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Motivation

Problem: Large dimensional panel data (both NV and T large) with missing entries is prevalent
Goal: Impute missing values and provide entrywise inference for imputations
Casual inference: Unobserved counterfactual outcomes can be modeled as missing values

Challenges:
e Latent dependency structure of panel generally unknown
e Non-stationary data in time and cross-section

e Complex and potentially endogenous missing patterns

Need for new methods:
= Existing imputation methods with inferential theory require stationary panels or restrictive

assumptions on missingness

= Violated by many empirical applications



A Motivating Example: Liberalization of Marijuana

The effect of legalization of recreational marijuana on per-capita beer sales (Li and Sonnier (2023))
e Economic question: Is marijuana a substitute or complement for alcohol?
e Data: 208 weekly observations between 2017-2020 for 45 states in the U.S.

e Treatment: 6 treated states legalize marijuana at different time points + 39 control states
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Challenges:
1. Outcome data is non-stationary with common trends

2. Endogenous treatment pattern with confounders in both cross-sectional and temporal dimensions

3. Complex latent interactive confounders (factors)



Model Setup

Our solution: Approximate factor model with k latent factors and two-way non-stationary fixed effects

for control panel Y with missing observations: /N units over T time periods

Ye= ptai+&+AF + e
~

common component error
ai, & two-way fixed effects
e Allow for arbitrary non-stationary time trends in &;
e Allow for confounders in both cross-sectional and time series dimensions

e Generally more efficient than subsuming fixed effects by latent factors

A Fi: k latent factors
e Precise estimation by explaining most variations in the outcome variable

e Data-driven approach to learn latent interactive confounders

= Two special cases:
1. When we remove A, F;, degenerate to a difference-in-difference (DID) framework

2. When we remove «;, & (include them in factors), degenerate to pure factor model



Model Setup: Observation Pattern

- . 1 Y is observed
Observation matrix W = [W] for panel Y: W; =
0 Yi is missing

1. W can have any pattern with sufficiently many observations for each unit and time:

(a) Simultaneous adoption b) Staggered adoption (c) Treatment switch on/off

=.=

2. W can have complicated dependency on the following components:
e Observed characteristics O
e Unit fixed effects o and latent factor loadings /A
e Time fixed effects {£:}i_; up to time ¢

3. W can have arbitrary time series dependency: W A ={0,a,\ ¢}
= Most general assumptions on the missing pattern in this literature

is



Challenges

Challenge: How can we estimate the fixed effects?

e Complicated observation pattern and its dependency on the fixed effects and factor model

= Least square estimation is biased:

(i, &, & A F)=arg min > Wi(Ye —p—aj— & — N F)?

This paper: Propose a novel method, Within-Transform-PCA (wi-PCA), to consistently estimate the

common components and make inference on the imputed values



Contribution

Methodology:
e Most general assumptions on the missing pattern in this literature:
Missingness can depend on both the two-way fixed effects and latent factor model
e A novel estimator for two-way fixed effects and factor model by carefully weighting all the
temporal and cross-sectional observations

e Entrywise inferential theory for estimator and feasible approach to construct confidence intervals

Empirics:
Effect of legalization of recreational marijuana on per-capita beer sales
= Superior performance compared to special cases of difference-in-differences and PCA methods
e More accurate imputation out-of-sample
e Only fixed-effects (DID) have omitted variable bias
e PCA methods are unstable and have large variance

e Omitting fixed effects or factors leads to excessive treatment effects with spurious significance



Related Literature (Incomplete and Partial List)

Large dimensional factor modeling

e Full observations with inferential theory: Bai and Ng 2002, Bai 2003, Fan, Liao and Mincheva
2013, Pelger and Xiong 2021a+b

e Partial observations: Stock and Watson 2002, Jin, Miao and Su 2021, Bai and Ng 2021a, Cahan,
Bai and Ng 2022, Xiong and Pelger 2022, Duan, Pelger and Xiong 2023, Ng and Scanlan 2024

Causal inference in panels
e One treated unit: Abadie, Diamond and Hainmueller 2010, 2015
e Block pattern: Xu 2017, Arkhangelsky, Athey, Hirshberg, Imbens and Wager 2021
e Staggered adoption: Athey and Imbens 2022

e General pattern: De Chaisemartin and D'Haultfoeuille 2020, Athey, Bayati, Doudchenko, Imbens
and Khosravi 2021, Arkhangelsky and Imbens 2022



Estimator and Inferential Theory



Our Method: wi-PCA

Estimator: wi-PCA = within transform + PCA

Yii = H+(Yi+£t+/\/'TFt + €t
~~

common component error

Step 1: (within-transform)
Estimate the grand mean 1 and two-way fixed effects £ and «

Step 2: (PCA)
Estimate the latent factor structure A, F; and common component from within-transformed panel



Step 1 — Estimate the Two-Way Fixed Effects

Step 1: Estimate grand mean p and two-way fixed effects £ and o as weighted averages of observed Y

N

=> > MY

i=1 t=1

-

Mz

ri’ - ,“
i=1
T

ST MR (YVanE) —

t=1

o Weight characterized by M/, M5 and Mg

Y

Different weights for different cases

= Note: ft and &; are not symmetric!

Reason: Observation pattern arbitrarily dependent in time dimension, but conditionally
independent in cross-sectional dimension



Intuition for Constructing Weights

All entries in Y are observed
e Simple within estimator: MY = 1/(NT), M; =1/N and Mg =1/T

Missing entries in Y
e \Weights have to be constructed to consistently estimate & + o + [s:

B4+ & — (n+ o+ &)

T T N N
=5 mg (/\,TFS n 6,-5) S oM > ME (aj FAF+ e,-s) +3 M <on- +AF+ eﬁ)
s=1 s=1 j=1

j=1

o M!': does not affect error; without loss of generality, set M/ = #ﬁ,lwﬁ
51 2=

o M7 set M = ZTWFW/S’ so that the first error term is 0,(1)

e M:: selection is main challenge

= Different weights for three different cases of observation patterns
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Step 1 — Estimate the Two-Way Fixed Effects

Case 1: Known observation probability p; = P(W, = 1) (design-based settings)
e Adjust the observed Yj: by the inverse observation probability pj:

= Correct for the bias when observations are not missing uniformly at random

Construct the weights as (Hajek estimator)

N —1
Z Wi, Wi
MIE[ - < Jt) p/:

‘o Pi
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Step 1 — Estimate the Two-Way Fixed Effects

Case 2: Unknown observation probability p;; with short-term missingness with factor structure
(observational study)

We can estimate the probability p;: if

e The observation probability p;: can be factorized into a

one-factor model as p;i; = ujv;

e No long-term dependency of time series missingness

Example: Treatment assignments switch on and off

= Replace pj; by W, (up to a scaling constant) in M*

N -1
Wi Wie
M = 24 Z
it (Z W > VV,

=i
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Step 1 — Estimate the Two-Way Fixed Effects

Case 3: Unknown observation probability p; with monotone missingness (observational study)

Time series observation patterns are monotone i.e. Wiz > Wix > --- > Wt holds for all /

(a) Simultaneous adoption b) Staggered adoption

Examples:

= Use fully observed control units to estimate the time fixed effects

v N-! if unit i is observed for all times t =1,---, T

it —
0 otherwise

= Three cases altogether cover the important examples of observation patterns

= Consistent estimation even if observation patterns depend on both «; and &;
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Step 2 — Estimate the Factor Structure and Common Component

Step 2: Estimate the factor structure A F;
e Within-transform Y to Y,-t =Yi—j-— £~t — @&
e Estimate the second moment matrix ~ = YY" /T as

. 1 .o
Yy = D> YaYa
Q| 3,

where Q; = {t : Wj; = Wj; = 1} (Xiong and Pelger (2022))
e Estimate loadings as //V times the eigenvectors of the k largest eigenvalues of 5 /N

e Estimate latent factors by regressing the observed Y on A
1< T
- AT o
Fe = <N -5—1 Wit i\ ) (N 2—1 Wi\ Yn)

= Estimate common components/impute missing entries as C,-t =0+ ft + & + /~\,T :Et
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Asymptotic Results

Theorem: Consistency

Let oy, 7 = min(/N, T). Under general observation pattern and data-generating model

Assume that N/, T —> oo and one of the following cases holds:
1. The observation probability pi: is known

2. The observation probability p;: is unknown and satisfies p;: = wjv;. The time series observation

pattern only has short-term conditional dependency
3. The observation probability p;: is unknown. The time series observation patterns is monotone,
and in addition, E[||N," > AilI*] € M3 7

i€Neo

Then our proposed estimator with corresponding weights in /i, & and &, is consistent for the
common components of Y

\/ (5N.T((/7 +a&i+&)— (p+ai+ ét)) = 0,(1)
Von,7(Cie — Cie) = Op(1)

15



Asymptotic Results

Theorem: Asymptotic normality

Let oy, 7 = min(/N, T). Under general observation pattern and data-generating model [ > assumptions J

Assume that N/, T — oo and one of the above cases holds. Under additional assumptions, our

proposed estimator with proper weights is asymptotically normal
\/(S/\/_’T '(J’Ej-t <Cit ,t) = /\/(0 1)

2 . N, T 2 f’/\/T 2
where o¢ ; = limy 7500 —5~0cC it,1 + —7-0c,it,» With some ch ir,1 and Tt o

First-stage estimation error of fixed effects carries over to the second-stage estimation of factors
= The form of asymptotic variance % ;, is very complicated

= We propose practical feasible estimator of asymptotic variance
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Application to Causal Inference




Definition and Estimation of Treatment Effects

Treatment effect

e Individual treatment effect of unit / at time t
T = Y (tr) Y(ct) ’

where Y and Y,-(ft) denote the treated and control outcomes of unit / at time t

it

e Our focus: Average treatment effect on a treated unit / over treated time periods (ATT)
_ 1 () _ et
ners L (- NT) =5 Yo
r tr

t€Ti o
where 7i: and T; . denote the set and number of treated time periods of unit /

Itr

Estimation of treatment effect
e Feasible estimator of 7; imputes all values in Y with C;; estimated with wi-PCA:

()
ltr Z (Y

te€Ti er

= Analogous estimation of average treatment effect over units or over both units and time 17



Feasible Variance Estimator for ATT

Example: Construct confidence intervals for the average treatment effect on the treated (ATT)
[f-,- — 21 apVViTitz1_apVVi

We propose to estimate variance V; by resampling bootstrap
= Simple to implement; good performance in large panels; accommodate general missing patterns
= Estimating only the variance and leveraging the theoretical normal distribution have a better
coverage than estimating the complete distribution

Three-step procedure in resampling bootstrap
1. Construct the bootstrap sample
e Sample N/ — 1 units from all units besides /-th unit with replacement
e Bootstrapped version of i: Estimated components of i plus a draw of (¢j1, -+, €i7)
2. Estimate 7; on the bootstrap sample

3. Estimate V; from the sample variance of bootstrapped estimates of 7;
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Empirical Results




Empirical Application — Legalization of Marijuana

The effect of legalization of recreational marijuana on per-capita beer sales (Li and Sonnier (2023))

Data: 208 weekly observations between 2017-2020 for 45 contiguous states in U.S.

e Weekly beer sales revenue from the Nielsen retail scanner data set from the Kilts Center for

Marketing at Chicago Booth (factor analysis of the data in Guha and Ng (2019))

e Yearly state population from the U.S. Census Bureau

Treatment: 6 treated states with staggered adoption 4+ 39 control states

Compare the estimation of our estimator, wi-PCA, with three methods
e TWFE: Two-way fixed effects estimator (special case without latent factor structure)
e PCA: PCA estimator in Xiong and Pelger (2022) (special case without fixed effects)

e Block-PCA: PCA estimator that estimates factors only from fully observed blocks in Xu (2017)

Extensive demonstrate the superior performance of wi-PCA compared with three methods
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Empirical Application — Legalization of Marijuana

Compare estimation accuracy of different estimators via synthetic treatments

e Uniformly random treatment

e Endogenous treatment assignment

Data: Control panel that consists of 208 weekly observations for 39 control states

wi-PCA
(FE+factor model)
k=1 k=2 k=3

PCA
(factor model only)
k=1 k=2 k=3

Block-PCA
(factor model only)
k=1 k=2 k=3

TWFE

(FE only)

T RMSEy

|BiasaTT|
RMSEaTT

221 193 201
0.16 0.14 0.16
124 111 118

253 264 295
022 059 0098
1.68 1.76  2.03

2.54
0.22
1.57

RMSEy

|BiasaTT|
RMSExTT

242 209 1.94
026 027 0.26
099 103 1.06

237 461 545
083 376 4.19
1.67 4.08 452

G 225 213
045 032 0.30
157 113 118

2.45
0.42
1.53

RMSEy

|BiasaTT|
RMSEATT

1

430 392 410
0.75 0.47 0.57
289 277 2091

5.00 6.77 7.46
1.45 447 525
412 543 6.06

488 7.16 5093
0.90 126 1.04
388 511 421

4.60
0.59
3.50

= Our estimator is robust to the number of latent factors (extends to more factors CEIEELD)

= Our estimator provides the most precise estimation for different cases
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Empirical Application — Legalization of Marijuana

Estimation of the average treatment effects (ATT) for the 6 actually treated states

California Michigan Illinois Massachusetts Nevada Maine
Treat time Jan. 1,2018 | Dec. 1,2019 | Jan. 1,2020 | Nov. 20,2018 | Jul. 1,2017 Oct. 9, 2020
k | ATT ~SE | ATT SE | ATT SE | ATT  SE | ATT  SE | ATT  SE
wi-PCA 1| 052 378 | 043 117 | 032 121 | -048 111 | -047 318 | -1.15 111
(FE+factor 2 | 057 364 | 044 117 | 031 122 | -037 107 | -047 3.02 | -095 118
model) 3 ] 055 368 | 052 112 | 009 112 | -042 128 | -048 3.05 | -096 147
4 | 054 360 | 100 114 | 008 108 | -0.86 154 | -047 302 | -0.16  0.60
PCA 1| 296 38 | 319 164 | 120 164 | -129 236 | 302 310 | -1.32 134
(factor model 2 | 7.44 361 | 274 115 | 227 121 | 363 149 | 535 301 | -1.06 111
only) 3 | 765 362 | 656 244 | 530 237 | 418 235 | 549 304 | 036 113
4 | 801 360 | 666 231 | 555 227 | 428 236 | 494 303 | 032 108
Block-PCA 1 | -030 426 | 165 152 | -005 153 | -441 250 | -1.24 344 | -132 119
(factor model 2 | 425 665 | 038 146 | 033 131 | 116 141 | 779 832 | -1.18  1.09
only) 3] 018 614 | 032 141 | 036 129 | 136 174 | 284 637 | 091 131
4 | 169 692 | 030 144 | 033 141 | 126 183 | 480 668 | 031 115
TWFE (FEonly) | 056 373 | 173 164 | 002 162 | -204 229 | -047 3.04 | -128 119

e Different estimators give substantially different point estimates of ATT

e Standard errors of the benchmarks are generally much larger than with wi-PCA

e wi-PCA is extremely stable for different number of latent factors (e.g., MA and NV)
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Empirical Application — Legalization of Marijuana
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(b) Massachusetts (MA)

e NV: PCA and block-PCA find a treatment effect due to a bad model fit

e MA: TWFE suffers from an omitted variable bias and neglects relevant time-series variation
e Note: Same degrees of freedom for wi-PCA, PCA, and block-PCA
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Conclusion

wi-PCA: Novel method for causal inference in large panels
e Explicitly combines non-stationary two-way fixed effects and latent factor model and allows for

endogenous treatment that depends on both of them
e Entrywise inferential theory for imputed values
e Feasible variance estimators for average treatment effects

= Easy to implement and broadly applicable

wi-PCA: Superior simulation and empirical performance
e wi-PCA has highest out-of-sample accuracy compared to DID and PCA-only-methods
e PCA-only-methods: extremely unstable for different number of factors and large variance
e DID: omitted variable bias

= More credible economic conclusions with wi-PCA
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Appendix

Assumption: Observation Pattern of Control Panel Y
1. W is independent of F and ¢ (but can depend on . ¢ and /)
2. Overlap: the conditional observation probability P(W;; = 1|/;) > 1 >0
3. Sufficiently many observations: %Zf\l:l Wi >q>0and + S Wie>qg>0
for any i/, t
4. Conditional independence of cross-sectional missingness: W LI W|/; U I;s for

any | # j and t.s
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Appendix

We present the assumptions of a simplified factor model with two-way fixed effects

which captures the main insight of the general model
Assumption S1: Simplified Factor Model with Fixed Effects

There exists a constant M < co such that

1.
2.

Fixed effects: o "= (0,52) and E[o?|/]] < M. Furthermore, S, o = 0.

Factors: £, "~ (O Y r) and [£||F;||® < M for any t. Furthermore, Zt 1 Ft=0.

Loadings: A; s (0 Y A) and E[||A]|8]1;] < M for any /. Furthermore,
Zi:l A; =0, and for any t, N1 Zizl W,-t/\,-/\,- LN Y.+ with some positive
definite matrix > ;.

Idiosyncratic errors: ¢, """ (0.52) and E[¢§] < M.

Independence: «. &, F, A and e are mutually independent.
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Simulation Design

The data-generating process is
Yii = p+ i + & + AiF: + eie,
where 1 =1, o "5 N(0,1), Fe "5 N(0,1), A K N(0,1), and e "% AN(0,4), stationary and

non-stationary time fixed effects &;

e Stationary time fixed effects: &, "~ N(0,1)
e Non-stationary time fixed effects: & = 0.05¢ + A(0,1) for any t (include a time trend)

We compare the relative MSE (S: set of either observed, missing or all entries in Y')

Z(i. )es((-:' - Cft)2

relative MSEs =
Z r t €S C2

Three different observation patterns

e Missing-at-random
e Simultaneous treatment adoption

e Staggered treatment adoption
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Simulation Results

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)
&t S known unknown k=1 k=2 k=3 k=1 k=2 k=3
obs 0.055 0.055 0.360 0.147 0.088 - - - 0.270
S miss 0.056 0.056 0.377 0.157 0.093 - - - 0.283
all 0.055 0.055 0.364 0.149 0.089 - - - 0.273
obs 0.036 0.036 0.292 0.145 0.059 - - - 0.177
N miss 0.037 0.037 0.305 0.157 0.063 - - - 0.186
all 0.036 0.036 0.294 0.148 0.059 - - - 0.179

o wi-PCA is more efficient than PCA with kK =3
e PCA with k < 3 suffers from an omitted variable bias

e TWFE suffers from an an omitted variable bias
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Simulation Results

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

& S known unknown k=1 k=2 k=3 k=1 k=2 k=3
obs 0.064 0.069 0.369 0.156 0.104 0.372 0.161 0.110 0.283
S miss 0.108 0.105 0.414 0.210 0.165 0.412 0.204 0.152 0.314
all 0.077 0.079 0.383 0.172 0.122 0.384 0.174 0.122 0.292
obs 0.048 0.051 0.376 0.209 0.091 0.359 0.186 0.080 0.207
N miss 0.055 0.054 0.594 0.573 0.527 0.476 0.322 0.154 0.162
all 0.051 0.052 0.460 0.349 0.259 0.404 0.238 0.108 0.190
obs 0.054 0.050 0.362 0.132 0.088 0.363 0.131 0.086 0.283
S miss 0.083 0.079 0.431 0.325 0.213 0.440 0.310 0.176 0.206
all 0.058 0.055 0.371 0.159 0.106 0.373 0.157 0.100 0.271
obs 0.056 0.045 0.301 0.178 0.078 0.287 0.126 0.083 0.216
N miss 0.097 0.081 0.911 0.759 0.602 1.135 1.065 0.494 0.175
all 0.068 0.055 0.487 0.353 0.237 0.541 0.408 0.207 0.204

e wi-PCA is more efficient than block-PCA by using all the data
e PCA and block-PCA can suffer from the correlation between time trend and missing pattern

e TWEFE suffers from an an omitted variable bias



Simulation: Comparison of Confidence Intervals by Different Methods

e Bootstrapped variance with normal distribution has a better coverage than bootstrapped

distribution

Bootstrapped Variance Bootstrapped Distribution
with Normal Distribution

&t 95% 90% 80% 95% 90% 80%

S 95.0% 89.8% 80.0% 93.4% 88.6% 78.8%
N 95.0% 89.8% 80.0% 93.4% 88.6% 78.8%

S) 94.3% 89.2% 79.5% 92.4% 87.5% 80.4%
N 94.3% 89.2% 79.5% 92.4% 87.5% 80.4%

S} 94.1% 89.2% 78.1% 92.6% 87.2% 76.4%

N 94.1% 89.2% 78.1% 92.6% 87.2% 76.4%




Empirical Study: Synthetic Treatment Assignment with More Factors

Results for the uniformly random treatment pattern

| RMSEy  |Biasarr|  RMSEaTT

k=1 2.207 0.156 1.236
k=2 1.933 0.139 1.110
; k=3 2.012 0.158 1.179
wi-PCA
k=4 2.033 0.167 1.206
(FEtfactor model) | Z5 | 51026 0173 1.214
k=6 2.051 0.177 1.258
k=7 2.061 0.177 1.201
k=8 2.067 0.177 1.303
k=1 2,525 0.216 1.677
k=2 2.642 0.586 1.755
PCA t:3 2.952 0.979 2.032
=4 3.302 1.357 2.368
(factor model only) k=5 3’508 1637 5615
k=6 3.764 1.806 2.782
k=7 3.883 1.929 2.908
k=8 3.978 2.022 3.002
k=1 . . .
k=2 R - -
Block-PCA tfi - - -
(factor model only) k=5 B B B
k=6 - - _
k=7 R R -
k=8 - - R
IMWGE 2,576 0.218 1.604

(FE only)




Empirical Study: Synthetic Treatment Assignment with More Factors

Results for the simultaneous treatment adoption pattern

| RMSEy  |Biasarr|  RMSEaTT

k=1 | 2424 0.255 0.995
k=2 | 2,090 0.275 1.029
. k=3 1.942 0.262 1.056
wi-PCA
k=4 | 1009 0.284 1.084
(FEtfactor model) | Z5 | 1955 0.299 1138
k=6 | 2.006 0.299 1,166
k=7 | 2025 0.301 1177
k=8 | 2039 0.304 1184
k=1 | 2374 0.825 1.672
k=2 | 4605 3.760 4076
= k=3 | 5450 4190 45523
k=4 | 5123 4131 4459
(factor model only) k=5 5038 4138 4.467
k=6 | 5009 4147 4478
k=7 | 5005 4152 4483
k=8 | 5.012 4151 4482
k=1 | 2307 0.450 1.568
k=2 | 2246 0318 1128
k=3 | 2125 0.304 1176
Block-PCA
(factor modl only) k=4 | 2085 0.284 1218
—5 | 2037 0.289 1228
k=6 | 1968 0.282 1,209
k=7 | 1940 0.272 1,208
k=8 | 1.024 0.286 1,204
IMWGE 2.445 0.415 1.528

(FE only)




Empirical Study: Synthetic Treatment Assignment with More Factors

Results for the staggered treatment adoption pattern

| RMSEy  |Biasarr|  RMSEaTT

k=1 4.299 0.751 2.893
k=2 3.923 0.475 2.770
: k=3 4.097 0.574 2911
wi-PCA
k=4 4.185 0.642 2.985
(FEtfactor model) \ Z5 | 4241 0.692 3.068
k=6 4.270 0.733 3.102
k=7 4.289 0.735 3.114
k=8 4.278 0.726 3.096
k=1 5.004 1.445 4.119
k=2 6.766 4.472 5.430
PCA k=3 7.463 5.246 6.063
k=4 7.715 5.437 6.242
(factor model only) k=5 7704 5’558 6,369
k=6 7.900 5.647 6.467
k=7 7.985 5.719 6.539
k=8 8.016 5.764 6.580
k=1 4.877 0.902 3.884
k=2 7.163 1.256 5.114
k=3 5.934 1.035 4.212
Block-PCA
(factor model only) t:4 6.237 1.015 4.456
=5 6.243 1.009 4.434
k=6 6.359 1.008 4.521
k=7 6.617 1.039 4.731
k=8 6.725 1.034 4.793
A 4.603 0.593 3.498

(FE only)
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