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Motivation

Problem: Large dimensional panel data (both N and T large) with missing entries is prevalent

Goal: Impute missing values and provide entrywise inference for imputations

Casual inference: Unobserved counterfactual outcomes can be modeled as missing values

Challenges:

• Latent dependency structure of panel generally unknown

• Non-stationary data in time and cross-section

• Complex and potentially endogenous missing patterns

Need for new methods:

⇒ Existing imputation methods with inferential theory require stationary panels or restrictive

assumptions on missingness

⇒ Violated by many empirical applications
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A Motivating Example: Liberalization of Marijuana

The effect of legalization of recreational marijuana on per-capita beer sales (Li and Sonnier (2023))

• Economic question: Is marijuana a substitute or complement for alcohol?

• Data: 208 weekly observations between 2017-2020 for 45 states in the U.S.

• Treatment: 6 treated states legalize marijuana at different time points + 39 control states

Challenges:

1. Outcome data is non-stationary with common trends

2. Endogenous treatment pattern with confounders in both cross-sectional and temporal dimensions

3. Complex latent interactive confounders (factors) 2



Model Setup

Our solution: Approximate factor model with k latent factors and two-way non-stationary fixed effects

for control panel Y with missing observations: N units over T time periods

Yit = µ+ αi + ξt + Λ⊤
i Ft︸ ︷︷ ︸

common component

+ ϵit︸︷︷︸
error

αi , ξt : two-way fixed effects

• Allow for arbitrary non-stationary time trends in ξt

• Allow for confounders in both cross-sectional and time series dimensions

• Generally more efficient than subsuming fixed effects by latent factors

Λ⊤
i Ft : k latent factors

• Precise estimation by explaining most variations in the outcome variable

• Data-driven approach to learn latent interactive confounders

⇒ Two special cases:

1. When we remove Λ⊤
i Ft , degenerate to a difference-in-difference (DID) framework

2. When we remove αi , ξt (include them in factors), degenerate to pure factor model 3



Model Setup: Observation Pattern

Observation matrix W = [Wit ] for panel Y : Wit =

1 Yit is observed

0 Yit is missing

1. W can have any pattern with sufficiently many observations for each unit and time:

(a) Simultaneous adoption (b) Staggered adoption (c) Treatment switch on/off

2. W can have complicated dependency on the following components:

• Observed characteristics O

• Unit fixed effects α and latent factor loadings Λ

• Time fixed effects {ξs}ts=1 up to time t

3. W can have arbitrary time series dependency: Wit ̸⊥⊥ Wis |I , e.g. I = {O, α,Λ, ξ}
⇒ Most general assumptions on the missing pattern in this literature assumptions
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Challenges

Challenge: How can we estimate the fixed effects?

• Complicated observation pattern and its dependency on the fixed effects and factor model

⇒ Least square estimation is biased:

(µ̃, α̃, ξ̃, Λ̃, F̃ ) = arg min
µ,α,ξ,Λ,F

∑
i,t

Wit(Yit − µ− αi − ξt − Λ⊤
i Ft)

2

This paper: Propose a novel method, Within-Transform-PCA (wi-PCA), to consistently estimate the

common components and make inference on the imputed values
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Contribution

Methodology:

• Most general assumptions on the missing pattern in this literature:

Missingness can depend on both the two-way fixed effects and latent factor model

• A novel estimator for two-way fixed effects and factor model by carefully weighting all the

temporal and cross-sectional observations

• Entrywise inferential theory for estimator and feasible approach to construct confidence intervals

Empirics:

Effect of legalization of recreational marijuana on per-capita beer sales

⇒ Superior performance compared to special cases of difference-in-differences and PCA methods

• More accurate imputation out-of-sample

• Only fixed-effects (DID) have omitted variable bias

• PCA methods are unstable and have large variance

• Omitting fixed effects or factors leads to excessive treatment effects with spurious significance
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Related Literature (Incomplete and Partial List)

Large dimensional factor modeling

• Full observations with inferential theory: Bai and Ng 2002, Bai 2003, Fan, Liao and Mincheva

2013, Pelger and Xiong 2021a+b

• Partial observations: Stock and Watson 2002, Jin, Miao and Su 2021, Bai and Ng 2021a, Cahan,

Bai and Ng 2022, Xiong and Pelger 2022, Duan, Pelger and Xiong 2023, Ng and Scanlan 2024

Causal inference in panels

• One treated unit: Abadie, Diamond and Hainmueller 2010, 2015

• Block pattern: Xu 2017, Arkhangelsky, Athey, Hirshberg, Imbens and Wager 2021

• Staggered adoption: Athey and Imbens 2022

• General pattern: De Chaisemartin and D’Haultfoeuille 2020, Athey, Bayati, Doudchenko, Imbens

and Khosravi 2021, Arkhangelsky and Imbens 2022
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Estimator and Inferential Theory



Our Method: wi-PCA

Estimator: wi-PCA = within transform + PCA

Yit = µ+ αi + ξt + Λ⊤
i Ft︸ ︷︷ ︸

common component

+ ϵit︸︷︷︸
error

Step 1: (within-transform)

Estimate the grand mean µ and two-way fixed effects ξ and α

Step 2: (PCA)

Estimate the latent factor structure Λ⊤
i Ft and common component from within-transformed panel
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Step 1 – Estimate the Two-Way Fixed Effects

Step 1: Estimate grand mean µ and two-way fixed effects ξ and α as weighted averages of observed Y

µ̃ =
N∑
i=1

T∑
t=1

Mµ
it Yit

ξ̃t =
N∑
i=1

Mξ
itYit − µ̃

α̃i =
T∑
t=1

Mα
it (Yit−ξ̃t)− µ̃

• Weight characterized by Mµ
it , M

ξ
it and Mα

it

⇒ Different weights for different cases

⇒ Note: ξ̃t and α̃i are not symmetric!

Reason: Observation pattern arbitrarily dependent in time dimension, but conditionally

independent in cross-sectional dimension
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Intuition for Constructing Weights

All entries in Y are observed

• Simple within estimator: Mµ
it = 1/(NT ), Mξ

it = 1/N and Mα
it = 1/T

Missing entries in Y

• Weights have to be constructed to consistently estimate µ+ αi + βt :

µ̃+ α̃i + ξ̃t − (µ+ αi + ξt)

=
T∑
s=1

Mα
is

(
Λ⊤
i Fs + ϵis

)
−

T∑
s=1

Mα
is

N∑
j=1

Mξ
js

(
αj + Λ⊤

j Fs + ϵjs
)
+

N∑
j=1

Mξ
jt

(
αj + Λ⊤

j Ft + ϵjt
)

• Mµ
it : does not affect error; without loss of generality, set M

µ
it = Wit∑T

s=1

∑N
j=1 Wjs

• Mα
it : set M

α
it = Wit∑T

s=1 Wis
, so that the first error term is op(1)

• Mξ
it : selection is main challenge

⇒ Different weights for three different cases of observation patterns
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Step 1 – Estimate the Two-Way Fixed Effects

Case 1: Known observation probability pit = P(Wit = 1) (design-based settings)

• Adjust the observed Yit by the inverse observation probability pit

⇒ Correct for the bias when observations are not missing uniformly at random

Construct the weights as (Hajek estimator)

Mξ
it =

(
N∑
j=1

Wjt

pjt

)−1

Wit

pit
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Step 1 – Estimate the Two-Way Fixed Effects

Case 2: Unknown observation probability pit with short-term missingness with factor structure

(observational study)

We can estimate the probability pit if

• The observation probability pit can be factorized into a

one-factor model as pit = uivt

• No long-term dependency of time series missingness

Example: Treatment assignments switch on and off

⇒ Replace pjt by W̄j,· (up to a scaling constant) in Mξ

Mξ
it =

(
N∑
j=1

Wjt

W̄j,·

)−1

Wit

W̄i,·
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Step 1 – Estimate the Two-Way Fixed Effects

Case 3: Unknown observation probability pit with monotone missingness (observational study)

Time series observation patterns are monotone i.e. Wi1 ≥ Wi2 ≥ · · · ≥ WiT holds for all i

Examples:

(a) Simultaneous adoption (b) Staggered adoption

⇒ Use fully observed control units to estimate the time fixed effects

Mξ
it =

N−1
c if unit i is observed for all times t = 1, · · · ,T

0 otherwise

⇒ Three cases altogether cover the important examples of observation patterns

⇒ Consistent estimation even if observation patterns depend on both αi and ξt 13



Step 2 – Estimate the Factor Structure and Common Component

Step 2: Estimate the factor structure Λ⊤
i Ft

• Within-transform Y to Ẏit = Yit − µ̃− ξ̃t − α̃i

• Estimate the second moment matrix Σ = Ẏ Ẏ⊤/T as

Σ̃ij =
1

|Qij |
∑
t∈Qij

ẎitẎjt

where Qij = {t : Wit = Wjt = 1} (Xiong and Pelger (2022))

• Estimate loadings as
√
N times the eigenvectors of the k largest eigenvalues of Σ̃/N

• Estimate latent factors by regressing the observed Ẏ on Λ̃

F̃t =

(
1

N

N∑
i=1

Wit Λ̃i Λ̃
⊤
i

)−1(
1

N

N∑
i=1

Wit Λ̃i Ẏit

)

⇒ Estimate common components/impute missing entries as C̃it = µ̃+ ξ̃t + α̃i + Λ̃⊤
i F̃t
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Asymptotic Results

Theorem: Consistency

Let δN,T = min(N,T ). Under general observation pattern and data-generating model assumptions .

Assume that N,T → ∞ and one of the following cases holds:

1. The observation probability pit is known

2. The observation probability pit is unknown and satisfies pit = uivt . The time series observation

pattern only has short-term conditional dependency

3. The observation probability pit is unknown. The time series observation patterns is monotone,

and in addition, E[∥N−1
co

∑
i∈Nco

Λi∥4] ≤ M/δ2N,T

Then our proposed estimator with corresponding weights in µ̃, ξ̃t and α̃i is consistent for the

common components of Y

√
δN,T

(
(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)

)
= Op(1)√

δN,T

(
C̃it − Cit

)
= Op(1)
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Asymptotic Results

Theorem: Asymptotic normality

Let δN,T = min(N,T ). Under general observation pattern and data-generating model assumptions .

Assume that N,T → ∞ and one of the above cases holds. Under additional assumptions, our

proposed estimator with proper weights is asymptotically normal√
δN,T · σ−1

C ,it

(
C̃it − Cit

)
d→ N (0, 1)

where σ2
C ,it = limN,T→∞

δN,T

N
σ2
C ,it,1 +

δN,T

T
σ2
C ,it,2 with some σ2

C ,it,1 and σ2
C ,it,2

First-stage estimation error of fixed effects carries over to the second-stage estimation of factors

⇒ The form of asymptotic variance σ2
C ,it is very complicated

⇒ We propose practical feasible estimator of asymptotic variance
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Application to Causal Inference



Definition and Estimation of Treatment Effects

Treatment effect

• Individual treatment effect of unit i at time t

τit = Y
(tr)
it − Y

(ct)
it ,

where Y
(tr)
it and Y

(ct)
it denote the treated and control outcomes of unit i at time t

• Our focus: Average treatment effect on a treated unit i over treated time periods (ATT)

τi =
1

Ti,tr

∑
t∈Ti,tr

(
Y

(tr)
it − Y

(ct)
it

)
=

1

Ti,tr

∑
t∈Ti,tr

τit ,

where Ti,tr and Ti,tr denote the set and number of treated time periods of unit i

Estimation of treatment effect

• Feasible estimator of τi imputes all values in Y (ct) with C̃it estimated with wi-PCA:

τ̂i =
1

Ti,tr

∑
t∈Ti,tr

(Y
(tr)
it − C̃it)

⇒ Analogous estimation of average treatment effect over units or over both units and time 17



Feasible Variance Estimator for ATT

Example: Construct confidence intervals for the average treatment effect on the treated (ATT)[
τ̂i − z1−α/2

√
Vi , τ̂i + z1−α/2

√
Vi

]
We propose to estimate variance Vi by resampling bootstrap

⇒ Simple to implement; good performance in large panels; accommodate general missing patterns

⇒ Estimating only the variance and leveraging the theoretical normal distribution have a better

coverage than estimating the complete distribution simulations

Three-step procedure in resampling bootstrap

1. Construct the bootstrap sample

• Sample N − 1 units from all units besides i-th unit with replacement

• Bootstrapped version of i : Estimated components of i plus a draw of (ϵi1, · · · , ϵiT )
2. Estimate τi on the bootstrap sample

3. Estimate Vi from the sample variance of bootstrapped estimates of τi

18



Empirical Results



Empirical Application – Legalization of Marijuana

The effect of legalization of recreational marijuana on per-capita beer sales (Li and Sonnier (2023))

Data: 208 weekly observations between 2017-2020 for 45 contiguous states in U.S.

• Weekly beer sales revenue from the Nielsen retail scanner data set from the Kilts Center for

Marketing at Chicago Booth (factor analysis of the data in Guha and Ng (2019))

• Yearly state population from the U.S. Census Bureau

Treatment: 6 treated states with staggered adoption + 39 control states

Compare the estimation of our estimator, wi-PCA, with three methods

• TWFE: Two-way fixed effects estimator (special case without latent factor structure)

• PCA: PCA estimator in Xiong and Pelger (2022) (special case without fixed effects)

• Block-PCA: PCA estimator that estimates factors only from fully observed blocks in Xu (2017)

Extensive simulations demonstrate the superior performance of wi-PCA compared with three methods
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Empirical Application – Legalization of Marijuana

Compare estimation accuracy of different estimators via synthetic treatments

• Uniformly random treatment

• Endogenous treatment assignment

Data: Control panel that consists of 208 weekly observations for 39 control states

wi-PCA PCA Block-PCA TWFE

(FE+factor model) (factor model only) (factor model only) (FE only)

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

RMSEY 2.21 1.93 2.01 2.53 2.64 2.95 - - - 2.54

|BiasATT| 0.16 0.14 0.16 0.22 0.59 0.98 - - - 0.22

RMSEATT 1.24 1.11 1.18 1.68 1.76 2.03 - - - 1.57

RMSEY 2.42 2.09 1.94 2.37 4.61 5.45 2.31 2.25 2.13 2.45

|BiasATT| 0.26 0.27 0.26 0.83 3.76 4.19 0.45 0.32 0.30 0.42

RMSEATT 0.99 1.03 1.06 1.67 4.08 4.52 1.57 1.13 1.18 1.53

RMSEY 4.30 3.92 4.10 5.00 6.77 7.46 4.88 7.16 5.93 4.60

|BiasATT| 0.75 0.47 0.57 1.45 4.47 5.25 0.90 1.26 1.04 0.59

RMSEATT 2.89 2.77 2.91 4.12 5.43 6.06 3.88 5.11 4.21 3.50

⇒ Our estimator is robust to the number of latent factors (extends to more factors extensions )

⇒ Our estimator provides the most precise estimation for different cases 20



Empirical Application – Legalization of Marijuana

Estimation of the average treatment effects (ATT) for the 6 actually treated states

California Michigan Illinois Massachusetts Nevada Maine

Treat time Jan. 1, 2018 Dec. 1, 2019 Jan. 1, 2020 Nov. 20, 2018 Jul. 1, 2017 Oct. 9, 2020

k ATT SE ATT SE ATT SE ATT SE ATT SE ATT SE

wi-PCA 1 0.52 3.78 0.43 1.17 0.32 1.21 -0.48 1.11 -0.47 3.18 -1.15 1.11

(FE+factor 2 0.57 3.64 0.44 1.17 0.31 1.22 -0.37 1.07 -0.47 3.02 -0.95 1.18

model) 3 0.55 3.68 0.52 1.12 0.09 1.12 -0.42 1.28 -0.48 3.05 -0.96 1.47

4 0.54 3.69 1.00 1.14 0.08 1.08 -0.86 1.54 -0.47 3.02 -0.16 0.60

PCA 1 2.96 3.85 3.19 1.64 1.20 1.64 -1.29 2.36 3.02 3.10 -1.32 1.34

(factor model 2 7.44 3.61 2.74 1.15 2.27 1.21 3.63 1.49 5.35 3.01 -1.06 1.11

only) 3 7.65 3.62 6.56 2.44 5.39 2.37 4.18 2.35 5.49 3.04 -0.36 1.13

4 8.01 3.60 6.66 2.31 5.55 2.27 4.28 2.36 4.94 3.03 0.32 1.08

Block-PCA 1 -0.30 4.26 1.65 1.52 -0.05 1.53 -4.41 2.50 -1.24 3.44 -1.32 1.19

(factor model 2 4.25 6.65 0.38 1.46 0.33 1.31 1.16 1.41 7.79 8.32 -1.18 1.09

only) 3 0.18 6.14 0.32 1.41 0.36 1.29 1.36 1.74 2.84 6.37 -0.91 1.31

4 1.69 6.92 0.30 1.44 0.33 1.41 1.26 1.83 4.80 6.68 0.31 1.15

TWFE (FE only) 0.56 3.73 1.73 1.64 0.02 1.62 -2.94 2.29 -0.47 3.04 -1.28 1.19

• Different estimators give substantially different point estimates of ATT

• Standard errors of the benchmarks are generally much larger than with wi-PCA

• wi-PCA is extremely stable for different number of latent factors (e.g., MA and NV) 21



Empirical Application – Legalization of Marijuana

(a) Nevada (NV) (b) Massachusetts (MA)

• NV: PCA and block-PCA find a treatment effect due to a bad model fit

• MA: TWFE suffers from an omitted variable bias and neglects relevant time-series variation

• Note: Same degrees of freedom for wi-PCA, PCA, and block-PCA 22



Conclusion

wi-PCA: Novel method for causal inference in large panels

• Explicitly combines non-stationary two-way fixed effects and latent factor model and allows for

endogenous treatment that depends on both of them

• Entrywise inferential theory for imputed values

• Feasible variance estimators for average treatment effects

⇒ Easy to implement and broadly applicable

wi-PCA: Superior simulation and empirical performance

• wi-PCA has highest out-of-sample accuracy compared to DID and PCA-only-methods

• PCA-only-methods: extremely unstable for different number of factors and large variance

• DID: omitted variable bias

⇒ More credible economic conclusions with wi-PCA
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Appendix

Assumption: Observation Pattern of Control Panel Y

1. W is independent of F and ϵ (but can depend on α, ξ and Λ)

2. Overlap: the conditional observation probability P(Wit = 1|Iit) ≥ η > 0

3. Sufficiently many observations: 1
N

∑N
i=1Wit ≥ q > 0 and 1

T

∑T
t=1Wit ≥ q > 0

for any i , t

4. Conditional independence of cross-sectional missingness: Wit ⊥⊥ Wjs |Iit ∪ Ijs for

any i ̸= j and t, s
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Appendix

We present the assumptions of a simplified factor model with two-way fixed effects

which captures the main insight of the general model

Assumption S1: Simplified Factor Model with Fixed Effects

There exists a constant M < ∞ such that

1. Fixed effects: αi
i .i .d .∼ (0, σ2

α) and E[α4
i |Ii ] ≤ M. Furthermore,

∑N
i=1 αi = 0.

2. Factors: Ft
i .i .d .∼ (0,ΣF ) and E∥Ft∥8 ≤ M for any t. Furthermore,

∑T
t=1 Ft = 0.

3. Loadings: Λi
i .i .d .∼ (0,ΣΛ) and E[∥Λi∥8|Ii ] ≤ M for any i . Furthermore,∑N

i=1 Λi = 0, and for any t, N−1
∑N

i=1WitΛiΛ
⊤
i

p→ ΣΛ,t with some positive

definite matrix ΣΛ,t .

4. Idiosyncratic errors: ϵit
i .i .d .∼ (0, σ2

ϵ ) and E[ϵ8it ] ≤ M.

5. Independence: α, ξ,F ,Λ and ϵ are mutually independent.
25



Simulation Design

The data-generating process is

Yit = µ+ αi + ξt + ΛiFt + ϵit ,

where µ = 1, αi
i.i.d.∼ N (0, 1), Ft

i.i.d.∼ N (0, 1), Λi
i.i.d.∼ N (0, 1), and ϵit

i.i.d.∼ N (0, 4), stationary and

non-stationary time fixed effects ξt

• Stationary time fixed effects: ξt
i.i.d.∼ N (0, 1)

• Non-stationary time fixed effects: ξt = 0.05t +N (0, 1) for any t (include a time trend)

We compare the relative MSE (S: set of either observed, missing or all entries in Y )

relative MSES =

∑
(i,t)∈S(C̃it − Cit)

2∑
(i,t)∈S C 2

it

Three different observation patterns

• Missing-at-random

• Simultaneous treatment adoption

• Staggered treatment adoption
26



Simulation Results

wi-PCA PCA Block-PCA TWFE

(FE+factor model) (factor model only) (factor model only) (FE only)

ξt S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

S

obs 0.055 0.055 0.360 0.147 0.088 - - - 0.270

miss 0.056 0.056 0.377 0.157 0.093 - - - 0.283

all 0.055 0.055 0.364 0.149 0.089 - - - 0.273

N

obs 0.036 0.036 0.292 0.145 0.059 - - - 0.177

miss 0.037 0.037 0.305 0.157 0.063 - - - 0.186

all 0.036 0.036 0.294 0.148 0.059 - - - 0.179

• wi-PCA is more efficient than PCA with k = 3

• PCA with k < 3 suffers from an omitted variable bias

• TWFE suffers from an an omitted variable bias

27



Simulation Results

wi-PCA PCA Block-PCA TWFE

(FE+factor model) (factor model only) (factor model only) (FE only)

ξt S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

S

obs 0.064 0.069 0.369 0.156 0.104 0.372 0.161 0.110 0.283

miss 0.108 0.105 0.414 0.210 0.165 0.412 0.204 0.152 0.314

all 0.077 0.079 0.383 0.172 0.122 0.384 0.174 0.122 0.292

N

obs 0.048 0.051 0.376 0.209 0.091 0.359 0.186 0.080 0.207

miss 0.055 0.054 0.594 0.573 0.527 0.476 0.322 0.154 0.162

all 0.051 0.052 0.460 0.349 0.259 0.404 0.238 0.108 0.190

S

obs 0.054 0.050 0.362 0.132 0.088 0.363 0.131 0.086 0.283

miss 0.083 0.079 0.431 0.325 0.213 0.440 0.310 0.176 0.206

all 0.058 0.055 0.371 0.159 0.106 0.373 0.157 0.100 0.271

N

obs 0.056 0.045 0.301 0.178 0.078 0.287 0.126 0.083 0.216

miss 0.097 0.081 0.911 0.759 0.602 1.135 1.065 0.494 0.175

all 0.068 0.055 0.487 0.353 0.237 0.541 0.408 0.207 0.204

• wi-PCA is more efficient than block-PCA by using all the data

• PCA and block-PCA can suffer from the correlation between time trend and missing pattern

• TWFE suffers from an an omitted variable bias
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Simulation: Comparison of Confidence Intervals by Different Methods

• Bootstrapped variance with normal distribution has a better coverage than bootstrapped

distribution

Bootstrapped Variance Bootstrapped Distribution

with Normal Distribution

ξt 95% 90% 80% 95% 90% 80%

S 95.0% 89.8% 80.0% 93.4% 88.6% 78.8%

N 95.0% 89.8% 80.0% 93.4% 88.6% 78.8%

S 94.3% 89.2% 79.5% 92.4% 87.5% 80.4%

N 94.3% 89.2% 79.5% 92.4% 87.5% 80.4%

S 94.1% 89.2% 78.1% 92.6% 87.2% 76.4%

N 94.1% 89.2% 78.1% 92.6% 87.2% 76.4%
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Empirical Study: Synthetic Treatment Assignment with More Factors

Results for the uniformly random treatment pattern

RMSEY |BiasATT| RMSEATT

wi-PCA
(FE+factor model)

k=1 2.207 0.156 1.236
k=2 1.933 0.139 1.110
k=3 2.012 0.158 1.179
k=4 2.033 0.167 1.206
k=5 2.026 0.173 1.214
k=6 2.051 0.177 1.258
k=7 2.061 0.177 1.291
k=8 2.067 0.177 1.303

PCA
(factor model only)

k=1 2.525 0.216 1.677
k=2 2.642 0.586 1.755
k=3 2.952 0.979 2.032
k=4 3.302 1.357 2.368
k=5 3.598 1.637 2.615
k=6 3.764 1.806 2.782
k=7 3.883 1.929 2.908
k=8 3.978 2.022 3.002

Block-PCA
(factor model only)

k=1 - - -
k=2 - - -
k=3 - - -
k=4 - - -
k=5 - - -
k=6 - - -
k=7 - - -
k=8 - - -

TWFE
(FE only) 2.576 0.218 1.604
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Empirical Study: Synthetic Treatment Assignment with More Factors

Results for the simultaneous treatment adoption pattern

RMSEY |BiasATT| RMSEATT

wi-PCA
(FE+factor model)

k=1 2.424 0.255 0.995
k=2 2.090 0.275 1.029
k=3 1.942 0.262 1.056
k=4 1.909 0.284 1.084
k=5 1.955 0.299 1.138
k=6 2.006 0.299 1.166
k=7 2.025 0.301 1.177
k=8 2.039 0.304 1.184

PCA
(factor model only)

k=1 2.374 0.825 1.672
k=2 4.605 3.760 4.076
k=3 5.450 4.190 4.523
k=4 5.123 4.131 4.459
k=5 5.038 4.138 4.467
k=6 5.009 4.147 4.478
k=7 5.005 4.152 4.483
k=8 5.012 4.151 4.482

Block-PCA
(factor model only)

k=1 2.307 0.450 1.568
k=2 2.246 0.318 1.128
k=3 2.125 0.304 1.176
k=4 2.085 0.284 1.218
k=5 2.037 0.289 1.228
k=6 1.968 0.282 1.209
k=7 1.940 0.272 1.208
k=8 1.924 0.286 1.204

TWFE
(FE only) 2.445 0.415 1.528
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Results for the staggered treatment adoption pattern

RMSEY |BiasATT| RMSEATT

wi-PCA
(FE+factor model)

k=1 4.299 0.751 2.893
k=2 3.923 0.475 2.770
k=3 4.097 0.574 2.911
k=4 4.185 0.642 2.985
k=5 4.241 0.692 3.068
k=6 4.270 0.733 3.102
k=7 4.289 0.735 3.114
k=8 4.278 0.726 3.096

PCA
(factor model only)

k=1 5.004 1.445 4.119
k=2 6.766 4.472 5.430
k=3 7.463 5.246 6.063
k=4 7.715 5.437 6.242
k=5 7.794 5.558 6.369
k=6 7.900 5.647 6.467
k=7 7.985 5.719 6.539
k=8 8.016 5.764 6.580

Block-PCA
(factor model only)

k=1 4.877 0.902 3.884
k=2 7.163 1.256 5.114
k=3 5.934 1.035 4.212
k=4 6.237 1.015 4.456
k=5 6.243 1.009 4.434
k=6 6.359 1.008 4.521
k=7 6.617 1.039 4.731
k=8 6.725 1.034 4.793

TWFE
(FE only) 4.603 0.593 3.498
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