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1 Introduction

Panel data with large cross-section and time-series dimensions are prevalent in the social sciences

and other disciplines. These large-dimensional panels often have missing observations. A growing

literature is developing methods for imputing missing observations. A common approach is to

assume an approximate latent factor structure. For these large panels, it is possible to leverage

the large cross-section and time-series dimensions to obtain accurate imputation and develop the

inferential theory for imputed values. A key application for the inference of the imputed values is

causal inference, where the unobserved counterfactual outcomes can be modeled as missing values.

Most existing imputation methods based on factor models with entry-wise inferential theory are

designed for stationary panels or require restrictive assumptions on the missing patterns.1 However,

in many applications, the panel data are non-stationary. For example, in the evaluation of the

tobacco control program in Abadie, Diamond, and Hainmueller (2010), the tobacco consumption

across states has a common declining trend. The conventional approach of differencing the time

series to deal with common trends is generally not feasible with missing data. A commonly used

solution is to control for general time fixed effects, which can capture a common time trend, seasonal

fluctuations, or a common break in the mean. Moreover, missing patterns can be complex and

depend on unit and time fixed effects. For example, due to a common break in the mean of a panel,

specific units can have more missing observations. The inclusion of two-way fixed effects and the

dependency of the missing pattern on fixed effects is particularly relevant for applications in causal

inference. For example, the public perception of tobacco can vary for states and over time (modeled

by two-way fixed effects), which affects both the tobacco consumption (outcome) and the adoption

of tobacco control program (treatment).

In this paper, we study the imputation and inference for large panels with an approximate latent

factor structure and general two-way fixed effects. Our novel approach is one of the most general

models for data generation and for the missing pattern in the factor model literature. The time

fixed effects are not restricted and can be non-stationary processes. The general missing pattern

can depend on the loadings of the latent factors (i.e. latent confounders) and both dimensions of
1This includes, among others, Chen, Fan, Ma, and Yan (2019), Xia and Yuan (2021), Jin, Miao, and Su (2021),

Bai and Ng (2021), Cahan, Bai, and Ng (2023), Xiong and Pelger (2023), Duan, Pelger, and Xiong (2023), and
Chernozhukov, Hansen, Liao, and Zhu (2023).
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the two-way fixed effects.

We develop a novel method, namely Within-Transform principal component analysis (wi-PCA),

to estimate a latent factor model with two-way fixed effects from a (non-stationary) panel, and to

impute the missing observations. Our wi-PCA is simple to implement. Importantly, it is applicable

to many relevant observation patterns, including missing-at-random, block-missing, and mixed-

frequency patterns, while allowing the missingness to depend on the model itself. The estimation

follows two steps. In the first step, wi-PCA estimates unit and time fixed effects by carefully

weighting the time-series and cross-sectional outcomes, respectively, where the weighting scheme

depends on the observation pattern. The within-transformation is then applied to the data using the

estimated fixed effects. In the second step, wi-PCA estimates the latent factor structure by applying

a generalization of PCA to a re-weighted covariance matrix estimated from within-transformed

data. Our wi-PCA imputes the missing observations with the plug-in estimator that combines the

estimated two-way fixed effects and factor model. Separating the estimation of fixed effect from

the latent factor component is crucial for three reasons: (1) it allows for non-stationary time fixed-

effects, (2) the missingness can depend in a general way on the two-way fixed effects, and (3) it is

generally more efficient than subsuming fixed effects by latent factors.

We show the consistency and asymptotic normality for the estimated factor model and imputed

values from wi-PCA under general assumptions on the approximate factor model and observation

patterns. Developing the inferential theory for wi-PCA is highly non-trivial for two reasons. First,

it is challenging to estimate the fixed effects when the missing patterns depend on their values.

Conventional estimators for fixed effects, such as simple averages of cross-sectional or time-series

outcomes, are generally inconsistent in these cases. Second, the estimation error of the two-way

fixed effects carries over to the estimation error of the latent factor model, and both estimation

errors vary with the observation patterns. Hence, deriving the inferential theory requires a careful

and comprehensive analysis of all the error terms.

A key application of our model and asymptotic theory is causal inference in panels. The unob-

served counterfactual outcome can naturally be formulated as a missing observation problem. We

derive test statistics for unit-specific treatment effects in a panel. Given the asymptotic normality

of our estimator, we develop a bootstrap procedure to obtain a feasible variance estimator and con-

fidence intervals for the estimated treatment effects. The generality of the missing patterns maps
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into general observational treatment patterns. Special cases of our estimator relate to commonly

used methods in causal inference. With only the two-way fixed effects (and without the latent factor

model), our estimator simplifies to a form of difference-in-difference estimator. With only a latent

factor model, our estimator can be interpreted as a data-driven method to obtain synthetic con-

trols for simultaneous, staggered, or other treatment adoption patterns, where latent factor loadings

serve as unobserved confounders to construct weighted averages of similar units. The combination

of both components and the more general treatment patterns pushes the boundary for inference in

causal panels.

Our work contributes to three streams of literature: large dimensional factor modeling, missing

data imputation for large panels, and causal inference. First, our work builds on the literature

on large dimensional factor modeling. There has been substantial progress in this literature since

the pioneering work by Bai and Ng (2002) for estimating the number of factors and by Bai (2003)

for developing the inferential theory of the estimated latent factor model. The progress includes,

but is not restricted to, the estimation of large covariance matrices (Fan, Liao, and Mincheva,

2013), the identification and estimation of more general models, such as models with additive and

interactive effects and common slope coefficients (Bai, 2009), models with weak factors and factor

loadings (Onatski, 2012; Lettau and Pelger, 2020; Bai and Ng, 2023), models with time-varying

factor loadings (Su and Wang, 2017; Pelger and Xiong, 2021b; Urga and Wang, 2022), and the

estimation of interpretable latent factors (Pelger and Xiong, 2021a).

Our work is the most closely related to the recent work on the estimation and inference of

factor models from large panels with missing observations. The wi-PCA accommodates general

observation patterns, complementing the methods developed by Chen, Fan, Ma, and Yan (2019),

Xia and Yuan (2021), Jin, Miao, and Su (2021), and Chernozhukov, Hansen, Liao, and Zhu (2023)

for missing-at-random,2 Xu (2017), Bai and Ng (2021), Cahan, Bai, and Ng (2023), and Choi and

Yuan (2023) for general block-missing patterns,3 and Ng and Scanlan (2024) for mixed-frequency

patterns.4 Our wi-PCA builds on Xiong and Pelger (2023) and Duan, Pelger, and Xiong (2023) that
2Chen, Fan, Ma, and Yan (2019), Xia and Yuan (2021), and Jin, Miao, and Su (2021) assume a homogeneous

missing probability, while Chernozhukov, Hansen, Liao, and Zhu (2023) allow for heterogeneous missing probabilities
in either the cross-sectional or time dimension, but not both.

3General block-missing patterns require blocks of fully observed entries, which include the missing patterns implied
by simultaneous and staggered treatment adoptions of causal panels.

4Chen, Fan, Ma, and Yan (2019), Athey, Bayati, Doudchenko, Imbens, and Khosravi (2021), Xia and Yuan (2021),
Chernozhukov, Hansen, Liao, and Zhu (2023), and Choi and Yuan (2023) analyze the low-rank matrix estimator
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already allow for general observation patterns, but makes two challenging generalizations. First, it

allows for non-stationary two-way fixed effects in the outcomes, and, second, the missing patterns

can depend on the time trends in addition to the cross-sectional (latent) characteristics of units.

Hence, this is a strict generalization of the data generating process and the missing patterns. These

two generalizations require new arguments to prove the theoretical results. However, these two

generalizations make wi-PCA more broadly applicable, and are particularly important for causal

inference in panels.

We conduct extensive simulations to demonstrate the superior performance of wi-PCA over

benchmark approaches. We identify two cases, where an imputation that uses only a latent factor

model, is particularly problematic. First, we show when the data generating process has non-

stationary fixed effects, PCA on missing data can fail, while wi-PCA provides accurate out-of-

sample imputed values. Hence, a latent factor model cannot compensate for fixed effects, and we

need our more general model. Second, if the missingness itself depends on the fixed effects (even

when those are stationary), wi-PCA also strongly outperforms PCA type approaches. Lastly, even

for stationary panels when the fixed effects are subsumed by latent factors, it is more efficient to

directly estimate the fixed effects.

In our empirical study, we use wi-PCA for an application in causal inference: the policy effect of

legalizing marijuana on beer sales studied in Li and Sonnier (2023). We demonstrate that our general

model is more accurate and can lead to fundamentally different economic conclusions compared to

using special cases of it. Common approaches used in the literature are a difference-in-difference

estimator (which is a special case of wi-PCA without the latent factor model) or a form of synthetic

controls based only on a latent factor model (which is a special case of wi-PCA without the two-way

fixed effects). We show that omitting the fixed effects or latent factors results in spurious significance

of treatment effects as well as too large treatment effects. Our results illustrate the importance of

our general estimator for estimating more credible policy effects and making more reliable policy

recommendations.

from a convex optimization problem using a nuclear norm regularization (Mazumder, Hastie, and Tibshirani, 2010;
Negahban and Wainwright, 2011, 2012). Athey, Bayati, Doudchenko, Imbens, and Khosravi (2021) also demonstrate
that it improves the accuracy to estimate two-way fixed effects separately from a low rank component. Jin, Miao,
and Su (2021) provide the inferential theory for the estimated factor model with the expectation-maximization (EM)
algorithm (Stock and Watson, 2002; Bańbura and Modugno, 2014). Bai and Ng (2021) and Cahan, Bai, and Ng
(2023) provide the inferential theory for the factor-based imputed values.
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The rest of the paper is organized as follows. Section 2 introduces the model setup, while Section

3 proposes the wi-PCA estimator. Sections 4 formalizes the assumptions on the approximate factor

model with two-way fixed effects, and provides the asymptotic results for our estimator. Section 5

shows a key application of our estimator to estimate the treatment effects in causal inference and

provides feasible bootstrap estimators for the asymptotic variance. Section 6 discusses the extension

of including observables in our model. Section 7 demonstrates in simulations the good performance

of wi-PCA compared to the benchmarks and Section 8 revisits a case study in causal inference.

Section 9 concludes the paper. The Internet Appendix collects the proofs and additional empirical

and simulation results.

2 Model Setup

2.1 Model

Assume we partially observe a large dimensional panel Y ∈ RN×T , where both N and T are

large. We aim to impute the missing observations in Y and provide entrywise inferential theory for

the imputed values. We work under the assumption that Y can be well approximated by two-way

fixed effects and k common latent factors:5

Yit = µ+ αi + ξt + Λ⊤
i Ft + ϵit , i = 1, · · · , N, t = 1, · · · , T . (1)

Here, Yit denotes the outcome of unit i at time t, µ is the grand mean, αi is the fixed effect of unit

i, ξt is the time fixed effect at time t, Ft is a k-dimensional vector of latent factors at time t, Λi is

a k-dimensional vector of unit i’s loadings, and lastly ϵit is the unit i’s idiosyncratic error at time

t. We define the common component as the combination of the two-way fixed effects and the latent

factor model:

Cit = µ+ αi + ξt + Λ⊤
i Ft .

The goal of our paper is to estimate Cit for all i and t, and to use the estimated Cit to impute Yit

when it is unobserved.
5We assume k is known. In practice, k can be determined by cross-validation arguments as discussed in more

detail in Section 6.
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Note that the fixed effects can be included as additional latent factors in the factor model. More

specifically, the fixed effects µ+ αi + ξt can be written as a two-factor model with (1, ξt) as factors

and (µ+ αi, 1) as loadings. Combining µ+ αi + ξt with Λ⊤
i Ft, we can reformulate model (1) as an

approximate factor model with k + 2 common factors

Yit = ΛFE
i

⊤
FFE
t + ϵit ,

where ΛFE
i

⊤
= (µ+ αi, 1,Λ

⊤
i ) and FFE

t
⊤
= (1, ξt, F

⊤
t ) .

However, separating the fixed-effects from the latent factor structure is important for three

reasons. First, it allows for data with common non-stationary time patterns as the time-series

fixed effects in our model can be almost arbitrary. These time patterns can be a common unit-

root process, common seasonality or common structural breaks. Without separating the time-series

fixed effects for non-stationarity data, the limit of the time-series average of FFE
t FFE

t
⊤ does not

exist for T going to infinity, invalidating the commonly made assumptions for consistent estimation

of latent factor models. For fully observed data Y , certain non-stationarities can be removed by

transformations, for example, by taking the first differences between consecutive periods to remove

a common unit root process. However, with missing data, for example missing-at-random, such

transformations might not be feasible. We address this problem by separating ξt from Ft, and using

a different estimation approach that can allow for arbitrary non-stationary time trends in ξt.

Second, model (1) allows for broader empirical applications where the observation patterns (and

treatment adoptions) depend on both (endogenous) cross-sectional and temporal information. For

example, in our empirical study of the effect of legalization of marijuana in different U.S. states, the

adoption might become more likely over time due to changes in the public opinion or federal law. At

the same time, public awareness might be heterogeneous among states. Hence, the adoption pattern

can depend endogenously on state and time fixed effects. However, when the model is written as

an interactive latent structure ΛFE
i

⊤
FFE
t and is estimated by applying a version of PCA, Xiong

and Pelger (2023) show that for identification reasons, the observation patterns can only depend

on either ΛFE
i or FFE

t , but not on both. By separating αi and ξt from Λ⊤
i Ft and treating them

differently in the estimation procedure, we can allow for more general observation patterns that can

depend on both αi and ξt, and either Λi or Ft, and hence can be endogenous in both dimensions.
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Figure 1: Examples of observation patterns

(a) Missing-at-random (b) Simultaneous adoption (c) Staggered adoption (d) Switchback

These figures show examples of important patterns of missing observations. The shaded entries indicate observed
entries, whereas the unshaded entries indicate missing entries. Time is on the horizontal axis.

Lastly, estimating the fixed effects separately from the latent factors is more efficient. Even for

stationary panels when fixed effects are subsumed by latent factors, the direct estimation is more

precise as less parameters have to be estimated.

2.2 Observation Patterns

We allow for the most general assumptions on missing patterns in this literature. In order

to provide some intuition, Figure 1 illustrates important examples. The first example represents

missing-at-random, which is conceptually the simplest case. In this case, the probability of observing

an entry does not depend on the outcome variable or whether other entries are observed. The second

and third cases show observation patterns that commonly occur in causal inference applications.

For both, the simultaneous adoption and staggered adoption settings, a unit stays treated for all

periods after adopting the treatment, that is, missingness depends on prior missingness. The last

pattern shows the observation pattern of the global control panel when the treatment can be turned

on and off. This pattern occurs in “switchback experiments” that are commonly used in digital

platforms to test changes to algorithms and products (Xiong, Chin, and Taylor, 2024).

The observation pattern in Y is captured by the random variables W ∈ {1, 0}N×T , where

Wit = 1 denotes that Yit is observed while Wit = 0 implies missing values. Assumption 1 for-

mally states the assumptions on the missing pattern. The probability of observing entry Yit can

depend on a very general conditioning set denoted by Iit. We allow this conditioning set Iit to be

{α1, · · · , αN ,Λ1, · · · ,ΛN , ξ1, · · · , ξt}, that is, the observation pattern can depend on all unit and

time fixed effects and all loadings. A special case of the conditioning set is {αi,Λi, ξ1, · · · , ξt}, where

the probability that Yit is observed depends on unit i’s unit fixed effect and factor loadings, as well
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as time fixed effects up to time t. As discussed in Xiong and Pelger (2023), the assumptions on the

factors and loadings can be switched, and hence the observation pattern can depend on the factors

instead of the loadings, but not on both. The prior literature only allows general dependencies on

the endogeneity in either the unit or time dimension, but through the fixed effects, we allow for

complex dependencies in both dimensions.

Assumption 1 (Observation Patterns). The conditioning set Iit can be any subset (including the

complete set) of {α1, · · · , αN ,Λ1, · · · ,ΛN , ξ1, · · · , ξt}.6

1. The observation pattern W is independent of the factors F and idiosyncratic errors ϵ.

2. There exists a positive constant η such that, for any i and t, the conditional observation

probability pit := P(Wit = 1 | Iit) ∈ [η, 1]. For any W , there exists a positive constant q such

that N−1
∑N

i=1Wit ≥ q and T−1
∑T

t=1Wit ≥ q for any i and t.

3. For any i and j satisfying i ̸= j and any t and s, Wit and Wjs are independent conditional

on Iit and Ijs.

Assumption 1.1 requires W to be independent of F and ϵ, but allows for arbitrary dependency

on α, Λ and ξ. As we allow W to depend on both α and ξ, our setup is more general than

prior literature (such as Xiong and Pelger (2023)) which allows for the dependence on either the

endogenous cross-sectional or temporal information, but not both.

Assumption 1.2 assumes that each entry has a non-zero probability of being observed. The non-

zero probability avoids the extrapolation problem when using information in the observed entries

to impute missing entries. Essentially, the partially observed data needs to be sufficient to learn the

underlying latent structure. The assumption implies that for N and T going to infinity, the fraction

of observed entries for each time period t and each unit i are proportional to N and T , respectively.

This assumption can be relaxed at the cost of more complex notation, but without changing the

conceptual insights.

Assumption 1.3 allows for arbitrary time-series dependencies in the observation patterns, and

hence includes complex staggered adoption as well as switchback designs. The assumption only

assumes conditional independence of the observation pattern across units, but does not restrict
6The conditioning set Iit can also include observables, which we discuss in Section 6. Here we focus on the

conceptual challenge of incorporating latent components within this set.
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the time dependency for each unit. Specifically, whether Yit is observed can depend on whether

Yi1, · · · , Yi,t−1 are observed. This, therefore, accommodates all the examples shown in Figure 1.

The assumption of conditional independence across units is needed for the purpose of identification.

This results in an asymmetry of the assumptions on observation patterns between the cross-sectional

and time-series dimensions.

3 Within-Transform-PCA (wi-PCA)

In this section, we introduce our novel estimator, namely Within-Transform-PCA or, in short,

wi-PCA, to estimate each term and the common component Cit in model (1). Our wi-PCA approach

consists of two steps. First, we estimate the grand mean and two-way fixed effects with a within

transformation. Second, as the name suggests, we estimate the latent loadings and factors by

applying a modification of PCA to the “within transformed” data, where fixed effects are removed

using the estimates from the first step. The estimation procedure in each step is carefully designed

to account for the complex dependency between the observation pattern and the data generating

process. This careful design is crucial for estimating Cit and imputing missing entries consistently

and without bias.

3.1 Estimation of Grand Mean and Fixed Effects

In the first step, wi-PCA estimates the grand mean µ and two-way fixed effects αi and ξt for

all i and t. The estimator takes a weighted average of the observed entries in Y across different

dimensions. The fundamental challenge of fixed effect estimation is how to properly weight the

entries in these averages. The estimator takes the following form:

µ̃ =

N∑

i=1

T∑

t=1

Mµ
itYit ,

ξ̃t =
N∑

i=1

M ξ
itYit − µ̃ ,

α̃i =

T∑

t=1

Mα
it(Yit − ξ̃t)− µ̃ ,

(2)
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where Mµ
it, M ξ

it and Mα
it are the weights of unit i at time t in the estimation of µ, ξt, and αi,

respectively.

Note that the weighted averages for the time and unit fixed effects take a different and asym-

metric form. Specifically, we have to remove ξt in the estimation of αi, but not vice versa. The

cancellation of ξt in α̃i is necessary because we allow the observation patterns to be arbitrarily

dependent in the time dimension, such as simultaneous or staggered adoption patterns. Without

removing ξt, α̃i could be biased. We show an example in Appendix A. In contrast, as the obser-

vation patterns in the cross-sectional dimension are conditionally independent, αi does not have to

be removed in ξ̃t, as long as M ξ
it is chosen appropriately. We will discuss this aspect in more detail

below.

The most critical component of the estimators is the choice of weights Mµ
it, M

ξ
it and Mα

it . Our

objective is to choose the weights such that µ̃+ α̃i + ξ̃t is a consistent estimator of µ+ αi + ξt. As

we are primarily interested in estimating the common components, obtaining the consistency for

the sum of grand mean and two-way fixed effects is sufficient. When all entries in Y are observed,

the natural choice is

Mµ
it =

1

NT
, M ξ

it =
1

N
, Mα

it =
1

T
.

However, when Y has missing entries and the missing patterns depend on αi and ξt themselves,

the weights need to be chosen carefully. Naturally, the weights should satisfy two requirements.

First, as we can only use the observed entries in the estimation, the weights for the missing entries

have to be set to zero. Second, a necessary requirement for the weights is that the sum µ+ αi + ξt

can be consistently estimated. This imposes further conditions on the weights. We can identify

these conditions by analyzing the estimation error of µ̃+ α̃i + ξ̃t :

µ̃+ α̃i + ξ̃t − (µ+ αi + ξt)

=
T∑

s=1

Mα
is

(
Λ⊤
i Fs + ϵis

)
−

T∑

s=1

Mα
is

N∑

j=1

M ξ
js

(
αj + Λ⊤

j Fs + ϵjs

)
+

N∑

j=1

M ξ
jt

(
αj + Λ⊤

j Ft + ϵjt

)
.

Note that the weight Mµ
it is canceled out in the estimation error of µ̃+ α̃i+ ξ̃t. Therefore, as long

as we are only concerned about the estimation of µ+αi+ξt, there are no constraints on Mµ
it and the
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estimation of αi and ξt subsumes the estimation of µ without further identification assumptions. We

impose the normalization that the weights sum up to one, that is,
∑N

i=1

∑T
t=1M

µ
it = 1,

∑N
i=1M

ξ
it =

1, and
∑T

t=1M
α
it = 1. Without loss of generality, we use

Mµ
it =

Wit∑T
s=1

∑N
j=1Wjs

,

that is, we estimate the grand mean µ by averaging Yit over all the observed entries.

Next, we provide feasible choices of Mα
it and M ξ

it, which ensure that the estimation error of

µ̃+ α̃i + ξ̃t is op(1). First, we suggest to set Mα
it as

Mα
it =

Wit∑T
s=1Wis

. (3)

This choice of weights simply estimates the unit fixed effect αi by averaging Yit− ξ̃t−µ̃ over the time

periods t where unit i is observed. Importantly, this average is taken after removing the time fixed

effects. As Ft and ϵit can be normalized to have mean zero in the presence of ξt and are assumed

to be independent of W , the first term in the decomposition is op(1) .

The most challenging problem is to specify the weights M ξ
it in a way such that αi and Λi can

be averaged out. As W can depend on αi and Λi in a complicated way, there does not exist a

weight that works for all observation patterns. In other words, the weights M ξ
it have to be specified

depending on the missing pattern. We provide the weights M ξ
it for three important cases, which are

summarized in Table 1. These three cases altogether cover the examples of observation patterns

shown in Figure 1 with known or unknown observation probabilities. In the first two cases, we

leverage the structure of the known or unknown observation probabilities to construct weights M ξ
it.

In the third case, we leverage the structure in observation pattern (e.g., simultaneous or staggered

adoption) to construct weights M ξ
it. We provide a detailed discussion of the three cases in the

following, and formalize the assumptions for the three cases in Assumption 4 in Section 4.1.

Case 1 – Known Observation Probability

When the observation probabilities pit = P(Wit = 1 | Iit) are known, for example, when Y is

11



Table 1: Summary of different cases and their corresponding weights M ξ
it

Description Observation patterns Mξ
it

Case 1 Known pit Mξ
it =

(∑N
j=1

Wjt

pjt

)−1
Wit

pit

Case 2
Short-term dependency

in missingness with
factor structure

Mξ
it =

(∑N
j=1

Wjt

W̄j,·

)−1
Wit

W̄i,·

Case 3 Monotone missingness Mξ
it = N−1

c I(i ∈ Nc)

This table provides three important cases and our solutions for selecting the weights Mξ
it for each of them. The first

case assumes that the observation probabilities pit are known, and the last two cases allow for unknown observation
probabilities. The second case assumes that the probabilities pit can be factorized into a one-factor model as
pit = uivt with ui, vt ∈ [η, 1], and Wit can depend on Wis only when time t and s are sufficiently close (i.e., short-
term dependency) for any i. The third case assume monotone observation patterns, and we denote by Nc and Nc

the set and number of the fully observed units.

the experimental data in a design-based settings, we can set M ξ
it as

M ξ
it =




N∑

j=1

Wjt

pjt




−1

Wit

pit
. (4)

The resulting estimator ξ̃t in Equation (2) is the Hajek estimator of ξt. We propose to use the Hajek

estimator in this case because it is generally more efficient than the Horvitz-Thompson estimator

(i.e., M ξ
it = N−1Wit/pit). Intuitively, by weighting the observed entries with the inverse observation

probability, we adjust for dependency in the observation pattern, and it can be treated similarly to

missing-at-random.

Case 2 – Unknown Observation Probability: Short-Term Dependency in Missingness

with Factor Structure

For most applications, the observation probabilities pit are unknown. But if we can consistently

estimate pit, then we can still use the estimator in Equation (4) with pit replaced by p̂it. Here we

provide important examples when pit can be consistently estimated.

The simplest example is missing-completely-at-random, that is each entry is observed with the
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same but unknown probability p, independent of whether other entries are observed and independent

of Y . Then the fraction of observed entries p̂ = (NT )−1
∑

j,sWjs is a consistent estimator of p for

all i and t. A more general example is that the unknown probability is time-dependent but the same

for different units. Then p̂t = N−1
∑

j Wjt is a consistent estimator of pt for all i. The symmetric

example where the probability is unit-dependent but constant in time can be analyzed analogously.

The most challenging case is when the unknown probability varies with both units and time.

If we do not impose any structure on pit, then each pit only has one observation Wit, and it is

not possible to consistently estimate it. To make progress on this problem, we provide sufficient

conditions below, under which pit can be consistently estimated.

Specifically, the sufficient conditions consist of two assumptions, one directly on the observation

probability pit and another one on the time-series dependency of W . The first assumption is that pit

can be factorized into a one-factor model as pit = uivt with ui, vt ∈ [η, 1]. The second assumption

is that for any i and t, Wit can depend on Wis only when time t and s are sufficiently close (i.e.,

short-term dependency). Under these two conditions, we can estimate the observation probability

up to a scaling constant using the time series average of Wit, and construct the weight M ξ as

M ξ
it =




N∑

j=1

Wjt

W̄j,·




−1

Wit

W̄i,·
. (5)

Under mild assumptions specified in Assumption 4, we can show that this weight yields consistent

µ̃+ α̃i + ξ̃t.

The one-factor model assumption in the observation probability seems to be a reasonable ap-

proximation for many practical problems. It has been imposed in a number of papers, such as

Negahban and Wainwright (2012) and Chen and Bayati (2021), and has been shown to perform

well in completing a low-rank matrix. In simulations, we also find that using multiple factors in

the observation probability does not improve the imputation accuracy. We note that it is possible

to generalize the one-factor model assumption. For example, we can allow for multiple factors at

the expense of a more complicated notation. Alternatively, we can split the panel into sub-panels,

where the observation probabilities for each sub-panel can be modeled by a different one-factor

model. However, as mentioned before, the one-factor model in the observation probability already

performs very well in many practical problems.
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Case 3 – Unknown Observation Probability: Monotone Missingness

Simultaneous and staggered adoption are important treatment patterns in causal inference.

These observation patterns have a monotone structure, that is, once a unit is treated it stays

treated, which implies a long-term time dependency in missingness. The previous Case 2 assumes

a short-term dependency in the missingness, which would not apply to these patterns. Here we

propose weights M ξ
it for the case of monotone observation patterns, that is, for patterns where

either Wi1 ≤ Wi2 ≤ · · · ≤ WiT or Wi1 ≥ Wi2 ≥ · · · ≥ WiT holds for all i. Our solution can be

applied for simultaneous or staggered treatment patterns.

In this case, the time fixed effects are weighted averages over the units that are observed for all

times, which correspond to the fully observed block in simultaneous or staggered treatment patterns.

Taking averages over the same cross-sectional units allows us to accommodate observation patterns

that depend on the time fixed effects. Assumption 1.2 implies that there are at least qN units that

are fully observed for all times. We denote by Nc and Nc the set and number of these units. We only

assign non-zero weights to these fully observed units and simply take the cross-sectional average of

these units for each time t, resulting in the following weight M ξ
it:

M ξ
it =





N−1
c if unit i is observed for all times t = 1, · · · , T

0 otherwise .
(6)

Under mild moment conditions stated in Assumption 4, we can show that with this weight µ̃+α̃i+ ξ̃t

is a consistent estimator of the fixed effect component.

The conventional difference-in-difference (DID) is a special case of our estimator. If we only

estimate the fixed effect component without a latent factor structure, our estimator simplifies to

C̃it = µ̃+ α̃i + ξ̃t =
1

Nc

∑

j∈Nc

Yjt +

(
T∑

s=1

Wis

)−1 T∑

s=1

Wis


Yis −

1

Nc

∑

j∈Nc

Yjs




=

(
T∑

s=1

Wis

)−1 T∑

s=1

WisYis

︸ ︷︷ ︸
pretreatment average of unit i

+
1

Nc

∑

j∈Nc


Yjt −

(
T∑

s=1

Wis

)−1 T∑

s=1

WisYjs




︸ ︷︷ ︸
averaged difference among control units

.

This is equivalent to the DID estimator that uses the control units to estimate the time trend for
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each treated unit. In this sense, our wi-PCA is a strict generalization of the DID estimator by

including latent factors in addition to the DID estimator.

3.2 Estimation of Latent Factor Model

After having estimated the fixed effect component, we estimate the latent factor structure in the

second step. As suggested by the name of wi-PCA, we apply PCA to the within-transformed data

to estimate the factors and loadings. As we have missing observations, we have to modify PCA to

account for the missingness.

In more detail, we first transform the observed panel Yit by subtracting the first-stage estimators,

and obtain the within-transformed data Ẏit:

Ẏit = Yit − µ̃− α̃i − ξ̃t .

This transformed data has an approximate factor structure

Ẏit = Λ⊤
i Ft + ϵ̇it

with a new idiosyncratic error term ϵ̇it = ϵit+(µ+αi+ ξt)− (µ̃+ α̃i+ ξ̃t). Since Ẏit shares the same

latent factor model and observation pattern as Yit, we can estimate Ft and Λi from Ẏit . The main

challenge is that the new idiosyncratic errors ϵ̇it include the estimation error from the first step,

which then carries over to the estimation of Ft and Λi. Hence, the usual assumptions of PCA-based

factor model estimation do not directly apply, and we need to carefully account for the estimation

error from the first step.

For the special case when Ẏ ∈ RN×T is fully observed, we can estimate the loadings Λ with PCA

applied to the cross-sectional sample second-moment matrix Ẏ Ẏ ⊤/T . The factors are estimated by

regressing Ẏ on the estimated loadings. The problem is more complicated for partially observed

panels and requires to modify the PCA estimator.

For the general case when Ẏ has missing observations, we adopt the all-purpose estimator

proposed in Xiong and Pelger (2023). Specifically, we first estimate the cross-sectional sample

second-moment matrix, denoted by Σ̃, from the partially observed panel. Essentially, we use the
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times when two units are observed together to estimate their covariance. We define Qij := {t :

Wit = Wjt = 1} to be the set of time periods when both units i and j are observed. Then, we

estimate the (i, j)-th entry of Σ̃ using the time observations in Qij :

Σ̃ij =
1

|Qij |
∑

t∈Qij

ẎitẎjt .

Next, we apply PCA to Σ̃ to estimate Λ. Under the standard identification assumption Λ̃⊤Λ̃/N = Ik,

the estimated loadings Λ̃ are
√
T times the eigenvectors of the k largest eigenvalues of Σ̃/N . Lastly,

we estimate the factors from a weighted regression on the loadings for every time period t, that is,

F̃t =

(
N∑

i=1

WitΛ̃iΛ̃
⊤
i

)−1( N∑

i=1

WitΛ̃iẎit

)
.

Finally, we estimate the common components of Y with the plug-in estimator

C̃it = µ̃+ α̃i + ξ̃t + Λ̃⊤
i F̃t ,

and use C̃it to impute the missing observations in Y .

4 Inferential Theory

In this section, we present the asymptotic results of our wi-PCA estimator. We first lay out the

assumptions on the factor model and two-way fixed effects in Section 4.1. Sections 4.2 and 4.3 show

the consistency and asymptotic normality results for wi-PCA.

4.1 Assumptions

We state the necessary assumptions on the approximate factor model and fixed effects for the

consistency of our wi-PCA estimator. When the panel is fully observed, the assumptions on the

approximate factor model in Assumption 2 are identical to those in Bai and Ng (2002) and Bai

(2003). In the presence of missing observations, Assumption 2 is identical to the corresponding

assumption in Xiong and Pelger (2023).

Assumption 2 (Factor Model). There exists a constant M < ∞ such that
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1. Factors: E[∥Ft∥4] ≤ M for any t. There exists a positive definite k × k matrix ΣF such that

T−1
∑T

t=1 FtF
⊤
t

p→ ΣF and E
∥∥∥
√
T (T−1

∑T
t=1 FtF

⊤
t − ΣF )

∥∥∥
2
≤ M . Furthermore, for any set

Qij, |Qij |−1
∑

t∈Qij
FtF

⊤
t

p→ ΣF and E
∥∥∥
√
|Qij |(|Qij |−1

∑
t∈Qij

FtF
⊤
t − ΣF )

∥∥∥
2
≤ M .

2. Loadings: E[∥Λi∥4] ≤ M for any i. There exist positive definite k × k matrices ΣΛ and ΣΛ,t

such that N−1
∑N

i=1 ΛiΛ
⊤
i

p→ ΣΛ and N−1
∑N

i=1WitΛiΛ
⊤
i

p→ ΣΛ,t for any t.

3. Idiosyncratic errors:

(a) E[ϵit] = 0,E[ϵ8it] ≤ M .

(b) E [ϵisϵit] = γi,st with |γi,st| ≤ γst for some γst, and
∑T

s=1 γst ≤ M for all t.

(c) E [ϵitϵjt] = τij,t with |τij,t| ≤ τij for some τij, and
∑N

j=1 τij ≤ M for all i.

(d) E [ϵitϵjs] = τij,ts and
∑N

j=1

∑T
s=1 |τij,ts| ≤ M for all i and t.

(e) For all i and j, E
[
|Qij |−1/2

∑
t∈Qij

(ϵitϵjt − E [ϵitϵjt])
]4

≤ M .

4. Dependence: Loadings are independent of factors and idiosyncratic errors. There is weak

dependence between factor and errors: E
∥∥∥|Qij |−1/2

∑
t∈Qij

Ftϵit

∥∥∥
2
≤ M for all i and j.

Assumption 2.1 ensures that all the factors have nontrivial contributions to the variation in

Y . Assumption 2.2 states that all the factors are strong, and the factor loadings of the observed

units are systematic. Assumption 2.3 allows the idiosyncratic errors to be weakly correlated in both

the cross-sectional and time series dimensions. This assumption implies bounded eigenvalues of

the error covariance matrix. Assumption 2.4 allows the factors and errors to be weakly correlated,

but we assume that the loadings are independent of the factors and errors. This is a necessary

assumption on the observation pattern to be also independent of factors and errors. In summary,

these are the standard assumptions in the literature on approximate factor models.

As our model includes the two-way fixed effects, we need additional assumptions to identify and

consistently estimate the fixed effects and factor model.

Assumption 3 (Additional Assumptions on Fixed Effects and Factor Model).

1. Fixed effects: Fixed effects are independent of factors and errors, and E[α4
i ] ≤ M for any i.

2. Identification assumptions:
∑N

i=1 αi = 0,
∑T

t=1 ξt = 0,
∑N

i=1 Λi = 0 and
∑T

t=1 Ft = 0.

3. Additional moment conditions: (1) T−2
∑T

s,t,y,z=1 |E[Ft,pFs,qFy,rFz,h]| ≤ M for any p, q, r, h.

(2) E[ϵisϵitϵiyϵiz] = γi,styz with |γi,styz| ≤ γstyz for some γstyz, and T−2
∑T

s,t,y,z=1 γstyz ≤ M .

(3)
∑T

s=1 ∥E[Fsϵit]∥ ≤ M and
∑N

j=1 ∥E[Ftϵitϵjt]∥ ≤ M for any i, t.
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Assumption 3 collects the additional assumptions arising from including fixed effects in the

model. First, Assumption 3.1 ensures that the unit fixed effects have bounded fourth moments.

Importantly, for time fixed effects, we do not impose restrictions on their dynamics and allow them

to follow arbitrary non-stationary stochastic processes.7 Assumption 3.2 imposes an identification

condition. If we only want to draw inferences on the common component, we do not need this

identification assumption. However, if we want to make inference separately on the fixed effect

component, loadings and factors, we need to impose an identification assumption to uniquely sepa-

rate the different elements. Our identification assumption assigns the non-zero mean of factors and

loadings to the fixed effect structure. Assumption 3.3 imposes additional mild higher moment con-

ditions. We assume weak time-series dependencies between the different factors and idiosyncratic

error terms. This allows for a broad range of stochastic processes, for example, causal autoregressive

processes.

Next, we formally state the assumptions for the three different cases of the observation pattern

of the wi-PCA estimator that we have introduced in Section 3:

Assumption 4. We assume one of the following cases holds:

• Case 1: The observation probability pit is known.

• Case 2: The observation probability pit can be factorized into a one-factor model as pit = uivt

with ui, vt ∈ [η, 1], and the time series average v̄ = limT→∞ T−1
∑T

t=1 vt exists and v̄ =

T−1
∑T

t=1 vt+O(T−1/2). Furthermore, there exists a constant c such that Wit ⊥⊥ Wis | Iit∪Iis

for any s and t satisfying |s− t| > c .

• Case 3: The observation pattern is monotone, i.e., either Wi1 ≤ Wi2 ≤ · · · ≤ WiT or Wi1 ≥

Wi2 ≥ · · · ≥ WiT holds for all i. Furthermore, E
[
∥|Nc|−1

∑
i∈Nc

Λi∥4
]
≤ M/δ2N,T .

Under Case 1 with known observation probability, the weight choice M ξ
it results in the Hajek

estimator of ξt, which is a widely used and efficient estimator in causal inference. Case 2 allows

observation probabilities to be unknown, but assumes a one-factor structure in the observation
7Assumption 3.1 is stated assuming that fixed effects are realizations of random variables. Then we can state the

assumptions about the moments or dependencies between different random variables in the model. We call these
effects “fixed effects” as opposed to “random effects” for two reasons. First, we explicitly estimate the values of these
effects. Second, we condition on the values of these effects when estimating the factor model.
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probabilities. Under Case 2 the time series average of Wit

W̄i,· =
1

T

T∑

t=1

Wit = uiv̄ + op(1) =
pit
vt

· v̄ + op(1)

is a consistent estimator of uiv̄ . Under a one-factor structure in the observation probability, the

weight M ξ
it also implies an estimator that is asymptotically the same as the Hajek estimator of ξt:

M ξ
it =

(
N∑

i=1

Wit

W̄i,·

)−1
Wit

W̄i,·

=

(
N∑

i=1

Wit

pit · v̄/vt + op(1)

)−1
Wit

pit · v̄/vt + op(1)
=

(
N∑

i=1

Wit

pit + op(1)

)−1
Wit

pit + op(1)
.

Case 3 violates the assumptions in both Cases 1 and 2. We therefore use a conceptually different

estimator that leverages the structure in the observation pattern – this estimator averages over the

control units that are fully observed for all time periods to estimate ξt. The additional moment

condition in Case 3 implies that whether a unit adopts the treatment only weakly depends on the

loadings. However, this condition allows the treatment adoption time to depend on the loadings,

given that a unit adopts the treatment.

4.2 Consistency Results

Theorem 1 shows the consistency of wi-PCA under the observation pattern specified in Assump-

tions 1 and 4, and the general factor model specified in Assumptions 2 and 3.

Theorem 1 (Consistency). Suppose Assumptions 1, 2, 3 and 4 hold. We define δN,T = min(N,T )

and specify the weights for α̃i and ξ̃t appropriately based on Case 1, Case 2 or Case 3. Then, as

N,T → ∞, wi-PCA consistently estimates the sum of grand mean and fixed effects and the common

component:

√
δN,T

(
(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)

)
= Op(1),

√
δN,T

(
C̃it − Cit

)
= Op(1).

Theorem 1 states that both µ̃ + α̃i + ξ̃t and C̃it are consistent with a convergence rate of
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min(
√
N,

√
T ). The consistency of C̃it implies the consistency of the individual factors F̃t and

loading Λ̃i up to a rotation matrix. For brevity, we do not include the results for the individual

factors and loadings, because the main object of interest is the common component for causal

inference and data imputation applications. Next we present the asymptotic distribution of the

estimated common components.

4.3 Asymptotic Normality

Showing the asymptotic distribution of wi-PCA is much more challenging than for the existing

estimators in the literature (such as Bai (2003) for fully observed panels, and Jin, Miao, and Su

(2021); Bai and Ng (2021); Cahan, Bai, and Ng (2023); Xiong and Pelger (2023); Duan, Pelger,

and Xiong (2023) for partially observed panels). The main reason is that the first-stage estimation

error of the grand mean and two-way fixed effects carries over to the second-stage estimation of

the factor structure. Therefore, we consider a simplified model that conveys the main conceptual

insights of the general factor model, but reduces the complexity due to including fixed effects in our

estimator. We state two assumptions on the factor model, which altogether specifies the simplified

factor model considered in this paper.

Assumption 5 (Simplified Factor Model with Two-Way Fixed Effects).

1. Fixed effects: αi
i.i.d.∼ (0, σ2

α), and E[α4
i ] ≤ M for any i.

2. Factors: Ft
i.i.d.∼ (0,ΣF ), and E[∥Ft∥4] ≤ M for any t.

3. Loadings: Λi
i.i.d.∼ (0,ΣΛ), and E[∥Λi∥4] ≤ M for any i. Furthermore, there exists a positive

definite k × k matrix ΣΛ,t such that N−1
∑N

i=1WitΛiΛ
⊤
i

p→ ΣΛ,t for any t.

4. Idiosyncratic errors: ϵit
i.i.d.∼ (0, σ2

ϵ ) and E[ϵ8it] ≤ M .

5. Independence: α, ξ, F,Λ and ϵ are mutually independent.

The simplified model is a special case of our general approximate factor model, that is, the

simplified assumption implies the general Assumption 2. Assumption 5 assumes that the unit fixed

effects, factors, loadings, and idiosyncratic errors are i.i.d and have bounded moments. In addition

to Assumption 5, the asymptotic normality results require further assumptions on the observation

pattern and its dependency on the factor model. We use Ii = Ii1∪· · ·∪IiT to denote the information

set that impacts the full time-series of the observation pattern of unit i.
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Assumption 6 (Additional Conditions for Central Limit Theorem).

1. For any t, we have the limits plimN→∞N−1
∑N

j=1WjtΛj, plimN→∞N−1
∑N

j=1WjtW̄
−1
j,· Λj,

and plimN→∞N−1
∑N

j=1WjtW̄
−1
j,· ΛjΛ

⊤
j exist.

2. For any t, N−1
∑N

j=1 p
−1
jt

p→ st as N → ∞. Furthermore, N−1
∑N

j=1 E[WjtWjs/(pjtpjs) |

Ij ]α
2
j

p→ sα,st and N−1
∑N

j=1 E[WjtWjs/(pjtpjs) | Ij ]ΛjΛ
⊤
j

p→ sΛ,st for any s and t, and

plimT→∞T−2
∑T

s,u=1WisWiusα,su exists for any i.

3. For any i, j, h, l, |Qij |/T p→ qij and |Qij ∩ Qhl|/T
p→ qij,hl as T → ∞. Furthermore,

limN→∞N−2
∑N

i,l=1 qij,lj and limN→∞N−4
∑N

i,j,l,h=1 qij,lh/(qijqlh) exist.

4. When Case 2 holds, N−1
∑N

j=1 E
[
Wjtv̄

2/(W̄ 2
j,·v

2
t ) | Ij

]
p→ s̄t and Assumption 6.2 holds with

Wjt/pjt replaced by Wjtv̄/(W̄j,·vt) and sα,st, sΛ,st replaced by s̄α,st, s̄Λ,st for any j, s, t. When

Case 3 holds,
√
Nc

−1∑
j∈Nc

Λj
d→ N (0,ΣΛ,c) for some ΣΛ,c.

Assumption 6.1 assumes that weighted averages of the loadings converge. Assumption 6.2 is

necessary to show that the estimator µ̃ + α̃i + ξ̃t is asymptotically normal, which is necessary

for showing the asymptotic normality of the estimated factor model. Assumption 6.3 imposes

assumptions on the proportion of time periods when multiple units are observed together. Lastly,

Assumption 6.4 contains additional assumptions for Cases 2 and 3.

Below we present the asymptotic distribution of the estimated common components under all

the aforementioned assumptions. To show this result, we first need to derive the asymptotic joint

normal distributions of the estimators of the fixed effects, factors and loadings. Theorem 2 only

presents the asymptotic results for the estimated common components, as the primary interest is

the construction of confidence intervals for imputed values or draw inferences on treatment effects.

Theorem 2 (Asymptotic Normality). Suppose Assumptions 1, 4, 5 and 6 hold. We define δN,T =

min(N,T ) and specify the weights for α̃i and ξ̃t appropriately based on Case 1, Case 2 or Case 3.

Then, as N,T → ∞, the asymptotic distribution of the common components estimated by wi-PCA

satisfies
√

δN,T · σ−1
C,it

(
C̃it − Cit

)
d→ N (0, 1) ,

where σ2
C,it = δN,T /N · σ2

C,it,1 + δN,T /T · σ2
C,it,2 for some σ2

C,it,1 and σ2
C,it,2 .

The inclusion of the grand mean and fixed effects substantially complicates the derivation and
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asymptotic variances σ2
C,it,1 and σ2

C,it,2 , which contain more terms than the asymptotic variance

for the pure factor model in Xiong and Pelger (2023). Specifically, we need to deal with the first-

stage estimation error ∆̃it = (µ̃ + α̃i + ξ̃t) − (µ + αi + ξt) as well as two additional terms, which

are respectively
√
TN−1

∑N
i=1 ΛiΛ

⊤
i |Qij |−1

∑
t∈Qij

Ft∆̃it in the asymptotic distribution of Λ̃i and

N−1/2
∑N

i=1WitΛi∆̃it in the asymptotic distribution of F̃t. In order to simplify the expression and

focus on the main result, we do not explicitly state the form of σ2
C,it,1 and σ2

C,it,2 . Instead we propose

in the next section a practical bootstrap approach for the variance estimation of relevant quantities.

5 Application to Causal Inference

In this section, we discuss the application of our estimator to causal inference and provide a

feasible variance estimator for the average treatment effects.

5.1 Estimation of Treatment Effects

A key application of our estimator is to estimate the treatment effects in causal inference.

The fundamental problem of causal inference is that we observe either the control outcome or the

treated outcome, but not both, for any unit at a specific time period. We can view the unobserved

counterfactual control outcomes as missing values, which we impute with wi-PCA. By comparing

the observed treated units with the imputed control units, we can estimate the treatment effects on

the treated.

In the causal inference context, the outcome panel Yit has both control and treated observations.

We view the treated values as missing control observations, which results in the partially observed

panel of control units Y (ct)
it . Correspondingly, the partially observed panel of treated units is denoted

as Y
(tr)
it . The treatment effect of unit i at time t is defined as

τit = Y
(tr)
it − Y

(ct)
it .

Our focus is on the estimation and inference of the average treatment effect on a treated unit i
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over time, denoted by τi , which is formally defined as

τi :=
1

Ti,tr

∑

t∈Ti,tr

(
Y

(tr)
it − Y

(ct)
it

)
=

1

Ti,tr

∑

t∈Ti,tr
τit ,

where Ti,tr and Ti,tr denote the set and number of treated time periods of unit i, respectively. The

average treatment effect on treated (ATT) is an important quantity that is often used in practice.

Alternatively, we can also study the average treatment effects that are averaged over units, and

over both time and units. This follows the same conceptual arguments as for τi and would be a

straightforward extension of our framework.

We specify a model for the control panel to estimate the unobserved control units. We argue that

the wi-PCA is particularly well suited for imputing the counterfactual control units. As discussed

before, in the special case of only the fixed effect structure, but without the latent factor model, wi-

PCA can simplify to a difference-in-difference estimator, which is widely used in causal inference.

The latent factor model can be interpreted as a data-driven approach for constructing synthetic

controls. Conceptually, synthetic controls are weighted averages of untreated units, where the

weights depend on unit-specific features. Our approach does not require priori knowledge about

which covariates describe if treated and control units are a good match. Instead, our latent loadings

capture complex unit-specific information in a data-driven way. Our wi-PCA can be interpreted as

combining a difference-in-difference estimator with a general synthetic control.

Specifically, under the assumption that the control panel Y (ct) follows the approximate factor

model with two-way fixed effects in Equation (1), we use the common component C̃it estimated

with wi-PCA to impute all values in Y (ct). This yields the following estimator for τi:

τ̂i =
1

Ti,tr

∑

t∈Ti,tr
(Y

(tr)
it − C̃it) = τi +

1

Ti,tr

∑

t∈Ti,tr
(Cit − C̃it) +

1

Ti,tr

∑

t∈Ti,tr
ϵit .

The estimator τ̂i is consistent if C̃it is consistent and the average over the idiosyncratic terms

vanishes (which holds for Ti,tr going to infinity). Moreover, if the assumptions of Theorem 2 are

satisfied, then τ̂i is asymptotically normally distributed. In the next section, we provide a feasible

estimator for the asymptotic variance of τ̂i .
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5.2 Feasible Variance Estimator for ATT

In this section, we show how to estimate the asymptotic variance and construct asymptotically

valid confidence intervals for the average treatment effect on the treated τi using a resampling

bootstrap approach. As discussed in the previous section, we can estimate the counterfactual

control outcomes C̃it with wi-PCA and obtain the estimation error for τi as

τ̂i − τi =
1

Ti,tr

∑

t∈Ti,tr
(Cit − C̃it) +

1

Ti,tr

∑

t∈Ti,tr
ϵit .

Theorem 2 implies that the first term in the estimation error has an asymptotic normal distribution.

Under mild assumptions and for Ti,tr → ∞, the second term has mean zero and is jointly asymptot-

ically normally distributed with the first term. Hence, the sum of the two parts is asymptotically

normal, and the convergence rate is the smaller of the rate of each term.

Under the asymptotic normality, we obtain valid confidence interval (CI) for τi:

P
(
τi ∈

[
τ̂i − z1−α/2

√
Vi, τ̂i + z1−α/2

√
Vi

])
asympt∼ 1− α ,

where Vi is the asymptotic variance and zα is the α-quantile of standard normal distribution.

We propose to estimate Vi with a resampling bootstrap procedure, which is easy to use despite

the complex form of Vi . This procedure has three steps. First, we sample the idiosyncratic errors

ϵi = (ϵi1, · · · , ϵiT ) of the treated unit i for which we aim to draw inference. To obtain the sample

distribution of these errors, we iteratively mask a control unit j with the same treatment pattern

as the target treated unit i and apply wi-PCA to this new panel.8 The difference between the

estimated common components and observed outcomes of unit j serves as a residual time series in

the sampling distribution. In the second step, we obtain estimates of τi from the bootstrap samples.

We obtain a bootstrap sample by sampling N − 1 units with replacement from all units besides

the i-th one, and concatenating them with a “bootstrapped version” of unit i’s time series. This

“bootstrapped version” is obtained by adding unit i’s estimated common components to a draw of

ϵi from the sampling distribution obtained in step one. In the last step, we calculate the variance
8For brevity, we only consider the case where control units exist. If there is no control unit, we need to assume

that the idiosyncratic errors are i.i.d. in the cross-sectional and time series dimension.
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Vi using the estimates of τi from step two. This bootstrap provides consistent estimates of Vi under

additional assumptions on the error terms. We provide a detailed description of this bootstrap

procedure with the formal statements and assumptions in Appendix B.1.

The simulations in Appendix B.3 demonstrate the good finite sample performance of our boot-

strap procedure and that it works well in general setups. We also show the benefits of sampling only

the variance and leveraging the theoretical normal distribution, instead of sampling the complete

distribution in step two. The procedure above assumes that εjt is i.i.d. in the cross-section. This

assumption can be relaxed by using a block resampling procedure, where the sampling is based on

blocks of correlated units. We provide the details of a block resampling procedure in Appendix B.2.

6 Discussions

6.1 Model with Observables

In empirical studies, researchers might observe additional covariates Xit which can capture

variation in the outcome variables Yit. Including these exogenous observables can reduce the variance

of the imputed values and estimated treatment effects. In this section, we show how to extend wi-

PCA to include additional exogenous observed covariates.

Formally, we can extend our model from Equation (1) by incorporating the observables Xit ∈ Rd

as follows:

Yit = β⊤Xit + µ+ αi + ξt + Λ⊤
i Ft + ϵit ,

with the coefficient β ∈ Rd. The common component now becomes Cit := β⊤Xit+µ+αi+ξt+Λ⊤
i Ft ,

and the goal is to estimate and draw inferences on the estimated common component. Note that

Cit has three components: the fixed effects, latent factor structure and regression on observables.

The estimator for wi-PCA with observables becomes a three-step approach with one step for each of

the components. For the sake of brevity, we present the results for the case with known observation

probability, and the arguments extend accordingly to the other cases.

The first step is the within transformation, which estimates the fixed effect structure and nor-

malizes the observables. Note that with non-stationary fixed effects it is necessary to first apply the

within transformation before running regressions or PCA. We apply the first step of the wi-PCA
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estimator to estimate the grand mean and fixed effects by calculating the weighted averages of

observations in Y . Then, we subtract the first-stage estimators from Yit and obtain

Ẏit = β⊤Ẋit + Λ⊤
i Ft + ϵ̇it ,

where Ẏit = Yit− µ̃− ξ̃t− α̃i and Ẋit = Xit− X̄·,t− X̄i,·+ X̄. The within transformation of observed

covariates is needed for the purpose of identification, and does not pose any challenges as X is fully

observed.

The second step estimates the coefficient β by running a regression

β̃ =

(
N∑

i=1

T∑

t=1

WitẊitẊ
⊤
it

)−1 N∑

i=1

T∑

t=1

WitẊitẎit .

The residual from this regression Ÿit = Ẏit − β̃⊤Ẋit has a latent factor structure, that is, Ÿit =

Λ⊤
i Ft + ϵ̈it. In the third step, we estimate the latent factor structure. By applying the PCA step

of wi-PCA to Ÿit, we obtain Λ̃⊤
i F̃t. Aggregating all three estimations yields the estimate of the

common components:

C̃it = µ̃+ ξ̃t + α̃i + β̃⊤(Xit − X̄·,t − X̄i,· + X̄) + Λ̃⊤
i F̃t.

We call this approach “wi-PCA with observables”. The following assumption and proposition for-

malize the asymptotic inference.

Assumption 7 (Observables). The observables Xit are independent of factors and idiosyncratic

errors. Furthermore, for any i, t, E[∥Xit∥16] ≤ M , E[∥T−1
∑T

t=1WitẊit∥8] ≤ M/T 4, and the

smallest eigenvalue of (NT )−1
∑

i,tWitẊitẊ
⊤
it is positive and bounded away from 0.

Assumption 7 guarantees that the regression on X is well behaved. Proposition 1 shows the

consistency and convergence rate.

Proposition 1. Assume Assumptions 1, 2, 3, 7 and Case 1 in Assumption 4 hold. Furthermore,

the eighth moments of the unit fixed effects, factors and loadings are bounded. Let δN,T = min(N,T ).
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Then, as N,T → ∞, wi-PCA with observables consistently estimates the common component:

√
δN,T (C̃it − Cit) = Op(1).

Note that the regression on observables does not affects the overall convergence rate. Including

the observables does not make the analysis more challenging and hence we omit it in the main

model in equation (1). It is possible to generalize the regression to a non-parametric regression if

its convergence rate is not slower than
√
δN,T . It is also possible to change the order of the steps

and estimate the latent factors before applying the regression of the residuals on observables X.

However, this alternative order implies different assumptions, which for many applications seem to

be more restrictive.

6.2 Number of Factors

We assume that the number of factors k is consistently estimated. Given a consistent estimator

for the number of factors, we can treat k as known. The discussion in Xiong and Pelger (2023)

about how to estimate the number of latent factors also applies to our estimator. After removing

the fixed effects component, the latent factor structure is similar to Xiong and Pelger (2023), and

we can build on the same insights. Fundamentally, the number of factors is a tuning parameter,

and in practice, can be determined by cross-validation arguments. Specifically, we can mask entries

in the panel and evaluate the accuracy of the imputed masked values with the actual observed

entries for different number of factors. The model with the smallest validation imputation error

is selected. However, the appropriate masking is a challenging problem, in particular for complex

missing patterns that can depend on the factor structure. Conceptually, the correct masking would

use the actual probability of missingness, which is generally unknown in observational studies. As a

practical approach, in our empirical study we use a variety of realistic masking schemes and repeat

the masking simulation many times. We find that our estimator is relatively robust to the number

of factors once we include sufficiently many. Other estimators do not seem to share this robustness

property.
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7 Simulation

We demonstrate in comprehensive simulations the good performance of our wi-PCA estimator.

For this purpose, we show that our estimator dominates natural benchmarks for a variety of relevant

missing patterns and data generating processes. Specifically, we demonstrate that it is important to

include the fixed effect structure and latent factor structure, and omitting one of them deteriorates

the performance. We compare wi-PCA with the following three estimators:

• PCA: Special case of wi-PCA without estimating the fixed effect structure separately. This

estimator corresponds to the PCA estimator using all observations proposed by Xiong and

Pelger (2023).

• Block-PCA: PCA estimator that estimates factors only from fully observed blocks proposed

by Xu (2017).9

• TWFE: Two-way fixed effects estimator, which is the special case of wi-PCA without latent

factors.10

The PCA and TWFE estimators correspond to two special cases of wi-PCA with either only a latent

structure or only the two-way fixed effects. The TWFE estimator corresponds to the conventional

difference-in-difference (DID) estimator for monotone missing patterns. The Block-PCA serves as

an alternative way to estimate a latent factor model without directly modeling the two-way fixed

effects, and has been used for causal inference on panels.

We generate the data from a one-factor model with two-way fixed effects Yit = µ + αi + ξt +

ΛiFt + ϵit, where µ = 1, αi
i.i.d.∼ N (0, 1), Ft

i.i.d.∼ N (0, 1), Λi
i.i.d.∼ N (0, 1), and ϵit

i.i.d.∼ N (0, σ2
ϵ ).

We consider both stationary and non-stationary time fixed effects ξt. The stationary time fixed

effects follow ξt
i.i.d.∼ N (0, 1), while non-stationary time fixed effects include a trend process and are

generated as ξt = 0.05t +N (0, 1) for any t. The main text uses the parameters σ2
ϵ = 4, while the

Internet Appendix shows that the results are robust to other choices.

We consider three different observation patterns for Y :
9We provide the details of this method in Appendix C.

10The TWFE estimator obtains the two-way fixed effects as

(µ̂, α̂, ξ̂) = arg min
µ,α,ξ

N∑
i=1

T∑
t=1

Wit(Yit − µ− αi − ξt)
2,

and the common components as Ĉit = µ̂+ α̂i + ξ̂t.
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1. Missing-at-random: Entries are missing independently at random with probability p = 0.2.

2. Simultaneous treatment adoption: 50% randomly selected units are completely missing after

time 0.4 · T .

3. Staggered treatment adoption: Starting form 0.1 ·T , units are selected to adopt the treatment

with probability 0.1 · I(|αiξt| > 2.5). Once a unit adopts treatment, it stays treated without

subsequent observations.

The observation patterns are illustrated in Table 2. The missing-at-random pattern is conceptually

the simplest, and all entries are missing independently and exogenously. With simultaneous treat-

ment adoption the entries are still missing exogenously but the missingness has dependence in the

time series dimension. The simulated staggered treatment adoption pattern is the most complex as

in addition to the monotone missingness we further allow endogenous missingness that depends on

both two-way fixed-effects.

In Table 2, we compare the performance of different estimators in estimating the common

components of Y on the observed, missing, and all entries and report for each method the relative

mean squared error (relative MSE) defined as

relative MSES =

∑
(i,t)∈S(C̃it − Cit)

2

∑
(i,t)∈S C2

it

,

where S denotes the set of either observed, missing or all entries in Y . We pay particular attention

to the relative MSE for the missing entries in Y , which serves as the out-of-sample evaluation.

This is important as models with more parameters are expected to approximate the data better

in-sample, but due to overfitting the noise can perform worse out-of-sample. In the main text we

show the results for one latent factor with wi-PCA and up to three latent factors for the pure factor

models. Internet Appendix IA.A collects the results for other parameters of the data generating

process. Note that for stationary data a pure latent factor model with three latent factors should

theoretically be able to recover the same model as a one-factor model with two-way fixed effects.

Table 2 shows that wi-PCA dominates all other benchmarks in terms of in-sample and out-

of-sample performance. We discuss the findings for each missing pattern. In the case of missing-

at-random, both wi-PCA and PCA perform well for either stationary or non-stationary data, but

wi-PCA is overall more efficient. A pure factor model with less than three factors suffers from an
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Table 2: Relative MSE of common components for different estimators

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

ξt S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

S
obs 0.055 0.055 0.360 0.147 0.088 - - - 0.270
miss 0.056 0.056 0.377 0.157 0.093 - - - 0.283
all 0.055 0.055 0.364 0.149 0.089 - - - 0.273

N
obs 0.036 0.036 0.292 0.145 0.059 - - - 0.177
miss 0.037 0.037 0.305 0.157 0.063 - - - 0.186
all 0.036 0.036 0.294 0.148 0.059 - - - 0.179

S
obs 0.064 0.069 0.369 0.156 0.104 0.372 0.161 0.110 0.283
miss 0.108 0.105 0.414 0.210 0.165 0.412 0.204 0.152 0.314
all 0.077 0.079 0.383 0.172 0.122 0.384 0.174 0.122 0.292

N
obs 0.048 0.051 0.376 0.209 0.091 0.359 0.186 0.080 0.207
miss 0.055 0.054 0.594 0.573 0.527 0.476 0.322 0.154 0.162
all 0.051 0.052 0.460 0.349 0.259 0.404 0.238 0.108 0.190

S
obs 0.054 0.050 0.362 0.132 0.088 0.363 0.131 0.086 0.283
miss 0.083 0.079 0.431 0.325 0.213 0.440 0.310 0.176 0.206
all 0.058 0.055 0.371 0.159 0.106 0.373 0.157 0.100 0.271

N
obs 0.056 0.045 0.301 0.178 0.078 0.287 0.126 0.083 0.216
miss 0.097 0.081 0.911 0.759 0.602 1.135 1.065 0.494 0.175
all 0.068 0.055 0.487 0.353 0.237 0.541 0.408 0.207 0.204

This table reports the relative MSE of different estimators for different setups. We compare the performance of
wi-PCA, with known and unknown observation probability, with three benchmarks: PCA, block-PCA, and TWFE.
The figures on the left show the observation patterns with shaded entries indicating observed entries and unshaded
entries indicating missing entries. Each observation pattern corresponds to two rows with either stationary time
fixed effects (S) or non-stationary time fixed effects (N). Bold numbers indicate the best out-of-sample relative
model performance. We set N = T = 100 and run 200 simulations for each setup.

omitted variable bias, while the three-factor model is less efficient than directly modeling the two-

way fixed effects. Using only the two-way fixed effects without a factor structure (TWFE) provides

the worst results as it also suffers from an omitted variable bias. The block-PCA method is not

applicable as there are no sufficiently large fully observed blocks.

In the case of simultaneous treatment adoption, wi-PCA continues to dominate the other meth-

ods. For data with stationary time fixed effects, all three PCA methods perform relatively well.

However, for the non-stationary data, the PCA method has poor performance due to the correlation

between the upward trend and missing pattern in the time series dimension. This correlation deteri-

orates the estimation of the covariance matrix in PCA, whereas block-PCA is unaffected because it

only uses the fully observed block to estimate factors. This property of block-PCA, however, makes

it less efficient than wi-PCA which leverages all the data to estimate factors. TWFE continues to
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suffer from omitting the latent factor structure. Note that with the upward trend in the time-fixed

effects, the two-way fixed effect component explains more of the overall variation.

In the last setting of staggered treatment adoption, wi-PCA significantly outperforms the other

methods for both stationary and non-stationary data. In this setting, we assume an endogenous

observation pattern that depends on both cross-sectional and time series components of the model.

This endogeneity cannot be accounted for by both PCA and block-PCA methods, leading to their

poor performance. Their performance deteriorates even more with non-stationary data. In contrary,

TWFE suffers less from non-stationarity and complex missingness, but obviously still omits the

factor component. The performance gains of wi-PCA are impressive as it has two to eight times

better out-of-sample accuracy.

We conclude that wi-PCA combines the advantages of the three benchmark methods for different

settings and is more efficient than any of them. Moreover, wi-PCA with unknown or known obser-

vation probability perform quite similarly. The wi-PCA with unknown observation probability can

have even smaller relative MSEs compared to its counterpart with known observation probability,

as illustrated in the last two settings. Intuitively, the direct estimation can correct for variability in

the sampling distribution of the observation pattern.

Our findings are robust to the parameters of the simulation. The Internet Appendix collects the

results for different proportions of missing data and noise variances. Our wi-PCA dominates the

benchmarks in all setups. We conclude that it is crucial to explicitly combine both the latent factor

model and two-way fixed effects in a model.

8 Empirical Study: Liberalization of Marijuana Policy

We demonstrate the benefits of our wi-PCA estimator in an empirical application in causal

inference: the liberalization of marijuana. This empirical application is originally studied in Li and

Sonnier (2023), where they estimate the effect of legalizing recreational marijuana on retail sales

for beer. The underlying question is whether marijuana represents a substitute or complement to

alcohol.

We use the weekly NielsenIQ retail scanner beer sales data from the Kilts Center for Marketing.

Our data consists of 208 weekly observations of beer sales revenue from January 01, 2017, to
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December 26, 2020, aggregated at the state level for the U.S.11

Our cross-section consists of 45 states, of which 39 are control states and 6 are treated states

that legalized the retail sale of marijuana at different times. In our study, we have to drop three

states (Colorado, Washington, and Oregon) as they legalized recreational marijuana before 2017.

Table 4 shows the treatment times of the 6 treated states. Different from Li and Sonnier (2023), our

outcome variable is the weekly beer sales revenue normalized by the number of stores included in the

Kilts Center dataset. This normalization is important as the number of stores changes substantially

over time, which we discuss in more detail in Internet Appendix IA.B.

In this empirical study, we continue to compare wi-PCA with the three benchmark estimators

introduced in Section 7: PCA estimator (with factor model only), block-PCA estimator (with factor

model only), and TWFE estimator (with fixed effects only). The PCA and TWFE estimators

correspond to two special cases of our model with only a factor model or fixed effects, and the

block-PCA method is implemented as in Li and Sonnier (2023).

8.1 Synthetic Treatment Assignment

We start our analysis by comparing the performance of the four estimators. For this purpose

we generate synthetic treatment assignments on the control panel that consists of the 39 control

states. Specifically, we generate synthetic treatment patterns for the control panel and mask the

corresponding control outcomes in the data as if they were treated. Then, we compare the estimation

accuracy of different estimators on these synthetic treatments, which should have zero effects on the

outcomes. This type of synthetic treatment is frequently considered in this literature, for example

in Bertrand, Duflo, and Mullainathan (2004) and Arkhangelsky, Athey, Hirshberg, Imbens, and

Wager (2021).

This analysis allows us to answer the following questions. First, as this is an out-of-sample

evaluation of the factor models, it allows us to compare the accuracy of the different models. The in-

sample fit of a model naturally increases with the complexity of the model; however, due to potential

overfitting, this is not the case out-of-sample. Second, it shows how the masking mechanism affects

the estimation and accuracy of models. Third, this analysis can also serve as a validation to select
11Guha and Ng (2019) show the benefit of using factor models for the weekly scanner data and the presence of

common seasonality in this type of data.
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Table 3: Results for synthetic treatment patterns (unit: $100/store)

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

RMSEY 2.21 1.93 2.01 2.53 2.64 2.95 - - - 2.54
|BiasATT| 0.16 0.14 0.16 0.22 0.59 0.98 - - - 0.22
RMSEATT 1.24 1.11 1.18 1.68 1.76 2.03 - - - 1.57

RMSEY 2.42 2.09 1.94 2.37 4.61 5.45 2.31 2.25 2.13 2.45
|BiasATT| 0.26 0.27 0.26 0.83 3.76 4.19 0.45 0.32 0.30 0.42
RMSEATT 0.99 1.03 1.06 1.67 4.08 4.52 1.57 1.13 1.18 1.53

RMSEY 4.30 3.92 4.10 5.00 6.77 7.46 4.88 7.16 5.93 4.60
|BiasATT| 0.75 0.47 0.57 1.45 4.47 5.25 0.90 1.26 1.04 0.59
RMSEATT 2.89 2.77 2.91 4.12 5.43 6.06 3.88 5.11 4.21 3.50

This table shows the results for three synthetic treatment patterns. The figures on the left illustrate the treatment
patterns where the shaded entries indicate the observed control outcomes and the blank entries represent the missing
observations. For each of the treatment pattern, we compare the RMSE of the imputation (RMSEY ) and the absolute
estimation bias and RMSE of the ATT (|BiasATT| and RMSEATT) for different methods. Bold numbers indicate
the best relative model performance. The three treatment patterns are generated as follows: (1) Uniformly random
treatment pattern: for each unit, we set 20 time periods as a group and randomly assign treatment with probability
0.2 for each 20 time periods. (2) Simultaneous treatment adoption pattern: States are randomly selected into the
treatment group with a probability of 0.5. Treated units simultaneously adopt the treatment at time T0 = 140
and stay treated afterward. (3) Staggered treatment adoption pattern: States with unit fixed effects αi > 0.5 are
randomly selected into the treatment group with a probability of 0.9. For treated units, they adopt the treatment
with probability 0.1 in each time period with time fixed effects ξt > 1 and stay treated afterwards. We iterate 100
times in the simulations for each setup.

the number of latent factors. Tuning parameters like the number of factors can be selected based

on which model provides the best out-of-sample performance for relevant masking schemes.

Table 3 summarizes the results for three treatment patterns, and provides a detailed description

of how we generate the treatment patterns. The first pattern is a uniformly random pattern where

we randomly assign treatments to each unit. The second pattern is a simultaneous treatment

adoption pattern where units are randomly selected to adopt treatment at a given time. The

last one is a staggered treatment adoption pattern where the treatments are endogenous and can

depend on the two-way fixed effects. To generate endogenous treatment patterns, we first estimate

the two-way fixed effects as the natural averages µ̂ = (NT )−1
∑

j,s Yjs, ξ̂t = N−1
∑

j Yjt − µ̂ and

α̂i = T−1
∑

s Yis − µ̂ for the fully observed control panel. Then, we determine the treatment

mechanism based on these fixed effects.

We use the four estimators to impute the missing observations in the control panel and estimate

the state-level ATT for each treated state. Table 3 compares the performance of different methods

in estimating the out-of-sample counterfactual outcomes and treatment effects and reports for each
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method the root-mean-squared error (RMSE) of the imputation as well as the absolute bias and

RMSE of the estimated ATT, which are respectively defined as

RMSEY =

√ ∑

(i,t)∈Smiss

(C̃it − Yit)2 ,

|BiasATT| =
∣∣∣∣∣
1

Ntr

∑

i∈Ntr

(τ̂i − τi)

∣∣∣∣∣ , RMSEATT =

√
1

Ntr

∑

i∈Ntr

(τ̂i − τi)2 ,

where Smiss denotes the set of missing entries in Y , Ntr and Ntr denote the set and number of

treated units, and τ̂i denotes the ATT estimator for unit i.

For conciseness, Table 3 shows the results for only three latent factors, but all the results extend

to up to 8 factors. Appendix D provides detailed robustness results for more factors. In fact, wi-

PCA is remarkably stable and including “too many” factors has only a marginal effect. In contrast,

other PCA methods deteriorate substantially for too many factors. We will revisit this important

point in the next section.

The results demonstrate three main insights. First, wi-PCA dominates all benchmark estimators

and is the most accurate estimator under all treatment assignments and error metrics. This means

wi-PCA has the most precise estimates of first and second moments on the out-of-sample data.

Second, wi-PCA is extremely stable for different number of factors, which is not the case for PCA and

Block-PCA. Our findings also demonstrate the importance of estimating both the fixed effects and

the factor model. Note that under stationarity assumptions PCA and Block-PCA could include the

fixed effects as additional factors, but even with more latent factors their performance is substantially

worse than separately estimating the fixed effects. On the other hand, there is a benefit of including

at least one latent factor in addition to the fixed effects, that is, TWFE, which can be interpreted

as the “zero-factor model” of wi-PCA, is never optimal.

Third, we demonstrate how the performance of models depends on the treatment assignment

and confirm that wi-PCA outperforms for all the different treatment patterns. The case of missing

uniformly completely at random can be viewed as the simplest case. In this setting, wi-PCA, PCA,

and TWFE estimators exhibit comparable performance; however, wi-PCA excels in providing more

precise imputations of counterfactual outcomes and more accurate estimations of treatment effects.

Note that the block-PCA method is infeasible as there are no fully observed control units. In the case
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of simultaneous treatment adoption, wi-PCA and block-PCA perform well, while the PCA estimator

performs poorly because of the dependency between the time series missingness. This result aligns

with the simulation results with non-stationary fixed effects. Our wi-PCA significantly outperforms

the other three methods for the staggered adoption pattern where the treatment assignment is

endogenous and correlated with cross-sectional and temporal components.

Our findings are supported by our theory. In contrast to TWFE, wi-PCA incorporates interactive

effects that better explain the correlation structure in the panel. In contrast to the PCA and block-

PCA estimators, wi-PCA explicitly estimates and controls for the additive effects in the panel data.

In contrast to all three benchmarks, the estimation of wi-PCA is valid under more general treatment

assignments.

8.2 Estimation of ATT

In the second part, we estimate the treatment effects and their significance for the six actually

treated states. We demonstrate how the economic conclusions are affected by the choice of estima-

tion approach. Table 4 shows the estimated ATTs and corresponding standard errors estimated with

the resampling bootstrap. We report the results for the wi-PCA, PCA, and block-PCA estimators

for up to k = 4 latent factors.

There are three key observations. First, Table 4 shows that different estimators give substantially

different point estimates of ATT. The point estimates of PCA and block-PCA can be more than 10

times larger than the ones for wi-PCA. Hence, the economic magnitude of the estimates seems to

be largely exaggerated with PCA and block-PCA. Second, the standard errors of the benchmarks

are generally much larger than with wi-PCA. In particular, for block-PCA, which uses the data

inefficiently, the standard errors can explode for a larger number of factors and be twice as large as

with wi-PCA. The different point estimates and standard errors can lead to different conclusions.

Our wi-PCA finds that in none of the six states legalizing marijuana causes a change in beer sales.

In contrast, for both PCA and block-PCA there are cases with statistically significant treatment

effects.

Third and most importantly, wi-PCA is extremely stable for different number of latent factors,

while the instability of PCA and block-PCA makes them unreliable. To illustrate this point, we

focus on the states of Massachusetts (MA) and Nevada (NV). For both states, the ATT of wi-PCA

35



Table 4: Average treatment effects on the actually treated states (unit: $100/store)

CA. MI. IL. MA. NV. ME.
k ATT SE ATT SE ATT SE ATT SE ATT SE ATT SE

wi-PCA 1 0.52 3.78 0.43 1.17 0.32 1.21 -0.48 1.11 -0.47 3.18 -1.15 1.11
(FE+factor 2 0.57 3.64 0.44 1.17 0.31 1.22 -0.37 1.07 -0.47 3.02 -0.95 1.18

model) 3 0.55 3.68 0.52 1.12 0.09 1.12 -0.42 1.28 -0.48 3.05 -0.96 1.47
4 0.54 3.69 1.00 1.14 0.08 1.08 -0.86 1.54 -0.47 3.02 -0.16 0.60

PCA 1 2.96 3.85 3.19 1.64 1.20 1.64 -1.29 2.36 3.02 3.10 -1.32 1.34
(factor model 2 7.44 3.61 2.74 1.15 2.27 1.21 3.63 1.49 5.35 3.01 -1.06 1.11

only) 3 7.65 3.62 6.56 2.44 5.39 2.37 4.18 2.35 5.49 3.04 -0.36 1.13
4 8.01 3.60 6.66 2.31 5.55 2.27 4.28 2.36 4.94 3.03 0.32 1.08

Block-PCA 1 -0.30 4.26 1.65 1.52 -0.05 1.53 -4.41 2.50 -1.24 3.44 -1.32 1.19
(factor model 2 4.25 6.65 0.38 1.46 0.33 1.31 1.16 1.41 7.79 8.32 -1.18 1.09

only) 3 0.18 6.14 0.32 1.41 0.36 1.29 1.36 1.74 2.84 6.37 -0.91 1.31
4 1.69 6.92 0.30 1.44 0.33 1.41 1.26 1.83 4.80 6.68 0.31 1.15

TWFE (FE only) 0.56 3.73 1.73 1.64 0.02 1.62 -2.94 2.29 -0.47 3.04 -1.28 1.19

This table reports the point estimations (ATT) and standard errors (SE) of ATT with different estimators. We show the
results of wi-PCA, PCA, and block-PCA estimators with respectively k = 1, 2, 3, 4 latent factor(s). The standard errors are
calculated by the resampling bootstrap method with B = 1000. The full name and treatment time of each treated state is
CA: California (Jan. 1, 2018), MI: Michigan (Dec. 1, 2019), IL: Illinois (Jan. 1, 2020), MA: Massachusetts (Nov. 20, 2018),
NV: Nevada (Jul. 1, 2017) and ME: Maine (Oct. 9, 2020).

Figure 2: Observed time series and estimated control time series of per-store beer sales

(a) Massachusetts (b) Nevada

These figures show observed time series and estimated control time series of beer sales per store for Massachusetts and Nevada.
We use wi-PCA estimator with k = 2 factors and PCA and block-PCA estimators with k = 4 factors. The grey vertical curve
denotes the time of treatment.

is essentially identical for 1 to 4 factors. In contrast, for block-PCA and PCA the magnitude varies

drastically and even the sign of the ATT can change for different number of factors. The choice

of the unknown number of factors can result in drastically different economic conclusions for these

benchmark estimators.

Figure 2 provides an explanation for our findings and shows the observed time series and esti-

36



mated control time series of Massachusetts and Nevada. We use wi-PCA with k = 2 factors and

PCA and block-PCA with k = 4 factors to have a fair comparison in terms of the degrees of freedom.

We start with the right subfigure for Nevada. Before the treatment, the orange line representing

the control outcomes with wi-PCA is close to the observed blue time-series. After the treatment

the orange line continues to be close to the blue line, and therefore we do not find a significant

treatment effect with wi-PCA. The fact that wi-PCA is very close to the control and treatment

observations suggests that the same model can describe the full sample. In contrast, the purple line

for PCA is far away from the blue line on the control and on the treatment data. This indicates

that finding a treatment effect with PCA is due to a bad model fit. Similarly, the green line for

block-PCA seems to deviate because it does not capture the variation in the time-series well. We

now turn to the left plot for Massachusetts. While obtaining similar results for PCA, we want to

draw attention to the red line of TWFE. A pure fixed effect model suffers from an omitted variable

bias and neglects relevant time-series variation on the control and treatment data. Hence, it might

imply spurious treatment effects due to this omitted variable bias.

Figure 2 suggests that the discrepancy of other methods seems to indicate either an omitted

variable bias or overfitting of noise on the control data and hence a high variance on the treat-

ment data. In summary, the economic conclusions can largely differ depending on the estimation

approach, and the accuracy and generality of wi-PCA indicates that for this empirical study we do

not find evidence for a significant treatment effect.

9 Conclusion

In this paper, we study the imputation and inference for large-dimensional non-stationary panels

with general missing patterns. We propose a novel method, Within-Transform-PCA (wi-PCA), to

estimate an approximate latent factor model and non-stationary two-way fixed effects. The general

missing patterns can depend on both the latent factor model and two-way fixed effects. We show

the consistency and provide entry-wise inference for the imputed values with wi-PCA. Including

general fixed effects, which can affect missingness, is particularly important for applications in causal

inference for panels. In an empirical study on the liberalization of marijuana, we illustrate that wi-

PCA yields more accurate estimates of treatment effects and more credible economic conclusions
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compared to the benchmark estimators.
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A Inconsistency of Symmetric Fixed Effect Estimators: An Illus-
trative Example

In this subsection, we provide an illustrative example to demonstrate the importance of sub-
tracting ξ̃t in the estimation of αi . In this toy example, we consider a block-missing pattern, where
each unit has 50% chance of being observed for all time periods or of being observed for only the
first half of times.

For simplicity, we assume that12

ξ1 = · · · = ξT/2 = 1, ξT/2+1 = · · · = ξT = −1,

Λi
i.i.d.∼ (0,ΣΛ), Ft

i.i.d.∼ (0,ΣF ), ϵit
i.i.d.∼ (0, σ2

ε) .

In this illustrative example, the observation probability equals pit = P (Wit = 1) = 1 if t ≤ T/2

(with ξt = 1) and pit = 1/2 otherwise (with ξt = −1), that is, the observation pattern is correlated
with the time fixed effects.

Our key point is to illustrate what goes wrong when we do not properly account for the time fixed
effects. If we do not subtract ξ̃t from the estimator for αi and instead use an estimator symmetric
to the one of ξ̃t with inverse probability weighting, then the estimation error is

α̃sym
i − αi =

(
1

T

T∑

t=1

Wit

pit

)−1
1

T

T∑

t=1

Wit

pit
Yit − µ̃− αi

= (µ− µ̃)︸ ︷︷ ︸
op(1)

+

(
1

T

T∑

t=1

Wit

pit

)−1 [
1

T

T∑

t=1

Wit

pit
ξt +

1

T

T∑

t=1

Wit

pit
Λ⊤
i Ft

︸ ︷︷ ︸
op(1)

+
1

T

T∑

t=1

Wit

pit
ϵit

︸ ︷︷ ︸
op(1)

]
.

Straightforward calculations yield

(
1

T

T∑

t=1

Wit

pit

)−1
1

T

T∑

t=1

Wit

pit
ξt =




−1/3 if unit i is fully observed,

1 otherwise,
(7)

implying that α̃sym
i is a biased estimator of αi and the bias does not diminish as T grows.13 This

example illustrates why we propose to remove the bias by subtracting ξ̃t in the estimation of α̃sym
i .

12For simplicity, assume T/2 is an integer.
13Note that this issue does not occur in the estimation of ξt. The reason is that we can show that(

1

N

N∑
j=1

Wjt

pjt

)−1

1

N

N∑
i=1

Wit

pit
αi

p−→ 0 .

This follows from Assumption 1.3, stating that Wit and Wjt are conditionally independent for any i ̸= j, and
Assumption 3.2. In more detail, the proof relies on the key property that 1

N2Cov
(∑N

i=1
Wit
pit

αi,
∑N

i=1
Wit
pit

αi

)
=

1
N2

∑N
i=1

∑N
j=1

1
pitpjt

E[E[WitαiWjtαj | Iit, Ijt]] = 1
N2

∑N
i=1

∑N
j=1 αiαj +O( 1

N
) = O( 1

N
) .
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After subtracting ξ̃t, we do not need to use an inverse probability weighting to adjust for the
selection bias because Wit does not depend on the remaining temporal information (that is Ft and
ϵt). Therefore, we can use the equal weights Mα

it for all observed entries in Equation (3).

B Feasible Variance Estimators for ATT

In this section, we provide the detailed description of the resampling bootstrap method in Section
5.2, and discuss how to extend it to allow for cross-sectional dependency through a block resampling
bootstrap method.

B.1 Resampling Bootstrap Method

In Section 5.2, we show that under the asymptotic normality, the valid confidence interval (CI)
for τi is:

P
(
τi ∈

[
τ̂i − z1−α/2

√
Vi, τ̂i + z1−α/2

√
Vi

])
asympt∼ 1− α ,

where Vi is the asymptotic variance and zα is the α-quantile of standard normal distribution.
We propose to estimate Vi with a resampling bootstrap procedure, which is easy to use in spite

of the very complex form of Vi . To implement this method, we assume that conditional on the
factors and time fixed effects, the time series and its observation pattern of each unit are drawn
independently from the same distribution P . To estimate the conditional variance Var(τ̂i | ξ, F ),
we need to resample the error for target unit i. This requires the assumption that the residual time
series are homoscedastic across units.

We describe the resampling bootstrap method in the following. For brevity, we denote the
observed time series in the control panel as Ỹ

(ct)
i := (Y

(ct)
i1 , · · · , Y (ct)

iT )⊙ (Wi1, · · · ,WiT ).
Resampling Bootstrap Algorithm:

1. Construct sampling distribution of the idiosyncratic errors ϵi = (ϵi1, · · · , ϵiT ) of the treated
unit i.
Start a loop for j ∈ {control units}:

• Mask unit j’s observations as if it had the same treatment pattern as unit i, i.e. Ỹ (ct)′
j =

Y
(ct)
j ⊙Wi. Construct a new control panel Ỹ (ct)′ = (Ỹ

(ct)
[N ]\j ; Ỹ

(ct)′
j ).

• Estimate C̃ ′
it with wi-PCA. Calculate residual time series ϵ̃

(i)
j = Y

(ct)
j − C̃ ′

j .

Collect ϵ̃(i) := {ϵ̃(i)j : j ∈ control units}.
2. Obtain estimates of τi from bootstrap samples.

Start a loop for b ∈ {1, · · · , B}:
• Randomly sample N−1 indices i1, · · · , iN−1 from [N ]\ i with replacement and randomly

sample ϵ̃
(i)
b from ϵ̃(i). Construct a new control panel Ỹ (ct)∗

b = (Ỹ
(ct)
i1

; · · · ; Ỹ (ct)
iN−1

; C̃i + ϵ̃
(i)
b )

with the target unit i in the last row.
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• Estimate C̃∗
b,it with wi-PCA. Calculate τ̂∗i,b = T−1

i,tr

∑
t∈Ti,tr(C̃it + ϵ̃

(i)
b,t − C̃∗

b,Nt).
14

3. Calculate the variance as VarP̂ (τ̂
∗
i ) = B−1

∑B
b=1

(
τ̂∗i,b − τ̄i

)2
, where τ̄i =

1
B

∑B
b=1 τ̂

∗
i,b .

We show the good finite sample performance of the CI obtained from this procedure in Appendix
B.3. We also show the benefits of leveraging the asymptotic normal distribution and only sampling
the variance, instead of sampling the complete distribution. The bootstrap procedure assumes
that αj and Λj are independent in j and εjt is i.i.d. in j. This assumption can be relaxed by
sampling blocks of correlated units. We provide the details of block resampling procedure in the
next subsection.

B.2 Block Resampling Bootstrap Method

We discuss how to extend the resampling bootstrap algorithm in Section 5.2 to allow for cross-
sectional dependency in the idiosyncratic errors if the the off-diagonal elements of the covariance
matrix of the errors have a sparse structure. Specifically, we assume that the number of non-zero
off-diagonal entries grows slowly with respect to N and T . Under this assumption, we can use a
block resampling bootstrap method to estimate the variance, which treats correlated units as an
entirety for the resampling. Intuitively, we apply a similar bootstrap algorithm as before, but apply
it to uncorrelated blocks instead of individual units.

In some applications we might know these blocks, for example, based on geographical or industry
clusters. Alternatively, we can identify blocks statistically with threshold techniques. Specifically,
we first estimate the common components C̃it of the control panel Y (ct) and derive the idiosyncratic
error ϵ̃it = Y

(ct)
it − C̃it for each entry. Based on this, we calculate the empirical error covariance

matrix

Σ̃ϵ =
1

T

T∑

t=1

(ϵ̃t − ϵ̄)(ϵ̃t − ϵ̄)⊤ ∈ RN×N ,

where ϵ̃t = (ϵ̃t1, · · · , ϵ̃tN )⊤, ϵ̄ = T−1
∑T

t=1 ϵ̃t. Then, we can apply a thresholding technique like
in Fan, Liao, and Mincheva (2011) to Σ̃ϵ to obtain a sparse error covariance matrix Σ̃T

ϵ . We can
rearrange the cross-sectional units of Σ̃T

ϵ to obtain a block-diagonal matrix.
Given the block structure, the block resampling bootstrap method works as follows:

Block Resampling Bootstrap Algorithm:

1. Get the block structure of panel Y (ct). Group the units into N0 groups g1, · · · , gN0 . Denote
by g(i) the group containing the target treated unit i.

2. Construct sampling distribution of of the idiosyncratic errors of group g(i).
Start a loop for j ∈ {control groups ∪ groups with the same error structure as g(i)}:

• Mask group j’s observations as if it had the same treatment pattern as group g(i), i.e.
Ỹ

(ct)′
gj = Y

(ct)
gj ⊙Wg(i) . Construct a new control panel Ỹ (ct)′ = (Ỹ

(ct)
[N ]\gj ; Ỹ

(ct)′
gj ).

14The treated outcome for unit i at time t can be drawn as C̃it + ϵ̃
(i)
b,t + τit. However, since τit would not affect the

variance of τ̂i, we directly use C̃it + ϵ̃
(i)
b,t (τit = 0) for the bootstrap treated outcome in estimating the variance.
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• Estimate C̃ ′ from Ỹ (ct)′ with wi-PCA. Calculate the residual time series ϵ̃(i)gj = Y
(ct)
gj −C̃ ′

gj .

Collect ϵ̃(i) := {ϵ̃(i)gj }.
3. Obtain estimates of τi from bootstrap samples.

Start a loop for b ∈ {1, · · · , B}:
• Randomly sample groups gj1 , · · · , gjd from the N0−1 groups with replacement, where d is

the smallest number such that the number of sampled units |gj1 |+ · · ·+ |gjd | ≥ N−|g(i)|.
Then, randomly remove |gj1 |+ · · ·+ |gjd |− (N −|g(i)|) units. Randomly sample ϵ̃

(i)
b from

ϵ̃(i). Combine the sampled units with C̃g(i) + ϵ̃
(i)
b to construct a new control panel Ỹ (ct)∗

b .
• Estimate C̃∗

b from Ỹ
(ct)∗
b with wi-PCA and calculate τ̂∗i,b = T−1

i,tr

∑
t∈Ti,tr(C̃i+ϵ̃

(i)
b −C̃∗

b,(i)t) ,

where (i) denotes the position of unit i.

4. Calculate the variance as

VarP̂ (τ̂
∗
i ) =

1

B

B∑

b=1

(
τ̂∗i,b − τ̄i

)2
, where τ̄i =

1

B

B∑

b=1

τ̂∗i,b .

V̂i = VarP̂ (τ̂
∗
i ) is the estimate of Var(τ̂i|ξ, F ).

The resampling bootstrap algorithm proposed in Section 5.2 is a special case of this block
resampling bootstrap algorithm with N0 = N . The performance of the block resampling bootstrap
algorithm increases in the number of groups N0.

B.3 Bootstrapped Asymptotic Variance

In this section, we demonstrate the good finite sample performance of our bootstrap proce-
dure from Section 5.2 for estimating the asymptotic variance and constructing asymptotically valid
confidence intervals for the average treatment effect on the treated. In particular, we show that
the bootstrapped variances can still be reliable estimates even if some of the assumptions are vio-
lated, and that leveraging the normal distribution of the estimator provides better coverage than
estimating the complete distribution with the bootstrap.

We generate the control panel Y (ct) from the same one-factor model with two-way fixed effects
specified as in Section 7, that is, Y (ct)

it = µ + αi + ξt + ΛiFt + ϵit, where µ = 1, αi
i.i.d.∼ N (0, 1),

Λi
i.i.d.∼ N (0, 1), and Ft

i.i.d.∼ N (0, 1). We consider both stationary and non-stationary time fixed
effects ξt and both homoscedastic and heteroscedastic idiosyncratic errors. The stationary time
fixed effects follow ξt

i.i.d.∼ N (0, 1), while non-stationary time fixed effects include a trend and are
generated as ξt = 0.05t + N (0, 1) for any t. The homoscedastic errors follow ϵit

i.i.d.∼ N (0, 4)

for any i and t. For heteroscedastic errors, we let ϵit
i.i.d.∼ N (0, 4) for the target unit i, while

ϵjt
i.i.d.∼ N (0, σ2

ϵ,j) with σϵ,j
i.i.d.∼ Uniform(1, 3) for units other than i. We assume the treated panel

Y (tr) = Y (ct), i.e. the treatment effect is zero for any unit i at any time period t. We consider the
three treatment patterns in Section 7: treated-at-random, simultaneous treatment adoption, and
staggered treatment adoption.
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Table A.1: Coverage of constructed confidence intervals (CI)

Homoscedastic Error Heteroscedastic Error

ξt 95% 90% 80% 95% 90% 80%

S 95.0% 89.8% 80.0% 94.4% 89.8% 80.5%

N 95.0% 89.8% 80.0% 94.4% 89.8% 80.5%

S 94.3% 89.2% 79.5% 94.1% 89.6% 80.6%

N 94.3% 89.2% 79.5% 94.1% 89.6% 80.6%

S 94.1% 89.2% 78.1% 94.2% 89.4% 79.7%

N 94.1% 89.2% 78.1% 94.2% 89.4% 79.7%

This table reports the coverage of CI for ATT using wi-PCA with unknown observation probability. The figures
on the left show the observation patterns for the control panel with shaded entries indicating observed entries
and unshaded entries indicating missing entries. Each observation pattern corresponds to two rows with either
stationary time fixed effects (S) or non-stationary time fixed effects (N). We set N = T = 100, B = 100 and run
1000 simulations for each setup.

Table A.1 shows the good finite sample coverage of the confidence intervals for τi for all the three
treatment patterns. In the setting with homoscedastic errors, our theoretical results guarantee
that our constructed confidence intervals are asymptotically valid. However, for the case with
heteroscedastic errors, the confidence intervals maintain good coverage, which demonstrates the
robustness of the bootstrap procedure to minor deviations from the i.i.d assumption of the error
time series.

Additionally, Figure A.1 shows the histograms of bootstrap ATTs for the three treatment pat-
terns under both homoscedastic and heteroscedastic settings. In both settings, the bootstrap dis-
tributions closely resemble normal distributions.

We also show the benefits of sampling only the variance and leveraging the theoretical normal
distribution, instead of sampling the complete distribution in the second step of the bootstrap
procedure. Table A.2 compares the coverage of the confidence intervals constructed by two methods,
where the first method (“bootstrapped variance with normal distribution”) is our proposed bootstrap
method that samples only the variance and uses the asymptotic normal distribution implied by our
theory, while the second method (“bootstrapped distribution”) uses the complete distribution of the
bootstrap estimators τ̂∗i,b for b = 1, . . . , B. In the second method, we construct confidence intervals
as [τ̂∗i,α/2, τ̂

∗
i,1−α/2], where τ̂∗i,α/2 and τ̂∗i,α/2 are respectively the α/2 and 1 − α/2 quantiles of the

bootstrap estimators τ̂∗i,b. Table A.2 shows that the method that samples only the variance and
leverages the theoretical normal distribution achieves better coverage than the method that uses
the quantiles of the entire distribution.
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Figure A.1: Histograms of bootstrap ATT’s

(a): Homoscedastic error

(b): Heteroscedastic error

These figures show histograms of bootstrap ATT’s of the three treatment patterns (from left to right): treated-at-
random, simultaneous treatment adoption, and staggered treatment adoption. We set B = 2000 for each setup.

C Block-PCA Estimator

In this section, we briefly review the generalized synthetic control (GSC) estimator proposed
in Xu (2017), which we refer to as “block-PCA”. The GSC estimator with latent confounders also
employs a latent factor model to describe the control outcomes, that is, it assumes the model

Yit = Λ⊤
i Ft + ϵit (8)

for units i = 1, · · · , N and time periods t = 1, · · · , T .
GSC estimator requires a block of fully observed control units. It estimates the model in three

steps. First, it estimates the factor model using only the control units and obtain the latent factors
F̃ and factor loadings for the control units Λ̃co. In the second step, it estimates the factor loadings
for each treated units by regressing the observed control outcomes on estimated factors F̃ using the
pretreatment period. Finally, in the last step, it estimates the counterfactual control outcomes by
combining the estimated factors and loadings, as C̃it = Λ̃⊤

i F̃t.
The GSC estimator with observed covariates X takes the form:

Yit = β⊤Xit + Λ⊤
i Ft + ϵit. (9)

The coefficients β̃ on the observables are estimated in the first step, using only the fully observed
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Table A.2: Comparison between confidence intervals (CI) constructed by different methods

Bootstrapped Variance Bootstrapped Distribution

with Normal Distribution

ξt 95% 90% 80% 95% 90% 80%

S 95.0% 89.8% 80.0% 93.4% 88.6% 78.8%

N 95.0% 89.8% 80.0% 93.4% 88.6% 78.8%

S 94.3% 89.2% 79.5% 92.4% 87.5% 80.4%

N 94.3% 89.2% 79.5% 92.4% 87.5% 80.4%

S 94.1% 89.2% 78.1% 92.6% 87.2% 76.4%

N 94.1% 89.2% 78.1% 92.6% 87.2% 76.4%

This table reports the coverage of CI for ATT where we either bootstrap the variance and use the asymptotic
normal distribution or bootstrap the full distribution. The figures on the left show the observation patterns for the
control panel with shaded entries indicating observed entries and unshaded entries indicating missing entries. Each
observation pattern corresponds to two rows with either stationary time fixed effects (S) or non-stationary time
fixed effects (N). We consider the setting with homoscedastic errors. We set N = T = 100, B = 100 and run 1000
simulations for each setup.

control units.

D Empirical Study: Synthetic Treatment Assignment

In Section 8.1, we compare the performance of different estimators through synthetic treatment
assignments on the control panel that consists of the 39 control states. Specifically, we generate
synthetic treatment patterns for the control panel and mask the corresponding control outcomes in
the data as if they were treated. Then, we compare the estimation accuracy of different estimators
on these synthetic treatments.

Tables A.3-A.5 provide detailed robustness results with a larger number of factors for wi-PCA,
PCA and block-PCA. For conciseness, Table 3 in the main text shows the results for only three
latent factors, but all the results from the main text extend to up to 8 factors.
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Table A.3: Results for the uniformly random treatment pattern

RMSEY |BiasATT| RMSEATT

wi-PCA

(FE+factor model)

k=1 2.207 0.156 1.236

k=2 1.933 0.139 1.110

k=3 2.012 0.158 1.179

k=4 2.033 0.167 1.206

k=5 2.026 0.173 1.214

k=6 2.051 0.177 1.258

k=7 2.061 0.177 1.291

k=8 2.067 0.177 1.303

PCA

(factor model only)

k=1 2.525 0.216 1.677

k=2 2.642 0.586 1.755

k=3 2.952 0.979 2.032

k=4 3.302 1.357 2.368

k=5 3.598 1.637 2.615

k=6 3.764 1.806 2.782

k=7 3.883 1.929 2.908

k=8 3.978 2.022 3.002

Block-PCA

(factor model only)

k=1 - - -

k=2 - - -

k=3 - - -

k=4 - - -

k=5 - - -

k=6 - - -

k=7 - - -

k=8 - - -

TWFE

(FE only)
2.576 0.218 1.604

This table reports the complete results for the uniformly random treatment pattern for a larger number of factors
in wi-PCA, PCA, and block-PCA estimators. Note that the block-PCA method is infeasible here because we do
not have control units with fully observed data. We simulate the masking 100 times and report the average results.
The units are 100 dollars per store.
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Table A.4: Results for the simultaneous treatment adoption pattern

RMSEY |BiasATT| RMSEATT

wi-PCA

(FE+factor model)

k=1 2.424 0.255 0.995

k=2 2.090 0.275 1.029

k=3 1.942 0.262 1.056

k=4 1.909 0.284 1.084

k=5 1.955 0.299 1.138

k=6 2.006 0.299 1.166

k=7 2.025 0.301 1.177

k=8 2.039 0.304 1.184

PCA

(factor model only)

k=1 2.374 0.825 1.672

k=2 4.605 3.760 4.076

k=3 5.450 4.190 4.523

k=4 5.123 4.131 4.459

k=5 5.038 4.138 4.467

k=6 5.009 4.147 4.478

k=7 5.005 4.152 4.483

k=8 5.012 4.151 4.482

Block-PCA

(factor model only)

k=1 2.307 0.450 1.568

k=2 2.246 0.318 1.128

k=3 2.125 0.304 1.176

k=4 2.085 0.284 1.218

k=5 2.037 0.289 1.228

k=6 1.968 0.282 1.209

k=7 1.940 0.272 1.208

k=8 1.924 0.286 1.204

TWFE

(FE only)
2.445 0.415 1.528

This table reports the complete results for the simultaneous treatment adoption pattern for a larger number of
factors in wi-PCA, PCA, and block-PCA estimators. We simulate the masking 100 times and report the average
results. The units are 100 dollars per store.
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Table A.5: Results for the staggered treatment adoption pattern

RMSEY |BiasATT| RMSEATT

wi-PCA

(FE+factor model)

k=1 4.299 0.751 2.893

k=2 3.923 0.475 2.770

k=3 4.097 0.574 2.911

k=4 4.185 0.642 2.985

k=5 4.241 0.692 3.068

k=6 4.270 0.733 3.102

k=7 4.289 0.735 3.114

k=8 4.278 0.726 3.096

PCA

(factor model only)

k=1 5.004 1.445 4.119

k=2 6.766 4.472 5.430

k=3 7.463 5.246 6.063

k=4 7.715 5.437 6.242

k=5 7.794 5.558 6.369

k=6 7.900 5.647 6.467

k=7 7.985 5.719 6.539

k=8 8.016 5.764 6.580

Block-PCA

(factor model only)

k=1 4.877 0.902 3.884

k=2 7.163 1.256 5.114

k=3 5.934 1.035 4.212

k=4 6.237 1.015 4.456

k=5 6.243 1.009 4.434

k=6 6.359 1.008 4.521

k=7 6.617 1.039 4.731

k=8 6.725 1.034 4.793

TWFE

(FE only)
4.603 0.593 3.498

This table reports the complete results for the staggered treatment adoption pattern for a larger number of factors
in wi-PCA, PCA, and block-PCA estimators. We simulate the masking 100 times and report the average results.
The units are 100 dollars per store.
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IA.A Simulation

IA.A.1 Comparison with Benchmark Estimators

Table IA.1: Relative MSE of common components for missing at random with stationary time
fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

Parameters S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

p = 0.4

σϵ = 1
obs 0.041 0.041 0.352 0.138 0.075 - - - 0.252
miss 0.050 0.050 0.386 0.167 0.101 - - - 0.278
all 0.046 0.047 0.372 0.155 0.091 - - - 0.268

σϵ = 2
obs 0.121 0.122 0.390 0.221 0.214 - - - 0.290
miss 0.133 0.133 0.425 0.254 0.253 - - - 0.319
all 0.128 0.129 0.411 0.241 0.238 - - - 0.308

σϵ = 3
obs 0.273 0.274 0.464 0.388 0.495 - - - 0.352
miss 0.288 0.289 0.503 0.428 0.551 - - - 0.383
all 0.282 0.283 0.487 0.412 0.529 - - - 0.370

p = 0.6

σϵ = 1
obs 0.024 0.024 0.347 0.119 0.042 - - - 0.252
miss 0.028 0.028 0.369 0.134 0.052 - - - 0.270
all 0.026 0.026 0.355 0.125 0.046 - - - 0.259

σϵ = 2
obs 0.076 0.077 0.370 0.172 0.128 - - - 0.276
miss 0.080 0.081 0.393 0.188 0.139 - - - 0.295
all 0.078 0.078 0.379 0.178 0.132 - - - 0.283

σϵ = 3
obs 0.172 0.172 0.419 0.272 0.308 - - - 0.319
miss 0.177 0.177 0.443 0.291 0.325 - - - 0.337
all 0.174 0.174 0.429 0.279 0.315 - - - 0.326

p = 0.8

σϵ = 1
obs 0.015 0.015 0.336 0.107 0.026 - - - 0.245
miss 0.017 0.017 0.352 0.117 0.029 - - - 0.257
all 0.016 0.016 0.339 0.109 0.026 - - - 0.247

σϵ = 2
obs 0.055 0.055 0.360 0.147 0.088 - - - 0.270
miss 0.056 0.056 0.377 0.157 0.093 - - - 0.283
all 0.055 0.055 0.364 0.149 0.089 - - - 0.273

σϵ = 3
obs 0.124 0.124 0.398 0.219 0.213 - - - 0.303
miss 0.126 0.126 0.413 0.230 0.219 - - - 0.315
all 0.124 0.124 0.401 0.221 0.214 - - - 0.305

This table reports the relative MSE of different estimators for the missing at random pattern with stationary time
fixed effects. We compare the performance of wi-PCA, with known and unknown observation probability, with three
benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with two-way fixed effects:
Yit = µ+ αi + ξt +ΛiFt + ϵit, where µ = 1, αi, ξt, Ft,Λi

i.i.d.∼ N (0, 1), and errors ϵit
i.i.d.∼ N (0, σ2

ϵ ) with different σϵ.
The entries of Y are uniformly missing at random with observation probability p. Bold numbers indicate the best
out-of-sample relative model performance. We set N = T = 100 and run 200 simulations for each setup.
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Table IA.2: Relative MSE of common components for missing at random with non-stationary
time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

Parameters S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

p = 0.4

σϵ = 1

obs 0.027 0.027 0.293 0.148 0.065 - - - 0.168
miss 0.033 0.033 0.322 0.182 0.090 - - - 0.185
all 0.030 0.030 0.311 0.168 0.080 - - - 0.178

σϵ = 2

obs 0.080 0.080 0.318 0.203 0.151 - - - 0.191
miss 0.087 0.087 0.347 0.240 0.184 - - - 0.209
all 0.084 0.084 0.336 0.225 0.171 - - - 0.201

σϵ = 3

obs 0.179 0.180 0.361 0.307 0.325 - - - 0.222
miss 0.190 0.190 0.393 0.350 0.372 - - - 0.246
all 0.186 0.186 0.380 0.332 0.353 - - - 0.236

p = 0.6

σϵ = 1

obs 0.016 0.016 0.284 0.129 0.034 - - - 0.166
miss 0.018 0.018 0.303 0.147 0.043 - - - 0.178
all 0.017 0.017 0.292 0.136 0.038 - - - 0.171

σϵ = 2

obs 0.050 0.050 0.299 0.163 0.088 - - - 0.181
miss 0.053 0.053 0.317 0.182 0.098 - - - 0.194
all 0.051 0.051 0.306 0.171 0.092 - - - 0.186

σϵ = 3

obs 0.112 0.113 0.328 0.226 0.192 - - - 0.202
miss 0.115 0.115 0.345 0.246 0.204 - - - 0.214
all 0.113 0.114 0.335 0.234 0.197 - - - 0.207

p = 0.8

σϵ = 1

obs 0.010 0.010 0.277 0.117 0.019 - - - 0.162
miss 0.011 0.011 0.290 0.129 0.023 - - - 0.170
all 0.010 0.010 0.279 0.119 0.020 - - - 0.163

σϵ = 2

obs 0.036 0.036 0.292 0.145 0.059 - - - 0.177
miss 0.037 0.037 0.305 0.157 0.063 - - - 0.186
all 0.036 0.036 0.294 0.148 0.059 - - - 0.179

σϵ = 3

obs 0.082 0.082 0.316 0.193 0.133 - - - 0.192
miss 0.083 0.083 0.328 0.205 0.137 - - - 0.205
all 0.082 0.082 0.318 0.196 0.134 - - - 0.194

This table reports the relative MSE of different estimators for the missing at random pattern with non-stationary
time fixed effects. We compare the performance of wi-PCA, with known and unknown observation probability, with
three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with two-way fixed
effects: Yit = µ+αi + ξt +ΛiFt + ϵit, where µ = 1, αi, Ft,Λi

i.i.d.∼ N (0, 1),the time fixed effects ξt = 0.05t+N (0, 1),
and errors ϵit

i.i.d.∼ N (0, σ2
ϵ ) with different σϵ. The entries of Y are uniformly missing at random with observation

probability p. Bold numbers indicate the best out-of-sample relative model performance. We set N = T = 100 and
run 200 simulations for each setup.
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Table IA.3: Relative MSE of common components for simultaneous treatment adoption pattern
with stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

Parameters S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

c = 40%

σϵ = 1

obs 0.017 0.017 0.339 0.106 0.025 0.340 0.108 0.026 0.250
miss 0.036 0.031 0.374 0.137 0.050 0.373 0.131 0.038 0.274
all 0.023 0.021 0.349 0.115 0.032 0.350 0.114 0.030 0.257

σϵ = 2

obs 0.064 0.069 0.369 0.156 0.104 0.372 0.161 0.110 0.283
miss 0.108 0.105 0.414 0.210 0.165 0.412 0.204 0.152 0.314
all 0.077 0.079 0.383 0.172 0.122 0.384 0.174 0.122 0.292

σϵ = 3

obs 0.149 0.161 0.412 0.253 0.256 0.418 0.261 0.265 0.321
miss 0.232 0.233 0.477 0.344 0.377 0.469 0.327 0.335 0.368
all 0.173 0.182 0.431 0.279 0.292 0.433 0.280 0.285 0.334

c = 50%

σϵ = 1

obs 0.015 0.016 0.344 0.106 0.023 0.347 0.108 0.026 0.255
miss 0.029 0.025 0.367 0.128 0.041 0.367 0.124 0.033 0.268
all 0.019 0.018 0.349 0.111 0.028 0.351 0.112 0.028 0.258

σϵ = 2

obs 0.059 0.064 0.366 0.151 0.093 0.373 0.161 0.106 0.280
miss 0.093 0.090 0.406 0.197 0.144 0.404 0.192 0.132 0.302
all 0.067 0.070 0.376 0.162 0.106 0.380 0.168 0.112 0.285

σϵ = 3

obs 0.137 0.152 0.400 0.234 0.234 0.413 0.256 0.259 0.319
miss 0.205 0.205 0.456 0.311 0.334 0.452 0.296 0.289 0.354
all 0.154 0.165 0.414 0.253 0.258 0.423 0.266 0.266 0.327

c = 60%

σϵ = 1

obs 0.014 0.015 0.340 0.104 0.021 0.344 0.108 0.025 0.252
miss 0.027 0.022 0.369 0.127 0.036 0.369 0.126 0.031 0.263
all 0.016 0.016 0.345 0.108 0.024 0.348 0.111 0.026 0.254

σϵ = 2

obs 0.054 0.061 0.359 0.145 0.086 0.368 0.159 0.103 0.277
miss 0.084 0.082 0.397 0.183 0.129 0.396 0.179 0.118 0.300
all 0.060 0.065 0.366 0.152 0.094 0.373 0.162 0.106 0.281

σϵ = 3

obs 0.125 0.140 0.399 0.220 0.209 0.415 0.248 0.247 0.321
miss 0.190 0.189 0.456 0.294 0.301 0.451 0.279 0.264 0.353
all 0.137 0.149 0.410 0.234 0.227 0.422 0.253 0.250 0.327

This table reports the relative MSE of different estimators for the simultaneous treatment adoption pattern with
stationary time fixed effects. We compare the performance of wi-PCA, with known and unknown observation
probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model
with two-way fixed effects: Yit = µ + αi + ξt + ΛiFt + ϵit, where µ = 1, αi, ξt, Ft,Λi

i.i.d.∼ N (0, 1), and errors
ϵit

i.i.d.∼ N (0, σ2
ϵ ) with different σϵ. The entries of Y are fully observed in the first cT time periods with different p.

Starting from t = cT +1, units adopt the treatment with probability 0.5. The units selected in the treatment group
do not have observation in the last (1 − c)T time periods. Bold numbers indicate the best out-of-sample relative
model performance. We set N = T = 100 and run 200 simulations for each setup.
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Table IA.4: Relative MSE of common components for simultaneous treatment adoption pattern
with non-stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

Parameters S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

c = 40%

σϵ = 1

obs 0.013 0.013 0.355 0.180 0.041 0.334 0.147 0.019 0.185
miss 0.019 0.016 0.579 0.554 0.480 0.416 0.253 0.038 0.142
all 0.015 0.014 0.440 0.323 0.208 0.365 0.187 0.027 0.169

σϵ = 2

obs 0.048 0.051 0.376 0.209 0.091 0.359 0.186 0.080 0.207
miss 0.055 0.054 0.594 0.573 0.527 0.476 0.322 0.154 0.162
all 0.051 0.052 0.460 0.349 0.259 0.404 0.238 0.108 0.190

σϵ = 3

obs 0.111 0.120 0.399 0.266 0.183 0.387 0.254 0.189 0.228
miss 0.119 0.120 0.607 0.599 0.586 0.549 0.437 0.324 0.191
all 0.114 0.119 0.478 0.392 0.336 0.449 0.324 0.240 0.213

c = 50%

σϵ = 1

obs 0.012 0.012 0.368 0.179 0.046 0.347 0.152 0.019 0.192
miss 0.014 0.011 0.496 0.453 0.402 0.278 0.143 0.027 0.126
all 0.012 0.012 0.413 0.276 0.172 0.323 0.149 0.022 0.168

σϵ = 2

obs 0.044 0.049 0.382 0.209 0.092 0.366 0.191 0.079 0.207
miss 0.043 0.042 0.503 0.468 0.433 0.317 0.202 0.104 0.141
all 0.044 0.046 0.425 0.300 0.211 0.349 0.195 0.088 0.183

σϵ = 3

obs 0.104 0.116 0.410 0.271 0.180 0.402 0.266 0.189 0.230
miss 0.095 0.095 0.509 0.508 0.493 0.363 0.285 0.230 0.165
all 0.101 0.108 0.445 0.354 0.290 0.388 0.273 0.203 0.207

c = 60%

σϵ = 1

obs 0.011 0.011 0.372 0.180 0.043 0.352 0.159 0.019 0.192
miss 0.011 0.009 0.381 0.330 0.287 0.176 0.082 0.019 0.111
all 0.011 0.011 0.375 0.227 0.119 0.297 0.135 0.019 0.166

σϵ = 2

obs 0.041 0.046 0.379 0.205 0.089 0.365 0.193 0.078 0.205
miss 0.035 0.034 0.387 0.347 0.324 0.216 0.125 0.076 0.126
all 0.039 0.042 0.382 0.249 0.163 0.318 0.171 0.077 0.180

σϵ = 3

obs 0.095 0.107 0.409 0.259 0.170 0.402 0.260 0.182 0.231
miss 0.078 0.078 0.408 0.384 0.384 0.269 0.203 0.170 0.148
all 0.090 0.098 0.408 0.298 0.237 0.360 0.242 0.178 0.205

This table reports the relative MSE of different estimators for the simultaneous treatment adoption pattern with
non-stationary time fixed effects. We compare the performance of wi-PCA, with known and unknown observation
probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with
two-way fixed effects: Yit = µ + αi + ξt + ΛiFt + ϵit, where µ = 1, αi, Ft,Λi

i.i.d.∼ N (0, 1), the time fixed effects
ξt = 0.05t+N (0, 1), and errors ϵit

i.i.d.∼ N (0, σ2
ϵ ) with different σϵ. The entries of Y are fully observed in the first cT

time periods with different p. Starting from t = cT + 1, units adopt the treatment with probability 0.5. The units
selected in the treatment group do not have observation in the last (1 − c)T time periods. Bold numbers indicate
the best out-of-sample relative model performance. We set N = T = 100 and run 200 simulations for each setup.
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Table IA.5: Relative MSE of common components for staggered treatment adoption pattern
with stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

Parameters S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

p = 0.5

σϵ = 1

obs 0.035 0.017 0.345 0.080 0.032 0.343 0.078 0.026 0.282
miss 0.063 0.039 0.423 0.291 0.122 0.432 0.268 0.071 0.200
all 0.044 0.023 0.368 0.141 0.059 0.370 0.133 0.040 0.258

σϵ = 2

obs 0.090 0.066 0.374 0.136 0.119 0.369 0.126 0.115 0.308
miss 0.135 0.110 0.455 0.363 0.292 0.471 0.355 0.287 0.226
all 0.104 0.080 0.398 0.205 0.172 0.400 0.196 0.168 0.283

σϵ = 3

obs 0.206 0.161 0.424 0.247 0.274 0.412 0.215 0.289 0.346
miss 0.307 0.252 0.541 0.529 0.569 0.548 0.514 0.621 0.290
all 0.236 0.188 0.457 0.328 0.360 0.452 0.304 0.389 0.330

p = 0.7

σϵ = 1

obs 0.026 0.015 0.345 0.084 0.029 0.346 0.083 0.024 0.279
miss 0.047 0.032 0.404 0.279 0.111 0.414 0.265 0.061 0.181
all 0.031 0.019 0.359 0.132 0.049 0.362 0.127 0.033 0.256

σϵ = 2

obs 0.080 0.061 0.363 0.134 0.111 0.361 0.129 0.105 0.294
miss 0.120 0.099 0.439 0.356 0.264 0.447 0.339 0.233 0.213
all 0.090 0.071 0.381 0.189 0.149 0.383 0.181 0.138 0.274

σϵ = 3

obs 0.178 0.144 0.411 0.232 0.255 0.406 0.211 0.270 0.334
miss 0.257 0.219 0.512 0.499 0.531 0.517 0.472 0.534 0.261
all 0.198 0.163 0.435 0.297 0.322 0.434 0.276 0.337 0.317

p = 0.9

σϵ = 1

obs 0.015 0.013 0.343 0.092 0.022 0.344 0.092 0.020 0.264
miss 0.034 0.030 0.395 0.264 0.094 0.407 0.251 0.044 0.179
all 0.018 0.015 0.349 0.116 0.032 0.352 0.114 0.023 0.252

σϵ = 2

obs 0.054 0.050 0.362 0.132 0.088 0.363 0.131 0.086 0.283
miss 0.083 0.079 0.431 0.325 0.213 0.440 0.310 0.176 0.206
all 0.058 0.055 0.371 0.159 0.106 0.373 0.157 0.100 0.271

σϵ = 3

obs 0.123 0.119 0.401 0.206 0.218 0.402 0.201 0.215 0.318
miss 0.186 0.183 0.482 0.447 0.487 0.489 0.426 0.407 0.244
all 0.132 0.128 0.412 0.239 0.255 0.414 0.233 0.241 0.308

This table reports the relative MSE of different estimators for the staggered treatment adoption pattern with
stationary time fixed effects. We compare the performance of wi-PCA, with known and unknown observation
probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model
with two-way fixed effects: Yit = µ + αi + ξt + ΛiFt + ϵit, where µ = 1, αi, ξt, Ft,Λi

i.i.d.∼ N (0, 1), and errors
ϵit

i.i.d.∼ N (0, σ2
ϵ ) with different σϵ. The entries of Y are fully observed in the first 0.1 ·T time periods. Starting from

t = 0.1 ·T +1, entries are missing with probability. Specifically, if Yit is missing, the observations for that unit in the
following time periods are also missing, i.e. if Wit = 0, then Wit′ = 0 for t′ ≥ t. If Yit is observed, the observation
probability of Yi,t+1 is p when |αiξt| > 2.5 and 1 otherwise. Bold numbers indicate the best out-of-sample relative
model performance. We set N = T = 100 and run 200 simulations for each setup.
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Table IA.6: Relative MSE of common components for staggered treatment adoption pattern
with non-stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) (FE only)

Parameters S known unknown k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

p = 0.5

σϵ = 1

obs 0.034 0.016 0.260 0.101 0.034 0.241 0.057 0.026 0.217
miss 0.066 0.042 0.961 0.818 0.584 1.099 0.985 0.255 0.177
all 0.049 0.028 0.586 0.433 0.290 0.637 0.487 0.133 0.199

σϵ = 2

obs 0.100 0.066 0.295 0.153 0.104 0.265 0.101 0.111 0.258
miss 0.158 0.120 1.037 0.868 0.685 1.156 1.081 0.868 0.232
all 0.127 0.091 0.640 0.485 0.374 0.679 0.555 0.466 0.246

σϵ = 3

obs 0.229 0.169 0.342 0.255 0.245 0.291 0.177 0.255 0.325
miss 0.346 0.268 1.131 0.976 0.873 1.257 1.313 1.468 0.333
all 0.283 0.215 0.713 0.595 0.541 0.745 0.711 0.828 0.328

p = 0.7

σϵ = 1

obs 0.030 0.015 0.264 0.111 0.033 0.245 0.065 0.025 0.209
miss 0.056 0.036 0.981 0.816 0.578 1.118 1.016 0.212 0.165
all 0.041 0.023 0.562 0.404 0.260 0.608 0.460 0.103 0.191

σϵ = 2

obs 0.093 0.059 0.290 0.162 0.095 0.268 0.107 0.105 0.250
miss 0.146 0.108 1.006 0.844 0.660 1.157 1.118 0.790 0.220
all 0.115 0.079 0.592 0.449 0.334 0.643 0.533 0.396 0.238

σϵ = 3

obs 0.206 0.151 0.339 0.251 0.221 0.301 0.181 0.247 0.320
miss 0.319 0.247 1.147 0.952 0.839 1.297 1.324 1.389 0.316
all 0.254 0.191 0.683 0.548 0.484 0.724 0.665 0.733 0.318

p = 0.9

σϵ = 1

obs 0.018 0.011 0.283 0.141 0.030 0.269 0.091 0.019 0.194
miss 0.039 0.029 0.898 0.734 0.544 1.119 1.012 0.129 0.144
all 0.024 0.016 0.469 0.320 0.186 0.523 0.366 0.053 0.179

σϵ = 2

obs 0.056 0.045 0.301 0.178 0.078 0.287 0.126 0.083 0.216
miss 0.097 0.081 0.911 0.759 0.602 1.135 1.065 0.494 0.175
all 0.068 0.055 0.487 0.353 0.237 0.541 0.408 0.207 0.204

σϵ = 3

obs 0.125 0.109 0.328 0.232 0.170 0.312 0.182 0.202 0.246
miss 0.202 0.185 0.982 0.840 0.741 1.198 1.190 1.028 0.217
all 0.147 0.132 0.524 0.413 0.341 0.576 0.483 0.450 0.237

This table reports the relative MSE of different estimators for the staggered treatment adoption pattern with
non-stationary time fixed effects. We compare the performance of wi-PCA, with known and unknown observation
probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with
two-way fixed effects: Yit = µ + αi + ξt + ΛiFt + ϵit, where µ = 1, αi, Ft,Λi

i.i.d.∼ N (0, 1), the time fixed effects
ξt = 0.05t +N (0, 1), and errors ϵit

i.i.d.∼ N (0, σ2
ϵ ) with different σϵ. The entries of Y are fully observed in the first

0.1 ·T time periods. Starting from t = 0.1 ·T +1, entries are missing with probability. Specifically, if Yit is missing,
the observations for that unit in the following time periods are also missing, i.e. if Wit = 0, then Wit′ = 0 for
t′ ≥ t. If Yit is observed, the observation probability of Yi,t+1 is p when |αiξt| > 2.5 and 1 otherwise. Bold numbers
indicate the best out-of-sample relative model performance. We set N = T = 100 and run 200 simulations for each
setup.

7



IA.B Empirical Study

IA.B.1 Data for Empirical Study

We use the weekly NielsenIQ retail scanner beer sales data from the Kilts Center for Marketing.
Our data consists of 208 weekly observations of beer sales revenue from January 01, 2017, to
December 26, 2020, which is aggregated at the state level for the U.S. Our cross-section consists
of 45 states, of which 39 are control states and 6 are treated states that legalized the retail sale of
marijuana at different time points during this period.

We explain why it important to normalize the weekly beer sales revenue by the number of stores
in each state. The coverage of stores in the Kilts Center dataset fluctuates over time, in particular
at the end of the sample. Figure IA.1(a) shows an example of the varying number of stores over
time in Connecticut covered by Kilts Center dataset. Notably, there is a substantial increase in
the number of stores in 2018. Therefore, a straightforward aggregation of sales revenue from the
archived stores would yield misleading results. To address this issue, we normalize the total beer
sales revenue by the number of stores in each state at each time period. As demonstrated in Figure
IA.1(b), this normalization procedure helps to mitigate the impact of changes in store coverage and
provides a more accurate representation of the beer sales data.

Figure IA.1: Number of stores and per-store beer sales revenue of Connecticut

(a) Store number (b) Beer sales per store

IA.B.2 Observed and Estimated Time Series

We present the observed time series and estimated control time series for all six treated states.
We use wi-PCA, PCA, block-PCA and TWFW to estimate the common components, which serve
as the control outcomes. We use wi-PCA with k = 2 factors and PCA and block-PCA with k = 4

factors to have a fair comparison in terms of the degrees of freedom. We also show the results for
k = 1 factor for PCA and block-PCA.
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We observe that the results from the main text for Massachusetts and Nevada generalize to the
other treated states. We see that using more factors for PCA and block-PCA can lead to overfitting
on the in-sample data, while using too few factors leads to an omitted variable bias.
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Figure IA.2: California

(a) k=1

(b) k=4

These figures show observed outcomes and estimated control outcomes of beer sales per store for California. The
figure above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure IA.3: Michigan

(a) k=1

(b) k=4

These figures show observed outcomes and estimated control outcomes of beer sales per store for Michigan. The
figure above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure IA.4: Illinois

(a) k=1

(b) k=4

These figures show observed outcomes and estimated control outcomes of beer sales per store for Illinois. The figure
above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k = 4 factors. The grey vertical curve denotes the time of treatment.

12



Figure IA.5: Massachusetts

(a) k=1

(b) k=4

These figures show observed outcomes and estimated control outcomes of beer sales per store for Massachusetts.
The figure above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and
block-PCA with k = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure IA.6: Nevada

(a) k=1

(b) k=4

These figures show observed outcomes and estimated control outcomes of beer sales per store for Nevada. The figure
above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure IA.7: Maine

(a) k=1

(b) k=4

These figures show observed outcomes and estimated control outcomes of beer sales per store for Maine. The figure
above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k = 4 factors. The grey vertical curve denotes the time of treatment.
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IA.C Proofs

To simplify the exposition we use the notation Dt =
1
N

∑N
i=1Wit/pit, W̄i,· = 1

T

∑T
t=1Wit, and

the information set Ii = Ii1 ∪ · · · ∪ IiT for any unit i , and I = I1 ∪ · · · ∪ IN .

IA.C.1 Proof of Theorem 1: Consistency

IA.C.1.1 Consistency for the sum of grand mean and fixed effects

Lemma 1. Let δN,T = min(N,T ). Suppose Assumptions 1, 2, 3 and Case 1 in Assumption 4 hold.
When N,T → ∞, wi-PCA with weights (4) consistently estimate the sum of grand mean and fixed
effects:

E
[(

(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)
)4]

≤ M

δN,T
,

which implies that
√

δN,T

(
(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)

)
= Op(1) .

Proof. Plugging the expression of Yit into ξ̃t, we have

ξ̃t = D−1
t · 1

N

N∑

i=1

Wit

pit

(
µ+ αi + ξt + Λ⊤

i Ft + ϵit

)
− µ̃

= ξt + (µ− µ̃) +D−1
t · 1

N

N∑

i=1

Wit

pit

(
αi + Λ⊤

i Ft + ϵit

)
.

Then, plugging Yit and ξ̃t into α̃i yields

α̃i = W̄−1
i,· · 1

T

T∑

t=1

Wit

(
µ+ αi + ξt + Λ⊤

i Ft + ϵit − ξ̃t

)
− µ̃

= αi + (µ− µ̃) + W̄−1
i,· · 1

T

T∑

t=1

Wit

(
ξt − ξ̃t + Λ⊤

i Ft + ϵit

)

= αi + W̄−1
i,· · 1

T

T∑

t=1

Wit

(
Λ⊤
i Ft + ϵit

)
− W̄−1

i,· · 1

NT

N∑

j=1

T∑

t=1

Wit
Wjt

pjt
D−1

t

(
αj + Λ⊤

j Ft + ϵjt

)
.
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We combine these two terms and derive the estimation error of µ̃+ α̃i + ξ̃t:

∆̃it = µ̃+ α̃i + ξ̃t − (µ+ αi + ξt)

= D−1
t · 1

N

N∑

j=1

Wjt

pjt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃it,2

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃it,3

.

In the next steps, we derive bounds for the fourth moments of the three terms ∆̃it,1, ∆̃it,2 and
∆̃it,3, respectively. To simplify the exposition, we use the notation Xit = Wit/pit.

First, we consider the term ∆̃it,1 = D−1
t

1
N

∑N
j=1Xjt(αj + Λ⊤

j Ft + ϵjt). By Assumption 1.2, we
have q ≤ W̄i,· ≤ 1 and q ≤ Dt ≤ 1/η. We denote λit = αi + Λ⊤

i Ft + ϵit. Since Xit ⊥⊥ λjs|I for any
i, j, s, t, it holds that

E[∆̃4
it,1] ≤ q−4 · E




 1

N

N∑

j=1

Xjtλjt




4


= q−4 · 1

N4

N∑

i,j,h,l=1

E
[
E[XitXjtXhtXlt|I] · E [λitλjtλhtλlt|I]

]
.

By Assumption 1.3, Wjt ⊥⊥ Wit|I for any i ̸= j. When i, j, h, l are distinct, we have that
E[XitXjtXhtXlt|I] = 1 and E[λitλjtλhtλlt] = E[(αi + Λ⊤

i Ft)(αj + Λ⊤
j Ft)(αh + Λ⊤

h Ft)(αl + Λ⊤
l Ft)];

when i, h, l are distinct, E[X2
itXhtXlt|I] = E[X2

it|I] and E[λ2
itλhtλlt|I] = E[(αi + Λ⊤

i Ft + ϵit)
2(αh +

Λ⊤
h Ft)(αl + Λ⊤

l Ft)|I]. Furthermore, since
∑N

i=1 αi = 0 and
∑N

i=1 Λi = 0, it holds that

E[∆̃4
it,1] ≤ q−4 · 1

N4

N∑

i,j,h,l=1

E
[
(αi + Λ⊤

i Ft)(αj + Λ⊤
j Ft)(αh + Λ⊤

h Ft)(αl + Λ⊤
l Ft)

]

− q−4 · 6

N4

N∑

i,h,l=1

E
[
(αi + Λ⊤

i Ft)
2(αh + Λ⊤

h Ft)(αl + Λ⊤
l Ft)

]

+ q−4 · 6

N4

N∑

i,h,l=1

E
[
X2

it(αi + Λ⊤
i Ft + ϵit)

2(αh + Λ⊤
h Ft)(αl + Λ⊤

l Ft)
]
+

M

N2
≤ M

N2
.
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Next, we consider the term ∆̃it,2 = W̄−1
i,·

1
T

∑T
s=1Wis(Λ

⊤
i Fs + ϵis). We have

E[∆̃4
it,2] ≤ 8q−4 · 1

T 4

T∑

s,t,y,z=1

E
[
WisWitWiyWizΛ

⊤
i FtΛ

⊤
i FsΛ

⊤
i FyΛ

⊤
i Fz

]

+ 8q−4 · 1

T 4

T∑

s,t,y,z=1

E [WitWisWiyWiz] · E [ϵitϵisϵiyϵiz] .

Since factors are independent of the missing patterns and loadings, and the loadings have bounded
fourth moments, the first term on the RHS is bounded by

1

T 4

T∑

s,t,y,z=1

E
[
WitWisWiyWizΛ

⊤
i FtΛ

⊤
i FsΛ

⊤
i FyΛ

⊤
i Fz

]

=
1

T 4

T∑

s,t,y,z=1

k∑

p,q,r,h=1

E [WitWisWiyWizΛi,pΛi,qΛi,rΛi,h] · E [Ft,pFs,qFy,rFz,h]

≤ M

T 4

T∑

s,t,y,z=1

k∑

p,q,r,h=1

|E [Ft,pFs,qFy,rFz,h]| ≤
M

T 2
,

where the last inequality holds by Assumption 3.3. Furthermore, we have that

1

T 4

T∑

s,t,y,z=1

E [WitWisWiyWiz]E [ϵitϵisϵiyϵiz] ≤
1

T 4

T∑

s,t,y,z=1

|E [ϵitϵisϵiyϵiz]| ≤ M/T 2.

Combining these two terms gives us E[∆̃4
it,2] ≤ M/T 2.

Finally, for ∆̃it,3, we can write it as

∆̃it,3 = W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

WisXjs

(
D−1

s − 1
) (

αj + Λ⊤
j Fs + ϵjs

)

︸ ︷︷ ︸
ω1

+ W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

WisXjs

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
ω2

.

For any t, we observe that

E
[
(D−1

t − 1)4|I
]
= E

[
(1−Dt)

4

D4
t

∣∣∣∣ I
]
≤ q−4 · E

[
(1−Dt)

4|I
]
≤ M

N2
.
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Therefore, the fourth moment of ω1 can be bounded by

E
[
ω4
1

]
≤ M

NT

T∑

j=1

T∑

s=1

E
[
E
[
(D−1

s − 1)4|I
]
· E
[
(αj + Λ⊤

j Fs + ϵjs)
4|I
]]

≤ M

N3T

N∑

j=1

T∑

s=1

E
[
(αj + Λ⊤

j Fs + ϵjs)
4
]
≤ M

N2
.

Additionally, following the proof of ∆̃it,1, we can show that

E
[
ω4
2

]
≤ E


 1

T

T∑

s=1

W 4
is ·

1

T

T∑

s=1


 1

N

N∑

j=1

Xjsλjs




4
 ≤ 1

T

T∑

s=1

E




 1

N

N∑

j=1

Xjsλjs




4
 ≤ M

N2
.

Therefore, E[∆̃4
it,3] ≤ M/N2 and we complete our proof.

Lemma 2. Let δN,T = min(N,T ). Suppose Assumptions 1, 2 and 3 and Case 2 in Assumption 4
hold. When N,T → ∞, wi-PCA with weights (5) consistently estimates the sum of grand mean and
fixed effects:

E
[(

(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)
)4]

≤ M

δN,T
,

which implies that
√

δN,T

(
(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)

)
= Op(1) .

Proof. Similar to Lemma 1, we decompose the estimation error ∆̃it = (µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)

into three components

∆̃it = D̃−1
t · 1

N

N∑

j=1

Wjtv̄

W̄j,·vt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃it,2

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjsv̄

W̄j,·vs
D̃−1

s

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃it,3

,

where D̃t =
1
N

∑N
i=1Witv̄/(W̄i,·vt). Based on Lemma 1, ∆̃it,2 has bounded fourth moment. Next,

we bound the other two terms ∆̃it,1 and ∆̃it,3.
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Consider the first term ∆̃it,1. We decompose it as follows

∆̃it,1 = D̃−1
t · 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)

+ D̃−1
t · 1

N

N∑

j=1

Wjt

pjt

(
αj + Λ⊤

j Ft + ϵjt

)
.

Since Wit ⊥⊥ Wis|Ii for any s and t satisfying |s− t| > c and v̄ = 1
T

∑T
t=1 vt +O( 1√

T
), it is easy to

see that E
[
(W̄j,· − uj v̄)

4|I
]
≤ M/T 2, and thus,

E

[(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)4
∣∣∣∣∣ I
]
≤ 1

η4q4
· E
[
(W̄j,· − uj v̄)

4|I
]
≤ M

T 2
.

Moreover, by Assumptions 1, D̃t satisfies ηq ≤ D̃t ≤ 1/ηq. As a result, the first part of ∆̃it,1 can
be bounded by

E




D̃−1

t · 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)



4


≤ M · E


 1

N

N∑

j=1

E

[(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)4
∣∣∣∣∣ I
]

1

N

N∑

j=1

E
[(

αj + Λ⊤
j Ft + ϵjt

)4∣∣∣∣ I
]


≤ M

T 2N

N∑

j=1

E
[(

αj + Λ⊤
j Ft + ϵjt

)4]

≤ M

T 2
.

According to Lemma 1, we can bound the fourth moment of the second part of ∆̃it,1 by M/N2.
Therefore, we get that E[∆̃4

it,1] ≤ M/δ2N,T .
The last term ∆̃it,3 can be decomposed as

∆̃it,3 = W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjsv̄

W̄j,·vs
− Wjs

pjs

)
D̃−1

s

(
αj + Λ⊤

j Fs + ϵjs

)

+ W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs

(
D̃−1

s −D−1
s

)(
αj + Λ⊤

j Fs + ϵjs

)

+ W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s

(
αj + Λ⊤

j Fs + ϵjs

)
.

Note that the last part on the RHS is the term ∆̃it,3 in Lemma 1, and thus its fourth moment can
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be bounded by M/N2. We can bound the first part of ∆̃it,3 by

E




W̄−1

i,· · 1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjsv̄

W̄j,·vs
− Wjs

pjs

)
D̃−1

s

(
αj + Λ⊤

j Fs + ϵjs

)



4


≤ M · E


 1

NT

N∑

j=1

T∑

s=1

E

[(
Wjsv̄

W̄j,·vs
− Wjs

pjs

)4
∣∣∣∣∣ I
]
· 1

NT

N∑

j=1

T∑

s=1

E
[(

αj + Λ⊤
j Fs + ϵjs

)4∣∣∣∣ I
]


≤ M

T 2

1

NT

N∑

j=1

T∑

s=1

E
[(

αj + Λ⊤
j Fs + ϵjs

)4]

≤ M

T 2
.

Observe that E[(D̃−1
s − D−1

s )4|I] ≤ M · E[(D̃s − Ds)
4|I] ≤ M/T 2. By similar arguments, we can

bound the fourth moment of the second part of ∆̃it,3 by M/T 2. This completes our proof.

Lemma 3. Let δN,T = min(N,T ). Suppose Assumptions 1, 2 and 3 and Case 3 in Assumption 4
hold. When N,T → ∞, wi-PCA with weights (6) consistently estimates the sum of grand mean and
fixed effects:

E
[(

(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)
)4]

≤ M

δN,T
,

which implies that
√

δN,T

(
(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt)

)
= Op(1) .

Proof. Since the observation pattern is monotone and 1
N

∑N
i=1Wit ≥ q for any t, there are at least

qN fully observed units. We denote by Nc and Nc the set and number of these units. The time
fixed effect estimator ξ̃t can be decomposed as

ξ̃t = ξt + (µ− µ̃) +
1

Nc

∑

i∈Nc

(
αi + Λ⊤

i Ft + ϵit

)
.

We plug ξ̃t into α̃i to obtain

α̃i = αi −
1

Nc

∑

j∈Nc

αj +

(
1

T

T∑

t=1

Wit

)−1
1

T

T∑

t=1

Wit


Λ⊤

i Ft + ϵit −
1

Nc

∑

j∈Nc

(
Λ⊤
j Ft + ϵjt

)

 .
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Combining these terms, we get the first-stage estimation error

∆̃it =
1

Nc

∑

j∈Nc

(
Λ⊤
j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃it,2

− W̄−1
i,· · 1

T

T∑

s=1

Wis
1

Nc

∑

j∈Nc

(
Λ⊤
j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃it,3

.

According to the proof of Lemma 1, E[∆̃4
it,2] ≤ M/δ2N,T . Since E

∥∥∥ 1
Nc

∑
i∈Nc

Λi

∥∥∥
4
≤ M/δ2N,T , it is

easy to see that E[∆̃4
it,1] ≤ M/δ2N,T and E[∆̃4

it,3] ≤ M/δ2N,T .

IA.C.1.2 Consistency for the common components

The transformed Ẏ has an approximate factor structure

Ẏit = Λ⊤
i Ft + ϵ̇it

with a new idiosyncratic error term ϵ̇it = ϵit + (µ + αi + ξt) − (µ̃ + α̃i + ξ̃t). We denote ∆̃it =

(µ̃+ α̃i + ξ̃t)− (µ+ αi + ξt) .

We first estimate the cross-sectional second-moment matrix Σ̃ with Σ̃ij = 1
|Qij |

∑
t∈Qij

ẎitẎjt.
Then, we apply PCA to Σ̃ to estimate loadings. Specifically, we solve 1

N Σ̃Λ̃ = Λ̃D̃, where D̃ is the
diagonal matrix consisting of the k largest eigenvalues of Σ̃/N . Therefore, Λ̃i can be expanded as

Λ̃i = D̃−1 1

N

N∑

j=1

Λ̃jΛ
⊤
j

1

|Qij |
∑

t∈Qij

FtF
⊤
t Λi + D̃−1 1

N

N∑

j=1

Λ̃jΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ftϵ̇jt

+ D̃−1 1

N

N∑

j=1

Λ̃jΛ
⊤
j

1

|Qij |
∑

t∈Qij

Ftϵ̇it + D̃−1 1

N

N∑

j=1

Λ̃j
1

|Qij |
∑

t∈Qij

ϵ̇itϵ̇jt .

To simplify notation, we define three auxiliary terms

ηij =
1

|Qij |
∑

t∈Qij

Λ⊤
i Ftϵ̇jt =

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft(ϵjt − ∆̃jt),

ξij =
1

|Qij |
∑

t∈Qij

Λ⊤
j Ftϵ̇it =

1

|Qij |
∑

t∈Qij

Λ⊤
j Ft(ϵit − ∆̃it),

γij =
1

|Qij |
∑

t∈Qij

ϵ̇itϵ̇jt =
1

|Qij |
∑

t∈Qij

(ϵit − ∆̃it)(ϵjt − ∆̃jt) .
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We let Hi = D̃−1 1
N

∑N
j=1 Λ̃jΛ

⊤
j

1
|Qij |

∑
t∈Qij

FtF
⊤
t and consider a unified rotation matrix H for all i

as H = (NT )−1D̃−1Λ̃⊤ΛF⊤F . This yields the decomposition

Λ̃i = HΛi + (Hi −H)Λi + D̃−1


 1

N

N∑

j=1

Λ̃jηij +
1

N

N∑

j=1

Λ̃jξij +
1

N

N∑

j=1

Λ̃jγij


 .

Lemma 4. Let δN,T = min(N,T ). Suppose Assumptions 1, 2, 3 hold and the first-stage estimation
error E[∆̃4

it] ≤ M/δ2N,T for any i and t. Then, it holds that

1. For any i and j, E[η2ij ] ≤ M/δN,T and E[ξ2ij ] ≤ M/δN,T .

2. For any j, 1
N

∑N
i=1 E[γ2ij ] ≤ M/δN,T .

Proof. 1. For ηij , we have

E[η2ij ] ≤ 2 · E



(

1

|Qij |
∑

t∈Qij

Λ⊤
i Ftϵjt

)2

+ 2 · E



(

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft∆̃jt

)2

 .

According to Lemma 1 in Xiong and Pelger (2023), E
[
( 1
|Qij |

∑
t∈Qij

Λ⊤
i Ftϵjt)

2
]
≤ M/T . For any

i, j, t and s, by the Cauchy-Schwarz inequality, it follows that

E
∣∣∣Λ⊤

i Ft∆̃jtΛ
⊤
i Fs∆̃js

∣∣∣ ≤
(
E
[
(Λ⊤

i FtΛ
⊤
i Fs)

2
]
· E
[
(∆̃jt∆̃js)

2
])1/2

≤ M ·
(
E[∆̃4

jt] · E[∆̃4
js]
)1/4

≤ M

δN,T
.

Therefore, the second term E
[
( 1
|Qij |

∑
t∈Qij

Λ⊤
i Ft∆̃jt)

2
]
≤ M/δN,T , and thus, E[η2ij ] ≤ M/δN,T . By

symmetry, E[ξ2ij ] ≤ M/δN,T .

2. Similar to part 1, we just need to bound the three terms 1
N

∑N
i=1 E

[
( 1
|Qij |

∑
t∈Qij

ϵitϵjt)
2
]
,

1
N

∑N
i=1 E

[
( 1
|Qij |

∑
t∈Qij

ϵit∆̃jt)
2
]

and 1
N

∑N
i=1 E

[
( 1
|Qij |

∑
t∈Qij

∆̃it∆̃jt)
2
]
.

The first term can be decomposed as

1

|Qij |
∑

t∈Qij

ϵitϵjt =
1

|Qij |
∑

t∈Qij

E[ϵitϵjt] +
1

|Qij |
∑

t∈Qij

(ϵitϵjt − E[ϵitϵjt]) .

By Assumption 2.3,

1

N

N∑

i=1


 1

|Qij |
∑

t∈Qij

E[ϵitϵjt]




2

≤ 1

N

N∑

i=1

1

|Qij |2
∑

s,t∈Qij

τ2ij ≤
M

N
.

Additionally, we have 1
N

∑N
i=1 E

[
( 1
|Qij |

∑
t∈Qij

(ϵitϵjt − E[ϵitϵjt]))2
]
≤ M/T . Therefore, the first

term can be bounded by M/δN,T .
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Since E[∆̃4
it] ≤ M/δ2N,T , the second term can be bounded by

1

N

N∑

i=1

E




 1

|Qij |
∑

t∈Qij

ϵit∆̃jt




2
 ≤ 1

N

N∑

i=1

E


 1

|Qij |
∑

t∈Qij

ϵ2it∆̃
2
jt


 ≤ M

δN,T
.

Similarly, the last term satisfies 1
N

∑N
i=1 E

[
( 1
|Qij |

∑
t∈Qij

∆̃it∆̃jt)
2
]
≤ M/δ2N,T .

Lemma 5. Suppose Assumptions 1, 2, 3 hold and the first-stage estimation error E[∆̃4
it] ≤ M/δ2N,T

for any i and t. Then, as N,T → ∞,

1. 1
N2 Λ̃

⊤
(
(Ẏ ⊙W )(Ẏ ⊙W )⊤ ⊙

[
1

|Qij |

])
Λ̃ = D̃

p→ D;

2. 1
N2 Λ̃

⊤
(
(ΛF⊤ ⊙W )(ΛF⊤ ⊙W )⊤ ⊙

[
1

|Qij |

])
Λ̃

p→ D;

3. 1
N2 Λ̃

⊤
(
ΛF⊤F

T Λ⊤
)
Λ̃

p→ D;

where D = diag (d1, · · · , dk) is the diagonal matrix consisting of the eigenvalues of ΣΛΣF .

Proof. Define Γ = {λ ∈ RN×1 : λ⊤λ = N}, and let

R(λ) =
1

N2
λ⊤
(
(Ẏ ⊙W )(Ẏ ⊙W )⊤ ⊙

[
1

|Qij |

])
λ,

R̃(λ) =
1

N2
λ⊤
(
(ΛF⊤ ⊙W )(ΛF⊤ ⊙W )⊤ ⊙

[
1

|Qij |

])
λ,

R∗(λ) =
1

N2
λ⊤
(
Λ
F⊤F
T

Λ⊤
)
λ.

We have the decomposition

R(λ)−R∗(λ) = R(λ)− R̃(λ) + R̃(λ)−R∗(λ).

For R(λ)− R̃(λ), we have

sup
λ∈Γ

|R(λ)− R̃(λ)| ≤ sup
λ∈Γ

1

N2

∣∣∣∣λ⊤
(
(ϵ̇⊙W )(ϵ̇⊤ ⊙W⊤)⊙

[
1

|Qij |

])
λ

∣∣∣∣

+ sup
λ∈Γ

2

N2

∣∣∣∣λ⊤
(
(ϵ̇⊙W )(FΛ⊤ ⊙W⊤)⊙

[
1

|Qij |

])
λ

∣∣∣∣ .
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The first part on the RHS satisfies

sup
λ∈Γ

1

N2

∣∣∣∣λ⊤
(
(ϵ̇⊙W )(ϵ̇⊤ ⊙W⊤)⊙

[
1

|Qij |

])
λ

∣∣∣∣ = sup
λ∈Γ

1

N2

∣∣∣∣∣∣

N∑

i,j=1

λiλjγij

∣∣∣∣∣∣

≤ sup
λ∈Γ


 1

N2

N∑

i,j=1

λ2
iλ

2
j




1/2
 1

N2

N∑

i,j=1

γ2ij




1/2

= op(1),

where the last equality follows from Lemma 4. Similarly,

sup
λ∈Γ

2

N2

∣∣∣∣λ⊤
(
(ϵ̇⊙W )(FΛ⊤ ⊙W⊤)⊙

[
1

|Qij |

])
λ

∣∣∣∣ = sup
λ∈Γ

2

N2

∣∣∣∣∣∣

N∑

i,j=1

λiλjξij

∣∣∣∣∣∣
= op(1).

As a result, supλ∈Γ |R(λ)− R̃(λ)| p→ 0. In the rest of this proof, we follow similar steps as in Lemma
4 in Xiong and Pelger (2023) and sequentially show that

1. supλ∈Γ |R̃(λ)−R∗(λ)| p→ 0, supλ∈Γ |R(λ)−R∗(λ)| p→ 0

2. | supλ∈ΓR(λ)− supλ∈ΓR
∗(λ)| p→ 0

3. supλ∈ΓR
∗(λ)

p→ d1, supλ∈ΓR(λ)
p→ d1

4. Let Λ̃1 = arg supλ∈ΓR(λ); then R̃(Λ̃1)
p→ d1, R∗(Λ̃1)

p→ d1

5. R(Λ̃i)
p→ di, R̃(Λ̃i)

p→ di, and R∗(Λ̃i)
p→ di for i = 1, · · · , k .

Lemma 6. Suppose Assumptions 1, 2, 3 hold and the first-stage estimation error E[∆̃4
it] ≤ M/δ2N,T

for any i and t. Then, as N,T → ∞,

1. 1
N Λ̃⊤Λ

p→ Q = D1/2ΥΣ
−1/2
F , where the diagonal entries of D are eigenvalues of ΣΛΣF , and

Υ is the corresponding eigenvector matrix such that Υ⊤Υ = I.
2. H

p→ (Q⊤)−1, where H = 1
NT D̃

−1Λ̃⊤ΛF⊤F .

Proof. We left-multiply 1
N Σ̃Λ̃ = Λ̃D̃ on both sides by 1

N ( 1
T F

⊤F )1/2Λ⊤ and obtain

(
1

T
F⊤F

)1/2 1

N2
Λ⊤Σ̃Λ̃ =

(
1

T
F⊤F

)1/2 1

N
Λ⊤Λ̃D̃.

This can be written as

(
1

T
F⊤F

)1/2 1

N
Λ⊤Λ · 1

T
F⊤F · 1

N
Λ⊤Λ̃ + dN,T =

(
1

T
F⊤F

)1/2 1

N
Λ⊤Λ̃D̃
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with

dN,T =

(
1

T
F⊤F

)1/2 1

N
Λ⊤
(
Σ̃− Λ

1

T
F⊤FΛ⊤

)
1

N
Λ̃.

For any i and j, (Σ̃ − Λ 1
T F

⊤FΛ⊤)ij can be decomposed as Λ⊤
i ∆F,ijΛj + ηij + ξij + γij , where

∆F,ij :=
1

|Qij |
∑

t∈Qij
FtF

⊤
t − 1

T F
⊤F . Therefore, it holds that

∥∥∥∥
1

N
Λ⊤
(
Σ̃− Λ

1

T
F⊤FΛ⊤

)
1

N
Λ̃

∥∥∥∥
2

=
k∑

p,q=1

1

N2

N∑

i,j=1

ΛipΛ̃jq

[
Λ⊤
i ∆F,ijΛj + ηij + ξij + γij

]

≤
k∑

p,q=1


 1

N2

N∑

i,j=1

Λ2
ipΛ̃

2
jq




1/2 
 1

N2

N∑

i,j=1

(Λ⊤∆F,ijΛj)
2 +

1

N2

N∑

i,j=1

η2ij +
1

N2

N∑

i,j=1

ξ2ij +
1

N2

N∑

i,j=1

γ2ij


 .

By Lemma 4, dN,T = Op(1/
√

δN,T ). We follow the same steps as Proposition 1 in Bai (2003) and
show that

1

N
Λ̃⊤Λ

p→ Q = D1/2ΥΣ
−1/2
F .

Furthermore, it holds that

H =
1

NT
D̃−1Λ̃⊤ΛF⊤F

p→ D−1D1/2ΥΣ
−1/2
F ΣF = D−1/2ΥΣ

1/2
F = (Q⊤)−1.

Lemma 7. Let δN,T = min(N,T ). Suppose Assumptions 1, 4, 2 and 3 hold. For any t and
r = 1, · · · , k, we have ∣∣∣∣∣∣

E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,rϵit∆̃jt



∣∣∣∣∣∣
≤ M

δN,T
.

Proof. We only show the proof for Case 1 with known observation probability, and the proof for the
other two cases are similar. Based on Lemma 1, ∆̃it can be decomposed as ∆̃it = ∆̃it,1+∆̃it,2−∆̃it,3.
Since both of the idiosyncratic errors and factors are independent of the loadings, fixed effects and
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observation patterns, we have
∣∣∣∣∣∣
E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,rϵit∆̃jt,3



∣∣∣∣∣∣

=

∣∣∣∣∣∣
E


 1

N3

N∑

i,j,l=1

1

T

T∑

s=1

W̄−1
j,· WitWjtWjsXlsD

−1
s Λi,rΛj,rϵit(αl + Λ⊤

l Fs + ϵls)



∣∣∣∣∣∣

≤ 1

N3

N∑

i,j,l=1

1

T

T∑

s=1

∣∣∣E
[
W̄−1

j,· WitWjtWjsXlsD
−1
s Λi,rΛj,rαl

]
· E[ϵit]

∣∣∣

+
1

N3

N∑

i,j,l=1

1

T

T∑

s=1

k∑

p=1

∣∣∣E
[
W̄−1

j,· WitWjtWjsXlsD
−1
s Λi,rΛj,rΛl,p

]
· E[Fs,pϵit]

∣∣∣

+
1

N3

N∑

i,j,l=1

1

T

T∑

s=1

∣∣∣E
[
W̄−1

j,· WitWjtWjsXlsD
−1
s Λi,rΛj,r

]
· E[ϵitϵls]

∣∣∣

≤ M

NT

N∑

i=1

T∑

s=1

k∑

p=1

|E[Fs,pϵit]|+
M

N2T

N∑

i,l=1

T∑

s=1

|E[ϵitϵls]|

≤ M

T
.

By similar arguments, we can show the bounds
∣∣∣E[ 1

N2

∑N
i,j=1WitWjtΛi,rΛj,rϵit∆̃jt,1]

∣∣∣ ≤ M/δN,T and∣∣∣E[ 1
N2

∑N
i,j=1WitWjtΛi,rΛj,rϵit∆̃jt,2]

∣∣∣ ≤ M/δN,T .

Proof of Theorem 1:

Proof. Step 1 – Consistency of loadings
Observe that for any unit i,

∥∥∥Λ̃i −HΛi

∥∥∥
2
≤
∥∥∥Λ̃i −HiΛi

∥∥∥
2
+ ∥(Hi −H)Λi∥2 .

We can decompose the first term on the RHS as

Λ̃i −HiΛi = D̃−1


 1

N

N∑

j=1

Λ̃jηij +
1

N

N∑

j=1

Λ̃jξij +
1

N

N∑

j=1

Λ̃jγij


 .
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By Lemma 4 and Lemma 5, this implies that

∥∥∥Λ̃i −HiΛi

∥∥∥
2
≤ 3

∥∥∥D̃−1
∥∥∥
2
·



∥∥∥∥∥∥
1

N

N∑

j=1

Λ̃jηij

∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
1

N

N∑

j=1

Λ̃jξij

∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
1

N

N∑

j=1

Λ̃jγij

∥∥∥∥∥∥

2


≤ 3
∥∥∥D̃−1

∥∥∥
2
· 1

N

N∑

j=1

∥∥∥Λ̃j

∥∥∥
2
·


 1

N

N∑

j=1

η2ij +
1

N

N∑

j=1

ξ2ij +
1

N

N∑

j=1

γ2ij




= Op(
1

δN,T
).

The second term ∥(Hi −H)Λi∥2 can be bounded by

∥(Hi −H)Λi∥2 =

∥∥∥∥∥∥
D̃−1 1

N

N∑

j=1

Λ̃jΛ
⊤
j


 1

|Qij |
∑

t∈Qij

FtF
⊤
t − 1

T

T∑

t=1

FtF
⊤
t


Λi

∥∥∥∥∥∥

2

≤
∥∥∥D̃−1

∥∥∥
2
∥Λi∥2 ·

1

N

N∑

j=1

∥∥∥Λ̃j

∥∥∥
2
· 1

N

N∑

j=1

∥Λj∥2 ∥∆F,ij∥2 ,

where ∆F,ij =
1

|Qij |
∑

t∈Qij
FtF

⊤
t − 1

T

∑T
t=1 FtF

⊤
t . Following Assumption 2, we have

E


 1

N

N∑

j=1

∥Λj∥2 ∥∆F,ij∥2

 =

1

N

N∑

j=1

E∥Λj∥2 · E ∥∆F,ij∥2 ≤
M

T
.

Therefore, ∥(Hi −H)Λi∥2 = Op(
1
T ), and thus,

∥∥∥Λ̃i −HΛi

∥∥∥
2
= Op(

1

δN,T
) +Op(

1

T
) = Op(

1

δN,T
).

Step 2 – Consistency of factors
We derive the estimated factors F̃t by regressing the observed Ẏit on Λ̃i:

F̃t =

(
1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i

)−1(
1

N

N∑

i=1

WitΛ̃iẎit

)
, t = 1, · · · , T.

We define an auxiliary F̃ ∗
t as

F̃ ∗
t :=

(
1

N

N∑

i=1

WitHΛiΛ
⊤
i H

⊤
)−1(

1

N

N∑

i=1

WitΛ̃iẎit

)
.

28



We have the decomposition

∥∥∥F̃t − (H⊤)−1Ft

∥∥∥
2
≤
∥∥∥F̃t − F̃ ∗

t

∥∥∥
2
+
∥∥∥F̃ ∗

t − (H⊤)−1Ft

∥∥∥
2
.

We first analyze the second term ∥F̃ ∗
t − (H⊤)−1Ft∥2. Observe that F̃ ∗

t can be expanded as

F̃ ∗
t = (H⊤)−1Ft + (H⊤)−1Σ̂−1

Λ,t ·
1

N

N∑

i=1

WitΛiϵ̇it

+ (H⊤)−1Σ̂−1
Λ,tH

−1 · 1

N

N∑

i=1

Wit(Λ̃i −HΛi)(Λ
⊤
i Ft + ϵ̇it),

where Σ̂Λ,t :=
1
N

∑N
i=1WitΛiΛ

⊤
i . By Assumption 2.2, it holds that Σ̂Λ,t

p→ ΣΛ,t for some positive
definite matrix ΣΛ,t. Thus, it follows that

∥∥∥F̃ ∗
t − (H⊤)−1Ft

∥∥∥
2
≤ 2

∥∥∥(H⊤)−1Σ̂−1
Λ,t

∥∥∥
︸ ︷︷ ︸

Op(1)

·
∥∥∥∥∥
1

N

N∑

i=1

WitΛiϵ̇it

∥∥∥∥∥

2

+ 2
∥∥∥(H⊤)−1Σ̂−1

Λ,tH
−1
∥∥∥

︸ ︷︷ ︸
Op(1)

·
∥∥∥∥∥
1

N

N∑

i=1

Wit(Λ̃i −HΛi)(Λ
⊤
i Ft + ϵ̇it)

∥∥∥∥∥

2

.

For the first part on the RHS, we have

E

∥∥∥∥∥
1

N

N∑

i=1

WitΛiϵ̇it

∥∥∥∥∥

2

=

k∑

r=1

E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,r ϵ̇itϵ̇jt




=

k∑

r=1

E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,rϵitϵjt


− 2

k∑

r=1

E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,rϵit∆̃jt




+

k∑

r=1

E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,r∆̃it∆̃jt


 .

By Assumption 2.3, E
[

1
N2

∑N
i,j=1WitWjtΛi,rΛj,rϵitϵjt

]
= 1

N2

∑N
i,j=1 E [WitWjtΛi,rΛj,r] · E [ϵitϵjt] ≤

M/N . By Lemma 7,
∣∣∣E
[

1
N2

∑N
i,j=1WitWjtΛi,rΛj,rϵit∆̃jt

]∣∣∣ ≤ M/δN,T . For the last term, there is

E


 1

N2

N∑

i,j=1

WitWjtΛi,rΛj,r∆̃it∆̃jt


 ≤ 1

N2

N∑

i,j=1

(
E[Λ4

i,r] · E[∆̃4
it]
)1/2

≤ M

δN,T
.

Therefore, we get that E
∥∥∥ 1
N

∑N
i=1WitΛiϵ̇it

∥∥∥
2
≤ M/δN,T .
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Moreover, based on the consistency results for the loadings, we have

∥∥∥∥∥
1

N

N∑

i=1

Wit(Λ̃i −HΛi)(Λ
⊤
i Ft + ϵ̇it)

∥∥∥∥∥

2

≤ 1

N

N∑

i=1

(Λ⊤
i Ft + ϵ̇it)

2 · 1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2
= Op(

1

δN,T
).

Thus, we have derived that ∥F̃ ∗
t − (H⊤)−1Ft∥2 = Op(

1
δN,T

).
Next, we consider the term ∥F̃t − F̃ ∗

t ∥2. Observe that

F̃ ∗
t − F̃t =

(
1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i

)−1 [
1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i − 1

N

N∑

i=1

WitHΛiΛ
⊤
i H

⊤
]

︸ ︷︷ ︸
∆̃Λ,t

F̃ ∗
t .

We further decompose ∆̃Λ,t as

∆̃Λ,t =
1

N

N∑

i=1

[
WitHΛi(Λ̃i −HΛi)

⊤ +Wit(Λ̃i −HΛi)(HΛi)
⊤ +Wit(Λ̃i −HΛi)(Λ̃i −HΛi)

⊤
]
.

Based on the consistency results for loadings, ∆̃Λ,t can be bounded by

∥∆̃Λ,t∥2 ≤ 6 · 1

N

N∑

i=1

∥HΛi∥2 ·
1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2

+ 3 · 1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2
· 1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2
= Op(

1

δN,T
).

Therefore, according to Lemma 6, Σ̃Λ,t :=
1
N

∑N
i=1WitΛ̃iΛ̃

⊤
i

p→ (Q⊤)−1ΣΛ,tQ
−1. Furthermore, since

F̃ ∗
t = Op(1) and Σ̃Λ,t = Op(1), it follows that

∥∥∥F̃t − F̃ ∗
t

∥∥∥
2
≤
∥∥∥Σ̃Λ,t

∥∥∥
2 ∥∥∥∆̃Λ,t

∥∥∥
2 ∥∥∥F̃ ∗

t

∥∥∥
2

≤ 6
∥∥∥Σ̃Λ,t

∥∥∥
2 ∥∥∥F̃ ∗

t

∥∥∥
2
· 1

N

N∑

i=1

∥HΛi∥2 ·
1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2

+ 3
∥∥∥Σ̃Λ,t

∥∥∥
2 ∥∥∥F̃ ∗

t

∥∥∥
2
· 1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2
· 1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2

= Op(
1

δN,T
).
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Therefore, it holds that

∥∥∥F̃t − (H⊤)−1Ft

∥∥∥
2
≤
∥∥∥F̃t − F̃ ∗

t

∥∥∥
2
+
∥∥∥F̃ ∗

t − (H⊤)−1Ft

∥∥∥
2
= Op(

1

δN,T
).

Step 3 – Consistency of common components:
We have

C̃it − Cit = (µ̃+ α̃i + ξ̃t + Λ̃⊤
i F̃t)− (µ+ αi + ξt + Λ⊤

i Ft)

= ∆̃it + Λ̃⊤
i

(
F̃t − (H⊤)−1Ft

)
+
(
Λ̃i −HΛi

)⊤
(H⊤)−1Ft.

Based on the consistency results of loadings, factors and first-stage estimation, it holds that

(C̃it − Cit)
2 =

(
∆̃it + Λ̃⊤

i

(
F̃t − (H⊤)−1Ft

)
+
(
Λ̃i −HΛi

)⊤
(H⊤)−1Ft

)2

≤ 3∆̃2
it + 3

∥∥∥Λ̃i

∥∥∥
2
·
∥∥∥F̃t − (H⊤)−1Ft

∥∥∥
2
+ 3

∥∥∥Λ̃i −HΛi

∥∥∥
2
·
∥∥∥(H⊤)−1Ft

∥∥∥
2

= Op(
1

δN,T
).

IA.C.2 Proof of Theorem 2: Asymptotic Normality

First, we introduce the martingale central limit theorem that we will use in the main proof.

Theorem 1. Let {Sni,Fni, 1 ≤ i ≤ n, n ≥ 1} be a zero-mean, square-integrable martingale array
with differences Xni, and let η2 be an a.s. finite r.v. Suppose that

∑

i

E
[
X2

ni | Fn,i−1

] p→ η2,

∑

i

E
[
|Xni|2+δ | Fn,i−1

]
p→ 0 for some δ > 0,

and the σ-fields are nested: Fn,i ⊆ Fn,i+1 for 1 ≤ i ≤ n. Then Snn =
∑

iXni
d→ Z stably, where

the r.v. Z has characteristic function E[exp(−1
2η

2t2)].
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Proof. It holds for any ϵ > 0 that

n∑

i=1

E
[
X2

ni · I(|Xni| > ϵ) | Fn,i−1

]

≤
n∑

i=1

E
[ |Xni|2+δ

ϵδ
· I(|Xni| > ϵ) | Fn,i−1

]

≤ 1

ϵδ

n∑

i=1

E
[
|Xni|2+δ | Fn,i−1

]
.

Therefore,
∑

i E
[
|Xni|2+δ | Fn,i−1

] p→ 0 implies that
∑n

i=1 E
[
X2

ni · I(|Xni| > ϵ) | Fn,i−1

] p→ 0. By
Corollary 3.1 in Hall and Heyde (2014), this completes our proof.

IA.C.2.1 Asymptotic normality for the sum of grand mean and fixed effects

Lemma 8. Suppose Assumptions 1, 5, 6 and Case 1 in Assumption 4 hold. When N,T → ∞, the
asymptotic distribution of µ̃+ ξ̃t + α̃i estimated by wi-PCA with weights (4) is:

√
δN,T · σ−1

it

(
(µ̃+ ξ̃t + α̃i)− (µ+ ξt + αi)

)
d→ N (0, 1) ,

where σ2
it =

δN,T

N σ2
it,1 +

δN,T

T σ2
it,2 with some σit,1 and σit,2. Moreover,

E
[(

(µ̃+ ξ̃t + α̃i)− (µ+ ξt + αi)
)4]

≤ M

δ2N,T

.

Proof. We denote the re-weighted observation indicators by Xit = Wit/pit. According to Lemma 1,
the estimation error of µ̃+ α̃i + ξ̃t is

∆̃it = D−1
t · 1

N

N∑

j=1

Xjt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃it,2

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

WisXjsD
−1
s

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃it,3

.

We decompose the first term ∆̃it,1 as

∆̃it,1 = D−1
t · 1

N

N∑

j=1

(Xjt − 1)
(
αj + Λ⊤

j Ft + ϵjt

)
+D−1

t · 1

N

N∑

j=1

(
αj + Λ⊤

j Ft + ϵjt

)
.
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Similarly, we decompose the third term ∆̃it,3 as

∆̃it,3 = W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

WisXjs

(
D−1

s − 1
) (

αj + Λ⊤
j Fs + ϵjs

)

+ W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis (Xjs − 1)
(
αj + Λ⊤

j Fs + ϵjs

)

+ W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis

(
αj + Λ⊤

j Fs + ϵjs

)
.

Since αj ,Λj , ϵjs are i.i.d. and E[(D−1
t − 1)4 | I] ≤ M/N2, the first part on the RHS of ∆̃it,3 can be

bounded by

E




W̄−1

i,· · 1

NT

N∑

j=1

T∑

s=1

WisXjs

(
D−1

s − 1
) (

αj + Λ⊤
j Fs + ϵjs

)



4


≤ M · E


 1

T

T∑

s=1

E
[(
D−1

s − 1
)4 | I

]
· 1
T

T∑

s=1

E




 1

N

N∑

j=1

(
αj + Λ⊤

j Fs + ϵjs

)



4

| I






≤ M

N2
· 1
T

T∑

s=1

E




 1

N

N∑

j=1

(
αj + Λ⊤

j Fs + ϵjs

)



4


≤ M

N4
.

For the second part of ∆̃it,3, we have

E




 1

NT

N∑

j=1

T∑

s=1

Wis (Xjs − 1) (Λ⊤
j Fs + ϵjs)




4


=
3

N4T 4

N∑

j,l,h,o=1

T∑

s,u=1

E[WisWiu(Xjs − 1)(Xls − 1)(Xhu − 1)(Xou − 1)(Λ⊤
j Fs + ϵjs)

(Λ⊤
l Fs + ϵls)(Λ

⊤
h Fu + ϵhu)(Λ

⊤
o Fu + ϵou)] ≤

M

N2T 2
,

where the last inequality holds because E[WisWiu(Xjs− 1)(Xls− 1)(Xhu− 1)(Xou− 1)|I] = 0 when
i, j, l, h, o are distinct or j, l, h, o take three different values other than i. For the third part in the
decomposition of ∆̃it,3, we have 1

NT

∑N
j=1

∑T
s=1Wisαj = W̄i,· 1N

∑N
j=1 αj . Furthermore, it is easy

to see that 1
NT

∑N
j=1

∑T
s=1Wis(Λ

⊤
j Fs + ϵjs) = Op(

1
δN,T

) and its fourth moment can be bounded by
M/T 2. Therefore, we conclude that

∆̃it,3 = W̄−1
i,· · 1

N

N∑

j=1

1

T

T∑

s=1

Wis(Xjs − 1)αj +
1

N

N∑

j=1

αj +Op(
1

δN,T
).

33



Combining the three terms ∆̃it,1, ∆̃it,2 and ∆̃it,3, we can show that

∆̃it = D−1
t · 1

N

N∑

j=1

(Xjt − 1)
(
αj + Λ⊤

j Ft + ϵjt

)
− W̄−1

i,· · 1
T

T∑

s=1

Wis
1

N

N∑

j=1

(Xjs − 1)αj

+ W̄−1
i,· ·

( 1
T

T∑

s=1

Wisϵis + Λ⊤
i

1

T

T∑

s=1

WisFs

)
+D−1

t · 1

N

N∑

j=1

(
Λ⊤
j Ft + ϵjt

)
+Op(

1

δN,T
).

This proves that E[∆̃4
it] ≤ M/δ2N,T .

We first analyze the asymptotic distribution of 1
N

∑N
j=1(Xjt−1)αj . Conditional on I, (Xjt−1)αj

and (Xlt − 1)αl are independent for any j ̸= l. The expectation satisfies E[(Xjt − 1)αj |I] = 0. By
Assumption 6.2, as N → ∞, it holds that

1

N

N∑

j=1

E
[
(Xjt − 1)2α2

j |I
]
=

1

N

N∑

j=1

(
E
[
X2

jt | I
]
− 1
)
α2
j

p→ sα,tt − σ2
α.

Furthermore, we have

N∑

j=1

E

[(
1√
N

(Xjt − 1)αj

)4

| I
]
=

1

N2

N∑

j=1

α4
j · E

[
(Xjt − 1)4 | I

]
≤ M

N
· 1

N

N∑

j=1

α4
j ,

where the inequality holds because |Xjt| is bounded. By the law of large number, we have 1
N

∑N
j=1 α

4
j

p→
E[α4

j ] ≤ M . As a result,
∑N

j=1 E
[
( 1√

N
(Xjt − 1)αj)

4 | I
]

p→ 0. According to Theorem 1, 1√
N

∑N
j=1(Xjt−

1)αj
d→ N (0, sα,tt − σ2

α).
Similarly, we can prove the martingale CLT for the other two terms 1

N

∑N
j=1(Xjt − 1)Λ⊤

j Ft and
1
N

∑N
j=1(Xjt − 1)ϵjt. According to Assumption 6.2,

1

N

N∑

j=1

E
[
(Xjt − 1)2ΛjΛ

⊤
j | I

]
=

1

N

N∑

j=1

(
E
[
X2

jt | I
]
− 1
)
ΛjΛ

⊤
j

p→ sΛ,tt − ΣΛ,

and
1

N

N∑

j=1

E
[
(Xjt − 1)2ϵ2jt | I

]
= σ2

ϵ ·
1

N

N∑

j=1

(
E
[
X2

jt | I
]
− 1
) p→ (st − 1)σ2

ϵ .

By similar arguments, we get stable convergence in law for 1√
N

∑N
j=1(Xjt−1)Λ⊤

j Ft
d→ N (0, F⊤

t (sΛ,tt−
ΣΛ)Ft) and 1√

N

∑N
j=1(Xjt − 1)ϵjt

d→ N (0, σ2
ϵ (st − 1)).

Next, we analyze the asymptotic behavior of 1
T

∑T
s=1Wis

1
N

∑N
j=1(Xjs − 1)αj . We denote Gs =

1
N

∑N
j=1(Xjs − 1)αj . Note that

[√
NG1, · · · ,

√
NGT

]
is jointly asymptotically normal. For any
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s, u, the asymptotic covariance between
√
NGs and

√
NGu is

ACov(
√
NGs,

√
NGu) = plimN→∞

1

N

N∑

j=1

α2
j · (E [XjsXju | I]− 1) = sα,su − σ2

α.

Furthermore, plimT→∞
1
T 2

∑T
s,u=1WisWiusα,su exists by Assumption 6. As a result, we have that

1
T

∑T
s=1Wis

1
N

∑N
j=1(Xjs−1)αj is asymptotically normal with zero mean. Note that the above four

terms are jointly asymptotically normal because their randomness comes from the cross-sectional
missing pattern.

Next, we analyze the term 1
T

∑T
s=1Wisϵis. Conditional on Wi = {Wis, s ≤ T}, Wisϵis and Witϵit

are independent for any s ̸= t. We have E[Wisϵis|Wi] = 0, and by Assumption 6.1,

1

T

T∑

s=1

E
[
W 2

isϵ
2
is | Wi

]
= W̄i,·σ2

ϵ
p→ qiiσ

2
ϵ .

Furthermore, 1
T 2

∑T
s=1 E

[
Wisϵ

4
is | Wi

] p→ 0. Therefore, 1√
T

∑T
s=1Wisϵis

d→ N (0, qiiσ
2
ϵ ). Similarly,

we can prove that 1√
T

∑T
s=1WisΛ

⊤
i Fs

d→ N (0, qiiΛ
⊤
i ΣFΛi). Note that these two terms are asymp-

totically independent because the randomness of 1√
T

∑T
s=1Wisϵis comes from idiosyncratic errors

while the randomness of 1√
T

∑T
s=1WisΛ

⊤
i Fs comes from the factors.

Finally, for 1
N

∑N
j=1(Λ

⊤
j Ft + ϵjt), we have that 1√

N

∑N
j=1(Λ

⊤
j Ft + ϵjt)

d→ N (0, F⊤
t ΣΛFt + σ2

ϵ ).

Since Dt =
1
N

∑N
i=1Xit

p→ 1 and W̄i,·
p→ qii , using Slutsky’s theorem we can complete our proof.

Lemma 9. Suppose Assumptions 1, 5, 6 and Case 2 in Assumption 4 hold. When N,T → ∞ and√
N/T → 0, the asymptotic distribution of µ̃+ ξ̃t + α̃i estimated by wi-PCA with weights (5) is:

√
δN,T · σ−1

it

(
(µ̃+ ξ̃t + α̃i)− (µ+ ξt + αi)

)
d→ N (0, 1) ,

where σ2
it =

δN,T

N σ2
it,1 +

δN,T

T σ2
it,2 with some σit,1 and σit,2. Moreover,

E
[(

(µ̃+ ξ̃t + α̃i)− (µ+ ξt + αi)
)4]

≤ M

δ2N,T

.
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Proof. According to Lemma 2, the estimation error of µ̃+ α̃i + ξ̃t can be expanded as

∆̃it = D̃−1
t · 1

N

N∑

j=1

Wjtv̄

W̄j,·vt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃it,2

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjsv̄

W̄j,·vs
D̃−1

s

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃it,3

,

where D̃t =
1
N

∑N
i=1Witv̄/(W̄i,·vt).

Let ∆̃known
it denote the first-stage estimation error of the wi-PCA estimator with weights (4) in

Lemma 8 for known observation probabilities. According to Lemma 8, we have

∆̃known
it = D−1

t · 1

N

N∑

j=1

Wjt

pjt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃known

it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃known

it,2

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃known

it,3

.

Observe that ∆̃it,2 = ∆̃known
it,2 , so

∆̃it − ∆̃known
it = (∆̃it,1 − ∆̃known

it,1 )− (∆̃it,3 − ∆̃known
it,3 ).

Next, we analyze the two differences separately.
First, the difference ∆̃it,1 − ∆̃known

it,1 has the decomposition

∆̃it,1 − ∆̃known
it,1 =

1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
D̃−1

t − Wjt

pjt
D−1

t

)(
αj + Λ⊤

j Ft + ϵjt

)

= D−1
t · 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)

+
(
D̃−1

t −D−1
t

)
· 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)

+
(
D̃−1

t −D−1
t

)
· 1

N

N∑

j=1

Wjt

pjt

(
αj + Λ⊤

j Ft + ϵjt

)
.
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Since E[(uiv̄ − W̄i,·)8|I] ≤ M/T 4 for any i, it holds that

E
[(

D̃t −Dt

)8∣∣∣∣ I
]
≤ 1

N

N∑

i=1

E

[(
Witv̄

W̄i,·vt
− Wit

pit

)8
∣∣∣∣∣ I
]
≤ M

T 4
.

The second term in the decomposition of ∆̃it,1 − ∆̃known
it,1 can be bounded by

E





(
D̃−1

t −D−1
t

)
· 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)



4


≤ 1

N

N∑

j=1

E

[
E

[(
D̃−1

t −D−1
t

)4( Wjtv̄

W̄j,·vt
− Wjt

pjt

)4
∣∣∣∣∣ I
]
· E
[(

αj + Λ⊤
j Ft + ϵjt

)4∣∣∣∣ I
]]

≤ M

T 4
· 1

N

N∑

j=1

E
[(

αj + Λ⊤
j Ft + ϵjt

)4]

≤ M

T 4
.

Similarly, the fourth moment of the third term in the decomposition of ∆̃it,1 − ∆̃known
it,1 can be

bounded by M/N2T 2. As a result,

∆̃it,1 − ∆̃known
it,1 = D−1

t · 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)
+Op(

1

δN,T
).

Considering the difference between ∆̃it,3 and ∆̃known
it,3 , we have

∆̃it,3 − ∆̃known
it,3 = W̄−1

i,· · 1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
D−1

s − Wjsv̄

W̄j,·vs
D̃−1

s

)(
αj + Λ⊤

j Fs + ϵjs

)
.

Based on previous analysis, E
[
(
Wjs

pjs
D−1

s − Wjsv̄

W̄j,·vs
D̃−1

s )4 | I
]
≤ M/T 2. Furthermore, factors and

errors are i.i.d. with mean zero and are independent of observation patterns. As a result,

E




 1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
D−1

s − Wjsv̄

W̄j,·vs
D̃−1

s

)(
Λ⊤
j Fs + ϵjs

)



4


≤ M

NT 4

N∑

j=1

T∑

s,t=1

E

[
E

[(
Wjs

pjs
D−1

s − Wjsv̄

W̄j,·vs
D̃−1

s

)4

| I
]
· E
[(

Λ⊤
j Fs + ϵjs

)4
| I
]]

≤ M

T 4
.
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Moreover, we have the decomposition

W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
D−1

s − Wjsv̄

W̄j,·vs
D̃−1

s

)
αj

= W̄−1
i,·

1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
− Wjsv̄

W̄j,·vs

)(
D̃−1

s − 1
)
αj

+ W̄−1
i,·

1

T

T∑

s=1

Wis

(
D−1

s − D̃−1
s

)
· 1

N

N∑

j=1

Wjs

pjs
αj + W̄−1

i,·
1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
− Wjsv̄

W̄j,·vs

)
αj .

Similar to previous steps, we can bound the fourth moments of the first part and second part on
the RHS by M/δ4N,T . Therefore,

∆̃it,3 − ∆̃known
it,3 = W̄−1

i,·
1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
− Wjsv̄

W̄j,·vs

)
αj +Op(

1

δN,T
).

Combining all the terms, we get that

∆̃it − ∆̃known
it = W̄−1

i,·
1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
− Wjsv̄

W̄j,·vs

)
αj

+D−1
t · 1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− Wjt

pjt

)(
αj + Λ⊤

j Ft + ϵjt

)
+Op(

1

δN,T
),

and it is easy to show that E
[
(∆̃it − ∆̃known

it )4
]
≤ M/δ2N,T . According to Lemma 8,

∆̃it = D−1
t

1

N

N∑

j=1

(
Wjtv̄

W̄j,·vt
− 1

)(
αj + Λ⊤

j Ft + ϵjt

)
− W̄−1

i,·
1

N

N∑

j=1

1

T

T∑

s=1

Wis

(
Wjsv̄

W̄j,·vs
− 1

)
αj

+ W̄−1
i,· ·

( 1
T

T∑

s=1

Wisϵis + Λ⊤
i

1

T

T∑

s=1

WisFs

)
+D−1

t · 1

N

N∑

j=1

(
Λ⊤
j Ft + ϵjt

)
+Op(

1

δN,T
).

Observe that the only difference between ∆̃it and ∆̃known
it is that, the randomness of the first

two terms of ∆̃it comes from Wjtv̄/(W̄j,·vt) − 1 instead of Wjt/pjt − 1. Consider the conditional
expectation of Wjtv̄/(W̄j,·vt)− 1, we have

µjt := E
[
Wjtv̄

W̄j,·vt
− 1

∣∣∣∣ I
]
= E

[
Wjt

ujvt
+

Wjt(uj v̄ − W̄j,·)
W̄j,·ujvt

− 1

∣∣∣∣ I
]

= E

[
Wjt(uj v̄ − W̄j,·)

u2jvtv̄

∣∣∣∣∣ I
]
+ E

[
Wjt(uj v̄ − W̄j,·)2

W̄j,·u2jvtv̄

∣∣∣∣∣ I
]

︸ ︷︷ ︸
≤M/T

.
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By the short-term temporal dependency of the missingness,
∣∣∣ 1T
∑T

s=1 E[WjtWjs|I]− u2jvtv̄
∣∣∣ ≤ M/T

for any j and t, so the first part on the RHS can be bounded by
∣∣∣∣∣E
[
Wjt(uj v̄ − W̄j,·)

u2jvtv̄

∣∣∣∣∣ I
]∣∣∣∣∣ =

∣∣∣∣∣1−
1

u2jvtv̄
E
[
WjtW̄j,·|I

]
∣∣∣∣∣

=

∣∣∣∣∣1−
1

u2jvtv̄
· 1
T

T∑

s=1

E[WjtWjs|I]
∣∣∣∣∣ ≤

M

T
.

As a result, |µjt| =
∣∣E[Wjtv̄/(W̄j,·vt)− 1|I]

∣∣ ≤ M/T for any j and t.
We analyze the term 1

N

∑N
j=1(

Wjtv̄

W̄j,·vt
− 1)αj . Conditional on I,

[
(
Wjtv̄

W̄j,·vt
− 1)− µjt

]
αj and

[
( Wltv̄
W̄l,·vt

− 1)− µlt

]
αl are independent for any j ̸= l. The expectation E

[
((

Wjtv̄

W̄j,·vt
− 1)− µjt)αj | I

]
=

0. By Assumption 6.4 and boundedness of µjt,

1

N

N∑

j=1

E

[(
(
Wjtv̄

W̄j,·vt
− 1)− µjt

)2

α2
j | I

]

=
1

N

N∑

j=1

E
[
(
Wjtv̄

W̄j,·vt
)2 | I

]
α2
j −

2

N

N∑

j=1

µjtα
2
j −

1

N

N∑

j=1

µ2
jtα

2
j −

1

N

N∑

j=1

α2
j

p→ s̄α,tt − σ2
α.

Furthermore, we have

N∑

j=1

E

[(
1√
N

(
(
Wjtv̄

W̄j,·vt
− 1)− µjt

)
αj

)4

| I
]
≤ M

N
· 1

N

N∑

j=1

α4
j .

By Theorem 1, we have 1√
N

∑N
j=1

[
(
Wjtv̄

W̄j,·vt
− 1)− µjt

]
αj

d→ N (0, s̄α,tt − σ2
α). Furthermore, since

1√
N

∑N
j=1 µjtαj

p→ 0, we get that 1√
N

∑N
j=1(

Wjtv̄

W̄j,·vt
− 1)αj

d→ N (0, s̄α,tt−σ2
α). By similar arguments,

we can prove the asymptotic normality of other terms.

Lemma 10. Suppose Assumptions 1, 5, 6 and Case 3 in Assumption 4 hold. When N,T → ∞,
the asymptotic distribution of µ̃+ ξ̃t + α̃i estimated by wi-PCA with weights (6) is:

√
δN,T · σ−1

it

(
(µ̃+ ξ̃t + α̃i)− (µ+ ξt + αi)

)
d→ N (0, 1) ,

where σ2
it =

δN,T

N σ2
it,1 +

δN,T

T σ2
it,2 with some σit,1 and σit,2. Moreover,

E
[(

(µ̃+ ξ̃t + α̃i)− (µ+ ξt + αi)
)4]

≤ M

δ2N,T

.
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Proof. According to Lemma 3, ∆̃it can be expanded by

∆̃it =
1

Nc

∑

j∈Nc

(
Λ⊤
j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃it,1

+ W̄−1
i,· · 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
∆̃it,2

− W̄−1
i,· · 1

T

T∑

s=1

Wis
1

Nc

∑

j∈Nc

(
Λ⊤
j Fs + ϵjs

)

︸ ︷︷ ︸
∆̃it,3

.

We have 1√
Nc

∑
j∈Nc

Λj
d→ N (0,ΣΛ,c). According to Lemma 8, ∆̃it,2 is asymptotically normal with

zero mean and asymptotically independent with ∆̃it,1. For the last term ∆̃it,3, it is easy to show that
1
T

∑T
s=1Wis

1
Nc

∑
j∈Nc

(Λ⊤
j Fs + ϵjs) = Op(

1
δN,T

) and E[∆̃4
it,3] ≤ M/T 2. We complete our proof.

IA.C.2.2 Asymptotic normality for the common components

Lemma 11. Let δN,T = min(N,T ). Suppose Assumptions 1, 5 hold and the first-stage estimation
error satisfies E[∆̃4

it] ≤ M/δ2N,T for any i and t. Then, it holds that

1. For any i and j, E[η2ij ] ≤ M/δN,T , E[ξ2ij ] ≤ M/δN,T , and 1
N

∑N
i=1 E[γ2ij ] ≤ M/δN,T .

2. When N,T → ∞, 1
N2 Λ̃

⊤
(
(Ẏ ⊙W )(Ẏ ⊙W )⊤ ⊙

[
1

|Qij |

])
Λ̃ = D̃

p→ D, where D = diag (d1, · · · , dk)
is the diagonal matrix consisting of the eigenvalues of ΣΛΣF .

3. When N,T → ∞, 1
N Λ̃⊤Λ

p→ Q = D1/2ΥΣ
−1/2
F , where the diagonal entries of D are eigenvalues

of ΣΛΣF , and Υ is the corresponding eigenvector matrix such that Υ⊤Υ = I. Moreover,
H

p→ (Q⊤)−1, where H = 1
NT D̃

−1Λ̃⊤ΛF⊤F .
4. For any i, ∥Λ̃i −HΛi∥2 = Op(

1
δN,T

). For any t, ∥F̃t − (H⊤)−1Ft∥2 = Op(
1

δN,T
).

Proof. We can sequentially prove these statements following the proof of Lemmas 4, 5, 6 and
Theorem 1.

In the following, we prove the asymptotic normality of the common components estimated with
wi-PCA with weights (4). We omit the proof for asymptotic normality of wi-PCA with weights (5)
and (6), which is similar to the proof in the following.

Lemma 12. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold. We have

1. 1
N

∑N
i=1 Λ̃iηij = Op(

1√
δN,T

).

2. 1
N

∑N
i=1 Λ̃iξij = Op(

1
δN,T

).

3. 1
N

∑N
i=1 Λ̃iγij = Op(

1
δN,T

).
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Proof. Observe that for any ϕij = ηij , ξij and γij ,

1

N

N∑

i=1

Λ̃iϕij =
1

N

N∑

i=1

(
Λ̃i −HΛi

)
ϕij +H · 1

N

N∑

i=1

Λiϕij .

Based on Lemma 11, the first term on the RHS can be bounded by

∥∥∥∥∥
1

N

N∑

i=1

(
Λ̃i −HΛi

)
ϕij

∥∥∥∥∥

2

≤ 1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2
· 1

N

N∑

i=1

ϕ2
ij = Op(

1

δ2N,T

).

Because H = Op(1), we just need to bound the three terms 1
N

∑N
i=1 Λiηij , 1

N

∑N
i=1 Λiξij and

1
N

∑N
i=1 Λiγij respectively in the following.

1. For 1
N

∑N
i=1HΛiηij , we have

1

N

N∑

i=1

Λiηij =
1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ftϵjt −
1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ft∆̃jt.

It is easy to see that the first part on the RHS

∥∥∥∥∥∥
1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ftϵjt

∥∥∥∥∥∥

2

≤ 1

N

N∑

i=1

∥Λi∥4 ·
1

N

N∑

i=1

∥∥∥∥∥∥
1

|Qij |
∑

t∈Qij

Ftϵjt

∥∥∥∥∥∥

2

= Op(
1

T
).

According to Lemma 8,

∆̃it = W̄−1
i,·


 1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)
− 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s

(
αj + Λ⊤

j Fs + ϵjs

)



︸ ︷︷ ︸
∆̃i,1

+D−1
t · 1

N

N∑

j=1

Wjt

pjt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
∆̃t,2

.

Plugging ∆̃it into 1
N

∑N
i=1 Λiηij gives us

1

N

N∑

i=1

Λiηij = Op(
1√
T
)− ∆̃j,1 ·

1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ft

︸ ︷︷ ︸
Op(

1
δN,T

)

− 1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ft∆̃t,2

because ∆̃j,1 = Op(
1√
δN,T

) and 1
N

∑N
i=1 ΛiΛ

⊤
i

1
|Qij |

∑
t∈Qij

Ft = Op(
1

δN,T
).
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The last term 1
N

∑N
i=1 ΛiΛ

⊤
i

1
|Qij |

∑
t∈Qij

Ft∆̃t,2 can be further decomposed as

1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ft∆̃t,2 =
1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ft

(
D−1

t − 1
) 1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω1

+
1

N

N∑

i=1

ΛiΛ
⊤
i

1

N

N∑

l=1

1

|Qij |
∑

t∈Qij

Ft

(
Wlt

plt
− 1

)(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω2

+
1

N2

N∑

i,l=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

Ft

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω3

.

Consider ω1, we have

∥ω1∥2 ≤
1

N

N∑

i=1

∥Λi∥4 ·
1

N

N∑

i=1

1

|Qij |
∑

t∈Qij

∥Ft∥2
(
D−1

t − 1
)2
(

1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

))2

,

where

E


∥Ft∥2

(
D−1

t − 1
)2
(

1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

))2



≤


E

[
∥Ft∥4

]
· E
[(
D−1

t − 1
)4] · E



(

1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

))4





1/2

≤ M

N2
.

Therefore, ω1 = Op(
1
N ). For ω2,

∥ω2∥2 ≤
1

N

N∑

i=1

∥Λi∥4 ·
k∑

r=1

1

N3

N∑

i,l,h=1

1

|Qij |2
∑

s,t∈Qij

Ft,rFs,r

(
Wlt

plt
− 1

)(
Whs

phs
− 1

)
·

(
αl + Λ⊤

l Ft + ϵlt

)(
αh + Λ⊤

h Fs + ϵhs

)
= Op(

1

N
),

where the last equality holds because E[Ft,rFs,r(Wlt/plt − 1)(Whs/phs − 1)(αl + Λ⊤
l Ft + ϵlt)(αh +

Λ⊤
h Fs + ϵhs)] = 0 when l ̸= h. Furthermore, it is easy to show that

ω2 =
1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

FtF
⊤
t

1

N

N∑

l=1

(
Wlt

plt
− 1

)
Λl +Op(

1

δN,T
).

42



Similarly, we have

ω3 =
1

N

N∑

i=1

ΛiΛ
⊤
i

1

|Qij |
∑

t∈Qij

FtF
⊤
t

1

N

N∑

l=1

Λl

︸ ︷︷ ︸
Op(

1√
N
)

+Op(
1

δN,T
) = Op(

1√
δN,T

).

Combining these terms, we get that 1
N

∑N
i=1 Λiηij = Op(

1√
δN,T

).

2. For ϕij = ξij , we have

1

N

N∑

i=1

Λiξij =


 1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

F⊤
t ϵit −

1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

F⊤
t ∆̃it


Λj ,

where it is easy to see that 1
N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

F⊤
t ϵit = Op(

1
δN,T

).

Similar to the first part, we can decompose 1
N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

F⊤
t ∆̃it as

1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

F⊤
t ∆̃it

=
1

N

N∑

i=1

Λi∆̃i,1
1

|Qij |
∑

t∈Qij

F⊤
t +

1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

F⊤
t ∆̃t,2,

where the first term on the RHS can be bounded by

∥∥∥∥∥∥
1

N

N∑

i=1

Λi∆̃i,1
1

|Qij |
∑

t∈Qij

F⊤
t

∥∥∥∥∥∥

2

≤ 1

N

N∑

i=1

∥Λi∥2∆̃2
i,1

︸ ︷︷ ︸
Op(

1
δN,T

)

· 1

N

N∑

i=1

∥∥∥∥∥∥
1

|Qij |
∑

t∈Qij

Ft

∥∥∥∥∥∥

2

︸ ︷︷ ︸
Op(

1
T
)

= Op(
1

TδN,T
).

Plugging the expression of ∆̃t,2 into the second term, we can further decompose it as

1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

F⊤
t ∆̃t,2 =

1

N2

N∑

i,l=1

1

|Qij |
∑

t∈Qij

(D−1
t − 1)

Wlt

plt
ΛiF

⊤
t

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω1

+
1

N2

N∑

i,l=1

1

|Qij |
∑

t∈Qij

Wlt

plt
ΛiF

⊤
t

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω2

.
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We bound ω1 as

∥ω1∥2 ≤
1

N

N∑

i=1

∥Λi∥2 ·
1

N

N∑

i=1

∥∥∥∥∥∥
1

|Qij |
∑

t∈Qij

(D−1
t − 1)Ft

1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

)
∥∥∥∥∥∥

2

≤ 1

N

N∑

i=1

∥Λi∥2

︸ ︷︷ ︸
Op(1)

· 1
N

N∑

i=1

1

|Qij |
∑

t∈Qij

(D−1
t − 1)2∥Ft∥2

(
1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

))2

.

According to part 1, E
[
(D−1

t − 1)2∥Ft∥2( 1
N

∑N
l=1

Wlt
plt

(αl + Λ⊤
l Ft + ϵlt))

2
]
≤ M/N2. As a result,

ω1 = Op(
1
N ). For ω2, we have

∥ω2∥2 =
k∑

r,o=1

1

N4

N∑

i,l,h,q=1

1

|Qij|

1

|Qhj |
∑

s∈Qij

∑

t∈Qhj

Wls

pls

Wqt

pqt
·

Λi,rΛh,rFs,oFt,o(αl + Λ⊤
l Fs + ϵls)(αq + Λ⊤

q Ft + ϵqt) = Op(
1

N2
).

As a result, ω2 = Op(
1
N ) and 1

N

∑N
i=1 Λ̃iξij = Op(

1
δN,T

).

3. For ϕij = γij ,

1

N

N∑

i=1

Λiγij =
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵitϵjt −
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵit∆̃jt

− 1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

∆̃itϵjt +
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

∆̃it∆̃jt.

It is easy to see that 1
N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

ϵitϵjt = Op(
1

δN,T
). According to previous parts, ∆̃it =

∆̃i,1 + ∆̃t,2, where E[∆̃4
i,1] ≤ M/δ2N,T and E[∆̃4

t,2] ≤ M/δ2N,T . We have the decomposition

1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵit∆̃jt = ∆̃j,1 ·
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵit +
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵit∆̃t,2.

Since ∆̃j,1 = Op(
1√
δN,T

) and

∥∥∥∥∥∥
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵit

∥∥∥∥∥∥

2

≤ 1

N

N∑

i=1

∥Λi∥2 ·
1

N

N∑

i=1


 1

|Qij |
∑

t∈Qij

ϵit




2

= Op(
1

T
),
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we have ∆̃j,1 · 1
N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

ϵit = Op(
1

δN,T
). Furthermore,

1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

ϵit∆̃t,2 =
1

N2

N∑

i,l=1

1

|Qij |
∑

t∈Qij

(D−1
t − 1)

Wlt

plt
Λiϵit

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω1

+
1

N2

N∑

i,l=1

1

|Qij |
∑

t∈Qij

Wlt

plt
Λiϵit

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω2

.

Similar to part 2, we have ω1 = Op(
1
N ) and ω2 = Op(

1
N ). Thus, 1

N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

ϵit∆̃jt =

Op(
1

δN,T
). We can also prove that 1

N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

ϵjt∆̃it = Op(
1

δN,T
).

For 1
N

∑N
i=1 Λi

1
|Qij |

∑
t∈Qij

∆̃it∆̃jt, it holds that

∥∥∥∥∥∥
1

N

N∑

i=1

Λi
1

|Qij |
∑

t∈Qij

∆̃it∆̃jt

∥∥∥∥∥∥

2

≤ 1

N

N∑

i=1

∥Λi∥2 ·
1

N

N∑

i=1

1

|Qij |
∑

t∈Qij

∆̃2
it∆̃

2
jt = Op(

1

δ2N,T

).

Combining these terms, we get 1
N

∑N
i=1 Λiγij = Op(

1
δN,T

). We complete our proof.

Lemma 13. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold. We have

Λ̃i −HΛi = Ḋ−1H (ωΛi,1 − ωΛi,2 + ωΛi,3) +Op(
1

δN,T
),

where

ωΛi,1 =
1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

t∈Qij

Ftϵit,

ωΛi,2 =
1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

t∈Qij

FtF
⊤
t

1

N

N∑

l=1

Wlt

plt
Λl,

ωΛi,3 =
1

N

N∑

j=1

ΛjΛ
⊤
j ∆F,ijΛi,

and ∆F,ij =
1

|Qij |
∑

t∈Qij
FtF

⊤
t − 1

T

∑T
t=1 FtF

⊤
t .

Proof. For i = 1, · · · , N , we have the decomposition

Λ̃i −HΛi =
(
Λ̃i −HiΛi

)
+ (Hi −H) Λi.
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According to Lemma 12,

Λ̃i −HiΛi = Ḋ−1


 1

N

N∑

j=1

Λ̃jηij +
1

N

N∑

j=1

Λ̃jξij +
1

N

N∑

j=1

Λ̃jγij




= Ḋ−1H

[
1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

t∈Qij

Ftϵit

︸ ︷︷ ︸
ωΛi,1

− 1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

t∈Qij

FtF
⊤
t

1

N

N∑

l=1

Wlt

plt
Λl

︸ ︷︷ ︸
ωΛi,2

]

+Op(
1

δN,T
).

For (Hi −H)Λi, we have

Hi −H = Ḋ−1 1

N

N∑

j=1

Λ̃jΛ
⊤
j


 1

|Qij |
∑

t∈Qij

FtF
⊤
t − 1

T

T∑

t=1

FtF
⊤
t




︸ ︷︷ ︸
∆F,ij

= Ḋ−1 1

N

N∑

j=1

(
Λ̃j −HΛj

)
Λ⊤
j ∆F,ij + Ḋ−1H

1

N

N∑

j=1

ΛjΛ
⊤
j ∆F,ij .

The first part 1
N

∑N
j=1(Λ̃j −HΛj)Λ

⊤
j ∆F,ij can be bounded by

∥∥∥∥∥∥
1

N

N∑

j=1

(
Λ̃j −HΛj

)
Λ⊤
j ∆F,ij

∥∥∥∥∥∥

2

≤ 1

N

N∑

j=1

∥∥∥Λ̃j −HΛj

∥∥∥
2

︸ ︷︷ ︸
Op(

1
δN,T

) by Lemma 11

· 1
N

N∑

j=1

∥Λj∥2∥∆F,ij∥2 = Op(
1

TδN,T
) ,

where the last equality holds since E[∥∆F,ij∥2] ≤ M/T . As a result,

(Hi −H)Λi = Ḋ−1H
1

N

N∑

j=1

ΛjΛ
⊤
j ∆F,ijΛi

︸ ︷︷ ︸
ωΛi,3

+Op(
1

δN,T
).

Combining the two terms, we have

Λ̃i −HΛi =
(
Λ̃i −HiΛi

)
+ (Hi −H) Λi

= Ḋ−1H (ωΛi,1 − ωΛi,2 + ωΛi,3) +Op(
1

δN,T
).

Lemma 14. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold. We have
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1. 1
N

∑N
i=1(Λ̃i −HiΛi)Λ

⊤
i = Op(

1
δN,T

).

2. 1
N

∑N
i=1Wit(Λ̃i −HiΛi)Λ

⊤
i = Op(

1
δN,T

).

3. 1
N

∑N
i=1Wit(Λ̃i −HΛi)ϵ̇it = Op(

1
δN,T

).

Proof. 1. We have the decomposition

1

N

N∑

i=1

(
Λ̃i −HiΛi

)
Λ⊤
i = Ḋ−1


 1

N2

N∑

i,j=1

Λ̃jΛ
⊤
i ηij +

1

N2

N∑

i,j=1

Λ̃jΛ
⊤
i ξij +

1

N2

N∑

i,j=1

Λ̃jΛ
⊤
i γij


 .

Observe that for any ϕij = ηij , ξij and γij ,

1

N2

N∑

i,j=1

Λ̃jΛ
⊤
i ϕij =

1

N2

N∑

i,j=1

(
Λ̃j −HΛj

)
Λ⊤
i ϕij +H · 1

N2

N∑

i,j=1

ΛjΛ
⊤
i ϕij .

By Theorem 1 and Lemma 11, the first part on the RHS can be bounded by

∥∥∥∥∥∥
1

N2

N∑

i,j=1

(
Λ̃j −HΛj

)
Λ⊤
i ϕij

∥∥∥∥∥∥

2

≤ 1

N

N∑

j=1

∥∥∥Λ̃j −HΛj

∥∥∥
2
· 1

N

N∑

i=1

∥Λi∥2 ·
1

N2

N∑

i,j=1

ϕ2
ij = Op(

1

δ2N,T

).

We bound the three terms 1
N2

∑N
i,j=1 ΛjΛ

⊤
i ηij ,

1
N2

∑N
i,j=1 ΛjΛ

⊤
i ξij and 1

N2

∑N
i,j=1 ΛjΛ

⊤
i γij respec-

tively in the following.
For 1

N2

∑N
i,j=1 ΛjΛ

⊤
i ηij , it holds that

1

N2

N∑

i,j=1

ΛjΛ
⊤
i ηij =

1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ftϵjt

︸ ︷︷ ︸
ω1

− 1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft∆̃jt

︸ ︷︷ ︸
ω2

.

The first part ω1 satisfies

∥ω1∥2 =
k∑

p,q=1

1

N4

N∑

i,j,h,l=1

1

|Qij |
1

|Qhl|
∑

t∈Qij

∑

s∈Qhl

Λj,pΛi,qΛl,pΛh,qΛ
⊤
i FtΛ

⊤
h Fsϵjtϵls = Op(

1

NT
) ,

where the last equality holds since E[Λj,pΛi,qΛl,pΛh,qΛ
⊤
i FtΛ

⊤
h Fsϵjtϵls] = 0 when t ̸= s or j ̸= l.

According to Lemma 12, ∆̃jt = ∆̃j,1 + ∆̃t,2, so ω2 can be further decomposed as

ω2 =
1

N2

N∑

i,j=1

∆̃j,1ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft +

1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft∆̃t,2 .

47



By Lemma 8,

∥∥∥∥∥∥
1

N2

N∑

i,j=1

∆̃j,1ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft

∥∥∥∥∥∥

2

≤ 1

N

N∑

j=1

∆̃2
j,1∥Λj∥2

︸ ︷︷ ︸
Op(

1
δN,T

)

· 1

N

N∑

i=1

∥Λi∥4

︸ ︷︷ ︸
Op(1)

· 1

N2

N∑

i,j=1

∥∥∥∥∥∥
1

|Qij |
∑

t∈Qij

Ft

∥∥∥∥∥∥

2

︸ ︷︷ ︸
Op(

1
T
)

= Op(
1

δ2N,T

).

We plug ∆̃t,2 into the second part of ω2 and get

ω2 =
1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft

(
D−1

t − 1
) 1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω2,1

+
1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

Λ⊤
i Ft

1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

)

︸ ︷︷ ︸
ω2,2

+Op(
1

δN,T
).

The first part ω2,1 satisfies

∥ω2,1∥2 ≤
1

N

N∑

i=1

∥Λi∥4 ·
1

N

N∑

j=1

∥Λj∥2·

1

N2

N∑

i,j=1

1

|Qij |
∑

t∈Qij

∥∥∥∥∥Ft

(
D−1

t − 1
) 1

N

N∑

l=1

Wlt

plt

(
αl + Λ⊤

l Ft + ϵlt

)∥∥∥∥∥

2

= Op(
1

N2
).

We can also show that ω2,2 = Op(
1

δN,T
). Combining these terms, we get 1

N2

∑N
i,j=1 ΛjΛ

⊤
i ηij =

Op(
1

δN,T
). By symmetry, we have 1

N2

∑N
i,j=1 ΛjΛ

⊤
i ξij = Op(

1
δN,T

).

For 1
N2

∑N
i,j=1 ΛjΛ

⊤
i γij , we have

1

N2

N∑

i,j=1

ΛjΛ
⊤
i γij =

1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

ϵitϵjt

︸ ︷︷ ︸
ω1

− 2

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

ϵit∆̃jt

︸ ︷︷ ︸
ω2

+
1

N2

N∑

i,j=1

ΛjΛ
⊤
i

1

|Qij |
∑

t∈Qij

∆̃it∆̃jt

︸ ︷︷ ︸
ω3

.
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Since idiosyncratic errors are i.i.d. with zero mean and are independent with loadings,

E
[
∥ω1∥2

]
=

k∑

p,q=1

1

N4

N∑

i,j,h,l=1

1

|Qij |
1

|Qhl|
∑

t∈Qij

∑

s∈Qhl

E [Λj,pΛi,qΛh,pΛl,q] · E [ϵitϵjtϵhsϵls] ≤
M

N2
.

Similar to 1
N2

∑N
i,j=1 ΛjΛ

⊤
i

1
|Qij |

∑
t∈Qij

Λ⊤
i Ft∆̃jt = Op(

1
δN,T

), we have ω2 = Op(
1

δN,T
). Since E[∆̃4

it] ≤
M/δ2N,T ,

∥ω3∥2 ≤
1

N

N∑

i=1

∥Λi∥2 ·
1

N

N∑

j=1

∥Λj∥2 ·
1

N2

N∑

i,j=1

1

|Qij |
∑

t∈Qij

∆̃2
it∆̃

2
jt = Op(

1

δ2N,T

).

Therefore, we have 1
N2

∑N
i,j=1 ΛjΛ

⊤
i γij = Op(

1
δN,T

).

2. Similar to the first part, we have the decomposition

1

N

N∑

i=1

Wit

(
Λ̃i −HiΛi

)
Λ⊤
i

= Ḋ−1


 1

N2

N∑

i,j=1

WitΛ̃jΛ
⊤
i ηij +

1

N2

N∑

i,j=1

WitΛ̃jΛ
⊤
i ξij +

1

N2

N∑

i,j=1

WitΛ̃jΛ
⊤
i γij


 .

For any ϕij = ηij , ξij and γij ,

1

N2

N∑

i,j=1

WitΛ̃jΛ
⊤
i ϕij =

1

N2

N∑

i,j=1

Wit

(
Λ̃j −HΛj

)
Λ⊤
i ϕij +H · 1

N2

N∑

i,j=1

WitΛjΛ
⊤
i ϕij .

Since 1
N

∑N
i=1Wit∥Λi∥2 ≤ 1

N

∑N
i=1 ∥Λi∥2, the first part on the RHS can be bounded by

∥∥∥∥∥∥
1

N2

N∑

i,j=1

Wit

(
Λ̃j −HΛj

)
Λ⊤
i ϕij

∥∥∥∥∥∥

2

≤ 1

N

N∑

j=1

∥∥∥Λ̃j −HΛj

∥∥∥
2
· 1

N

N∑

i=1

∥Λi∥2 ·
1

N2

N∑

i,j=1

ϕ2
ij

= Op(
1

δ2N,T

).

By similar arguments with the first part, we can show that 1
N2

∑N
i,j=1WitΛjΛ

⊤
i ϕij = Op(

1
δN,T

) for
any ϕij = ηij , ξij and γij .
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3. 1
N

∑N
i=1Wit(Λ̃i −HΛi)ϵ̇it has the decomposition

1

N

N∑

i=1

Wit

(
Λ̃i −HΛi

)
ϵ̇it =

1

N

N∑

i=1

Wit

(
Λ̃i −HiΛi

)
ϵit

︸ ︷︷ ︸
ω1=Op(

1
δN,T

)

+
1

N

N∑

i=1

Wit (Hi −H) Λiϵit

︸ ︷︷ ︸
ω2

− 1

N

N∑

i=1

Wit

(
Λ̃i −HΛi

)
∆̃it

︸ ︷︷ ︸
ω3

.

By definition, Hi−H = Ḋ−1 1
N

∑N
j=1 Λ̃jΛ

⊤
j ∆F,ij , where ∆F,ij =

1
|Qij |

∑
t∈Qij

FtF
⊤
t − 1

T

∑T
t=1 FtF

⊤
t .

So ω2 can be bounded by

∥ω2∥2 ≤
∥∥∥Ḋ−1

∥∥∥
2
· 1

N

N∑

j=1

∥Λ̃j∥2∥Λj∥2 ·
1

N

N∑

j=1

∥∥∥∥∥
1

N

N∑

i=1

Wit∆F,ijΛiϵit

∥∥∥∥∥

2

= Op(
1

NT
)

since E
∥∥∥ 1
N

∑N
i=1Wit∆F,ijΛiϵit

∥∥∥
2
≤ E

[
1
N2

∑N
i=1 ∥∆F,ij∥2∥Λi∥2ϵ2it

]
≤ M/NT . Moreover,

∥ω3∥2 ≤
1

N

N∑

i=1

∥∥∥Λ̃i −HΛi

∥∥∥
2
· 1

N

N∑

i=1

∆̃2
it = Op(

1

δ2N,T

).

We complete our proof.

Lemma 15. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold, we have

F̃t − (H⊤)−1Ft = ωFt,1 − ωFt,2 − ωFt,3 +Op(
1

δN,T
),

where

ωFt,1 = (H⊤)−1Σ̂−1
Λ,t ·

1

N

N∑

i=1

WitΛiϵit,

ωFt,2 = (H⊤)−1Σ̂−1
Λ,t ·

1

N

N∑

i=1

WitΛi∆̃it,

ωFt,3 = (H⊤)−1Σ̂−1
Λ,tZtH

⊤(Ḋ−1)⊤(H⊤)−1Ft,

Σ̂Λ,t =
1
N

∑N
i=1WitΛiΛ

⊤
i , ∆̃it = (µ̃+α̃i+ξ̃t)−(µ+αi+ξt), and Zt =

1
N2

∑N
i,j=1WitΛjΛ

⊤
j ∆F,ijΛiΛ

⊤
i .
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Proof. We estimate factors by regressing the observed Ẏit on Λ̃i as

F̃t =

(
1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i

)−1(
1

N

N∑

i=1

WitΛ̃iẎit

)
, t = 1, · · · , T .

As in the proof of Theorem 1, we define the auxiliary F̃ ∗
t as

F̃ ∗
t :=

(
1

N

N∑

i=1

WitHΛiΛ
⊤
i H

⊤
)−1(

1

N

N∑

i=1

WitΛ̃iẎit

)
.

We have the decomposition F̃t − (H⊤)−1Ft = (F̃t − F̃ ∗
t ) + (F̃ ∗

t − (H⊤)−1Ft).
We first analyze F̃ ∗

t , which has the decomposition

F̃ ∗
t = (H⊤)−1Ft + (H⊤)−1Σ̂−1

Λ,t ·
[
1

N

N∑

i=1

WitΛiϵit −
1

N

N∑

i=1

WitΛi∆̃it

]

+ (H⊤)−1Σ̂−1
Λ,tH

−1 ·
[

1

N

N∑

i=1

Wit

(
Λ̃i −HΛi

)
ϵ̇it

︸ ︷︷ ︸
Op(

1
δN,T

) by Lemma 14

+
1

N

N∑

i=1

Wit

(
Λ̃i −HiΛi

)
Λ⊤
i Ft

︸ ︷︷ ︸
Op(

1
δN,T

) by Lemma 14

+
1

N

N∑

i=1

Wit (Hi −H) ΛiΛ
⊤
i Ft

]
,

where Σ̂Λ,t :=
1
N

∑N
i=1WitΛiΛ

⊤
i . By Assumption 5, Σ̂Λ,t

p→ ΣΛ,t . We further expand the last term
1
N

∑N
i=1Wit (Hi −H) ΛiΛ

⊤
i Ft as

1

N

N∑

i=1

Wit (Hi −H) ΛiΛ
⊤
i Ft = Ḋ−1 · 1

N2

N∑

i,j=1

Wit

(
Λ̃j −HΛj

)
Λ⊤
j ∆F,ijΛiΛ

⊤
i Ft

+ Ḋ−1H · 1

N2

N∑

i,j=1

WitΛjΛ
⊤
j ∆F,ijΛiΛ

⊤
i Ft,

where ∆F,ij = 1
|Qij |

∑
t∈Qij

FtF
⊤
t − 1

T

∑T
t=1 FtF

⊤
t . For i ̸= j, E

[
∥Λj∥2∥Λi∥4∥∆F,ij∥2

]
= E[∥Λj∥2] ·

E[∥Λi∥4] · E[∥∆F,ij∥2] ≤ M/T , so the first part on the RHS can be bounded by

∥∥∥∥∥∥
1

N2

N∑

i,j=1

Wit

(
Λ̃j −HΛj

)
Λ⊤
j ∆F,ijΛiΛ

⊤
i

∥∥∥∥∥∥

2

≤ 1

N

N∑

j=1

∥∥∥Λ̃j −HΛj

∥∥∥
2
· 1

N2

N∑

i,j=1

(
∥Λj∥2∥Λi∥4∥∆F,ij∥2

)
= Op(

1

δ2N,T

).
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As a result,

F̃ ∗
t − (H⊤)−1Ft = (H⊤)−1Σ̂−1

Λ,t ·
1

N

N∑

i=1

WitΛiϵit − (H⊤)−1Σ̂−1
Λ,t ·

1

N

N∑

i=1

WitΛi∆̃it

+ (H⊤)−1Σ̂−1
Λ,tH

−1Ḋ−1H · 1

N2

N∑

i,j=1

WitΛjΛ
⊤
j ∆F,ijΛiΛ

⊤
i Ft +Op(

1

δN,T
).

We let Zt =
1
N2

∑N
i,j=1WitΛjΛ

⊤
j ∆F,ijΛiΛ

⊤
i . By Proposition 3 in Xiong and Pelger (2023),

√
T · Zt

is asymptotically normal with zero mean.
Next, we consider the difference between F̃ ∗

t and F̃t. We have

F̃ ∗
t − F̃t =

(
1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i

)−1 [
1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i − 1

N

N∑

i=1

WitHΛiΛ
⊤
i H

⊤
]

︸ ︷︷ ︸
∆̃Λ,t

F̃ ∗
t .

The difference ∆̃Λ,t can be expanded as

∆̃Λ,t =
1

N

N∑

i=1

[
WitHΛiΛ

⊤
i (Hi −H)⊤ +Wit(Hi −H)ΛiΛ

⊤
i H

⊤
]

+
1

N

N∑

i=1

[
WitHΛi(Λ̃i −HiΛi)

⊤ +Wit(Λ̃i −HiΛi)Λ
⊤
i H

⊤
]

︸ ︷︷ ︸
Op(

1
δN,T

) by Lemma 14

+
1

N

N∑

i=1

Wit(Λ̃i −HiΛi)(Λ̃i −HiΛi)
⊤

︸ ︷︷ ︸
Op(

1
δN,T

) by Theorem 1

=
1

N

N∑

i=1

[
WitHΛiΛ

⊤
i (Hi −H)⊤ +Wit(Hi −H)ΛiΛ

⊤
i H

⊤
]
+Op(

1

δN,T
).

Plugging the expression of Hi −H into the above equation, we get

∆̃Λ,t = Ḋ−1HZtH
⊤ +HZtH

⊤(Ḋ−1)⊤ +Op(
1

δN,T
).

Zt = Op(
1√
T
) implies ∆̃Λ,t

p→ 0. Therefore,

1

N

N∑

i=1

WitΛ̃iΛ̃
⊤
i =

1

N

N∑

i=1

WitHΛiΛ
⊤
i H

⊤ + ∆̃Λ,t
p→ HΣΛ,tH

⊤.

According to the first step, F̃ ∗
t = (H⊤)−1Ft +Op(

1√
δ
). We infer that

F̃ ∗
t − F̃t = (H⊤)−1Σ̂−1

Λ,tH
−1
(
Ḋ−1HZtH

⊤ +HZtH
⊤(Ḋ−1)⊤

)
(H⊤)−1Ft +Op(

1

δN,T
).

Combining these two steps, we finish our proof.
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Lemma 16. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold, we have

1

N

N∑

i=1

WitΛi∆̃it =
1

N

N∑

i=1

WitΛi
1

N

N∑

j=1

(
Wjt

pjt
− 1

)(
αj + Λ⊤

j Ft + ϵjt

)

+
1

N

N∑

i=1

WitΛi
1

N

N∑

j=1

(
Λ⊤
j Ft + ϵjt

)
+

1

N

N∑

i=1

WitΛiW̄
−1
i,· Λ

⊤
i

1

T

T∑

s=1

WisFs

− 1

N

N∑

i=1

WitΛiW̄
−1
i,·

1

N

N∑

j=1

1

T

T∑

s=1

Wis

(
Wjt

pjs
− 1

)
αj +Op(

1

δN,T
).

Proof. We denote Xit = Wit/pit. According to Lemma 8, 1
N

∑N
i=1WitΛi∆̃it can be decomposed as

1

N

N∑

i=1

WitΛi∆̃it = D−1
t · 1

N

N∑

i=1

WitΛi
1

N

N∑

j=1

Xjt

(
αj + Λ⊤

j Ft + ϵjt

)

︸ ︷︷ ︸
ω1

+
1

N

N∑

i=1

WitΛiW̄
−1
i,·

1

T

T∑

s=1

Wis

(
Λ⊤
i Fs + ϵis

)

︸ ︷︷ ︸
ω2

− 1

N

N∑

i=1

WitΛiW̄
−1
i,·

1

NT

N∑

j=1

T∑

s=1

WisXjsD
−1
s

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
ω3

.

We can further decompose ω1 as

ω1 =
(
D−1

t − 1
) 1

N

N∑

i=1

WitΛi
1

N

N∑

j=1

Xjt

(
αj + Λ⊤

j Ft + ϵjt

)

+
1

N

N∑

i=1

WitΛi
1

N

N∑

j=1

Xjt

(
αj + Λ⊤

j Ft + ϵjt

)
.

We have shown that 1
N

∑N
i=1WitΛi

1
N

∑N
j=1Xjt

(
αj + Λ⊤

j Ft + ϵjt

)
= Op(

1√
N
) and E[(D−1

t − 1)2] ≤
M/N . Therefore, we have ω1 =

1
N

∑N
i=1WitΛi

1
N

∑N
j=1Xjt(αj + Λ⊤

j Ft + ϵjt) +Op(
1
N ).

For ω2, since ϵit are i.i.d. and independent of other terms,

E



(

1

N

N∑

i=1

WitΛiW̄
−1
i,·

1

T

T∑

s=1

Wisϵis

)2

 ≤ M

NT
.
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Observe that ω3 can be further decomposed as

ω3 =
1

N2

N∑

i,j=1

1

T

T∑

s=1

WitΛiW̄
−1
i,· WisXjs

(
D−1

s − 1
) (

αj + Λ⊤
j Fs + ϵjs

)

︸ ︷︷ ︸
ω3,1

+
1

N2

N∑

i,j=1

1

T

T∑

s=1

WitΛiW̄
−1
i,· Wis(Xjs − 1)

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
ω3,2

+
1

N2

N∑

i,j=1

1

T

T∑

s=1

WitΛiW̄
−1
i,· Wis

(
αj + Λ⊤

j Fs + ϵjs

)

︸ ︷︷ ︸
ω3,3

.

The first part ω3,1 can be bounded by

∥ω3,1∥2 ≤
1

T

T∑

s=1

(
D−1

s − 1
)2

︸ ︷︷ ︸
Op(

1
N
)

· 1
T

T∑

s=1

∥∥∥∥∥∥
1

N2

N∑

i,j=1

WitWisXjsW̄
−1
i,· Λi

(
αj + Λ⊤

j Fs + ϵjs

)
∥∥∥∥∥∥

2

.

Since E
∥∥∥ 1
N2

∑N
i,j=1WitWisXjsW̄

−1
i,· Λi(αj +Λ⊤

j Fs+ ϵjs)
∥∥∥
2
≤ M/N , we have ω3,1 = Op(

1
N ). For ω3,2,

it holds that

E



∥∥∥∥∥∥

1

N2

N∑

i,j=1

1

T

T∑

s=1

WitΛiW̄
−1
i,· Wis(Xjs − 1)

(
Λ⊤
j Fs + ϵjs

)
∥∥∥∥∥∥

2


=
k∑

r=1

1

N4

N∑

i,j,h,l=1

1

T 2

T∑

s,u=1

E
[
E[WitWhtW̄

−1
i,· W̄

−1
h,· WisWhu(Xjs − 1)(Xlu − 1)|I]·

E[Λi,rΛh,r(Λ
⊤
j Fs + ϵjs)(Λ

⊤
l Fu + ϵlu)|I]

]
≤ M

NT
.

This is because when s ̸= u, E[Λi,rΛh,r(Λ
⊤
j Fs + ϵjs)(Λ

⊤
l Fu + ϵlu)|I] = 0. Additionally, when i, j, h, l

are distinct, E[WitWhtW̄
−1
i,· W̄

−1
h,· WisWhu(Xjs − 1)(Xlu − 1)|I] = 0. For ω3,3, it is easy to see that

1
N2

∑N
i,j=1

1
T

∑T
s=1WitΛiW̄

−1
i,· Wisϵjs = Op(

1
δN,T

). Furthermore,

1

N2

N∑

i,j=1

1

T

T∑

s=1

WitΛiW̄
−1
i,· WisΛ

⊤
j Fs =

1

N

N∑

i=1

1

T

T∑

s=1

WitΛiW̄
−1
i,· WisF

⊤
s

︸ ︷︷ ︸
Op(

1√
T
)

· 1

N

N∑

j=1

Λj

︸ ︷︷ ︸
Op(

1√
N
)

= Op(
1

δN,T
) .
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Therefore,

ω3 =
1

N

N∑

i=1

WitΛiW̄
−1
i,·

1

N

N∑

j=1

1

T

T∑

s=1

Wis(Xjs − 1)αj +
1

N

N∑

i=1

WitΛi ·
1

N

N∑

j=1

αj +Op(
1

δN,T
).

Combining ω1, ω2 and ω3, we get the results.

Proof of Theorem 2:

Proof. The estimation error of the common component is

C̃it − Cit =
(
µ̃+ α̃i + ξ̃t + Λ̃⊤

i F̃t

)
−
(
µ+ αi + ξt + Λ⊤

i Ft

)

= Λ⊤
i H

⊤
(
F̃t − (H⊤)−1Ft

)
+ F⊤

t H−1
(
Λ̃i −HΛi

)
+ ∆̃it +Op(

1

δN,T
).

Following Lemmas 8, 13, 15, and 16, we can further decompose C̃it − Cit as

C̃it − Cit = Λ⊤
i Σ̂

−1
Λ,t ·

1

N

N∑

j=1

WjtΛjϵjt

︸ ︷︷ ︸
ωCit,1

+F⊤
t H−1Ḋ−1H · 1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

s∈Qij

Fsϵis

︸ ︷︷ ︸
ωCit,2

+ F⊤
t H−1Ḋ−1HZiΛi − Λ⊤

i Σ̂
−1
Λ,tZtH

⊤(Ḋ−1)⊤(H⊤)−1Ft︸ ︷︷ ︸
ωCit,3

+D−1
t

1

N

N∑

j=1

(Xjt − 1)(αj + Λ⊤
j Ft + ϵjt)− W̄−1

i,·
1

T

T∑

s=1

Wis
1

N

N∑

j=1

(Xjs − 1)αj

︸ ︷︷ ︸
ωCit,4

+ Λ⊤
i Σ̂

−1
Λ,t

1

N

N∑

j=1

WjtΛj

[
W̄−1

j,·
1

T

T∑

s=1

Wjs
1

N

N∑

l=1

(Xls − 1)αl −
1

N

N∑

l=1

(Xlt − 1)(αl + Λ⊤
l Ft + ϵlt)

]

︸ ︷︷ ︸
ωCit,5

− F⊤
t H−1Ḋ−1H

1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

s∈Qij

FsF
⊤
s

1

N

N∑

l=1

XlsΛl

︸ ︷︷ ︸
ωCit,6

+ W̄−1
i,·

1

T

T∑

s=1

Wisϵis + W̄−1
i,· Λ

⊤
i

1

T

T∑

s=1

WisFs

︸ ︷︷ ︸
ωCit,7

−Λ⊤
i Σ̂

−1
Λ,t

1

N

N∑

j=1

WjtW̄
−1
j,· ΛjΛ

⊤
j

1

T

T∑

s=1

WjsFs

︸ ︷︷ ︸
ωCit,8

− Λ⊤
i Σ̂

−1
Λ,t

1

N

N∑

j=1

WjtΛj
1

N

N∑

l=1

(
Λ⊤
l Ft + ϵlt

)
+D−1

t

1

N

N∑

j=1

(
Λ⊤
j Ft + ϵjt

)

︸ ︷︷ ︸
ωCit,9

+Op(
1

δN,T
),
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where Σ̂Λ,t =
1
N

∑N
i=1WitΛiΛ

⊤
i

p→ ΣΛ,t by Assumption 5, Zi =
1
N

∑N
j=1 ΛjΛ

⊤
j ∆F,ij , Zt =

1
N

∑N
i=1WitZiΛiΛ

⊤
i ,

and Xit = Wit/pit. The first three terms ωCit,1, ωCit,2 and ωCit,3 also appear in the asymptotic dis-
tribution of C̃it −Cit in the pure factor model in Xiong and Pelger (2023). According to Xiong and
Pelger (2023), they are respectively asymptotically normal with zero mean. The other terms are
brought by the first-stage estimation error of the fixed effects. We analyze them in the following.

Step 1 – The terms ωCit,4 and ωCit,5 are asymptotically normal
According to Lemma 8, ωCit,4 is asymptotically normal with zero mean.
For ωCit,5, by Assumption 6, plimN→∞

1
N

∑N
j=1WjtΛj exists. Slutsky’s theorem gives that

1
N

∑N
j=1WjtΛj

1
N

∑N
l=1(Xlt−1)(αl+Λ⊤

l Ft+ ϵlt) is asymptotically normal with zero mean. Consider
the term

1

N

N∑

j=1

WjtΛjW̄
−1
j,·

1

T

T∑

s=1

Wjs
1

N

N∑

l=1

(Xls − 1)αl.

We denote Gj = 1
T

∑T
s=1Wjs

1
N

∑N
l=1(Xls − 1)αl. By Lemma 8, [

√
NG1,

√
NG2, · · · ,

√
NGN ] is

jointly asymptotically normal with asymptotic covariance σjl = ACov(
√
NGl,

√
NGj). We denote

vjl = vec(WjtWltW̄
−1
j,· W̄

−1
l,· ΛjΛ

⊤
l ) and vjl,r is the r-th entry in vjl. We have

E




 1

N2

N∑

j,l=1

σjl(vjl,r − E[vjl,r])




2


=
1

N4

N∑

i,j,h,l=1

σijσhlE [(vij,r − E[vij,r])(vhl,r − E[vhl,r])] = o(1),

where the last equality holds because plimN→∞
1
N

∑N
j=1WjtW̄

−1
j,· Λj exists in Assumption 6. There-

fore, we have that plimN→∞
1
N2

∑N
i,j=1WitWjtW̄

−1
i,· W̄

−1
j,· σijΛiΛ

⊤
j exists. This implies that 1

N

∑N
j=1WjtΛjW̄

−1
j,·

1
T

∑T
s=1Wjs

1
N

∑N
l=1(Xls−

1)αl is asymptotically normal with zero mean. Note that the randomness of both ωCit,4 and ωCit,5

come from the cross-sectional missingness, so they are jointly asymptotically normal.

Step 2 – The terms ωCit,6, ωCit,7, ωCit,8 and ωCit,9 are asymptotically normal
Based on Lemma 8 and due to the fact that plimN→∞

1
N

∑N
j=1WjtΛj exists, ωCit,7 and ωCit,9

are asymptotically normal with zero mean. Consider ωCit,6, we have

1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

s∈Qij

FsF
⊤
s

1

N

N∑

l=1

XlsΛl

=
1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

s∈Qij

FsF
⊤
s

1

N

N∑

l=1

(Xls − 1)Λl +
1

N

N∑

j=1

ΛjΛ
⊤
j

1

|Qij |
∑

s∈Qij

FsF
⊤
s

1

N

N∑

l=1

Λl.

It holds that 1
N

∑N
j=1 ΛjΛ

⊤
j

1
|Qij |

∑
s∈Qij

FsF
⊤
s

p→ ΣΛΣF . By Slutsky’s theorem, the second part in
the decomposition of ωCit,6 is asymptotically normal with zero mean. For the first part, we denote
Gs = 1

N

∑N
j=1(Xjs − 1)Λj . According to Lemma 8, [

√
NG1, · · · ,

√
NGT ] is jointly asymptotically
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normal with covariance ACov(
√
NGs,

√
NGu) = sΛ,st. By similar arguments with ωCit,5, the first

part is asymptotically normal with zero mean. We can similarly show that ωCit,8 is asymptotically
normal with zero mean.

Step 3 – Combining all the terms
We have proved that the nine terms ωCit,r, r = 1, · · · , 9, which contribute to the asymptotic

distribution of C̃it−Cit are all asymptotically normal with zero mean. Note that the randomness of
ωCit,4 and ωCit,5 come from the cross-sectional average of the observation pattern. The randomness
of ωCit,6 come from the cross-sectional average of the loadings. The randomness of ωCit,1, ωCit,2,
ωCit,7 and ωCit,8 come from time series average of factors or idiosyncratic errors. The randomness
of ωCit,9 comes from the cross-sectional average of the loadings and errors. We can show that
1√
T

∑T
t=1WltFt and

√
Tvec( 1

T

∑T
t=1 FtF

⊤
t − 1

|Qij |
∑

t∈Qij
FtF

⊤
t ) are jointly asymptotically normal

for any l, i, j. Therefore, √
δN,Tσ

−1
C,it ·

(
C̃it − Cit

)
d→ N (0, 1) ,

where σ2
C,it =

δN,T

N σ2
C,it,1 +

δN,T

T σ2
C,it,2 with some σ2

C,it,1 and σ2
C,it,2.

Additionally, it is easy to show that

√
δN,T σ̄

−1
C,it ·

1

N

N∑

i=1

(
C̃it − Cit

)
d→ N (0, 1)

with some σ̄2
C,it =

δN,T

N σ̄2
C,it,1 +

δN,T

T σ̄2
C,it,2 .

IA.C.3 Proof of Proposition 1

Lemma 17. Suppose the assumptions in Proposition 1 hold. Then, the error term ϵ̇it in the second
step of wi-PCA with observables can be decomposed as ϵ̇it = ϵit + ωit, where ωit satisfies E[ω8

it] ≤
M/δ4N,T .

Proof. By definition,
Ẏit = β⊤Ẋit + Λ⊤

i Ft + ϵ̇it,

where Ẏit = Yit − µ̃− ξ̃t − α̃i and Ẋit = Xit − X̄·,t − X̄i,· + X̄. Rearranging the terms, we have

ϵ̇it = Ẏit − β⊤Ẋit − Λ⊤
i Ft

= ϵit + β⊤ (X̄i,· + X̄·,t − X̄
)
−
(
µ̃+ ξ̃t + α̃i − (µ+ ξt + αi)

)
.

We denote ∆̃old
it the first-stage estimation error without covariates Xit’s in Lemma 1. The
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first-stage estimation error with covariates can be written as

µ̃+ ξ̃t + α̃i − (µ+ ξt + αi)

= D−1
t · 1

N

N∑

j=1

Wjt

pjt

(
β⊤Xit + αj + Λ⊤

j Ft + ϵjt

)
+ W̄−1

i,· · 1
T

T∑

s=1

Wis

(
β⊤Xis + Λ⊤

i Fs + ϵis

)

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s

(
β⊤Xjs + αj + Λ⊤

j Fs + ϵjs

)

= ∆̃old
it +D−1

t · 1

N

N∑

j=1

Wjt

pjt
β⊤Xjt + W̄−1

i,· · 1
T

T∑

s=1

Wisβ
⊤Xis

− W̄−1
i,· · 1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s β⊤Xjs .

By similar arguments in Lemma 1, we can show that E[(∆̃old
it )8] ≤ M/δ4N,T . For the last term on

the RHS, it holds that

1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs
D−1

s β⊤Xjs =
1

NT

N∑

j=1

T∑

s=1

Wis
Wjs

pjs

(
D−1

s − 1
)
β⊤Xjs

+
1

NT

N∑

j=1

T∑

s=1

Wis

(
Wjs

pjs
− 1

)
β⊤Xjs +

1

NT

N∑

j=1

T∑

s=1

Wisβ
⊤Xjs.

Since E[(D−1
s − 1)8] ≤ M/N4 for any s and E[Wjs/pjs − 1|I] = 0 for any j and s, it is easy to show

that the eighth moments of the first term and second term on the RHS can be bounded by M/N4.
Therefore,

µ̃+ ξ̃t + α̃i − (µ+ ξt + αi)

= D−1
t · 1

N

N∑

j=1

Wjt

pjt
β⊤Xjt + W̄−1

i,· · 1
T

T∑

s=1

Wisβ
⊤Xis − W̄−1

i,· · 1
T

T∑

s=1

Wisβ
⊤X̄·,s + ω′

it

= D−1
t · 1

N

N∑

j=1

Wjt

pjt
β⊤Xjt + W̄−1

i,· · 1
T

T∑

s=1

Wisβ
⊤(Xis − X̄·,s) + ω′

it

with some ω′
it satisfying E[ω′8

it ] ≤ M/δ4N,T .
Plugging this into ϵ̇it, we get that

ϵ̇it = ϵit −D−1
t · 1

N

N∑

j=1

Wjt

pjt
β⊤(Xjt − X̄·,t)− W̄−1

i,· · 1
T

T∑

s=1

Wisβ
⊤(Xis − X̄·,s − X̄i,· + X̄)− ω′

it.

We have E
[
( 1
N

∑N
j=1

Wjt

pjt
β⊤(Xjt − X̄·,t))8

]
≤ M/N4 because

∑N
j=1(Xjt−X̄·,t) = 0 and E[Wjt/pjt|I] =
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1. According to Assumption 7, E
[
( 1
T

∑T
s=1Wisβ

⊤Ẋis)
8
]
≤ M/T 4. We complete the proof.

Lemma 18. Suppose the assumptions in Proposition 1 hold. Then, the error term ϵ̈it in the final
step of wi-PCA with observables can be decomposed as ϵ̈it = (β − β̃)⊤Ẋit + ϵ̇it = ϵit + ω̇it with some
ω̇it satisfying E[ω̇4

it] ≤ M/δ2N,T .

Proof. We estimate the coefficient β as

β̃ =

(
N∑

i=1

T∑

t=1

WitẊitẊ
⊤
it

)−1 N∑

i=1

T∑

t=1

WitẊitẎit

= β +

(
N∑

i=1

T∑

t=1

WitẊitẊ
⊤
it

)−1 N∑

i=1

T∑

t=1

WitẊit

(
Λ⊤
i Ft + ϵit + ωit

)
,

where ωit is defined in Lemma 17. Plugging this into ϵ̈it, we have

ϵ̈it = ϵit + ωit − Ẋ⊤
it




N∑

j=1

T∑

s=1

WjsẊjsẊ
⊤
js




−1
N∑

j=1

T∑

s=1

WjsẊjs

(
Λ⊤
j Fs + ϵjs + ωjs

)

︸ ︷︷ ︸
ω̇it

.

In the following, we prove that ω̇it has bounded fourth moment.
We denote the smallest eigenvalue of 1

NT

∑N
i=1

∑T
t=1WitẊitẊ

⊤
it to be λmin. By Assumption 7,

there exists q > 0 such that λmin ≥ q > 0. Therefore, it holds that

∥∥∥∥∥∥
Ẋ⊤

it




N∑

j=1

T∑

s=1

WjsẊjsẊ
⊤
js




−1
N∑

j=1

T∑

s=1

WjsẊjs

(
Λ⊤
j Fs + ϵjs + ωjs

)
∥∥∥∥∥∥

4

≤ q−4

∥∥∥∥∥∥
1

NT

N∑

j=1

T∑

s=1

WjsẊjsẊ
⊤
it

(
Λ⊤
j Fs + ϵjs + ωjs

)
∥∥∥∥∥∥

4

= q−4
d∑

l,h=1


 1

NT

N∑

j=1

T∑

s=1

WjsẊjs,lẊit,h

(
Λ⊤
j Fs + ϵjs + ωjs

)



4

.

We can bound the fourth moment of 1
NT

∑N
j=1

∑T
s=1WjsẊjs,lẊit,h(Λ

⊤
j Fs + ϵjs) by M/T 2 since W

and Ẋ are independent of F and ϵ. Furthermore, we can bound the fourth moment of 1
NT

∑N
j=1

∑T
s=1WjsẊjs,lẊit,hωjs

by M/δ2N,T because of bounded moments of ωit and Ẋit.

Following the proof of Theorem 1, we can prove that the proposed three-step method consistently
estimates the loadings, factors, and common component.
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