortality effects of ex-
treme rainfall are greater in low-elevation localities than high-elevation localities. Second,
we find that a high tide, which is known to impair the carrying capacity of the drainage
system (Zope et al., 2015), greatly amplifies the mortality effects of rainfall, particularly
when its timing within a day coincides with intense bursts of rain. The tide results suggest
that in the absence of adaptive measures (e.g., drainage improvements), future sea level

rise may substantially increase the mortality burden from rainfall shocks.

Mumbai offers a uniquely rich set of data sources and meteorological conditions that en-
able us to study the mortality impacts of rainfall shocks. To measure mortality, we utilise
individual death records collected by Mumbai’s governing civic body, the Brihanmumbai
Municipal Corporation (BMC).* Importantly for this study, the records contain the date of
death, age at death, gender, and residential address of each individual who died in Mum-
bai between 2006 and 2015. We use the address information in two ways. First we match
each death with localised measures of rainfall from the BMC’s network of automatic rain
gauges located throughout the city, which measure rainfall in up to 15-minute intervals.
Second, we classify each deceased person as either a slum resident or non-slum resident
by matching the text in each residential address with census lists of slum names as well

other keywords.

Our research design takes advantage of the unique meteorology of Mumbai’s monsoon
season, which lasts from June to September each year and accounts for almost all of the
city’s annual total rainfall of over 2,000 mm.’ During this season, rainfall on a given day
tends to occur in highly localised cloudbursts that drop heavy rain over some parts of the
city while leaving other parts dry. Spatio-temporal variation in the city’s daily rainfall has
been described as “arbitrary” and “pattern-less”, eluding prediction even by advanced

statistical techniques (Singh et al., 2017).° This provides an opportunity to leverage quasi-

“The BMC’s vital statistics registries are widely acknowledged to be some of the most advanced in India,
and independent audits have validated the death records to be 95% complete (Mittra et al., 2021).

>For context, New York City gets around 1100mm of rainfall per year, which is spread roughly evenly
across months of the year.

®Mumbai’s susceptibility to extreme rainfall was most intensely demonstrated on July 26, 2005, when a
record-setting 944 mm of rain fell over a 24-hour period at the airport weather station. However, even this
remained localised, with rainfall totals over the same period varying widely across localities, from 810 mm at
Bhandup and 490 mm at Dharavi in the northern and central parts of the city, to only 70 mm at Malabar Hill
and Colaba in the southern part of the city. The interaction of synoptic-scale weather systems with coastal
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random variation in rainfall across localities on a given day to identify a plausibly causal
effect. In addition, we leverage exogenous variation in the timing of rainfall with respect to

subdaily tidal fluctuations to isolate periods that pose the greatest risk of urban flooding.

Our results from Mumbai suggest that the global mortality burden of urban flooding is
likely much higher than is currently understood. For example, the Emergency Events
Database (EM-DAT), a widely used measure of disaster damages (Kahn, 2005; Cavallo et
al., 2013; Gandhi et al., 2022) records fewer deaths due to floods for the whole of India,
than we find for Mumbai alone during our sample period.” Like Mumbai, other devel-
oping megacities such as Manila, Jakarta, and Lagos face chronic problems with urban
flooding, and thus likely also face a large and growing undocumented mortality burden
from extreme rainfall. Further, climate change is likely to intensify monsoon season rain-
fall (Wang et al., 2021; Salunke et al., 2023), and will increase sea levels, both of which are
key drivers of urban flooding. It is thus critical that urban planners and policy makers
have high quality estimates of the magnitude of damages from urban flooding, and their

distribution across vulnerable populations.

While this paper’s primary contribution is to provide the first large-scale estimates of the
unequal health impacts of recurrent rainfall shocks and urban flooding, it also builds on
several strands of literature. Our work contributes to the broader literature on the chal-
lenges of urbanisation in developing countries, where weak and poorly enforced planning
and zoning laws have meant that infrastructure often fails to keep pace with the growth in
built environment and population. In particular, the differential mortality impacts of rain-
fall shocks for slum and non-slum residents highlight a possible channel through which
improvements in housing (Cattaneo et al., 2009; Galiani et al., 2017), water, and sanitation
(Cutler and Miller, 2005; Gamper-Rabindran et al., 2010; Alsan and Goldin, 2019; Ashraf
et al., 2021; Bhalotra et al., 2021) can lead to better health outcomes.

Moreover, our work builds on the literature that studies the economic costs of environ-
mental hazards. We contribute to the emerging literature on environmental inequality
(Banzhaf et al., 2019; Cain et al., 2024) that uses population-wide data to characterise dis-
parities in the causal effect of environmental hazards on health by person-level charac-

teristics (e.g., by race in the US, as in Gillingham and Huang (2021) and Chakma et al.

land-surface features is thought to drive these rainfall idiosyncrasies across space (Singh et al., 2017).

"From 2006 to 2015, EM-DAT reports roughly 17,000 deaths in India due to 127 flood and storm events,
most of which extend over large geographic areas (i.e., one or more states) (Centre for Research on the
Epidemiology of Disasters, 2023). Only 11 of these events were identified to affect Maharashtra, the state in
which Mumbai is located. In contrast, we find that local rainfall shocks caused over 22,000 deaths from 2006
to 2015 in Mumbai alone (Section 5).



(2024)).2 We are the first to apply this approach to a developing country context when
estimating disparities by slum vs. non-slum residence. Additionally, we extend the em-
pirical literature on the impacts of weather on socioeconomic outcomes to the context of
urban flooding. While this literature has extensively explored the mortality impacts of
extreme temperature in various contexts (Burgess et al., 2017; Cohen and Dechezleprétre,
2022; Carleton et al., 2022; Helo Sarmiento, 2023), the health impacts of extreme rainfall
in urban settings have received almost no attention.’ Besides quantifying the impacts, our
results highlight potential mechanisms of adaptation (e.g., improved housing), which is a
key focus of the research frontier on weather, climate change, and socioeconomic outcomes
(Kolstad and Moore, 2020). We also develop a new approach to estimate how tidal fluc-
tuations amplify the health impacts of rainfall shocks, thereby highlighting a new chan-
nel through which future sea level rise may affect human well-being. This complements a
newly developing literature that uses spatial equilibrium models to quantify the economic
costs of sea level rise (Desmet et al., 2021; Hsiao, 2023).

The rest of this paper is organised as follows. In Section 2 we describe our data, which
includes the universe of deaths in Mumbai between 2006 and 2015 at the person-level,
monsoon season rainfall from a dense network of urban weather stations at 15-minute
intervals, and various covariates. In Section 3, we describe our approach to estimating
the causal impacts of rainfall shocks on mortality, and uncovering heterogeneous effects
by age, gender, slum residence, elevation, and tide patterns. In Section 4, we present our
main empirical results on the effects of rainfall on mortality. In Section 5, we calculate
the proportion of overall mortality in Mumbai that is caused by rainfall shocks. Finally,
Section 6 concludes.

2 Data

To investigate the mortality costs of extreme rainfall and urban flooding, we compile a new
dataset that links high resolution mortality and weather information. In conjunction with

the mortality and weather data, we also make use of data on slum names and locations in

8This stands in contrast to other work that explores such disparities only by location-level, rather than
person-level characteristics (e.g. Carleton et al. (2022)).

?Studies on rainfall have tended to focus on aggregate economic outcomes (Elliott et al., 2015; Damania
et al., 2020; Holtermann, 2020; Russ, 2020; Kotz et al., 2022), health impacts in rural, agricultural settings
(Maccini and Yang, 2009), or migration responses to major urban flooding events (Kocornik-Mina et al.,
2020; Gandhi et al., 2022). Picarelli et al. (2017) on rainfall shocks and cholera incidence in Dar es Salaam,
Tanzania is a rare example focusing on urban health impacts.
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Mumbai, satellite-derived elevation and population data, and tide data.

2.1 Mortality data

Our mortality data are obtained through systematic queries of the Mumbai municipal
government’s deaths registration system website.!? The resulting data provide us with
the universe of recorded deaths in Mumbai between 2001 and 2015.'! In our analysis, we
use the deaths from 2006 to 2015 because granular weather data (Section 2.3) are available

over those years.

For each death, the data provide a rich set of individual-level covariates, including the de-
ceased’s name, age, gender, residential address, and religion, but not cause of death. Our
data are broadly consistent with Mumbai’s city-level aggregate mortality statistics. For
example, the total number of deaths in our data in 2015 is 91,797, while the BMC reports
94,706 in its official aggregate statistics.'> Thus, in 2015, our deaths appear to capture 97%
of the total deaths in Mumbai.

Using the information contained in the residential address, we locate each death to one of
Mumbai’s 89 PIN codes, which are India’s postal area codes, analogous to US ZIP codes."
Figure 1 illustrates the stark spatial and temporal patterns in the data. Panel A shows the
mean age of death in our mortality data between 2006 and 2015, mapped across Mumbai’s
PIN codes. There is extreme inequality across space, with some predominantly slum areas,
such as Dharavi and the Mankhurd-Govandi belt, having a mean age of death of around
40."* In contrast, the mean age of death in wealthier areas is several decades higher; for
instance, it is 73 in the affluent Breach Candy neighbourhood on the western seashore.
The city-wide mean age of death in our 2006 to 2015 sample is around 57 years.

Panels B and C of Figure 1 illustrate the seasonality of mortality over months of the year.

Onttps://portal.mcgm.gov.in/irj/portal/anonymous/qldldregreport?guest_user=english,
accessed in June 2024.

"Deaths from pre-2001 and post-2015 years are also available online, but the data quality is inconsistent
during these periods.

Phttps://www.mcgm.gov.in/irj/portal/anonymous/qlvitalstatsreport?guest_user=english,
accessed in July 2024.

3In our main analysis, we use the PIN code as the location identifier for a death. While this has the
advantage of granularity, approximately 20% of the deaths do not report a PIN code that lies within Mumbai.
This is either because 1) the deceased person’s residential address was outside Mumbai (approx 5%), or 2)
the deceased person’s residential address was within Mumbai but was missing a PIN code (approx 15%).
However, even in these cases, the data report in which of Mumbai’s 24 municipal wards the death was
registered. Further details on geo-location are in Appendix B.1. In Appendix D.8, we conduct robustness
checks where we use the coarser, ward-level location identifier and retain observations lacking a PIN code.

“Dharavi is widely regarded as one of the world’s largest slums (World Economic Forum, 2020).
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During the monsoon months, the mean age of death in our data falls by around two years
(Panel B). Panel C shows the number of deaths per month in our data broken out by age
grouping— under 5 years, 5-64 years, and over 65 years. Seasonality is strongest in the
youngest age group, for which there are more than 20% more deaths at the peak of the
monsoon season compared to the rest of the year. This clear seasonality suggests to us that
there is an important relationship between within-year climate and mortality."> However,
given the potential for a wide range of confounding factors, we will need to leverage quasi-
random variation in rainfall shocks to show there is a causal relationship underpinning

this correlation.

Mean age of death (years) Mean age of death by month of year
58.5

58.0

57.5

57.0

56.5

70

60
Dharavi
50 47 years

Breach Candy—
74 years

1 2 3 4 5 8 9 10 1 12

6 7
Month of Year

Number of deaths by month of year (ratio relative to January)

Age
<5
— 5-64

Mankhurd—-Govandi belt
40 years 65+

Month of Year

Figure 1: Seasonal and spatial patterns in mortality in Mumbeai.

Panel A shows the spatial distribution of the mean age of death between 2006 and 2015 across PIN codes in
Mumbai. We highlight the PIN codes containing two of Mumbai’s biggest slum areas, Dharavi (400017) and
the Mankhurd-Govandi belt (400043), as well as the affluent Breach Candy neighbourhood (400026). Panel
B shows the mean age of death across months of the year in our sample, with the monsoon season shaded
in blue. We can see clear visual evidence of seasonality. Panel C shows the number deaths by months of the
year, broken out by age category, and normalised to be equal to one in January for each age category.

The deaths data also reveal variation and inequities along other dimensions.!® However,
the city-wide mean age of death steadily increased over the sample period, from 53 in 2006
to 61 in 2015, reflecting general improvements in health care and hygiene.!” Furthermore,

I5The seasonality in our deaths data is also mirrored in data on the incidence of diseases, especially those
such as dengue, diarrhoea, malaria and typhoid which are known to be linked to urban flooding (Patankar,
2015). See Appendix A.

16For example, the mean age of death for women is around 5 years higher than that for men. The mean
age of death for Hindus is nearly ten years higher than that of Muslims.

7This increase is consistent with the trend in life expectancy for India as a whole, which increased from
65 years in 2006 to 70 years in 2015. (See https://data.worldbank.org/indicator/SP.DYN.LE0O.IN?1o
cations=IN.)
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an increasing trend in the mean age of death is found in 87 out of the 89 PIN codes.'

2.2 Slum classification

Our mortality data contains detailed person-level residential address information. We
use this information to classify whether the deceased likely lived in a slum, allowing us
to create separate time series of death counts for slum and non-slum populations in each
PIN code. To implement the classification, we use a combination of fuzzy string matching
and text mining approaches. Specifically, we obtain a list of names of the slums in each of
Mumbai’s 24 municipal wards from the 2001 census, and match these into the addresses
that fall in that ward using a fuzzy matching procedure. We supplement this matching
procedure using a search for terms that are clearly associated with slum addresses.” Over-
all, our procedure categorises around 55% of our addresses as slum addresses, which is
consistent with aggregate statistics from the 2001 census as well as other more recent es-
timates (WRI-India, 2022). Further details of this process, and our validation procedures
are in Appendix B.2.

Panel A of Figure 2 shows the spatial pattern of the percent of deaths that we categorise as
slums by PIN code. These patterns are closely related to the patterns in the mean age of
death shown in Figure 1A. In Panel B of Figure 2, we scatter the mean age of death against
the percentage of slum deaths. As expected, we find a negative relationship. PIN codes
which have a greater proportion of deaths in slums also have a lower mean age of death.

8The two PIN codes in which the mean age of death is not increasing have statistically insignificant
trends.

YSpecifically, the terms are zopadpatti (the Marathi language word for slum, including abbreviated forms
zop, zp, and z.p), chawl (a type of dense of communal housing, including abbreviated form chl), “police"
(addresses of homeless persons or residents of informal settlements may be recorded as the nearest police
station), nagar (literally a district or quarter within a town, but in Mumbai commonly applied to slum set-
tlements), and “transit”. The word “transit" is included to capture “transit camps", which are temporary
settlements for persons displaced due to construction projects or from dilapidated buildings about to be
destroyed or redeveloped. In practice, however, transit camps can persist as long-term settlements.

9



Proportion of deaths in slums

1.00

o
39
o

3

o
o
o
o
o,
.

Proportion of deaths in slums
L]
..

— . ’

Mankhurd—Govandi belt ¢ *
72%
o ® M

40 50 60 70
Mean age of death

o
N
o

Breach Candy
11%

Figure 2: Proportion of deaths in slums and mean age of death, by PIN code.

Maps shows the spatial distribution of the percent of 2006-2015 deaths in slums across PIN codes in Mum-
bai. We highlight the PIN codes containing two of Mumbai’s biggest slum areas, Dharavi (400017) and
the Mankhurd-Govandi belt (400043), as well as the affluent Breach Candy neighbourhood (400026). The
scatter plot displays the association between the percent of 2006-2015 deaths in slums and the mean age of
death for 2006-2015 deaths, with each point representing a PIN code.

2.3 Weather data

Our main weather data are rainfall measurements collected from a dense network of Auto-
matic Weather Stations (AWS), which were set up by the BMC after the July 2005 floods.
These stations provide rainfall totals at 15-minute intervals, for an unbalanced panel of
stations across Mumbai. The number of stations range from 22 in 2006 to 51 in 2015.%
The AWS data also include temperature measurements, which we use as a control vari-
able in a robustness check. To aggregate these 15 minute interval station level data to the
day-by-PIN code level, we first create a balanced panel of station level data within each
year, imputing missing values across space (Auffhammer et al., 2013). We then calculate
PIN code level averages of the available stations in each year, weighting the stations by the
inverse of the square of the distance between each PIN code’s centroid and the location of
the stations. Further details of the dataset cleaning and construction procedure, and the

station availability, are in Appendix B.3.

A high level of spatial resolution is crucial for capturing the idiosyncratic patterns of rain-

2In most years, the AWS data are available only for the monsoon season (See Appendix Table B.3).
Details of the AWS data availability are in Appendix B.4. In Appendix D.10 we show robustness of our main
results to creating our climate data measures using only a balanced sample of stations that are available to
us in all years.
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fall in Mumbai. On a given day, rainfall in the city occurs in highly localised bursts, and
this quasi-random variation allows us to credibly identify causal impacts on mortality. Ta-
ble 1 illustrates the identifying variation used in our analysis by comparing the standard
deviation of PIN code-level daily rainfall observations before and after conditioning out
spatial and temporal fixed effects. As a baseline, ¢;; denotes the raw standard deviation
of the actual PIN code-level daily rainfall observations. We then condition out PIN code
x year fixed effects from these observations, and calculate the standard deviation of the
residual variation, which we refer to as the “within PIN code-year SD”. Finally, we further
condition out date fixed effects,?!, and refer to the residual standard deviation from this
model, which mimics our estimation strategy, as “full residual SD”. The final row presents
the ratio of this residual standard deviation to the raw standard deviation in the daily rain-
fall values, ;. Even after removing extremely saturated fixed effects that flexibly control
for date-specific seasonality and PIN code-specific inter-annual trends, we still retain sub-

stantial variation that can be used for identification (i.e., roughly 30% of the original raw

variation).
Quantity Estimate
Oit 26.2
Within PIN code-Year SD 25.6
Full residual SD 7.5
Ratio of full residual SD to 7, 0.29

Table 1: Variation in daily rainfall.

Table shows summary statistics for PIN code-level daily rainfall observations in our sample. Each row
presents a measure of the standard deviation of PIN code-level daily rainfall. The first row shows the raw
standard deviation. The second presents residual standard deviation after conditioning out PIN code x
year fixed effects, and the third the residual standard deviation after conditioning out PIN code x year fixed
effects and date fixed effects. The last row shows the ratio of the residual standard deviation in the penulti-
mate row to the raw standard deviation in the first row.

Figure 3 depicts the variation used in our study by mapping the spatial distribution of
daily rainfall in Mumbai on individual days. Specifically, we map PIN code level daily
rainfall values for the two days in our sample containing the highest rainfall values, as

well as days immediately preceding and following these two days.

21Eor instance, July 1, 2014.
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Figure 3: Total daily rainfall on two extreme days.

Maps illustrate the spatial distribution of total daily rainfall across PIN codes of Mumbai for the two days
containing the highest PIN code x day rainfall observations in the sample (i.e., June 30, 2007, and June 19,
2015), and the days immediately preceding and following these days.

Figure 3 demonstrates that rainfall is highly temporally and spatially localised. Even on
very extreme rainfall days, there are some areas of the city that receive little rainfall. This is
consistent with other studies (Singh et al., 2017) which have found that spatial patterns of
rainfall in Mumbai are extremely idiosyncratic and hard to forecast. Despite this high level
of idiosyncrasy, the yearly total rainfall experienced by each PIN code is roughly uniform
(see Appendix B.3.1).

2.4 Other data

We supplement our mortality and weather data with a range of other datasets that include
variables such as elevation, population, and tides.

We collect elevation data at a resolution of roughly 50 m x 50 m, using the R package
elevatr??, which is an interface to the Mapzen terrain tiles. We use these data to calculate
the average elevation for each of Mumbai’s PIN codes, and the proportion of each PIN
code that is below 5 m elevation. Low elevation PIN codes are expected to be at higher
risk of urban flooding.?

2https://github.com/jhollist/elevatr

ZIn an additional robustness check (Appendix E.4), we also use the “Height Above Nearest Drainage”
(HAND) rather than elevation to categorise PIN-codes. HAND is defined as the the vertical distance be-
tween a location and its nearest stream, and we calculate the average HAND for each PIN code using a
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To calculate the hourly tide level for Mumbai, we use historical tide tables from the US
National Oceanographic and Atmospheric Administration.?* These provide us with the
high and low tide predictions for each day in our sample.”> We smoothly interpolate these
values to obtain predictions at the hourly level and match these to our sub-daily rainfall
data, in order to test whether rainfall is more damaging when it coincides with a high tide.
Figure 4 presents time series of the interpolated tide values for August 2009. Alongside
the level of the tide in each hour of our sample, we calculate two other statistics that are
used in robustness checks in Appendix E.5. Specifically, we record whether the maximum
tide in each hour of our sample is above or below 450cm, since BMC documents claim
that flooding is especially likely when the tide is above 450cm.?® We also make use of the
average tide value within a day, which is shown in the right panel of Figure 4.

500 500

400 - 400 A Daily mean tide (cm)
= Height 257.5
§ 300 9 3001
\a: Above 450cm 255.0
he]
F 200+ — Below 450cm 200 252.5

250.0
1001 100
Aug 03 Aug 10 Aug 17 Aug 24 Aug 31 Aug 03 Aug 10 Aug 17 Aug 24 Aug 31

Figure 4: Descriptive tide plots.

Plots show time series of Mumbai’s predicted tide patterns across August 2008. Data are interpolated from
the highs and lows to the hourly level using a smooth spline interpolation. Panel (A) highlights the portion
of the month during which the tide prediction is above 450cm. Panel (B) colours the time series by the
average tide level across the 24 hours in each day.

We collect a variety of additional data for use in sensitivity and robustness checks. The
Praja Foundation provided us with disease data, which allow us to characterise seasonal

patterns in diseases (Appendix A). We obtained daily and subdaily data on temperature

HAND map for Mumbai developed in Tripathy et al. (2020), which we obtained through direct correspon-
dence.

24Obtained through correspondence, but post-2008 tables are available here: https://tidesandcurren
ts.noaa.gov/historic_tide_tables.html

ZWe only have one time series of tide data available to us, which is from a single tide-gauge located at the
southern tip of the city. However, independent measurements have confirmed that tide height and phase
are similar at different points along Mumbai’s coastline (National Institute of Oceanography, 2016).

26 A broad range of BMC documents, NGO reports, and news alerts state a threshold tide level of 450 cm,
over which acute flooding is very likely to occur. See for example https://portal.mcgm.gov.in/irj/go/
km/docs/documents/Coastal’%20road/Coastal%20Road%20DPR/EIAY,20report . pdf.
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and rainfall from the Indian Meteorological Department’s (IMD) two weather stations in
Mumbai, and use these to validate the AWS data (Appendix B.3). We obtained a shape-
file used by Tandel et al. (2022) for the locations of slums in Mumbai through direct corre-
spondence with the authors (Appendix C.2), which we use to characterise the elevation of
slum areas within a PIN code. Finally, we construct PIN code-level population estimates,
using the Global Human Settlement Layer (GHSL) satellite-derived data product (Schi-
avina et al., 2023), which provides population estimates every five years in our sample at
a resolution of roughly 100 m x 100 m. This allows us to conduct robustness checks in

which we population weight our regressions (Appendix D.6).

2.5 Regression data summary statistics

Table 2 presents summary statistics for the data used in our main analysis.

Mean SD Median Min ¢® Max Total Deaths

Total Deaths 158 115 13.0 0 510 128.0 363380
Deaths below 5 yrs 1.1 1.9 0.0 0 8.0 26.0 24853
Deaths 5-64 yrs 72 61 6.0 0 270 105.0 165710
Deaths 65 yrs and above 7.4 5.4 7.0 0 230 390 169674
Male deaths 9.0 7.0 8.0 0 310 107.0 207593
Female deaths 6.8 5.3 6.0 0 230 36.0 155744
Slum deaths 86 86 6.0 0 370 630 197577
Non-Slum deaths 72 59 6.0 0 250 93.0 165803
Daily rainfall total 114 262 0.7 0 130.0 389.9

Weekly rainfall total 80.3 1199 23.3 0 5202 766.2

Table 2: Summary of data used in analysis.

Table shows summary statistics for PIN code-level weekly death totals and weekly deaths by age group, gen-
der, and slum residence. We also show PIN code level daily and weekly rainfall totals. The 99" percentiles
are indicated by ¢”°. Totals deaths summed across age groups and or genders are not exactly equal to Total
Deaths in the first row, due to missing age or gender information in a small number of observations.

On average, PIN codes have about 16 deaths per week during our sample period. How-
ever, there is substantial variance across time and space. Roughly 1 out of every 16 deaths

in our sample is for someone under the age of 5.

Similarly, our treatment variable, rainfall exhibits substantial variation over the estimating
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sample. At the daily level, the mean PIN code level rainfall is about 11mm.¥ However, the
distribution is highly skewed, with each year containing a substantial number of PIN code
x days with extreme rainfall values (Table 3). We exploit this variation in rainfall across

PIN codes at the daily level to estimate a nonlinear effect of daily rainfall on mortality.

Year N >50mm >100mm > 150mm >200mm > 300mm
2006 17177 1160 539 191 35 0
2007 32485 1166 389 168 67 40
2008 24386 1451 319 55 1 0
2009 24386 821 309 96 12 0
2010 13528 1732 406 39 3 0
2011 14952 1216 579 167 8 0
2012 8188 530 87 4 0 0
2013 5340 1088 420 95 12 0
2014 13528 1268 362 33 0 0
2015 10769 766 272 89 75 13

Table 3: Extreme rainfall observations by year.

Table shows the total number of PIN code x days (N) observed in each year in our AWS data, and the
number of PIN code x days in each year with rainfall above 50 mm, 100 mm, 150mm, 200 mm, or 300 mm.
Details on the sample available to us in each year are in Appendix B.4.

3 Estimating a mortality-rainfall response function

3.1 Empirical strategy using daily rainfall totals

Here we present the empirical strategy and regression equation that we use to estimate the
mortality impact of rainfall in Mumbai. We exploit quasi-random variation in the location
and timing of daily rainfall to estimate the following model on weekly mortality data for
the 89 PIN codes within Mumbai:

M,y = [(Riwy) +iy+ Ay, (1)
—— —— ——
Log expected deaths in pincode s  Rainfall response Fixed effects
Week of year w, year y function

where i indexes the PIN code, w indexes the week of the year, and y indexes the calendar
year. The outcome variable, which is the expected number of log deaths in a PIN code

¥ This is the average during our estimation sample, which is usually only the monsoon season (Section
2.3).
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x week, is modelled as a linear-in-parameters function f of a vector of rainfall variables,
R, ,, and a granular set of location and time fixed effects. Since the number of deaths in a
PIN code x week is a non-negative count variable, we estimate the parameters in Equation

(1) using Poisson pseudo maximum likelihood (Chen and Roth, 2024).

The mortality-rainfall response function f causally relates daily rainfall to mortality out-
comes. There are two key features of f worth highlighting. First, it allows for non-linearity
in the response of weekly mortality to daily rainfall. Specifically, we construct non-linear
transformations (e.g., polynomials) of daily rainfall before summing these over days of
the week, which allows the function f to capture the impacts of the distribution of ex-
treme days within the week (Hsiang, 2016). Second, the arguments of f include lagged
values of the vector of rainfall variables. This is important because rainfall in a given week
may affect mortality in subsequent weeks. For instance, an increase in mortality due to
extreme rainfall in a given week could be compensated for by a fall in mortality in subse-
quent weeks. This could occur if extreme rainfall causes a deterioration in the health of
individuals who would have died even in the absence of the rainfall shock. In this case, the
only effect of the rainfall shock is to alter the timing of mortality by a few weeks, but not
the number of deaths in the longer run.?® Alternatively, extreme rainfall in a given week
may lead to increased mortality in subsequent weeks, because (for example) water-borne
diseases take time to develop and spread. In this case, the rainfall shock has persistent
effects that result in a higher number of deaths in the longer run. Including lagged values
in f accommodates both these possible narratives.

In our main specification, we model the mortality-rainfall response function using a third-
order polynomial in daily rainfall, for days in the contemporaneous week and 4 lagged
weeks.”” Letting R}, represent the total daily rainfall on day d raised to the power £,
the function f is constructed as follows:

FRiwy) =D D Bk Y (Rlguiy) (2)

where each parameter, (3, denotes a coefficient on the k' power and ' lag term.

2This type of temporal displacement is sometimes referred to as a “harvesting" effect (Deschénes and
Moretti, 2009).

We emphasize results from the third-order polynomial because it captures important nonlinearities
while being relatively parsimonious. We emphasize results from a model with the contemporaneous week
and 4 lagged weeks because it captures temporal displacements while allowing us to retain weeks in the
estimating sample that would be lost if additional lagged were to be included. In Appendix , we show
results under alternative functional forms (Appendix D.1) and number of lags (Appendix D.4.1).
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Apart from the function f, the fixed effects are a crucial part of Equation (1). In our main
specification, we use both PIN code x year fixed effects, a; ,, and week-by-year (i.e., date)
fixed effects, A\, ,. The PIN code x year fixed effects flexibly control for any annually-
varying PIN code-specific variables,® while the date fixed effects flexibly control for any
city-wide shocks in a given week as well as within-year seasonality. Together, these fixed
effects imply that we are identifying the mortality-rainfall response function from idiosyn-
cratic spatial variation in rainfall within the city in a given time period. We assume that
conditional on the included fixed effects, rainfall is as good as randomly assigned, allow-
ing for a causal interpretation of the function f.3' This research design is possible due to
the highly localised nature of where rain falls on a given day in Mumbai, and using high
resolution rainfall data is thus crucial for the analysis. In Appendix D.9, we show results
under alternative specifications of the fixed effects that are even more saturated, and find

qualitatively similar results.

Throughout our analysis, we use a conservative two-way clustered standard error estima-
tor, that allows for arbitrary correlation of residuals across weeks within a given PIN code,

and across PIN codes within a week.

We also consider specifications that allow for heterogeneity in the mortality-rainfall re-
sponse based on individual-level characteristics. To do so, we estimate a separate response

for the set of individuals in each group a:

Maiwy = fa(Ri,w,y) + Qg iy + )\a,w,y~ (3)

Equation (3) is estimated using a stacked regression, with all elements of the rainfall vector
R, , and all fixed effects interacted with group-level indicator variables. We consider
groupings based on an individual’s age, gender, and type of residence. For age, we classify
individuals into three categories, a € {< 5 years, [5,65) years, > 65 years}, and we classify
each individual’s residence as slum or non-slum based on residential address (See Section
2.2).

%0ne such variable is the set of weather stations available to us in each year. Because the AWS weather
data is an unbalanced panel, the PIN code x year fixed effects are needed to control for the varying compo-
sition of stations in each year.

3INote, our estimator further assumes that there are no spillover effects. We discuss this assumption,
and the possibility of both spatial and temporal spillovers in Appendix D.4. Overall, we find do not find
evidence that un-modelled spillovers significantly bias our results.
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3.2 Within-day timing of rainfall

Our main analysis focuses on the effects of daily rainfall shocks on mortality. In particular,
the specifications in Equations (1) and (3) account for the nonlinear effects of daily rainfall
on weekly mortality. While daily rainfall is a plausibly salient variable for public and
private decision making, the native resolution of our AWS rainfall data is the 15 minute
level. This allows us to utilise variation in the timing of rainfall within a day to investigate
the effect of extreme and short-lived rainfall shocks on mortality. For this purpose, we
consider a specification where we construct non-linear transformations of rainfall at the

hourly level, before aggregating to the weekly level:

hourl
mivwvy = g(RZ YW yy) + Oéivy + )\wvy' (4)
Letting RY), ;. , represent the total rainfall on hour & of day d raised to the power , the

function ¢ is constructed as follows:
3 4

hourl hourl

(R =222 B D D (Ripaw-ta) (5)
k=1 1=0 dew—1 hed

where each parameter, B;f ol denotes a coefficient on the £ power and I weekly lag
term. The function g here thus captures the nonlinear effects of hourly rainfall on weekly

mortality.

Furthermore, we also exploit exogenous variation in tide height to estimate a specifica-
tion that allows rainfall to have different impacts, depending on the level of the predicted
maximum tide in the hour that it falls. Let 7, 4,,, denote the hourly tide level on hour & of
day d in week w and year y. Specifically, we construct the function g,;, which augments the
function g by adding multiplicative interactions of each hourly rainfall polynomial term
with hourly maximum tide height:

3 4
o (RIS = 9B + 3 ™ 3 D (Rindwmiy Thawty), (6)

k=1 1=0 dew—l hed

In Appendix E.5, we consider two additional specifications that leverage variation in tide
patterns. First, we consider a model in which hourly rainfall is interacted with an indicator
for whether the tide is above or below 450cm. A broad range of BMC documents, NGO
reports, and news alerts state a threshold tide level of 450 cm, over which acute flooding is

18



very likely to occur.*? Second, we consider a model in which we interact the daily average
tide level with the rainfall response function from Equation (2). Overall, these specifica-
tions build evidence that tide is a key determinant of the mortality-rainfall relationship,

and thus that urban flooding is likely to be a important mechanism.

4 Results

4.1 The mortality-rainfall response function

Figure 5 presents the results from estimating the causal response function from Equation
(1), using a third-order polynomial in daily rainfall for days in the contemporaneous week
and 4 lagged weeks. In all figures, a day with zero total rainfall is treated as a reference.
Therefore, points on the curve represent the percent impact of a day with a level of rainfall
shown on the x-axis on the 5-week mortality rate, relative to if that day had zero rainfall.*®
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Figure 5: Percent change in 5-week mortality due to daily rainfall.

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that
uses a third-order polynomial in daily rainfall for days in the contemporaneous week and 4 lagged weeks.
Shaded areas indicate 95% confidence intervals. In Panel A, Points along each curve represent the percent
change in 5-week mortality due to a single day with the total rainfall value shown on the x-axis, relative to a
day with zero rainfall. In Panel B, points along each curve represent the percent change in weekly mortality
in the contemporaneous week (leftmost plot) and first to fourth subsequent weeks (second-from-left plot
to rightmost plot, respectively), due to a single day with the total rainfall value shown on the x-axis, relative
to a day with zero rainfall.

32Gee for example https://portal.mcgm.gov.in/irj/go/km/docs/documents/Coastal%20road/Coa
stal%20Road%20DPR/EIA%20report . pdf.

$Specifically, the value of the curve at a given daily rainfall value R is obtained by multiplying each
coefficient f3; ; by RF (Equation (2)), summing over these products, and then dividing by 5. The division by
5is done to account for the fact that the deaths caused by a day with rainfall R occur over a 5-week period; the
division converts a percent increase in weekly deaths to a percent increase in deaths over a 5-week period.
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Panel A shows that on average across our sample, mortality increases sharply with daily
rainfall.>* For instance, a single day with 150 mm rainfall causes an increase in 5-week
mortality by around 2.2%. This result stands in sharp contrast to estimates of the mortality
impacts of temperature shocks in urban India, which found that hot days do not have an
effect on urban residents (Burgess et al., 2017).

The response depicted in Panel A represents the effect of a single day with a given amount
of rainfall on mortality over a 5-week period. In Panel B, we present the decomposition of
the cumulative effect shown in Panel A, which gives evidence of persistent excess mortality
over this entire period. Excess mortality from a rainy day is found to be roughly equal in
the contemporaneous week and each of the 4 subsequent weeks. This is consistent with
a narrative that beyond the immediate mortality repercussions of extreme rainfall in the
contemporaneous week, flood-related diseases take time to develop and spread. We do
not find evidence that rainfall shocks simply advance the timing of deaths without altering

the total number of deaths.

4.1.1 Robustness, sensitivity, and falsification checks

We present an extensive suite of robustness checks in Appendix D. We show our results
are robust to estimating at the daily level with 35 lags (Appendix D.1), various choices of
functional forms for f (Appendix D.2) and to specifications where nonlinear transforma-
tions of rainfall are constructed at the hourly or weekly level, rather than at the daily level
(Appendix D.3).

We also consider a range of specifications that investigate the role of temporal and spatial
spillovers. In Appendix D.4.1, we estimate regressions of daily mortality on daily rainfall
with up to 95 lags. These results suggest that including rainfall for only the past 35 days or
5 weeks likely leads to an underestimate, as mortality effects persist for a much longer du-
ration. However, including more lags reduces the number of observations available to us
and results in less statistical power, especially when estimating separate responses by indi-
vidual characteristics. We therefore focus on a model with 5 weeks of rainfall, noting that
it likely understates the full extent of the mortality impact. In Appendix D.4.2, we estimate
specifications at different levels of spatial aggregation to account for the possibility that
the effect of rainfall shocks is spread over a larger area than the PIN code (e.g., through

flow of water, or movement of people). Overall, we do not find meaningful evidence that

%These and other results from this section are presented in tabular form in Appendix C.1. It is important
to note that days with a much higher rainfall than 300 mm occur in Mumbai, and that our estimates are
precise even at the extremes of our estimating sample.
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spillover effects substantially bias our main results.

Additionally, we show that our estimated mortality-rainfall response function is qualita-
tively similar when varying the estimating sample (Appendix D.5), when estimating with
Poisson, ordinary least squares, and population-weighted least squares regressions (Ap-
pendix D.6), when we include PIN code-level temperature controls (Appendix D.7),%
and when using different strategies to assign deaths to locations (Appendix D.8).%® We
also show that our results are robust to using even more saturated fixed effects than in
our main specification (Appendix D.9). Importantly, in Appendix D.10, we conduct ro-
bustness checks where we make alternative decisions on the cleaning steps involved in
converting our raw AWS station level data to PIN code-by-day summary statistics. Specif-
ically, we show our results are robust to using a cleaning procedure where we only use a
subset of the AWS stations that are available to us in every year of our sample.

Finally, in Appendix D.11 we conduct a series of randomisation placebo checks to show
that spurious correlations are not driving our results. We fail to find evidence of a strong
rainfall-mortality relationship when randomly shuffling rainfall values either across dates

and PIN codes, across dates within each PIN code, or across PIN codes within each date.

4.2 Heterogeneity in the mortality-rainfall response function across age

group and gender

Next, we investigate heterogeneity in the mortality-rainfall response function according
to age-group and gender. To do so, we create separate time series for each PIN-code for
deaths in each age category and gender respectively, and then allow the effect of rainfall

to vary according to Equation (3).

% Among the variables the date fixed effects in Equation (1) control for is city-level average temperature
in a given week. Because temperature in Mumbai is much more spatially uniform than rainfall, these date
fixed effects are likely not appropriate for analysing the causal impacts of temperature as they absorb a
great deal of the relevant variation. Nevertheless, in Appendix D.7, we conduct a robustness check where
we control for PIN code-specific daily temperatures within a week while also including the A,, ,, fixed effects.
We find that the mortality-rainfall response is robust to the inclusion of temperature controls, and that the
mortality effects of temperature are imprecisely estimated.

%Tn our main specification, we assign each death to the PIN code listed in the residential address. This
requires us to throw out roughly 20% our data which do not include PIN codes, or include PIN codes that are
not within the city of Mumbai. However, we can alternatively assign deaths to municipal wards (a coarser
location than PIN codes) using the ward identifier in our raw data.
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Figure 6: Percent change in 5-week mortality due to daily rainfall, heterogeneity by age

group and gender.

Estimates are from models that uses a third-order polynomial in daily rainfall for days in the contemporane-
ous week and 4 lagged weeks. Points along each curve represent the percent change in 5-week mortality due
to a single day with the total rainfall value shown on the x-axis, relative to a day with zero rainfall. Shaded
areas indicate 95% confidence intervals. Panel A presents estimates from a version of Equation (3) allowing
for heterogeneity across age categories. Panel B presents estimates from a version of Equation (3) allowing
for heterogeneity across gender categories. In each plot, the average response function from Figure 5 Panel
A is reproduced as a dashed black line for reference.

Figure 6 Panel A allows for heterogeneous impacts of rainfall on mortality by age category
(< 5 years, 5-65 years, > 65 years). We select our age categorisation based on previous
climate impacts literature (Carleton et al., 2022), and because we find these capture the
relevant heterogeneity well (Appendix E.1). We find that the youngest age group is the
most vulnerable to the mortality impacts of rainfall, followed by the oldest age group.””
The huge estimated impacts for the youngest age group are especially striking. A day with
rainfall of 150mm causes a 4.6% increase in 5-week mortality for the youngest age group,
but only a 1.5% increase for the middle age group. This finding is in sharp contrast to the

temperature-mortality literature, which generally finds that impacts are concentrated on

%7 Although the middle age group exhibits larger mortality increases from the most extreme rainfall days
(e.g., 300 mm) than does the oldest age group, the oldest age group exhibits larger increases on days with
lower rainfall amount (e.g., < 150 mm), which occur more frequently.
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the oldest age groups (Heutel et al., 2021; Carleton et al., 2022) .38 However, it is consistent
with the fact that flood-related morbidities such as diarrhoea are known to strongly affect
children (Kosek et al., 2003; Escobar Carias et al., 2022). Our results by age group highlight
the welfare importance of investigating the impacts of rainfall shocks, since shocks that
cause deaths in younger people imply a bigger welfare effect than shocks that primarily
affect older populations.

In Figure 6 Panel B, we show results from a model which allows the impact of rainfall to
differ by gender. We find a stronger response for women than for men, which could be
due to physiological factors or social factors (e.g., more resources allocated to males in the
event of a weather-induced shock) (Fruttero et al., 2023). While we cannot definitively
distinguish between these two reasons, in Appendix E.2 we show results from a model in
which we allow for a different response by gender and age category. The stronger female
response function is driven by the middle and oldest age groups, suggesting that social
factors could play a role. For the youngest age group however, boys are more affected than
girls, which is consistent with the hypothesis of male biological fragility (Drevenstedt et
al., 2008).

4.3 Heterogeneity in the mortality-rainfall response function across slum

and non-slum populations

Next, we explore the role of socioeconomic vulnerability in determining the mortality-
rainfall relationship. To do so, we create separate time series for each PIN-code for deaths
in slum and non-slum addresses. We then estimate Equation (3), allowing the impacts of

rainfall to vary for slum and non-slum populations.

3 An exception is Helo Sarmiento (2023), which finds that excess mortality from hot days in Colombia is
mainly driven by infectious diseases and respiratory illnesses affecting children aged 0-9.
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Figure 7: Percent change in 5-week mortality due to daily rainfall (slum vs. non-slum

residents).

Separate mortality-rainfall response functions are estimated for slum and non-slum residents (Panel A)
and for slum and non-slum residents in low- and high-elevation PIN codes (Panel B). Estimates are from
a model that uses a third-order polynomial in daily rainfall for days in the contemporaneous week and
4 lagged weeks. Low (high) elevation PIN codes are defined as those whose average elevation is below
(above) the median across all PIN codes. Points along each curve represent the percent change in 5-week
mortality due to a single day with the total rainfall value shown on the x-axis, relative to a day with zero
rainfall. Shaded areas indicate 95% confidence intervals. In each plot, the average response function from
Figure 5 Panel A is reproduced as a dashed black line for reference.

In Figure 7, Panel A, we show estimates of the average impact of daily rainfall on mortal-
ity for slum and non-slum populations. The mortality impacts of rainfall shocks are much
bigger for residents of slums than non-slums. The unequal health burden of extreme rain-
fall been documented qualitatively before (Patankar, 2015; WRI-India, 2022), but to our
knowledge these are the first empirical, causal estimates documenting the within-city dis-

parity of rainfall-driven mortality impacts.

In Figure 7, Panel B, we investigate whether the heterogeneity in Panel A can be explained
by across-PIN code sorting with respect to elevation. It could be the case that slums are
located in PIN codes that are low elevation and therefore more at risk of rainfall impacts.*
In Panel B, we do find that low elevation PIN codes (i.e., those whose mean elevation is
below the median across PIN codes) have a larger mortality response to rainfall. How-
ever, even within each elevation group, we find a substantially larger response for slum

populations than non-slum populations.*>*

¥In Appendix E.4 we show that the mortality-rainfall response function is much stronger in low elevation
PIN codes than in high elevation PIN codes, using multiple definitions of low and high elevation.

*0We reject a test for equality of coefficients across slum and non-slum populations, conditional on each
elevation category at the 1% level in both low and high elevation PIN codes.

#10f course, this does not rule out that the heterogeneity is caused by sorting with respect to flood risk
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From Panel B of Figure 7, we can see that impacts of rainfall are relatively small, and statis-
tically insignificant across the full range of 0-300mm for non-slum dwellers in high eleva-
tion areas. Thus, similar to Lindersson et al. (2023), we find that accounting for inequality
is a crucial factor in studies of urban flooding. Our results suggest that it is possible for
some populations to be shielded entirely from the mortality impacts of rainfall, and that
the impacts of urban flooding could be mitigated through adaptation investment.

In Appendix E.3 we estimate a model which allows for heterogeneity by age groups within
slum and non-slum populations. Of our three categories, we see the biggest differences in
the slum and non-slum response function for the middle age category, but also that slum
residents are strongly affected by rainfall across all age categories. This specification shows
that the difference between the slum and non-slum response function observed in Figure
7 is not driven by differences in the age profiles of slum and non-slum populations. Nev-
ertheless, it should be noted that within the estimating sample, under-5 mortality occurs

disproportionately among slum residents (Appendix Table E.1).

4.4 Evidence that urban flooding is a key mechanism for rainfall im-

pacts

So far, we have shown that rainfall has a large and highly unequal mortality impacts. Next,
we show that the mechanism for these impacts is likely through urban flooding. Estab-
lishing this mechanism is important, since urban flooding can be controlled by investment

in drainage infrastructure, while rainfall is exogenous to local policy interventions.

Our results thus far already suggest that flooding is part of the mechanism through which
rainfall shocks affect mortality. In Figure 7, we can see that low elevation areas face greater
impacts from rainfall shocks, and this is true for both slum and non-slum populations. We
illustrate the elevation heterogeneity further in Appendix E.4, using alternative measures

of elevation.

Another way to understand the role of flooding is to examine the impact of hourly rainfall
shocks on mortality. Figure 8 presents the results from estimating the causal response
function from Equation (4), using a third-order polynomial in hourly rainfall for days in

the contemporaneous week and 4 lagged weeks (Equation (5)).

within PIN codes. To investigate this possibility, we construct a cross sectional 100m? pixel level dataset,
which records each pixel’s elevation and whether the BMC classified it as a slum area (Tandel et al., 2022).
We do not find evidence that slums are located in low elevation areas within a PIN code (further details are
in Appendix C.2).
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Figure 8: Percent change in 5-week mortality due to hourly rainfall.

Mortality-rainfall response function is estimated with a model that uses a third-order polynomial in hourly
rainfall for hours in the contemporaneous week and 4 lagged weeks. Points along each curve represent the
percent change in 5-week mortality due to a single hour with the total rainfall value shown on the x-axis,
relative to an hour with zero rainfall. Shaded areas indicate 95% confidence intervals.

Figure 8 shows that on average across our sample, mortality increases sharply with hourly
rainfall. Our results suggest that a single hour with 30 mm of rainfall implies an increase

in 5-week mortality of over 0.5%.%

We further examine whether the effect of hourly rainfall on mortality is exacerbated by
tidal patterns.®® Large parts of Mumbai can be flooded when even a moderate intensity of
rainfall coincides with a high tide, as the drainage network becomes overwhelmed (Zope
etal., 2015).* If urban flooding is a key part of the mechanism underpinning the mortality-
rainfall response function, then we should expect to see that the mortality impacts of rain-
fall are higher during high-tide periods.

Figure 9 presents the results from estimating Equation (6). We present the response func-
tion evaluated at three different values of the hourly tide, corresponding to quantiles of the
in-sample distribution of hourly tide values. When the hourly tide is close to its in sample
median, Model 6 gives similar results to the un-interacted model presented in Figure 8.
However, when tide is high, the impacts of hourly rainfall are elevated, likely due to the

increased pressure on Mumbai’s ageing drainage system.

#2The results from the hourly specification are qualitatively similar to those from the daily specification
presented in Figure 5. For instance, 5 hours of 30mm rainfall would imply a mortality increase of roughly
2.5% (5 x 0.5%) in our hourly model. In the daily model, a day with 150mm of rainfall causes a mortality
increase of 2.2%.

¥Moore (2024) uses annual maximum tide height and rainfall as explanatory variables in a reduced-form
empirical specification on flooding damages. However, no study to our knowledge exploits the intersection
of rainfall and tide height at a subdaily level.

#The combination of heavy rainfall and high tide was a key factor in the city’s catastrophic July 26, 2005,
floods (Zope et al., 2015).
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Figure 9: Percent change in 5-week mortality due to hourly rainfall, linear hourly tide

interaction.

Mortality-rainfall response function is estimated with a model that uses a third-order polynomial in hourly
rainfall for hours in the contemporaneous week and 4 lagged weeks. Points along each curve represent the
percent change in 5-week mortality due to a single hour with the total rainfall value shown on the x-axis,
relative to an hour with zero rainfall. Each panel represents the estimates from Equation 6, evaluated for the
tide level at the quantile of the in-sample hourly tide distribution indicated in the facet titles. Shaded areas
indicate 95% confidence intervals. In each plot, the hourly response function (without tide interaction) from
Figure 8 is reproduced as a dashed black line for reference.

In Appendix E.5, we consider alternative specifications that investigate the role of tide
in determining the mortality-rainfall response function. First, in Appendix E.5.1 we con-
sider a model that allows the effect of rainfall to vary discretely based on whether the
hourly tide level is above or below 450cm. In this model we find extremely large, albeit
imprecisely estimated impacts for rainfall that happens during these extremely high tide
levels.*® Second, in Appendix E.5.2 we consider a model that interacts the daily rainfall
response function with the daily average tide. We find that the mortality-rainfall response
function becomes sharply steeper at higher daily average tide levels (Appendix Figure
E.6). Together, these specifications provide strong evidence that urban flooding is a key

mechanism through which rainfall affects mortality.

5 The mortality burden of rainfall shocks

The mortality-rainfall responses that we estimate in the previous section can be used to cal-
culate the number of deaths in Mumbai that can be traced to idiosyncratic rainfall shocks

#While this model has the advantage of allowing the high tide response function to vary less parametri-
cally than the model specified in Equation 6, it suffers from the fact that only 2% of the rainfall in our sample
happens during periods when the tide is above 450cm.
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during our estimation period.

Under our simplest model, without heterogeneous responses (Equation (1)) the log of
expected deaths given a rainfall vector R, ,,, is f(Riw,y) + @iy + Awy. These deaths con-
sist of those due to idiosyncratic rainfall shocks, and those due to predictable factors in
a given PIN code and date, including due to seasonal weather patterns. We characterise
the number of deaths that are not caused by idiosyncratic rainfall by evaluating Equation
(1) using the fixed effects only; the log of expected deaths that are not caused by rainfall
shocks is thus «; , + A, ,. After converting logs to levels, we estimate the expected num-
ber of deaths caused by rainfall shocks, r; ,,,, by subtracting total deaths from those not

caused by rainfall shocks:

Tiwy = €xP(Qiy + Awy) (exp(f(Riwy) — 1) (7)

We use our empirical estimates of all parameters in Equation (7) to estimate this object.
Summing the estimate, 7; ,, ,, over the rainfall distribution in all PIN codes and weeks in
our sample gives us an estimate of the total in-sample mortality burden of rainfall shocks,
which can be expressed as a proportion of total observed in-sample deaths.*® This exercise
can be similarly implemented for other models estimated in the previous section, includ-
ing those with heterogeneous mortality-rainfall responses by age group, slum residence,
and those estimated using hourly rainfall. For instance, in the case of heterogeneity by
age group, we calculate 7, ; ., ,, i.e. the expected number of deaths in age category a, PIN
code 7, week w, and year y that were caused by rainfall shocks. Summing 7 ; ., , over the
rainfall distribution in all PIN codes and weeks in our sample gives us an estimate of the
total in-sample mortality burden of rainfall for age category @, which can be expressed as

a proportion of total observed in-sample deaths in age category a.*

Tables 4 and 5 show estimates of the proportion of deaths caused by rainfall shocks for

monsoon season months (June to September) that are present in our estimating sample.*®

#To quantify statistical uncertainty in this estimate, we take 1000 draws from a parametric bootstrap to
draw from the parameter uncertainty of the § estimates that make up §. We treat the fixed effects as known,
as we want to compare results to a baseline, rather than consider uncertainty in our baseline. More details
of the computational procedure are listed in Appendix F.1.

#In this case, the total in-sample mortality burden of rainfall (across all age categories) is thus calculated
by summing 7, ; .y across all age categories over the rainfall distribution in all PIN codes and weeks in
our sample, and expressing this as a proportion of total observed in-sample deaths. This proportion is
a weighted average of the proportions calculated for the age categories, with weights equal to each age
category’s share of total observed in-sample deaths.

#Note that rainfall measurements for certain weeks in certain years are unavailable in the AWS data. To
construct 7; ,, , We require rainfall measurements for the contemporaneous week and 4 lagged weeks, one
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Each row of Table 4 displays estimates from a particular model, starting with a homoge-
neous mortality-rainfall response (Equation (1)) in the first row, and then proceeding to
models with heterogeneous mortality-rainfall responses (Equation (3)) by age group and
slum residence in the second and third rows respectively. Table 5 displays estimates from
a model estimated with hourly rainfall (Equation (4)), and a model with heterogeneous

mortality-rainfall responses for rainfall during low and high tide hours (Equation (6)).

Age category Residence
Response Total 0-5 5-65 65+ Non-slum Slum

. 0.089
Fig 5 (0.016, 0.17)
Fic 6 0.078 0.19 0.0063 0.13

& (0.0035,0.16)  (-0.052,0.54) (-0.096,0.12) (0.034,0.23)
Fio 7 0.075 0.032 0.11

& (-0.00023, 0.16) (-0.081, 0.15)  (0.0069, 0.24)

Table 4: Proportion of monsoon season deaths caused by rainfall shocks.

Table shows the proportion of total deaths and age- and residence-wise deaths during June to September
that we attribute to rainfall shocks. The first row displays estimates from a model with a homogeneous
mortality-rainfall response. The second and third rows respectively display estimates from models with
heterogeneous mortality-rainfall responses by age and slum residence. Point estimates are calculated based
on Equation (7); 95% confidence intervals, calculated with a parametric bootstrap described in Appendix
F.1, are in parentheses.

Our results imply that deaths caused by rainfall shocks account for a substantial propor-
tion of Mumbai’s monsoon season deaths. In an average monsoon season, between 7%
and 10% of total deaths can be traced to rainfall shocks, depending on the model. This
implies that idiosyncratic rainfall during Mumbai’s monsoon season kills approximately
2200 to 3000 people per year.* The percent of overall monsoon season deaths that we trace
to rainfall shocks is comparable to the percent of the city’s deaths from all cancers.” In Ap-
pendix F.2 we show these results are qualitatively robust under a variety of specifications,

including those with more saturated fixed effects.

Models with heterogeneous mortality-rainfall responses reveal that the total mortality bur-
den of rainfall shocks is borne unequally across different age groups and socioeconomic
groups. We find that around 20% of June-September deaths for below 5 year olds, and
13% of June-September deaths for above 65 year olds, in our estimating sample can be
traced to rainfall shocks, but only a negligible proportion of 5-65 year old deaths in these

or more of which may not be available, thus limiting our estimating sample.

¥ About 90,000 people die per year in Mumbai, with slightly over 1/3 of these dying during the monsoon
season.

In the year 2013, 7.3% of the city’s total deaths were caused by cancer (Praja Foundation, 2020).
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months can be traced to rainfall shocks (Table 4, Row 2).>! Moreover, the mortality bur-
den is disproportionately borne by slum residents, with 11% of June-September deaths at
slum addresses traced to rainfall shocks compared to around 3% for non-slum addresses
(Table 4, Row 3).>

Table 5 also reveals that the mortality due to rainfall shocks disproportionately occurs
during periods of high tide as regarded by the BMC and NGOs (i.e., tide > 450 cm). Al-
though only 2% of rainfall over the sample period takes place during these high tide pe-
riods, these periods account for 6% of the mortality due to rainfall shocks.” In Appendix
E.5.1, we conduct an attribution exercise using a model in which the mortality-rainfall
response function is allowed to vary discretely depending on whether the tide is above
or below 450cm, and find that 19% of the overall mortality due to rainfall shocks comes
from high tide periods. This suggests that the effects of tide on rainfall-driven mortality
are nonlinear and are likely underestimated by the linear interaction model specified in
Equation 6.

51'While we do not observe the cause of death in our data, the 20% share of under-5 deaths that we trace
to rainfall is roughly similar to the share of under-5 deaths caused by diarrhoea in developing countries
globally (Kosek et al., 2003).

2In Appendix E.3, we show the proportion of deaths caused by rainfall shocks when estimating hetero-
geneous mortality-rainfall responses for age x slum residence groupings (Appendix Table E.2). Under this
model, roughly 7% of total monsoon season deaths in our estimating sample can be traced to rainfall shocks.
It should be noted that a disproportionate share of under-5 deaths due to rainfall shocks come from slums,
due to the fact that a disproportionate of share of total under-5 deaths occur in slums (Appendix Table E.1).

5Under the Poisson model in Equation (6), the number of total deaths due to rainfall shocks is not
additively separable into deaths due to rainfall shocks during high tide and low tide. Hence the sum of
values for the proportion of deaths due rainfall shocks during low tide and high tide do not exactly equal
the total proportion of deaths due to rainfall shocks (Table E.3, Row 2).
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Model Total Low Tide Rainfall High Tide Rainfall

0.092
(0.024, 0.17)

0.094 0.089 0.0053
(0.024,0.18)  (0.019,0.17) (0.00072, 0.0094)

Hourly rainfall (Fig 8)

Linear tide interaction (Fig 9)

Proportion of rainfall 1 0.98 0.02
Proportion of attributed deaths 1 0.94 0.06

Table 5: Proportion of monsoon season deaths caused by rainfall shocks: hourly rainfall

models.

The first row shows the proportion of total deaths during June to September that we attribute to rainfall
shocks, derived from a model with hourly rainfall (Equation (4)). The second row shows the proportion of
total deaths during June to September that we attribute to rainfall shocks during hours with high tide (>
450 cm) and low tide (< 450 cm) and overall, derived from the model specified in Equation (6). All point
estimates are calculated based on Equation (7), and 95% confidence intervals (in parentheses) are calculated
with a parametric bootstrap described in Appendix F.1. The third row summarises the proportion of rainfall
in the sample that occurs during hours in which the average tide value is low (< 450 cm) or high (> 450
cm). The fourth row states the proportion of attributed deaths in the second row that are caused by rainfall
shocks during low tide or high tide.

While estimates of r provide us with the number of deaths caused by rainfall shocks, there
is also another way to interpret r. If there existed adaptive measures that could entirely
eliminate excess mortality from idiosyncratic rainfall shocks (i.e., make f(R) = 0),>* then
we can understand r as the number of lives that could be saved from investing in these
adaptive measures. Examples of such measures may include upgrading and improving
the maintenance of drainage systems. While our analysis cannot directly measure the
effects of specific adaptive measures on mitigating the mortality-rainfall response, our re-
sults do suggest that there exist communities within Mumbai’s for whom f(R) is effec-
tively zero. For example, Figure 7 shows roughly zero mortality response to even high
levels of rainfall for non-slum residents in high elevation areas. Thus, we can think of r
as comparing the excess mortality caused by rainfall shocks given currently undertaken
adaptive measures, versus the number of deaths that would be caused by the same rain-
fall shocks under a scenario of full adaptation. Even short of full adaptation that entirely
eliminates excess mortality from rainfall shocks, the results in Figure 9, Table 5 and Table
E.3 suggest that such excess mortality can be substantially reduced by focused adaptive
measures targeting the relatively few days where the tide reaches an extreme height (e.g.,
> 450 cm). It should be noted however that any such interpretations are suggestive rather

than definitive, as we cannot estimate mortality-rainfall responses with and without spe-

541n terms of our linear-in-parameters modelling of the mortality-rainfall response function, making
f(R) = 0 is equivalent to making /3; , = 0 for every lag /, and polynomial power k& (Equation (2)).
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cific adaptive measures.

Applying an India-specific estimate of the value of a statistical life of US$ 1 million,*® our
results imply that there are potential welfare gains of around US$3 billion per year from
eliminating the approximately 3,000 annual deaths from rainfall shocks. Of course, this
estimate only considers the mortality costs of rainfall shocks. The overall welfare impacts
would consider many other channels through which rainfall shocks and flooding affect
welfare, including morbidity and economic impacts. However, the annual mortality costs
of routine monsoon rainfall shocks in Mumbai are likely a substantial component of total
costs, and are comparable in magnitude to direct economic damages from catastrophic
flooding events. For instance, the record-setting July 26, 2005 Mumbai floods were esti-
mated to have caused US$2 billion in direct economic damages (Ranger et al., 2011).

Our results point to multiple ways in which climate change may increase the mortality
burden of rainfall. Most directly, recent evidence has suggested that climate change could
increase the intensity of Asian monsoon rainfall (Salunke et al., 2023). In addition, our
finding that high tides amplify the mortality impacts of rainfall suggests a channel through
which rising sea levels may contribute to excess mortality, particularly in the absence of
adaptive measures such as improved drainage systems. To get a sense of the possible
magnitudes involved, consider the following thought experiment. Conservative estimates
suggest that Mumbai will experience sea level rise of 0.5 m by 2100 (BMC, 2022). If we
uniformly increase the tide level by 0.5 m across its full distribution, and re-calculate the
expected mortality caused by rainfall, we find that mortality caused by rainfall increases
by more than 50% when using the linear tide interaction model presented in Figure 9.7 It
should be noted however that a high tide is very different from a permanent sea level rise,
and credibly assessing the impacts of the latter would require a model of the compound
flooding physics.

6 Conclusion

This paper has revealed that excess mortality is a major cost of recurrent flooding in an
important developing megacity— Mumbai, India. Using detailed data on person-level

mortality combined with highly granular data on localised rainfall, we find that days with

SThere is a limited literature that provides India specific VSL estimates. We use estimates consistent
with Shanmugam (2011); Majumder and Madheswaran (2018); Sweis (2022).

% A similar exercise using the 450 cm tide threshold-based model described in Appendix E.5.1 suggests
that expected mortality caused by rainfall would roughly double under 0.5 m of sea level rise.
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high rainfall totals cause elevated mortality over the subsequent 5 weeks. The impacts are
strongest for some of the most vulnerable groups in society— children under 5, women,
and residents of slums. These costs, and their unequal distribution, have not been previ-
ously accounted for in analyses of the damages from extreme weather or urban flooding.
Moreover, our results showing an increased mortality response to rainfall shocks during

high tides indicate that future sea level rise could further endanger human lives.

We find that rainfall shocks not only cause significant excess mortality but also explain a
substantial proportion of Mumbai’s overall mortality. This stands in contrast to previous
studies on the mortality impacts of extreme temperatures, which find no effect of temper-
ature shocks on excess mortality in urban India (Burgess et al., 2017). Our results suggest
that policy makers should not ignore the harms from extreme rainfall either today or un-
der future climate change, and should target resources towards vulnerable groups. The
large proportion of under-5 mortality explained by rainfall shocks points to large poten-
tial gains from improvements in facilities that are lacking in slum settings (e.g., adequate
housing, safe water, and sanitation), particularly given that overall under-5 mortality dis-
proportionately occurs among slum residents (Appendix E.1). Investments in safe water
and sanitation have been found to drive historical declines in urban child mortality in
today’s developed countries (Alsan and Goldin, 2019; Anderson et al., 2022). Similar de-

clines could potentially be achieved in today’s developing urban areas.

Several caveats and limitations are worth noting, and point to directions for future re-
search. First, we have utilised mortality and rainfall data of unprecedented granularity
within an urban area, but at the same time, these data come with limitations. The mor-
tality data do not report the cause of death, precluding us from fully understanding the
exact ways in which rainfall shocks imperils human health. Moreover, the rainfall data
make it difficult to capture mortality impacts that may occur over longer time horizons.
In particular, the measurements of local rainfall are not available over all days of the year,
preventing us from estimating models that include even more temporal lags of rainfall.
Accounting for these longer term effects may be necessary given the extended duration
certain monsoon-related diseases can take to develop.”” Additionally, our fixed effects re-
move the effects of seasonally predictable shocks. Thus our estimates can be interpreted
as a lower bound on the total mortality caused by rainfall shocks.

Second, our findings that the mortality impacts of rainfall are stronger in low elevation

Malaria is one such example, which can have an incubation of 30 days before the onset of symptoms
(Liang and Messenger, 2018). Thus, the mortality impacts of a malaria outbreak associated with a flooding
event might not be observed until outside of the 5 week window used in our study.
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PIN codes and during periods of high tide suggest that flooding is a key channel for these
impacts. However, we do not directly observe flood depth or duration across locations fol-
lowing rainfall events, and thus cannot directly estimate the response of mortality to flood
depth and duration. Observing flooding directly would make it possible to explore the
pathways through which rainfall shocks propagate across space and harm human health,
and also shed further light on the value of improvements in drainage infrastructure.

Finally, while this paper’s findings highlight large potential benefits of protective invest-
ments that break the link between rainfall shocks and excess mortality, especially for the
worst affected groups, future research should quantify the benefits of specific investments
in urban settings. These may include improvements to housing, water, sanitation, and in-
frastructure, protection of natural drainage sources such as wetlands, as well as improve-
ments to and proper maintenance of man-made drainage systems.” As we enter an era
where most of the urban population growth is occurring in the developing world and
much of that in slums, understanding the returns to these investments is a critical area for

future research.

%8n the case of Mumbai and other developing megacities, drainage systems are antiquated and are often
clogged with solid waste (Ranger et al., 2011; De Sherbinin et al., 2012; Patankar, 2015; Singh, 2018). Ongoing
urbanisation has further exacerbated flood risk, as natural drainage sources such as mangroves are lost to
construction (Singh, 2018).
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A Seasonality in disease incidence

To investigate the seasonality in diseases across Mumbai, we obtain monthly data on dis-
ease cases reported at each of the medical dispensaries run by the BMC, through cor-
respondence with a non-governmental organisation, the Praja Foundation.”® Figure A.1
plots time series and monthly sums of these data, for four diseases that are known to be
related to urban flooding. All four show clear signs of elevated incidence during monsoon

months.

Disease occurence time series
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Figure A.1: Seasonality of disease incidence

Top panel shows city-wide incidence for four selected diseases at the monthly level between 2008 and 2019.
Bottom panel takes monthly means across the years to illustrate seasonality. Monsoon season months are
coloured in red. We can see clear evidence of elevated incidence during monsoon months across each of
these disease types. Data is obtained from the Praja Foundation, who collected the raw data through a
Right To Information (RTI) request.

Yhttps://wuw.praja.org/
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B Data

B.1 Location assignment in mortality data

We assign deaths to locations using one of two approaches. In the approach used in our
main specification, we use the PIN code information from the addresses provided in the
raw data. However, this approach requires us to throw out roughly 20% of our obser-
vations, for which we do not have a PIN code. Therefore in an alternative approach, we
assign deaths to each of Mumbai’s 24 municipal wards, using the ward indicated in the
raw data. Sensitivity of our results to these two approaches is shown in Appendix D.8.

B.2 Slum assignment

For each address in our sample, we categorise whether it was likely to have been a slum

address using the following procedure.

First, we obtain a list of slum names from the 2001 census. These data also contain the
municipal ward in which each named slum is located. Next, we conduct a fuzzy match
on these slum names, where we match slum names from a given ward into addresses
from PIN codes that overlap with these wards. Following this, we remove a number of
false positive matches, that are due to highly generic slum names in the census list.®* We
also supplement this list, based on a text analysis of the most common terms that appear
in our address lists, combined with local knowledge of which of these common terms
are likely to be associated with slum addresses. Specifically, these terms are zopadpatti
(the Marathi language word for slum, including abbreviated forms zop, zp, and z.p), chawl
(a type of dense of communal housing, including abbreviated form chl), “police" (ad-
dresses of homeless persons or residents of informal settlements may be recorded as the
nearest police station), nagar (literally a district or quarter within a town, but in Mumbai
commonly applied to slum settlements), and “transit". The word “transit" is included to
capture “transit camps", which are temporary settlements for persons displaced due to
construction projects or from dilapidated buildings about to be destroyed or redeveloped.

In practice, however, transit camps can persist as long-term settlements.®!

9Specifically, some slum names are identical to those of large Mumbai neighbourhoods that contain a
variety of housing types. These names include Malad, Borivali, Ghatkopar, Kandivali, Andheri, Goregaon,
Jogeshwari, Byculla, Chembur, Vile Parle, and Colaba.

®1See for example https://www.timesnownews.com/mirror-now/in-focus/people-living-in-trans
it-camps-for-30-years-redevelopment-pending-for-decades-article-93362669.
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Overall, we categorise roughly 55% of our sample as slum addresses, which corresponds

well to official estimates of Mumbai’s slum population.

We use two methods to further validate our approach. First, we compare the spatial dis-
tribution of the categorisation to the proportion of people categorised as living in slums in
each municipal ward as per the 2011 census. We find the two measures to be strongly cor-
related (see Figure B.1). Second, we compare the mean age of death in the slum addresses
to that in the non-slum addresses. We find that the mean age of death is much lower in
our slum addresses, which is consistent with the fact that poverty and its associated health

problems are much more common in slums than non-slums.

IS -3
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Figure B.1: Comparison of slum proportion estimates to census data

The 2011 census includes estimates of the proportion of residents of each ward that live in slums. Plot
compares these census values to our estimates of the proportion of deaths in each ward that are from people
who live in addresses we classify as slum addresses. The red-line shows a 45 degree line. The R? value for
this relationship is around 0.63.

B.3 Weather data

We obtain weather data at fifteen minute intervals from the BMC for the years 2006 to 2015.
These data provide us with weather observations from a large set of automatic weather

stations (AWS) that were set up by Mumbai’s local government following the July 2005
floods.

Figure B.2 shows the locations of the set of stations we have available to us in each year.
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Figure B.2: Locations of AWS weather stations
Plot shows the geo-locations of the AWS weather stations available to us in each year of our estimating
sample. There are 13 stations that appear in every year’s sample.

The network is extremely dense, and provides good geographical coverage across the city.
This is important, since Mumbai's rainfall is highly localised. However, the data required
considerable processing in order to be usable for regression analysis. We next outline the
steps we undertook to process these station level data, and merge them with our mortality
data.

Step 1: Cleaning station names and dates

First, we match station names in our AWS data to a master list of AWS stations and their
latitude and longitude information, and clean the dates which are inconsistently format-
ted. The output of this first step is an unbalanced panel of station level observations. Most
of these observations are 15 minute observations. We have different stations and temporal

coverage available in each year.

Step 2: Creating a subdaily station level panel

Second, we aggregate this sub-daily information into a balanced panel of station-15 minute

period level observations for each year. During this procedure, we implement the follow-
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ing data cleaning steps:

e We drop station-days in each year where there are fewer than half the stations avail-
able.

e We linearly interpolate short strings of missing data. In particular, if a station-day
contains a string of 1 hour or less of rainfall, or a string of 4 hours or less of temper-

ature, we linearly interpolate to fill in those missing values.

e For some station-periods, we have more than one observation in the raw data. For
those that we cannot determine which should take precedence, we average over the

multiple observations.

e We remove station-period observations in which the temperature is recorded to be
lower than 0 C. These temperature values are not plausible for Mumbai, and appear

correlated with inaccurate rainfall measurements.

We replace implausible temperature and rainfall values with NAs. We define im-
plausible values (at the 15-minute by station level) as:

— Temperature above 42.2C, or below 10C (this is the maximum and minimum

historical values in Mumbai).
— Above 50mm of rainfall, which we deem to be implausible.

— Temperature values that are more than 2 standard deviations outside of the

monthly mean for their time of the day across all available stations.

— We also replace the rainfall value from the Malad station for 2009-07-23 with an

NA, due to idiosyncrasies® in the rainfall data.
e Imputation of missing station periods

— In order to keep the set of stations consistent within a year, we next interpolate
the missing station-day values using multiple imputation. We do this using the
MICE R package

— We constrain this process such that an imputed station-day must fall within the
range of the other stations on that day, to ensure that our imputation doesn’t

cause us to create artificially extreme values.

62Gpecifically, we find that this value is very extreme, relative to both the distribution of other AWS sta-
tions on this day, and compared to our IMD data. We also did not find any news reports to suggest that
there was an extremely large rainfall shock in the Malad area on this day.
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— Overall, we end up imputing around 9% of the station-15 minute period tem-

perature values, and around 5% of the rainfall values.

We conduct extensive diagnostics on these station level values, including comparisons to
our purchased Indian Meteorological Department (IMD) data, in order to ensure their

quality and iron out idiosyncrasies.

Step 3: Creating zonal statistics

Step 2 provided us with a panel of station-period level rainfall and temperature data, that

is balanced within a year, but not across years.

Our next step is to create PIN code and ward (feature) level zonal statistics. To do this, we
calculate the distance between the centroid of each feature and each weather station. We
then take an inverse-distance squared weighted average of the stations to calculate each
teature’s temperature and rainfall values for each 15 minute period for which we have

coverage.

Step 4: Collapsing to the daily level

We next collapse our subdaily data to the daily level, taking transformations of the sub-
daily data as appropriate. For instance, we calculate polynomials in the hourly rainfall,
and calculate interactions of subdaily tide and rainfall.

Step 5: Non-linear transformations of the daily data

We now have a balanced panel of feature-day level weather variables. We take non-linear
transformations at the daily level, in order to preserve important non-linearities that hap-

pen at the daily level (Hsiang, 2016). These include binning, splines, and polynomials.

Step 6: Temporal aggregation

Finally, we aggregate the daily data to the weekly or monthly level that is used in our

regressions by taking a simple summation.
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B.3.1 Rainfall distribution across the city

Table B.1: Variation in climate variables

Table shows the PIN code level summary statistics of the daily rainfall distribution across our estimating

sample. The rainfall column shows the daily average rainfall across the estimating sample. ¢99 denotes the

99th percentile of the daily distribution. Finally, the ‘Days above 100mm’ column denotes the number of

days each pincode experiences at least 100mm of rainfall. Overall, despite the high level of spatial variation

on individual days, the total rainfall and prevalence of extreme rainfall within a year is roughly uniform

across the city.

Pincode Rainfall q99 Days > 100mm | Pincode Rainfall q99 Days > 100mm
400001 1092 125.26 38 | 400057 11.31 12791 35
400002 10.41 123.11 35| 400058 11.48 135.99 41
400003 10.93 128.93 42 | 400059 11.39 130.76 47
400004 10.53 123.91 35| 400060 11.46 128.37 42
400005 10.36 123.80 37 | 400061 11.35 121.79 41
400006 10.37 124.92 34 | 400063 11.40 124.86 36
400007 10.06 125.98 37 | 400064 10.33  126.06 35
400008 10.81 125.33 39 | 400065 11.43 123.29 39
400009 11.10 128.56 43 | 400066 11.70 118.89 39
400010 1092 125.33 41 | 400067 11.13  124.94 35
400011 10.87 127.65 40 | 400068 12.44 141.38 48
400012 11.03 123.21 44 | 400069 11.48 135.10 40
400013 10.90 123.83 40 | 400070 12.53 144.46 48
400014 1091 130.78 46 | 400071 11.70 133.55 45
400015 11.11 124.51 40 | 400072 11.88 134.57 46
400016 11.32 132.03 46 | 400074 11.66 130.64 46
400017 11.41 133.47 47 | 400075 12.05 135.00 47
400018 10.87 124.71 39 | 400076 12.03 128.51 48
400019 11.52  129.83 46 | 400077 12.28 143.93 47
400020 10.41 123.53 37 | 400078 11.55 120.65 42
400021 10.27 124.24 36 | 400079 12.03 134.32 46
400022 11.57 132.68 43 | 400080 12.92  141.04 44
400024 11.84 135.28 46 | 400081 12.81 133.15 46
400025 10.56 123.78 43 | 400082 12.74 138.01 43
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400026

400027
400028
400029
400030
400031

400032
400033
400034
400035
400037

400042
400043
400049
400050
400051

400052
400053
400054
400055
400056

10.35

10.96
11.10
11.73
10.51
11.13

10.34
11.01
10.52
10.55
11.48

12.04
11.93
11.33
11.16
11.45

11.31
11.42
11.32
11.43
11.31

122.85

134.66
125.68
137.55
121.53
127.49

123.25
125.63
123.64
124.58
135.46

124.25
129.72
127.44
133.41
136.26

131.80
125.96
130.63
133.51
131.52

35

43
43
43
43
42

38
40
35
36
42

45
46
38
44
45

42
41
36
37
36

400083

400084
400085
400086
400087
400088

400089
400091
400092
400093
400094

400095
400096
400097
400098
400099

400101
400102
400103
400104

NA

12.02

12.33
11.59
12.16
11.69
11.80

12.15
10.99
11.32
11.48
11.73

11.20
11.51
11.34
11.52
11.74

11.30
11.47
11.78
11.34

NA

125.76

140.85
127.32
140.09
125.07
128.49

138.07
122.63
120.93
129.18
129.36

124.94
125.74
122.44
138.47
134.33

123.75
128.11
131.39
127.53

NA

47

49
44
46
45
42

46
36
36
41
45

36
41
32
45
45

36
41
42
37
NA

B.3.2 Comparison of AWS and IMD data

While we do not have a method of validating the spatial variation in our AWS rainfall

and temperature variables, we can compare the temporal variation to that from the IMD’s

weather station at Mumbai’s airport. Overall the temporal patterns are similar in the two

datasets.
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Figure B.3: AWS and IMD comparison

Plot shows average temperature and precipitation values by week of year in the AWS data used in our anal-
ysis, compared to the average temperature and precipitation values by week of year in the Indian Meteoro-
logical Department’s weather station data. The two measures show similar overall patterns. AWS data are
averaged across available stations, while the IMD data is from the Santa Cruz airport weather station.

B.4 Estimating sample

Total deaths Total deaths Total deaths

Year inraw data in cleaned data Weeks in estimating sample in estimating sample
2006 89661 67729 30 to 52 31254
2007 91011 73917 1to 52 73695
2008 90127 73746 1to 39 55559
2009 90650 72870 6 to 39 47119
2010 97010 76870 27 to 43 28889
2011 89390 70177 27 to 45 26362
2012 88925 69161 27 to 34 11265
2013 90078 69389 27 to 30 5328
2014 92447 70980 27 to 43 24285
2015 91797 69718 27 to 39 17496

Table B.2: Weeks in estimating sample by year

Table shows a breakdown of the number of deaths in our raw data compared to the number of deaths in our
estimating sample. Total deaths in cleaned data are lower than total deaths in raw data due to missing PIN
codes in the addresses of some observations. Out of the total deaths in the cleaned data, the total deaths
used in the estimating sample is determined by the availability of the AWS data, which are mainly available
only during the monsoon season in each year.**

®*Note, weeks are defined relative to Jan 1st in each year. Thus, we have a few days per year in a 53rd
week, which we drop. This causes us to drop 176 deaths from the cleaned data in 2006 and 222 in 2007.
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Total deaths Total deaths Total deaths

Week  nrawdata  incleaned data S Inestimating sample in estimating sample
1 18584 14694 2007, 2008 2879
2 18300 14407 2007, 2008 2853
3 17940 14141 2007, 2008 2786
4 17575 13959 2007, 2008 2889
5 18035 14282 2007, 2008 2970
6 17543 13748 2007, 2008, 2009 4327
7 17583 13926 2007, 2008, 2009 4415
8 17525 13815 2007, 2008, 2009 4242
9 16327 12927 2007, 2008, 2009 4014
10 16690 13243 2007, 2008, 2009 4066
11 16347 12953 2007, 2008, 2009 3857
12 15866 12566 2007, 2008, 2009 3767
13 15605 12176 2007, 2008, 2009 3862
14 15620 12226 2007, 2008, 2009 3949
15 15630 12272 2007, 2008, 2009 3925
16 16041 12570 2007, 2008, 2009 3911
17 16345 12889 2007, 2008, 2009 3825
18 16334 12796 2007, 2008, 2009 3934
19 16407 12911 2007, 2008, 2009 3944
20 16713 13132 2007, 2008, 2009 4004
21 16949 13265 2007, 2008, 2009 4082
22 17067 13417 2007, 2008, 2009 4247

23 16650 13036 2007, 2008, 2009 4203
24 16379 12916 2007, 2008, 2009 4058
25 16765 13119 2007, 2008, 2009 4069
26 17047 13426 2007, 2008, 2009 3988
27 17308 13592 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 12281
28 17754 13992 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 12514
29 18392 14555 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 13090
30 18406 14508 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 14508
31 18520 14593 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015 13255
32 19210 14992 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015 13615
33 19418 15173 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015 13827
34 18910 14803 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015 13525
35 18507 14324 2006, 2007, 2008, 2009, 2010, 2011, 2014, 2015 11649
36 18744 14565 2006, 2007, 2008, 2009, 2010, 2011, 2014, 2015 11940
37 19310 15012 2006, 2007, 2008, 2009, 2010, 2011, 2014, 2015 12349
38 18843 14636 2006, 2007, 2008, 2009, 2010, 2011, 2014, 2015 11964
39 18601 14437 2006, 2007, 2008, 2009, 2010, 2011, 2014, 2015 11741
40 18240 14309 2006, 2007, 2010, 2011, 2014 7268
41 18037 13972 2006, 2007, 2010, 2011, 2014 7206
42 18676 14538 2006, 2007, 2010, 2011, 2014 7153
43 18131 14182 2006, 2007, 2010, 2011, 2014 7105
44 17959 14006 2006, 2007, 2011 4281

45 17432 13654 2006, 2007, 2011 4121

46 17012 13272 2006, 2007 2716
47 16691 13034 2006, 2007 2590
48 16858 12967 2006, 2007 2572
49 16878 13066 2006, 2007 2695
50 17068 13329 2006, 2007 2801

51 17391 13700 2006, 2007 2699
52 17830 14092 2006, 2007 2721

53 3103 2442 NA NA

Table B.3: Years in estimating sample by week of year

Table shows a breakdown of the number of deaths in our raw data compared to the number of deaths in
our estimating sample by week of year. Total deaths in cleaned data are lower than total deaths in raw data
due to missing PIN codes in the addresses of some observations. Out of the total deaths in the cleaned data,
the total deaths used in the estimating sample is det%réf’dned by the availability of the AWS data for a given
week in a given year.



C Regression Tables

C.1 Response functions

o @ ® () (5) (6) 7) (8)
Age Gender Slum residence
Daily Rainfall (mm) All <5 5-65 65+ Male Female Non-Slum  Slum
0 i i i ] i ] i i
50 0.0067 0.016  -0.00086 0.011 0.0056 0.008 0.0022 0.0082
(0.0033) (0.012)  (0.005) (0.0042) (0.0051) (0.0049) (0.005) (0.0048)
100 0.013 0.03 0.004 0.018 0.0097 0.018 0.0058 0.017
(0.0044) (0.017) (0.0073) (0.0055) (0.0065) (0.0073)  (0.0061)  (0.0065)
150 0.022 0.046 0.015 0.024 0.014 0.032 0.011 0.029
(0.0063) (0.026)  (0.01)  (0.0081) (0.0084) (0.0096) (0.009) (0.0089)
250 0.05 0.096 0.054 0.041 0.034 0.073 0.023 0.075
(0.013)  (0.044)  (0.02) (0.015)  (0.016)  (0.016) (0.016) (0.019)
300 0.074 0.14 0.083 0.057 0.053 0.1 0.029 0.11
(0.017)  (0.046) (0.027)  (0.015) (0.02) (0.019) (0.019) (0.024)
N 19880 58158 39387 39288
Sqr. corr. 0.88 0.83 0.8 0.85

Table C.1: Percent change in 5-week mortality due to rainfall

Table reproduces results from the response functions depicted in main text figures. The first column, “All”,
shows the average response function over the whole sample, from Figure 5, Panel A. Columns 2 to 4 show the
response functions from Figure 6, Panel A (estimated for 3 age groups in a stacked regression). Columns 5
and 6 show results from Figure 6, Panel B (estimated for both genders in a stacked regression). The final two
columns show the results from Figure 7 Panel A (estimated for slum and non-slum residents in a stacked
regression). Estimates are from models that use a third-order polynomial in daily rainfall for days in the
contemporaneous week and 4 lagged weeks. Point estimates are shown for the percent change in 5-week
mortality due to a single day with the total rainfall value indicated in each row, relative to a day with zero
rainfall. Standard errors are in parentheses. Sqr. corr. refers to the squared correlation coefficient.
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(1) (2) (3) 4)
Linear tide interaction

Hourly Rainfall (mm) All Tide Quantile: 5% Tide Quantile: 50% Tide Quantile: 95%

0
7e-04 -0.0038 0.0029 0.009
5
(0.00032) (0.0042) (0.0016) (0.0037)
10 0.0015 -0.0063 0.0061 0.018
(0.00049) (0.0069) (0.0025) (0.0058)
15 0.0023 -0.0075 0.0098 0.025
(0.00063) (0.0099) (0.0033) (0.0077)
20 0.0032 -0.0071 0.014 0.033
(0.00084) (0.014) (0.0043) (0.01)
25 0.0043 -0.005 0.018 0.04
(0.0011) (0.018) (0.0059) (0.013)
30 0.0055 -0.0012 0.023 0.046
(0.0016) (0.022) (0.0079) (0.016)
N 19880 19880
Sqr. Corr. 0.88 0.88

Table C.2: Percent change in 5-week mortality due to hourly rainfall

Table reproduces the results from the hourly rainfall models presented in main text figures. All estimates
use a third-order polynomial in hourly rainfall for hours in the contemporaneous week and 4 lagged weeks.
Point estimates are shown for the percent change in 5-week mortality due to a single hour with the total
rainfall value indicated in each row, relative to an hour with zero rainfall. Column 1 presents the average
response function over the whole sample, from Figure 8. Columns 2-4 present response functions evaluated
for the tide level at the quantile of the in-sample hourly tide distribution indicated in each column, repro-
ducing the facets in Figure 9. Standard errors are in parentheses. Sqr. corr. refers to the squared correlation
coefficient.

C.2 Cross-sectional relationship between elevation and slum status

To investigate whether slums are located in the low elevation areas within PIN codes, we
compile a pixel level dataset recording each pixel’s average elevation, and whether it is
listed as a slum location by the BMC.%°

In Table C.2, we present results from regressing elevation on a binary indicator for whether

each pixel is classified as a slum.

In columns (1) and (2), we see that on average, slums are located in higher elevation
areas of Mumbai. In column (2), we weight the regression using GHSL derived measures

of each pixel’s population.

®We obtained a shapefile used by Tandel et al. (2022) for the locations of slums in Mumbai through
direct correspondence with the authors.
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However, this relationship becomes small and statistically insignificant once we condition
on PIN code fixed effects (columns 3 and 4). Therefore on average, slum location within
a PIN code is not strongly correlated with elevation.

Table C.3: Elevation and slum location

Dependent Variable: Elevation (m)

Model: (1) (2) (3) (4)
Variables

Slum Indicator 19.63**  17.40"** -4.133 0.7899

(2.602)  (2116)  (5.199)  (0.9322)

Fixed-effects
Pincode Yes Yes

Regression weights
None Population None Population

Fit statistics
Observations 51,706 33,950 51,706 33,950

Clustered (pincode) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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D Robustness checks

Throughout, we colour our preferred specification, which is used in the main text, in blue,
and robustness checks in grey.

D.1 Weekly vs. daily resolution

Figure D.1: Percent change in 5-week mortality due to daily rainfall: estimated at the daily

vs weekly level.

Mortality-rainfall response functions are estimated for the full sample. The left hand side shows our main
specification, which is a weekly level regression with 4 weekly lags. The right hand panel shows results from
a model that is run at the daily level, and includes a 3rd order polynomial in contemporaneous rainfall, and
35 daily lags. Points along each curve represent the percent change in 5-week mortality due to a single day
with the total rainfall value shown on the x-axis, relative to a day with zero rainfall. Shaded areas indicate
95% confidence intervals.
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D.2 Polynomial choice

Figure D.2: Percent change in 5-week mortality due to daily rainfall: various polynomial
and binned functional forms.

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model
that use polynomials in daily rainfall for days in the contemporaneous week and 4 lagged weeks.
Black error bars represent the results from a regression that uses bins of the daily rainfall distri-
bution as the functional form of rainfall (Deschénes and Greenstone, 2011). Bins are defined as
{[0, 50), [50, 100), [100, 150), [150, 200), [200, 250), [250, c0) } mm of daily rainfall. Overlaid curves show re-
sults from models with polynomial degree indicated in the facet titles. Points along each curve represent
the percent change in 5-week mortality due to a single day with the total rainfall value shown on the x-axis,
relative to a day with zero rainfall. Shaded areas and error bars indicate 95% confidence intervals.

D.3 Level of temporal aggregation before taking non-linearity

Here we explore the implications of taking non-linear transformations of rainfall at differ-

ent levels of temporal aggregation— hourly, daily, or weekly.
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Figure D.3: Percent change in 5-week mortality due to daily rainfall: non-linearity taken

at hourly vs daily vs weekly level.

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
polynomials in hourly, daily, or weekly rainfall for periods in the contemporaneous week and 4 lagged weeks.
Overlaid curves show results from models with polynomial degree indicated in the plot legend. Points along
each curve represent the percent change in 5-week mortality due to a single period (hour/day/week) with
the total rainfall value shown on the x-axis, relative to a period with zero rainfall. Shaded areas indicate 95%
confidence intervals.

We focus on the daily model, since we believe this captures non-linearities at an economi-
cally meaningful level. The hourly model appears roughly linear, and thus non-linearities
at a very high-frequency do not seem to be driving the non-linearity at the daily level. We
find the weekly model is noisier and less stable across polynomial orders.

D.4 Spatial and temporal spillovers

Urban flooding impacts mortality through complex mechanisms. These include direct
injuries, vector- and water-borne diseases and economic disruption. Our dataset allows
us to run our analysis at a high temporal and spatial resolution. However, the high level
of resolution brings with it the likelihood that our estimates are biased because they fail
to account for temporal and spatial spillover effects. In this subsection, we investigate
these possibilities, and conclude that our main specification likely understates the true
causal effect due to long lasting temporal spillovers. We do not find meaningful evidence

of spatial spillovers.

D.4.1 Temporal spillovers

Our main specification of the mortality-rainfall response (Equation (2)) includes rainfall
variables for the contemporaneous week and 4 lagged weeks, thereby allowing rainfall in

60



a given week to affect mortality in the contemporaneous week and 4 subsequent weeks.
Figure 5 Panel A in the main text depicts the effect of a day with a given amount of rainfall
on mortality over this entire 5 week period. In Figure 5 Panel B, we present the break-
down of the effect for each of the 5 weeks and see that it is roughly similar in each week.%
This suggests that while there are immediate mortality effects of extreme rainfall in the
contemporaneous week, these effects also persist into subsequent weeks, consistent with
tflood-related diseases taking time to develop and spread. The increased mortality in each
of the subsequent weeks reveal that rainfall shocks do not simply advance the timing of
deaths without altering the total number of deaths.

To further investigate the temporal structure of the causal impacts of extreme rainfall, we
utilise our data at the daily level to explore the lag structure of our estimated effects.

Figure D.4 shows the results from estimating regressions of daily mortality on daily rain-
fall, varying the number of lags of daily rainfall variables included.®’ The left hand-side
panel shows the summed lag response function from models with 5, 35, 75 and 95 daily
lags. The right hand side panel shows the point estimate and standard error of the re-
sponse function for 100, 200, and 300mm of daily rainfall for models with between 0 and

100 daily lags, where the response is obtained by summing over the lags.

The height of the curve in Figure 5 Panel A is equal to the average of the height of the 5 curves in Figure
5 Panel B. The averaging is necessary to aggregate percent increases in each week’s mortality into a percent
increase in mortality over a 5-week period.

’These regressions include PIN code x year fixed effects and date (e.g., July 14, 2013) fixed effects.
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Figure D.4: Percent change in mortality due to daily rainfall: daily regressions with in-

creasing numbers of lags.

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third order polynomial in daily rainfall for the contemporaneous daily and various numbers of lags. Points
along each curve represent the percent change in mortality due to a single day with the total rainfall value
shown on the x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals.
Unlike in other specifications, we here do not normalise to represent impacts over a five week period. The
left hand panel shows the sum over contemporaneous and lagged responses at each level of daily rainfall
indicated on the x-axis. We find that when including more lags, the mortality response to a given level of
rainfall is noisier, but larger in magnitude. The right hand panel shows the point estimate and standard
error of the cumulative response function (summed over contemporaneous and lagged responses) at 100
mm, 200 mm, and 300 mm rainfall, for specifications with varying numbers of lags (indicated on the x-axis).
Our main specification, uses 35 days worth of lags (i.e., 5 weeks), which is indicated by the black vertical
line.

If extreme rainfall causes a deterioration in the health of individuals who are already weak
and would have died even in the absence of the rainfall shock, then we should expect the
sum of the lagged response functions to eventually start tending down towards zero, as
the only effect of the extreme rainfall would be to alter the timing of mortality but not the
number of deaths in the longer run. However, we do not see any evidence for this narrative
in our data. Instead the mortality response is remarkably persistent over time, which is
consistent with a diseases developing and spreading over longer time horizons. Figure D.4
suggests that a specification that accounts for roughly 35 days of lagged rainfall is a lower
bound on the true magnitude of the response function, as elevated mortality appears to
persist considerably longer than that. We note here that a regression of daily mortality that
includes 35 days of lagged rainfall variables is analogous to our main specification, where
we regress weekly mortality on four lagged weeks’ in addition to the contemporaneous

week’s rainfall variables.

Our results would likely have a larger magnitude if we included more lags. However, in-

cluding more lags would reduce the number of observations available to us in our analy-
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sis, resulting in less statistical power, especially when modelling heterogeneous responses
along various dimensions (i.e., age, slum residence, elevation). We therefore choose a
parsimonious model with fewer lags, but note that this model likely understates the true

causal effect.

D.4.2 Spatial spillovers

Another potential concern with our estimates is that we fail to account for the fact that the
impacts of rainfall likely extend beyond the PIN code in which it occurs. This is both due
to the drainage patterns in the city, and the reality that people spend a lot of time outside
of the PIN code that contains their residential address.

While this is a valid concern, a few points are worth noting. First, these spillovers likely
bias our estimates downwards. This is because additional effects of rainfall shocks in PIN
codes other than those that they directly affect are likely in the same direction as our esti-
mates. Second, even in the presence of these spillovers, we can still interpret our estimates

as being the effect of extreme rainfall, net of spillovers and avoidance behaviours.

Nevertheless, we implement two strategies to investigate the importance of spatial spillovers
in our analysis. First, we estimate the response function at various levels of spatial aggre-
gation. Second, we implement a specification in which we separately control for rainfall

in neighbouring PIN codes.
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Figure D.5: Percent change in 5-week mortality due to daily rainfall: estimated at various

levels of spatial aggregation.

Mortality-rainfall response functions are estimated for the full sample. All panels show estimates from a
weekly level regression that uses a third order polynomial in daily rainfall. Points along each curve represent
the percent change in 5-week mortality due to a single day with the total rainfall value shown on the x-axis,
relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. The left hand panel
reproduces our main specification, from Panel (A) of Figure 5. The middle panel aggregates PIN codes to
the ward with which they share the most overlap, and clusters at the ward and date level. The right hand
panel shows the response function from a model estimated at the “area” level (i.e., approximate watersheds),
where areas are as denoted in the map below. Since there are only three spatial units in this regression, we
cannot cluster at the spatial unit level, and only cluster by date. The maps below show the associated spatial
units for each plot.

From Figure D.5, we conclude that spillovers at the ward or area level do not greatly affect
our results, since the response function is qualitatively similar when estimated at each of
these levels of aggregation. We define an “area” of Mumbai, by manual inspection of maps
of Mumbai’s watersheds. This grouping is chosen to try and capture sets of PIN codes that

are likely to experience spillovers due to runoff from each-other’s rainfall shocks.

We are not able to run this analysis at the city level, as we would not be able to control for

time fixed effects which are crucial for our identification argument.

We next implement a version of Equation (1) that controls for the mean rainfall level in

neighbouring PIN codes. Note, all specifications include time fixed effects, which control
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for the average level of rainfall across all PIN codes in each period in the sample.

Figure D.6: Percent change in 5-week mortality due to daily rainfall: controlling for neigh-

bouring rainfall

Mortality-rainfall response functions are estimated for the full sample. The figure shows the estimated rain-
fall response function from two models, both of which use a third-order polynomial in the own-PIN code
daily rainfall in the contemporaneous week and four lagged weeks. The model on the left panel reproduces
our main specification, from Panel (A) of Figure 5. The right panel shows a model that additionally contains
a third-order polynomial in the neighbouring PIN code’s daily rainfall in the contemporaneous week and
four lagged weeks. Points along each curve represent the percent change in 5-week mortality due to a sin-
gle day with the total own-PIN code rainfall value shown on the x-axis, relative to a day with zero rainfall.
Shaded areas indicate 95% confidence intervals.

Controlling for neighbouring precipitation increases the uncertainty associated with the
estimated effects of own-PIN code rainfall. However, the magnitude and qualitative shape
of our estimated mortality response to own-PIN code rainfall remains robust (Figure D.6).
Figure D.7 compares the mortality effects of own-PIN code and neighbouring PIN code
rainfall. The effects of neighbouring PIN code rainfall are very imprecisely estimated.
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Figure D.7: Percent change in 5-week mortality due to daily rainfall: own vs. neighbouring
PIN code rainfall

Mortality-rainfall response functions are estimated for the full sample, using a model that contains a third-
order polynomial in own and neighbouring PIN code’s daily rainfall in the contemporaneous week and four
lagged weeks. Points along each curve represent the percent change in 5-week mortality due to a single day
with the total own-PIN code rainfall value (right panel) or neighbouring PIN code rainfall value (left panel)
shown on the x-axis, relative to a day with zero rainfall. The right panel reproduces the mortality response
to own-PIN code rainfall that is shown in Figure D.6, right panel. Shaded areas indicate 95% confidence
intervals.

Overall, we conclude that while spatial spillover effects are important to consider when in-
terpreting our results, our results do not change substantially when controlling for spillovers.
We therefore focus on a simple model that considers PIN codes as independently treated

units.
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D.5 Estimating sample

Figure D.8: Percent change in 5-week mortality due to daily rainfall: month of year sub-

samples.

Estirrll:)ates are from a model that uses a third-order polynomial in daily rainfall in the contemporaneous week
and four lags. Points along each curve represent the percent change in 5-week mortality due to a single day
with the total rainfall value shown on the x-axis, relative to a day with zero rainfall. Shaded areas indicate
95% confidence intervals.

The rightmost panel reproduces our main specification, from Panel (A) of Figure 5. The other panels re-
estimate the response function on sub-samples of the months of the year indicated in the facet titles. For
example, the leftmost panel shows the response function estimated on a sub-sample of our regression data
where data from all months outside of June (month 6) to October (month 10) are dropped.
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D.6 Estimation strategy

Figure D.9: Change in 5-week mortality due to daily rainfall: various estimation strategies.
Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along each
curve represent the change in 5-week mortality due to a single day with the total rainfall value shown on
the x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. Facet titles
indicate estimation strategy. Linear OLS indicates a model run in levels rather than logs, with the mortality
count as the dependent variable. Log-linear OLS requires dropping observations with zero deaths. Poisson,
the third panel, is our main specification, reproducing Panel (A) of Figure 5. The final panel displays the
estimates from a Poisson model with PIN code level regression weights, where the weights are proportional
to the 2005 PIN code level population (calculated using GHSL satellite data).
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D.7 Temperature controls

Figure D.10: Percent change in 5-week mortality due to daily rainfall: with and without

temperature controls.

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along each
curve represent the change in 5-week mortality due to a single day with the total rainfall value shown on
the x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. The left hand
panel reproduces our main specification, from Panel (A) of Figure 5. The right hand panel displays estimates
of the mortality-rainfall response from a model that additionally includes temperature controls, where the
temperature response function is modelled as 3rd order polynomial in the daily average temperature in the
contemporaneous week and four lags, analogously to the rainfall response function.

Figure D.11: Percent change in 5-week mortality due to daily temperature.
Mortality-temperature response function is estimated for the full sample. Estimates are from a model that
uses a a third-order polynomial in daily average temperature in the contemporaneous week and four lags,
and a third-order polynomial in daily rainfall in the contemporaneous week and four lags (same model as
shown in the right panel of Figure D.10). Points along each curve represent the change in 5-week mortality
due to a single day with the daily average temperature value shown on the x-axis, relative to a day with
daily average temperature of 28°C. Shaded areas indicate 95% confidence intervals.
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D.8 Location assignment

Figure D.12: Percent change in 5-week mortality due to daily rainfall: assigning location

using different methods

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along each
curve represent the change in 5-week mortality due to a single day with the total rainfall value shown on the
x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. The rightmost
panel reproduces our our main specification, from Panel (A) of Figure 5, in which we match rainfall to
mortality records by using the Mumbai PIN code information present in about 80% of the addresses. The
leftmost panel uses the same data as our main specification (i.e. we drop the same 20% of data for which
we have no PIN code match), but uses the municipal ward assigned to the mortality record as the location
identifier. The middle panel also uses the ward identifier, but does not drop the data that does not have a
Mumbeai PIN code.
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D.9 Choice of fixed effect

Figure D.13: Percent change in 5-week mortality due to daily rainfall: various fixed effects
Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along each
curve represent the change in 5-week mortality due to a single day with the total rainfall value shown on
the x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. The leftmost
panel reproduces our main specification, from Panel (A) of Figure 5, in which we use PIN code x year and
week X year (i.e., date) fixed effects. The second-from-left panel further interacts the week x year fixed
effects with an indicator representing three areas of Mumbai, which are the same as those used in Figure
D.5. The second-from-right panel uses PIN code x year, PIN code x week-of-year, and week x year fixed
effects. Finally, the rightmost panel interacts the PIN code x year fixed effects with an indicator for whether
the month-of-year is between June and September (inclusive), and also uses week x year fixed effects.
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D.10 Alternative AWS cleaning steps

Figure D.14: Percent change in 5-week mortality due to daily rainfall: various AWS data

cleaning procedures

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along each
curve represent the change in 5-week mortality due to a single day with the total rainfall value shown on
the x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. The left hand
panel reproduces our our main specification, from Panel (A) of Figure 5, in which we clean the AWS data
as outlined in Appendix Section B.3. The middle panel restricts the set of stations used to calculate our PIN
code level averages to the 13 stations that are available across all years in our sample. Finally, the right hand
panel doesn't spatially or temporally interpolate any station data, or clip extreme implausible values, before
calculating the PIN-code level spatial averages of the available stations.
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D.11 Randomisation check

Figure D.15: Percent change in 5-week mortality due to daily rainfall: randomisation check
Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that
uses a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along
each curve represent the change in 5-week mortality due to a single day with the total rainfall value shown
on the x-axis, relative to a day with zero rainfall. Shaded areas indicate 95% confidence intervals. The
red line presents our main specification, from Panel (A) of Figure 5. Other lines show estimated response
functions from data where the weather data is shuffled across space and or time, as a placebo check to rule
out that spurious correlations are not driving our results (Hsiang and Jina, 2014). Each plot shows the
results from 500 models. The leftmost panel shuffles rainfall values randomly across both dates and PIN
codes. The middle panel shuffles full weather histories across PIN codes, but preserves the time series nature
of the treatment. The rightmost panel shuffles dates across time within PIN codes. In each plot, we see our
red estimated response function is on the outer-envelope of the randomised estimates, indicating it is very
unlikely that our estimated response function occurred purely by chance or due to spurious correlations.
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E Additional heterogeneity

E.1 Age categories

Figure E.1: Percent change in 5-week mortality due to daily rainfall: robustness under

different categorisations of the minimum age group

Mortality-rainfall response functions are estimated for the full sample, using Equation (3) that allows for
heterogeneity across age categories. Estimates are from a model that uses a third-order polynomial in daily
rainfall in the contemporaneous week and four lags. Points along each curves in the left hand side plot
represent the change in 5-week mortality due to a single day with the total rainfall value shown on the x-
axis, relative to a day with zero rainfall. Each line in the left hand plot shows the estimated response function
for the youngest age category, where the youngest age category is [0, X], X € [0,20]. Qualitatively, we can
see that the strongest relationship is found when we restrict the category to only include younger people
(the bluer lines). The right hand plot shows the height of the response function at 300mm as a function
of the maximum age in the youngest age category. The red line at 5 years denotes our main specification,
where the youngest age category consists of persons under 5 years of age.
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E.2 Age x gender

Figure E.2: Percent change in 5-week mortality due to daily rainfall: heterogeneity by age

and gender.

Mortality-rainfall response functions are estimated for the full sample, using Equation (3) that allows for
heterogeneity across age categories and gender. Estimates are from a model that uses a third-order polyno-
mial in daily rainfall in the contemporaneous week and four lags. Points along each curves in the left hand
side plot represent the change in 5-week mortality due to a single day with the total rainfall value shown on

the x-axis, relative to a day with zero rainfall.

E.3 Slum residence x age category

Category Number of deaths | Proportion of total deaths
Below 5, non-slum 7693 2.1
Below 5, slum 17160 4.8
5 to 65, non-slum 64500 17.9
5 to 65, slum 101210 28.1
65+, non-slum 92543 25.7
65+, slum 77131 21.4

Table E.1: Deaths by age group and slum/non-slum residence.

Table shows the number and proportion of deaths in our estimating sample, for each of the slum-age cate-

gories.
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Figure E.3: Percent change in 5-week mortality due to daily rainfall: heterogeneity by age

and slum residence.

Mortality-rainfall response functions are estimated for the full sample, using Equation (3) that allows for
heterogeneity across age categories and slum vs non-slum residents. Estimates are from a model that uses
a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along each
curves in the left hand side plot represent the change in 5-week mortality due to a single day with the total
rainfall value shown on the x-axis, relative to a day with zero rainfall.

Non-slum residence Slum residence
Total <5 years 5-65 years > 65 years <5 years 5-65 years > 65 years
0.069 0.13 -0.042 0.052 0.17 0.023 0.21

(-0.011,0.17)  (-0.25,0.85) (-0.2,0.15) (-0.08,0.21) (-0.13,0.68) (-0.14,0.22) (0.053,0.39)

Table E.2: Proportion of monsoon season deaths caused by rainfall shocks, by age x resi-

dence.

Table shows the proportion of total deaths and age- and residence-wise deaths during June to September that
we attribute to rainfall shocks. Estimates are derived from a model with heterogeneous mortality-rainfall
responses by age x slum residence (Figure E.3). Point estimates are calculated based on Equation (7); 95%
confidence intervals, calculated with a parametric bootstrap described in Appendix E.1, are in parentheses.

E.4 Elevation

Given the importance of drainage patterns and topology in determining urban flooding,
we expect that lower elevation PIN code are more at risk of damages from extreme rainfall
patterns. To test this, we split the PIN codes in our sample into two groups according
to either their mean elevation level, mean height above nearest drainage (HAND)®, or

percent of land area below 5 metres elevation.

8“Height Above Nearest Drainage” (HAND) is calculated by Tripathy et al. (2020) and obtained through
direct correspondence.
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Figure E.4: Percent change in 5-week mortality due to daily rainfall: various definitions of

elevation heterogeneity.

Mortality-rainfall response functions are estimated for the full sample, using a modified version of Equation
(1) that allows for heterogeneity across high and low elevation PIN codes. Estimates are from a model that
uses a third-order polynomial in daily rainfall in the contemporaneous week and four lags. Points along
each curves in the left hand side plot represent the change in 5-week mortality due to a single day with the
total rainfall value shown on the x-axis, relative to a day with zero rainfall. Panel (A) shows the spatial
distribution of high and low elevation PIN codes, according to three different definitions of PIN-code level
elevation. For each definition, we take above and below median values of a particular PIN code level statistic
to define whether the PIN-code is high or low elevation. ‘% below 5m’ refers to the proportion of pixels
in each PIN code that are below 5m above sea-level. ‘Mean Elevation’ is our main measure of elevation,
and simply denotes the mean elevation across pixels within each PIN code. ‘Mean HAND’ denotes the
mean height above nearest drainage for each pixel in each PIN-code. Panel (B) shows response function
heterogeneity by elevation according to each of these measures. Finally, Panel (C) shows elevation by age
heterogeneity, where each age category is allowed to have a separate response in high and low elevation PIN
codes as defined by mean elevation.

E.5 Tide
E.5.1 450cm Tide threshold model

Let 75, 4., denote the hourly tide level on hour % of day d in week w and year y, and let 7
denote a threshold tide level. We allow for a separate response to hourly rainfall occurring
when the hourly tide is below vs. above the threshold tide level (i.e., “low" vs. “high"):

M,y = glow(Ré?g,y) + ghigh(Rhigh) + iy + /\w,y7 (El)

l7w7y
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To construct the functions g;,,, and gpign, we account for nonlinear transformations and lags
of rainfall in a similar manner as Equation (5). We construct non-linear transformations
of rainfall at the hourly level, before aggregating to the weekly level across all low-tide
hours (in the case of g;,,) or high-tide hours (in the case of g4 ):

3 4
low o low
Jiow szy - E § ,Blk E : E thdw Ly Thd,w,y<7_')7
k=1 1=0 dew—1 hed
3 4
hzgh high k
Ghigh le v E E ﬁ E E (Ri,h,d,wfl,y ’ 17h,d,w,y2f) )
k=1 1=0 dew—1 hed

The indicator variables 1,, , - and 1, ,  >; respectively indicate whether the maxi-
mum tide level in hour i was below or above the threshold level 7

We estimate Equation (E.1) where 7 is the threshold value of 450 cm, for which rainfall is
expected to have larger impacts. Figure E.5 shows the mortality response to hourly rainfall
occurring during a tide height of below 450 cm in the right panel (i.e., g, () in Equation
(E.1)), and during a tide height of above 450 cm in the left panel (i.e., gnisn() in Equation
(E.1)). The average response function, presented in Figure 8, is included for reference in
green in both panels.
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Figure E.5: Percent change in 5-week mortality due to hourly rainfall occurring during low
and high tide periods.

Separate mortality-rainfall response functions are estimated for total hourly rainfall occurring during pe-
riods of the day when the tide height is above 450 cm (left panel, blue curve) and below 450 cm (right
panel, blue curve). Estimates are from a model that uses a third-order polynomial in hourly rainfall during
below /above 450 cm tide heights, for days in the contemporaneous week and 4 lagged weeks (Equation
(E.1)). Points along each blue curve represent the percent change in 5-week mortality due to a single hour
with the total rainfall value during above 450 cm tide (left panel) or below 450 cm tide (right panel) shown
on the x-axis, relative to an hour with zero rainfall during above 450 cm tide (left panel) or below 450 cm tide
(right panel). Shaded areas indicate 95% confidence intervals. In each panel, the green curve reproduces
the average effect of hourly rainfall on mortality that is shown in Figure 8.

We find qualitatively large, but noisy evidence of heterogeneity by high and low tide in
this specification. Even a small amount of hourly rainfall (e.g., 5 mm) that happens during
a tide above 450 cm is far more damaging than heavy rainfall that happens when the tide
is below 450 cm. It should be noted that tides above 450 cm are relatively rare, occurring
over only 1.6% of the total hours in a year, on average in our sample. However, the extreme
mortality effects of rainfall that we find during these periods is consistent with reports
that suggest low levels of rainfall during a high-tide can quickly overwhelm Mumbai’s
drainage system.

Table E.3 shows the results from the attribution exercise described in Section 5 for this
model. Relative to the linear interaction model presented in the main text, this model
leads us to attribute a substantially higher proportion of deaths to rainfall during high
tide.
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Model Total Low Tide Rainfall High Tide Rainfall

: 0.092
Hourly rainfall (0.024,0.17)
. . 0.1 0.081 0.019
Hourly rainfall by extreme tide 135 18) (0,017, 0.16) (-0.00021, 0.04)
Proportion of rainfall 1 0.98 0.02
Proportion of attributed deaths 1 0.81 0.19

Table E.3: Proportion of monsoon season deaths caused by rainfall shocks: hourly rainfall

models.

The first row shows the proportion of total deaths during June to September that we attribute to rainfall
shocks, derived from a model with hourly rainfall (Equation (4)). The second row shows the proportion of
total deaths during June to September that we attribute to rainfall shocks during hours with high tide (>
450 cm) and low tide (< 450 cm) and overall, derived from the model specified in Equation (E.1). All point
estimates are calculated based on Equation (7), and 95% confidence intervals (in parentheses) are calculated
with a parametric bootstrap described in Appendix F.1. The third row summarises the proportion of rainfall
in the sample that occurs during hours in which the average tide value is low (< 450 cm) or high (> 450
cm). The fourth row states the proportion of attributed deaths in the second row that are caused by rainfall
shocks during low tide or high tide.

E.5.2 Daily tide model

Our subdaily tide interaction models presented in main text Figure 9 and Figure E.5 show
rainfall occurring during a high tide within a day can have an especially large impact on
mortality.

Itis also possible that flooding can occur when heavy rain falls during periods of high daily
average tide height.” To investigate this, we linearly interact the daily total rainfall with
a measure of the average daily tide value. Let T}, , denote the daily average tide level on
day d, week w and year y, after normalising it to be mean zero and have standard deviation
1. We augment our basic response function (Equation (2)) to allow each variable to have

different impacts at different levels of tide as follows:

89For example, the BMC notes that apart from high maximum tides, neap tides may also cause flooding
in Mumbai when coupled with high rainfall. During a neap tide there is a narrow range between high and
low tide heights, meaning drainage is more difficult. A neap tide occurs when the sun and moon are at right
angles to each other, which weakens their gravitational pull on the Earth’s oceans, resulting in a narrow tidal
range. Neap tides occur during the first and third quarter moon. Figure 4 depicts tidal patterns in August
2008, illustrating fluctuations in tidal heights and amplitudes.
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3 4 3 4
gﬁde(Ri,w,y) = Z Zﬁl,k Z (Rf,d,wfl,y) + Z Z%,k Z (Tdefl,y ) Ri’id,w*l,y) , (E2)

k=1 1=0 dew—l k=1 1=0 dew—l

where the interactions terms between rainfall variables and tide (with v coefficients) are
added to the uninteracted rainfall variables from Equation (2).

Figure E.6 presents the results of estimating this model. We find that when the average
tide level of a day is higher, there is a stronger impact of rainfall on mortality. We reject
the joint null hypothesis that all v terms are zero at the 1% level.

Figure E.6: Percent change in 5-week mortality due to daily rainfall: linear daily tide in-

teraction.

Mortality-rainfall response functions are estimated for the full sample. Estimates are from a model that uses
a third-order polynomial in daily rainfall and a linear tide-rainfall interaction, in the contemporaneous week
and four lags. Points along each curves in the left hand side plot represent the change in 5-week mortality
due to a single day with the total rainfall value shown on the x-axis, relative to a day with zero rainfall. Each
facet shows the estimated response function evaluated at different levels of the normalised daily tide value.
When daily tide is very low (e.g., two standard deviations below the mean, leftmost panel), the mortality
impacts of rainfall are muted, while when daily tide is very high (e.g., two standard deviations above the
mean, right hand panel) rainfall causes much larger mortality impacts.
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F The mortality burden of rainfall shocks: Uncertainty and

robustness

F.1 Uncertainty in estimates of mortality due to rainfall shocks

The procedure for estimating uncertainty for our attribution analysis is as follows:

1. Estimate the model, save the coefficients and variance-covariance matrix. Save the
baseline values, exp(F'F). Calculate the central estimate for the 7.

2. Take 1000 draws from the joint normal sampling distribution of the coefficient esti-

mates.

3. Calculate 7¥,,  for each bootstrap draw k for each observation in our sample.

Z7w7y

4. Sum these estimates across weeks in each month in our sample, for each bootstrap
draw k.

5. Take quantiles of the distribution of 7, to get estimates for the upper and lower

confidence interval.

6. Divide upper and lower confidence interval values by the total deaths observed in

each months in order to express our values as proportions.

F.2 Mortality due to rainfall shocks under alternative fixed effects

In Table F.1 we present estimates of the proportion of monsoon season deaths caused by
rainfall in our main model (first row), and in three alternative robustness models with

more saturated fixed effects (second, third, and fourth rows).
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Fixed effect Estimate

year\PIN code + date (0.02-3’8317)
year\PIN code + date”area (0.02(31',10.19)
year"PIN code”Monsoon Season + date (-0. (?42%814)

Table F.1: Proportion of monsoon season deaths caused by rainfall shocks in alternative
empirical specifications.

Table shows the proportion of total deaths during June to September that we attribute to rainfall shocks.
The first row reproduce the result from our main specification that uses PIN code x year and week x year
(i.e., date) fixed effects (Table 4, Row 1). The second row further interacts the week x year fixed effects with
an indicator representing three areas of Mumbai, which are the same as those used in Figure D.5. The third
row interacts the PIN code x year fixed effects with an indicator for whether the month-of-year is between
June and September (inclusive), and also uses week x year fixed effects. The fourth row uses PIN code
x year, PIN code x week-of-year, and week x year fixed effects. Point estimates are calculated based on
Equation (7); 95% confidence intervals, calculated with a parametric bootstrap described in Appendix F.1,
are in parentheses.
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