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Abstract

This paper studies the imputation and inference for large-dimensional non-stationary panel
data with missing observations. We propose a novel method, Within-Transform-PCA (wi-PCA),
to estimate an approximate latent factor structure and non-stationary two-way fixed effects
under general missing patterns. The missing patterns can depend on the latent factor model and
two-way fixed effects. Our method combines a novel within-transformation for the estimation of
two-way fixed effects with a PCA on within-transformed data. We provide entry-wise inferential
theory for the values imputed with wi-PCA. The key application of wi-PCA is the estimation of
counterfactuals on causal panels, where we allow for two-way endogenous treatment effects, time
trends and general latent confounders. In an empirical study of the liberalization of marijuana,
we show that wi-PCA yields more accurate estimates of treatment effects and more credible

economic conclusions compared to its two special cases of conventional difference-in-differences

and PCA.
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1 Introduction

Panel data with large cross-section and time-series dimensions are prevalent in the social sciences
and other disciplines. These large-dimensional panels often have missing observations. A growing
literature is developing methods for imputing missing observations. A common approach is to
assume an approximate latent factor structure. For these large panels, it is possible to leverage
the large cross-section and time-series dimensions to obtain accurate imputation and develop the
inferential theory for imputed values. A key application for the inference of the imputed values is
causal inference, where the unobserved counterfactual outcomes can be modeled as missing values.

Most existing imputation methods based on factor models with entry-wise inferential theory are
designed for stationary panels or require restrictive assumptions on the missing patterns.! However,
in many applications, the panel data are non-stationary. For example, in the evaluation of the
tobacco control program in Abadie, Diamond, and Hainmueller (2010), the tobacco consumption
across states has a common declining trend. The conventional approach of differencing the time
series to deal with common trends is generally not feasible with missing data. A commonly used
solution is to control for general time fixed effects, which can capture a common time trend, seasonal
fluctuations, or a common break in the mean. Moreover, missing patterns can be complex and
depend on unit and time fixed effects. For example, due to a common break in the mean of a panel,
specific units can have more missing observations. The inclusion of two-way fixed effects and the
dependency of the missing pattern on fixed effects is particularly relevant for applications in causal
inference. For example, the public perception of tobacco can vary for states and over time (modeled
by two-way fixed effects), which affects both the tobacco consumption (outcome) and the adoption
of tobacco control program (treatment).

In this paper, we study the imputation and inference for large panels with an approximate latent
factor structure and general two-way fixed effects. Our novel approach is one of the most general
models for data generation and for the missing pattern in the factor model literature. The time
fixed effects are not restricted and can be non-stationary processes. The general missing pattern

can depend on the loadings of the latent factors (i.e. latent confounders) and both dimensions of

!This includes, among others, Chen, Fan, Ma, and Yan (2019), Xia and Yuan (2021), Jin, Miao, and Su (2021),
Bai and Ng (2021), Cahan, Bai, and Ng (2023), Xiong and Pelger (2023), Duan, Pelger, and Xiong (2023), and
Chernozhukov, Hansen, Liao, and Zhu (2023).



the two-way fixed effects.

We develop a novel method, namely Within-Transform principal component analysis (wi-PCA),
to estimate a latent factor model with two-way fixed effects from a (non-stationary) panel, and to
impute the missing observations. Our wi-PCA is simple to implement. Importantly, it is applicable
to many relevant observation patterns, including missing-at-random, block-missing, and mixed-
frequency patterns, while allowing the missingness to depend on the model itself. The estimation
follows two steps. In the first step, wi-PCA estimates unit and time fixed effects by carefully
weighting the time-series and cross-sectional outcomes, respectively, where the weighting scheme
depends on the observation pattern. The within-transformation is then applied to the data using the
estimated fixed effects. In the second step, wi-PCA estimates the latent factor structure by applying
a generalization of PCA to a re-weighted covariance matrix estimated from within-transformed
data. Our wi-PCA imputes the missing observations with the plug-in estimator that combines the
estimated two-way fixed effects and factor model. Separating the estimation of fixed effect from
the latent factor component is crucial for three reasons: (1) it allows for non-stationary time fixed-
effects, (2) the missingness can depend in a general way on the two-way fixed effects, and (3) it is
generally more efficient than subsuming fixed effects by latent factors.

We show the consistency and asymptotic normality for the estimated factor model and imputed
values from wi-PCA under general assumptions on the approximate factor model and observation
patterns. Developing the inferential theory for wi-PCA is highly non-trivial for two reasons. First,
it is challenging to estimate the fixed effects when the missing patterns depend on their values.
Conventional estimators for fixed effects, such as simple averages of cross-sectional or time-series
outcomes, are generally inconsistent in these cases. Second, the estimation error of the two-way
fixed effects carries over to the estimation error of the latent factor model, and both estimation
errors vary with the observation patterns. Hence, deriving the inferential theory requires a careful
and comprehensive analysis of all the error terms.

A key application of our model and asymptotic theory is causal inference in panels. The unob-
served counterfactual outcome can naturally be formulated as a missing observation problem. We
derive test statistics for unit-specific treatment effects in a panel. Given the asymptotic normality
of our estimator, we develop a bootstrap procedure to obtain a feasible variance estimator and con-

fidence intervals for the estimated treatment effects. The generality of the missing patterns maps



into general observational treatment patterns. Special cases of our estimator relate to commonly
used methods in causal inference. With only the two-way fixed effects (and without the latent factor
model), our estimator simplifies to a form of difference-in-difference estimator. With only a latent
factor model, our estimator can be interpreted as a data-driven method to obtain synthetic con-
trols for simultaneous, staggered, or other treatment adoption patterns, where latent factor loadings
serve as unobserved confounders to construct weighted averages of similar units. The combination
of both components and the more general treatment patterns pushes the boundary for inference in
causal panels.

Our work contributes to three streams of literature: large dimensional factor modeling, missing
data imputation for large panels, and causal inference. First, our work builds on the literature
on large dimensional factor modeling. There has been substantial progress in this literature since
the pioneering work by Bai and Ng (2002) for estimating the number of factors and by Bai (2003)
for developing the inferential theory of the estimated latent factor model. The progress includes,
but is not restricted to, the estimation of large covariance matrices (Fan, Liao, and Mincheva,
2013), the identification and estimation of more general models, such as models with additive and
interactive effects and common slope coefficients (Bai, 2009), models with weak factors and factor
loadings (Onatski, 2012; Lettau and Pelger, 2020; Bai and Ng, 2023), models with time-varying
factor loadings (Su and Wang, 2017; Pelger and Xiong, 2021b; Urga and Wang, 2022), and the
estimation of interpretable latent factors (Pelger and Xiong, 2021a).

Our work is the most closely related to the recent work on the estimation and inference of
factor models from large panels with missing observations. The wi-PCA accommodates general
observation patterns, complementing the methods developed by Chen, Fan, Ma, and Yan (2019),
Xia and Yuan (2021), Jin, Miao, and Su (2021), and Chernozhukov, Hansen, Liao, and Zhu (2023)
for missing-at-random,? Xu (2017), Bai and Ng (2021), Cahan, Bai, and Ng (2023), and Choi and
Yuan (2023) for general block-missing patterns,® and Ng and Scanlan (2024) for mixed-frequency
patterns.* Our wi-PCA builds on Xiong and Pelger (2023) and Duan, Pelger, and Xiong (2023) that

2Chen, Fan, Ma, and Yan (2019), Xia and Yuan (2021), and Jin, Miao, and Su (2021) assume a homogeneous
missing probability, while Chernozhukov, Hansen, Liao, and Zhu (2023) allow for heterogeneous missing probabilities
in either the cross-sectional or time dimension, but not both.

3General block-missing patterns require blocks of fully observed entries, which include the missing patterns implied
by simultaneous and staggered treatment adoptions of causal panels.

“Chen, Fan, Ma, and Yan (2019), Athey, Bayati, Doudchenko, Imbens, and Khosravi (2021), Xia and Yuan (2021),
Chernozhukov, Hansen, Liao, and Zhu (2023), and Choi and Yuan (2023) analyze the low-rank matrix estimator



already allow for general observation patterns, but makes two challenging generalizations. First, it
allows for non-stationary two-way fixed effects in the outcomes, and, second, the missing patterns
can depend on the time trends in addition to the cross-sectional (latent) characteristics of units.
Hence, this is a strict generalization of the data generating process and the missing patterns. These
two generalizations require new arguments to prove the theoretical results. However, these two
generalizations make wi-PCA more broadly applicable, and are particularly important for causal
inference in panels.

We conduct extensive simulations to demonstrate the superior performance of wi-PCA over
benchmark approaches. We identify two cases, where an imputation that uses only a latent factor
model, is particularly problematic. First, we show when the data generating process has non-
stationary fixed effects, PCA on missing data can fail, while wi-PCA provides accurate out-of-
sample imputed values. Hence, a latent factor model cannot compensate for fixed effects, and we
need our more general model. Second, if the missingness itself depends on the fixed effects (even
when those are stationary), wi-PCA also strongly outperforms PCA type approaches. Lastly, even
for stationary panels when the fixed effects are subsumed by latent factors, it is more efficient to
directly estimate the fixed effects.

In our empirical study, we use wi-PCA for an application in causal inference: the policy effect of
legalizing marijuana on beer sales studied in Li and Sonnier (2023). We demonstrate that our general
model is more accurate and can lead to fundamentally different economic conclusions compared to
using special cases of it. Common approaches used in the literature are a difference-in-difference
estimator (which is a special case of wi-PCA without the latent factor model) or a form of synthetic
controls based only on a latent factor model (which is a special case of wi-PCA without the two-way
fixed effects). We show that omitting the fixed effects or latent factors results in spurious significance
of treatment effects as well as too large treatment effects. Our results illustrate the importance of
our general estimator for estimating more credible policy effects and making more reliable policy

recommendations.

from a convex optimization problem using a nuclear norm regularization (Mazumder, Hastie, and Tibshirani, 2010;
Negahban and Wainwright, 2011, 2012). Athey, Bayati, Doudchenko, Imbens, and Khosravi (2021) also demonstrate
that it improves the accuracy to estimate two-way fixed effects separately from a low rank component. Jin, Miao,
and Su (2021) provide the inferential theory for the estimated factor model with the expectation-maximization (EM)
algorithm (Stock and Watson, 2002; Baribura and Modugno, 2014). Bai and Ng (2021) and Cahan, Bai, and Ng
(2023) provide the inferential theory for the factor-based imputed values.



The rest of the paper is organized as follows. Section 2 introduces the model setup, while Section
3 proposes the wi-PCA estimator. Sections 4 formalizes the assumptions on the approximate factor
model with two-way fixed effects, and provides the asymptotic results for our estimator. Section 5
shows a key application of our estimator to estimate the treatment effects in causal inference and
provides feasible bootstrap estimators for the asymptotic variance. Section 6 discusses the extension
of including observables in our model. Section 7 demonstrates in simulations the good performance
of wi-PCA compared to the benchmarks and Section 8 revisits a case study in causal inference.
Section 9 concludes the paper. The Internet Appendix collects the proofs and additional empirical

and simulation results.

2 Model Setup

2.1 Model

Assume we partially observe a large dimensional panel Y € RV*T where both N and T are
large. We aim to impute the missing observations in Y and provide entrywise inferential theory for
the imputed values. We work under the assumption that Y can be well approximated by two-way

fixed effects and k common latent factors:®

Yie=p+a;+&+MNF+vey, i=1,--- N, t=1,---,T. (1)

Here, Y;; denotes the outcome of unit ¢ at time ¢, p is the grand mean, «; is the fixed effect of unit
i, & is the time fixed effect at time ¢, F} is a k-dimensional vector of latent factors at time ¢, A; is
a k-dimensional vector of unit ¢’s loadings, and lastly €;; is the unit 7’s idiosyncratic error at time
t. We define the common component as the combination of the two-way fixed effects and the latent
factor model:

Cio=p+a;+&+ A Fy.

The goal of our paper is to estimate Cj; for all ¢ and ¢, and to use the estimated Cy to impute Y

when it is unobserved.

SWe assume k is known. In practice, k can be determined by cross-validation arguments as discussed in more
detail in Section 6.



Note that the fixed effects can be included as additional latent factors in the factor model. More
specifically, the fixed effects u + «; + & can be written as a two-factor model with (1,&;) as factors
and (1 + a4, 1) as loadings. Combining p + a; + & with A F, we can reformulate model (1) as an

approximate factor model with k 4+ 2 common factors
T
Vie = AF® FFP 4 e,

where AfET = (p+a;,1,A]) and FtFET =(1,&,F).

However, separating the fixed-effects from the latent factor structure is important for three
reasons. First, it allows for data with common non-stationary time patterns as the time-series
fixed effects in our model can be almost arbitrary. These time patterns can be a common unit-
root process, common seasonality or common structural breaks. Without separating the time-series
fixed effects for non-stationarity data, the limit of the time-series average of FtFEFtFET does not
exist for T going to infinity, invalidating the commonly made assumptions for consistent estimation
of latent factor models. For fully observed data Y, certain non-stationarities can be removed by
transformations, for example, by taking the first differences between consecutive periods to remove
a common unit root process. However, with missing data, for example missing-at-random, such
transformations might not be feasible. We address this problem by separating & from F;, and using
a different estimation approach that can allow for arbitrary non-stationary time trends in &.

Second, model (1) allows for broader empirical applications where the observation patterns (and
treatment adoptions) depend on both (endogenous) cross-sectional and temporal information. For
example, in our empirical study of the effect of legalization of marijuana in different U.S. states, the
adoption might become more likely over time due to changes in the public opinion or federal law. At
the same time, public awareness might be heterogeneous among states. Hence, the adoption pattern
can depend endogenously on state and time fixed effects. However, when the model is written as
an interactive latent structure AfETFtFE and is estimated by applying a version of PCA, Xiong
and Pelger (2023) show that for identification reasons, the observation patterns can only depend
on either AfE or FF'E but not on both. By separating ; and ¢ from AZ—-'—Ft and treating them
differently in the estimation procedure, we can allow for more general observation patterns that can

depend on both «; and &, and either A; or F}, and hence can be endogenous in both dimensions.



Figure 1: Examples of observation patterns

..*E

(b) Simultaneous adoption (c) Staggered adoption (d) Switchback
These figures show examples of important patterns of missing observations. The shaded entries indicate observed
entries, whereas the unshaded entries indicate missing entries. Time is on the horizontal axis.

Lastly, estimating the fixed effects separately from the latent factors is more efficient. Even for
stationary panels when fixed effects are subsumed by latent factors, the direct estimation is more

precise as less parameters have to be estimated.

2.2 Observation Patterns

We allow for the most general assumptions on missing patterns in this literature. In order
to provide some intuition, Figure 1 illustrates important examples. The first example represents
missing-at-random, which is conceptually the simplest case. In this case, the probability of observing
an entry does not depend on the outcome variable or whether other entries are observed. The second
and third cases show observation patterns that commonly occur in causal inference applications.
For both, the simultaneous adoption and staggered adoption settings, a unit stays treated for all
periods after adopting the treatment, that is, missingness depends on prior missingness. The last
pattern shows the observation pattern of the global control panel when the treatment can be turned
on and off. This pattern occurs in “switchback experiments” that are commonly used in digital
platforms to test changes to algorithms and products (Xiong, Chin, and Taylor, 2024).

The observation pattern in Y is captured by the random variables W € {1,0}N XT " wwhere
Wit = 1 denotes that Yj; is observed while W;; = 0 implies missing values. Assumption 1 for-
mally states the assumptions on the missing pattern. The probability of observing entry Y;; can
depend on a very general conditioning set denoted by I;;. We allow this conditioning set I;; to be
{aq, - ,an, A1, AN, &1, -+, &}, that is, the observation pattern can depend on all unit and
time fixed effects and all loadings. A special case of the conditioning set is {«;, A;, &1, - -+, &}, where

the probability that Yj; is observed depends on unit ¢’s unit fixed effect and factor loadings, as well



as time fixed effects up to time ¢. As discussed in Xiong and Pelger (2023), the assumptions on the
factors and loadings can be switched, and hence the observation pattern can depend on the factors
instead of the loadings, but not on both. The prior literature only allows general dependencies on
the endogeneity in either the unit or time dimension, but through the fixed effects, we allow for

complex dependencies in both dimensions.

Assumption 1 (Observation Patterns). The conditioning set Iy can be any subset (including the

Complete Set) Of{alv"' aaNaAla"' 7AN7£1a"' agt}'ﬁ

1. The observation pattern W is independent of the factors F' and idiosyncratic errors e.

2. There exists a positive constant 1 such that, for any i and t, the conditional observation
probability p;y == P(W;y = 1| Iy) € [n,1]. For any W, there exists a positive constant q such
that N~1 sz\il Wi > q and T™! Zthl Wi > q for any i and t.

3. For any i and j satisfying i # j and any t and s, Wy and W, are independent conditional

on Iy and Ijs.

Assumption 1.1 requires W to be independent of F' and €, but allows for arbitrary dependency
on o, A and & As we allow W to depend on both « and &, our setup is more general than
prior literature (such as Xiong and Pelger (2023)) which allows for the dependence on either the
endogenous cross-sectional or temporal information, but not both.

Assumption 1.2 assumes that each entry has a non-zero probability of being observed. The non-
zero probability avoids the extrapolation problem when using information in the observed entries
to impute missing entries. Essentially, the partially observed data needs to be sufficient to learn the
underlying latent structure. The assumption implies that for N and 1" going to infinity, the fraction
of observed entries for each time period ¢ and each unit ¢ are proportional to N and T, respectively.
This assumption can be relaxed at the cost of more complex notation, but without changing the
conceptual insights.

Assumption 1.3 allows for arbitrary time-series dependencies in the observation patterns, and
hence includes complex staggered adoption as well as switchback designs. The assumption only

assumes conditional independence of the observation pattern across units, but does not restrict

5The conditioning set I;; can also include observables, which we discuss in Section 6. Here we focus on the
conceptual challenge of incorporating latent components within this set.



the time dependency for each unit. Specifically, whether Yj; is observed can depend on whether
Yi1,---,Yi;—1 are observed. This, therefore, accommodates all the examples shown in Figure 1.
The assumption of conditional independence across units is needed for the purpose of identification.
This results in an asymmetry of the assumptions on observation patterns between the cross-sectional

and time-series dimensions.

3 Within-Transform-PCA (wi-PCA)

In this section, we introduce our novel estimator, namely Within-Transform-PCA or, in short,
wi-PCA, to estimate each term and the common component Cj; in model (1). Our wi-PCA approach
consists of two steps. First, we estimate the grand mean and two-way fixed effects with a within
transformation. Second, as the name suggests, we estimate the latent loadings and factors by
applying a modification of PCA to the “within transformed” data, where fixed effects are removed
using the estimates from the first step. The estimation procedure in each step is carefully designed
to account for the complex dependency between the observation pattern and the data generating
process. This careful design is crucial for estimating C;; and imputing missing entries consistently

and without bias.

3.1 Estimation of Grand Mean and Fixed Effects

In the first step, wi-PCA estimates the grand mean p and two-way fixed effects a; and & for
all ¢ and t. The estimator takes a weighted average of the observed entries in Y across different
dimensions. The fundamental challenge of fixed effect estimation is how to properly weight the

entries in these averages. The estimator takes the following form:

N T
A=) MY,
i=1 t=1

N
&= MiYy—ji, (2)
=1

T
&=y M§(Yi—&)— I,
t=1



where Mi’i, Mf; and M are the weights of unit 7 at time ¢ in the estimation of u, &, and oy,
respectively.

Note that the weighted averages for the time and unit fixed effects take a different and asym-
metric form. Specifically, we have to remove & in the estimation of a;, but not vice versa. The
cancellation of & in &; is necessary because we allow the observation patterns to be arbitrarily
dependent in the time dimension, such as simultaneous or staggered adoption patterns. Without
removing &, &; could be biased. We show an example in Appendix A. In contrast, as the obser-
vation patterns in the cross-sectional dimension are conditionally independent, «; does not have to
be removed in ét, as long as Mft is chosen appropriately. We will discuss this aspect in more detail
below.

The most critical component of the estimators is the choice of weights M}, Mft and M}. Our
objective is to choose the weights such that g + &; + ét is a consistent estimator of 4+ a; + &. As
we are primarily interested in estimating the common components, obtaining the consistency for
the sum of grand mean and two-way fixed effects is sufficient. When all entries in Y are observed,

the natural choice is

1 1
Miftzf o=

1
M
N’

it — NT

However, when Y has missing entries and the missing patterns depend on «; and & themselves,
the weights need to be chosen carefully. Naturally, the weights should satisfy two requirements.
First, as we can only use the observed entries in the estimation, the weights for the missing entries
have to be set to zero. Second, a necessary requirement for the weights is that the sum p + «o; + &
can be consistently estimated. This imposes further conditions on the weights. We can identify

these conditions by analyzing the estimation error of & + &; + 5} :

it @i +&— (u+a;+&)
N

T T N
=3 (AiTFS n e) =S Mey M (aj +ATF, + ejs) +3 M (aj + AR+ ejt) .
s=1 s=1 j=1 j=1

Note that the weight M/} is canceled out in the estimation error of ji+ @&; +&. Therefore, as long

as we are only concerned about the estimation of p+ v +&;, there are no constraints on M/ and the

10



estimation of a; and & subsumes the estimation of y without further identification assumptions. We
impose the normalization that the weights sum up to one, that is, Zfil Zle M} =1, Zfil M;, =

1, and Z;le M3 = 1. Without loss of generality, we use

W
Mz/i = T N J
Es:l Ej:l Wis

that is, we estimate the grand mean p by averaging Y;; over all the observed entries.
Next, we provide feasible choices of M and Mft, which ensure that the estimation error of

i+ & + & s op(1). First, we suggest to set M as

o Wi
B = (3)
Zs:l Wis

This choice of weights simply estimates the unit fixed effect a; by averaging Yj; —ét — [t over the time
periods t where unit 7 is observed. Importantly, this average is taken after removing the time fixed
effects. As F; and €; can be normalized to have mean zero in the presence of & and are assumed
to be independent of W, the first term in the decomposition is 0p(1) .

The most challenging problem is to specify the weights Mf; in a way such that «; and A; can
be averaged out. As W can depend on «; and A; in a complicated way, there does not exist a
weight that works for all observation patterns. In other words, the weights Mft have to be specified
depending on the missing pattern. We provide the weights Mft for three important cases, which are
summarized in Table 1. These three cases altogether cover the examples of observation patterns
shown in Figure 1 with known or unknown observation probabilities. In the first two cases, we
leverage the structure of the known or unknown observation probabilities to construct weights Mft
In the third case, we leverage the structure in observation pattern (e.g., simultaneous or staggered
adoption) to construct weights Mft We provide a detailed discussion of the three cases in the

following, and formalize the assumptions for the three cases in Assumption 4 in Section 4.1.

Case 1 — Known Observation Probability

When the observation probabilities p; = P(W;; = 1 | I;;) are known, for example, when Y is

11



Table 1: Summary of different cases and their corresponding weights Mft

Description Observation patterns ‘ M ft

-1
Case 1 Known p; £ _ N Wi Wi
bit Mzt 2]21 Pjt Dit

Short-term dependency
Case 2 in missingness with
factor structure

—1
§ _ N Wy Wit
M = (o, )™ e

Case 3 | Monotone missingness MS = N7M(ie N,)

This table provides three important cases and our solutions for selecting the weights M, ft for each of them. The first
case assumes that the observation probabilities p;: are known, and the last two cases allow for unknown observation
probabilities. The second case assumes that the probabilities p;; can be factorized into a one-factor model as
it = uive with u;, vy € [, 1], and Wi can depend on W;s only when time ¢ and s are sufficiently close (i.e., short-
term dependency) for any ¢. The third case assume monotone observation patterns, and we denote by N. and N,
the set and number of the fully observed units.

the experimental data in a design-based settings, we can set Mft as

—1
N
JYERE R R (4)
Djt Dit

J=1

The resulting estimator ét in Equation (2) is the Hajek estimator of £;. We propose to use the Hajek
estimator in this case because it is generally more efficient than the Horvitz-Thompson estimator
(i.e., Mft = N='W;;/pit). Intuitively, by weighting the observed entries with the inverse observation
probability, we adjust for dependency in the observation pattern, and it can be treated similarly to

missing-at-random.

Case 2 — Unknown Observation Probability: Short-Term Dependency in Missingness
with Factor Structure

For most applications, the observation probabilities p;; are unknown. But if we can consistently
estimate p;;, then we can still use the estimator in Equation (4) with p;; replaced by p;;. Here we
provide important examples when p;; can be consistently estimated.

The simplest example is missing-completely-at-random, that is each entry is observed with the

12



same but unknown probability p, independent of whether other entries are observed and independent
of Y. Then the fraction of observed entries p = (NT)~+ ;s Wijs 1s a consistent estimator of p for
all 4 and t. A more general example is that the unknown probability is time-dependent but the same
for different units. Then p; = N=1Y ; Wit is a consistent estimator of p; for all i. The symmetric
example where the probability is unit-dependent but constant in time can be analyzed analogously.

The most challenging case is when the unknown probability varies with both units and time.
If we do not impose any structure on p;;, then each p; only has one observation W;, and it is
not possible to consistently estimate it. To make progress on this problem, we provide sufficient
conditions below, under which p; can be consistently estimated.

Specifically, the sufficient conditions consist of two assumptions, one directly on the observation
probability p;; and another one on the time-series dependency of W. The first assumption is that p;
can be factorized into a one-factor model as p;; = w;vy with w;, vy € [n,1]. The second assumption
is that for any ¢ and ¢, Wy can depend on Wj, only when time ¢ and s are sufficiently close (i.e.,
short-term dependency). Under these two conditions, we can estimate the observation probability

up to a scaling constant using the time series average of Wj;, and construct the weight M¢ as

-1
N

Wi Wi
M5 = Zﬁ o (5)

)

J=1

Under mild assumptions specified in Assumption 4, we can show that this weight yields consistent
i+ &+ &

The one-factor model assumption in the observation probability seems to be a reasonable ap-
proximation for many practical problems. It has been imposed in a number of papers, such as
Negahban and Wainwright (2012) and Chen and Bayati (2021), and has been shown to perform
well in completing a low-rank matrix. In simulations, we also find that using multiple factors in
the observation probability does not improve the imputation accuracy. We note that it is possible
to generalize the one-factor model assumption. For example, we can allow for multiple factors at
the expense of a more complicated notation. Alternatively, we can split the panel into sub-panels,
where the observation probabilities for each sub-panel can be modeled by a different one-factor
model. However, as mentioned before, the one-factor model in the observation probability already

performs very well in many practical problems.
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Case 3 — Unknown Observation Probability: Monotone Missingness

Simultaneous and staggered adoption are important treatment patterns in causal inference.
These observation patterns have a monotone structure, that is, once a unit is treated it stays
treated, which implies a long-term time dependency in missingness. The previous Case 2 assumes
a short-term dependency in the missingness, which would not apply to these patterns. Here we
propose weights Mft for the case of monotone observation patterns, that is, for patterns where
either W;1 < Wis < - < Wip or Wi > Wis > -+ > Wy holds for all i. Our solution can be
applied for simultaneous or staggered treatment patterns.

In this case, the time fixed effects are weighted averages over the units that are observed for all
times, which correspond to the fully observed block in simultaneous or staggered treatment patterns.
Taking averages over the same cross-sectional units allows us to accommodate observation patterns
that depend on the time fixed effects. Assumption 1.2 implies that there are at least ¢/N units that
are fully observed for all times. We denote by N. and N, the set and number of these units. We only
assign non-zero weights to these fully observed units and simply take the cross-sectional average of
these units for each time ¢, resulting in the following weight Mft

N1 if unit 4 is observed for all times t = 1,---,T

M;; = (6)
0 otherwise.
Under mild moment conditions stated in Assumption 4, we can show that with this weight i+ ¢&; —|—§:t
is a consistent estimator of the fixed effect component.
The conventional difference-in-difference (DID) is a special case of our estimator. If we only

estimate the fixed effect component without a latent factor structure, our estimator simplifies to

T “Lr
~ _ 5 ~ 1 1

€ jeN. € jeN.
T -1 7 1 T -1 7
_ (zwis) DURTRSEE Yﬁ-(zms) S WLy,
s=1 s=1 JENC s=1 s=1

pretreatment average of unit 4 averaged difference among control units

This is equivalent to the DID estimator that uses the control units to estimate the time trend for
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each treated unit. In this sense, our wi-PCA is a strict generalization of the DID estimator by

including latent factors in addition to the DID estimator.

3.2 Estimation of Latent Factor Model

After having estimated the fixed effect component, we estimate the latent factor structure in the
second step. As suggested by the name of wi-PCA, we apply PCA to the within-transformed data
to estimate the factors and loadings. As we have missing observations, we have to modify PCA to
account for the missingness.

In more detail, we first transform the observed panel Y;; by subtracting the first-stage estimators,

and obtain the within-transformed data Yz’ti

Yie =Y — i — & — & .

This transformed data has an approximate factor structure

Yie = AiTFt + €t

with a new idiosyncratic error term é; = e+ (u+a; + &) — (L + &; +£t). Since Yj; shares the same
latent factor model and observation pattern as Y;;, we can estimate F; and A; from Y,t The main
challenge is that the new idiosyncratic errors é; include the estimation error from the first step,
which then carries over to the estimation of F; and A;. Hence, the usual assumptions of PCA-based
factor model estimation do not directly apply, and we need to carefully account for the estimation
error from the first step.

For the special case when Y € RV*T is fully observed, we can estimate the loadings A with PCA
applied to the cross-sectional sample second-moment matrix Yy’ /T. The factors are estimated by
regressing Y on the estimated loadings. The problem is more complicated for partially observed
panels and requires to modify the PCA estimator.

For the general case when Y has missing observations, we adopt the all-purpose estimator
proposed in Xiong and Pelger (2023). Specifically, we first estimate the cross-sectional sample

second-moment matrix, denoted by ¥, from the partially observed panel. Essentially, we use the
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times when two units are observed together to estimate their covariance. We define Q;; = {t :
Wi = Wy = 1} to be the set of time periods when both units ¢ and j are observed. Then, we

estimate the (7, j)-th entry of ) using the time observations in @);;:

- 1 ..
Lij =157 > YuYe.
Qi 1eG

Next, we apply PCA to ¥ to estimate A. Under the standard identification assumption AT A /N = I,
the estimated loadings A are v/T times the eigenvectors of the k largest eigenvalues of 3. /N. Lastly,

we estimate the factors from a weighted regression on the loadings for every time period ¢, that is,
N -1/ N
F = <Z WitAiAiT> (Z WitAiYit) :
i=1 =1

Finally, we estimate the common components of Y with the plug-in estimator
Ci=i+a&+&+AF,
and use Cj; to impute the missing observations in Y.

4 Inferential Theory

In this section, we present the asymptotic results of our wi-PCA estimator. We first lay out the
assumptions on the factor model and two-way fixed effects in Section 4.1. Sections 4.2 and 4.3 show

the consistency and asymptotic normality results for wi-PCA.

4.1 Assumptions

We state the necessary assumptions on the approximate factor model and fixed effects for the
consistency of our wi-PCA estimator. When the panel is fully observed, the assumptions on the
approximate factor model in Assumption 2 are identical to those in Bai and Ng (2002) and Bai
(2003). In the presence of missing observations, Assumption 2 is identical to the corresponding

assumption in Xiong and Pelger (2023).

Assumption 2 (Factor Model). There exists a constant M < oo such that
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1. Factors: E[|Fy||*] < M for any t. There exists a positive definite k x k matriz S such that
2
7! Zthl RET 5 Sp and E Hﬁ(T‘l Zle FFET — ZF)H < M. Furthermore, for any set
2
Qij ‘Qij]*1 ZtEQi]’ F,;FtT LN Yr and E H\/ ’Qz’j‘(’@z’jrl Zte@u FtFtT - ZF)H <M.
2. Loadings: E[||A;||*] < M for any i. There exist positive definite k x k matrices Xp and Xp 4
such that N—1 Zf\il AZ-AZT Lyp and N1 Zfil WitAiA;-r LN XA for any t.
8. Idiosyncratic errors:
(a) Blea] = 0, E[e}] < M.
(b) E[eis€it] = i,st with |7 st| < vsr for some v, and ZST:1 Yst < M for all t.
(c) Eleiejs] = Tij with |1i5¢| < 15 for some 135, and Zjvzl Ti; < M for all i.
(d) Eleirejs] = Tijes and Zjvzl Zstl |Tijes| < M for all i and t.
4
(¢) For alli and j, B||Qi;|~/? > teq,, (€itejt — E [eitejt])] <M.
4. Dependence: Loadings are independent of factors and idiosyncratic errors. There is weak

2
< M foralli and j.

dependence between factor and errors: E)‘\Qij|_1/2 ZteQij Fre;

Assumption 2.1 ensures that all the factors have nontrivial contributions to the variation in
Y. Assumption 2.2 states that all the factors are strong, and the factor loadings of the observed
units are systematic. Assumption 2.3 allows the idiosyncratic errors to be weakly correlated in both
the cross-sectional and time series dimensions. This assumption implies bounded eigenvalues of
the error covariance matrix. Assumption 2.4 allows the factors and errors to be weakly correlated,
but we assume that the loadings are independent of the factors and errors. This is a necessary
assumption on the observation pattern to be also independent of factors and errors. In summary,
these are the standard assumptions in the literature on approximate factor models.

As our model includes the two-way fixed effects, we need additional assumptions to identify and

consistently estimate the fixed effects and factor model.
Assumption 3 (Additional Assumptions on Fixed Effects and Factor Model).

1. Fized effects: Fized effects are independent of factors and errors, and E[aﬂ < M for any 1.

2. Identification assumptions: le\il a; =0, Zle & =0, le\il A; =0 and Zle F,=0.

3. Additional moment conditions: (1) T2 ZsT,t,y,z:l |E[F} pFsqFyrFop)l < M for any p,q,r, h.
(2) Eleisciciy€iz] = Yistyz with [Yistyz| < Yoryz for some Yoz, and T72Y0, ) Yaryz < M.

(3) Xomr IIE[Fseu]l| < M and 3277, |E[Fyeies]|| < M for any i, t.
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Assumption 3 collects the additional assumptions arising from including fixed effects in the
model. First, Assumption 3.1 ensures that the unit fixed effects have bounded fourth moments.
Importantly, for time fixed effects, we do not impose restrictions on their dynamics and allow them
to follow arbitrary non-stationary stochastic processes.” Assumption 3.2 imposes an identification
condition. If we only want to draw inferences on the common component, we do not need this
identification assumption. However, if we want to make inference separately on the fixed effect
component, loadings and factors, we need to impose an identification assumption to uniquely sepa-
rate the different elements. Our identification assumption assigns the non-zero mean of factors and
loadings to the fixed effect structure. Assumption 3.3 imposes additional mild higher moment con-
ditions. We assume weak time-series dependencies between the different factors and idiosyncratic
error terms. This allows for a broad range of stochastic processes, for example, causal autoregressive
processes.

Next, we formally state the assumptions for the three different cases of the observation pattern

of the wi-PCA estimator that we have introduced in Section 3:
Assumption 4. We assume one of the following cases holds:

o (Case 1: The observation probability p;: is known.

o (Case 2: The observation probability p;y can be factorized into a one-factor model as p;y = u;vy
with u;, vy € [n,1], and the time series average v = limp_ o T7! 23121 v; exists and U =
71 Z;‘FZI Ut+O(T_1/2). Furthermore, there exists a constant ¢ such that Wy 1L Wis | 1;; U I
for any s and t satisfying |s —t| > c.

e Case 3: The observation pattern is monotone, i.e., either Wiy < Wiy < -+« < Wip or Wi >

Wig > -+ > Wyp holds for all i. Furthermore, B [|||Nc|™1 3o Aill*] < M/5]2V’T.

Under Case 1 with known observation probability, the weight choice Mft results in the Hajek
estimator of &, which is a widely used and efficient estimator in causal inference. Case 2 allows

observation probabilities to be unknown, but assumes a one-factor structure in the observation

" Assumption 3.1 is stated assuming that fixed effects are realizations of random variables. Then we can state the
assumptions about the moments or dependencies between different random variables in the model. We call these
effects “fixed effects” as opposed to “random effects” for two reasons. First, we explicitly estimate the values of these
effects. Second, we condition on the values of these effects when estimating the factor model.
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probabilities. Under Case 2 the time series average of W
Ut

T
_ 1 .
Wi = ; Wit = w0 + 0p(1) = 22 . 5+ 0,(1)

is a consistent estimator of u;v. Under a one-factor structure in the observation probability, the

weight Mf; also implies an estimator that is asymptotically the same as the Hajek estimator of &:

Nowe\
£ it i
Mi = (Z W) W,

=1
—1 -1
_ i Wit Wi _ i W, W,
— pit - U/ve + 0p(1) Dit - U/ve + 0p(1) — pit + 0p(1) pit +op(1)

Case 3 violates the assumptions in both Cases 1 and 2. We therefore use a conceptually different
estimator that leverages the structure in the observation pattern — this estimator averages over the
control units that are fully observed for all time periods to estimate &. The additional moment
condition in Case 3 implies that whether a unit adopts the treatment only weakly depends on the
loadings. However, this condition allows the treatment adoption time to depend on the loadings,

given that a unit adopts the treatment.

4.2 Consistency Results

Theorem 1 shows the consistency of wi-PCA under the observation pattern specified in Assump-

tions 1 and 4, and the general factor model specified in Assumptions 2 and 3.

Theorem 1 (Consistency). Suppose Assumptions 1, 2, 3 and 4 hold. We define §n 7 = min(N,T)
and specify the weights for &; and ét appropriately based on Case 1, Case 2 or Case 3. Then, as
N, T — oo, wi-PCA consistently estimates the sum of grand mean and fixed effects and the common

component:

Vonr((i+a&+&) — (n+ i+ &)) = Op(1),
VN (Cit — Cir) = Op(1).

Theorem 1 states that both o + &; + 5} and C’it are consistent with a convergence rate of
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min(\/N T ). The consistency of Cj; implies the consistency of the individual factors F; and
loading A; up to a rotation matrix. For brevity, we do not include the results for the individual
factors and loadings, because the main object of interest is the common component for causal
inference and data imputation applications. Next we present the asymptotic distribution of the

estimated common components.

4.3 Asymptotic Normality

Showing the asymptotic distribution of wi-PCA is much more challenging than for the existing
estimators in the literature (such as Bai (2003) for fully observed panels, and Jin, Miao, and Su
(2021); Bai and Ng (2021); Cahan, Bai, and Ng (2023); Xiong and Pelger (2023); Duan, Pelger,
and Xiong (2023) for partially observed panels). The main reason is that the first-stage estimation
error of the grand mean and two-way fixed effects carries over to the second-stage estimation of
the factor structure. Therefore, we consider a simplified model that conveys the main conceptual
insights of the general factor model, but reduces the complexity due to including fixed effects in our
estimator. We state two assumptions on the factor model, which altogether specifies the simplified

factor model considered in this paper.

Assumption 5 (Simplified Factor Model with Two-Way Fixed Effects).

1. Fized effects: o i (0,02), and E[af] < M for any i.

2. Factors: F, "% (0,%r), and E[||F||*] < M for any t.
3. Loadings: A; S (0,34), and E[||A;||*] < M for any i. Furthermore, there exists a positive
definite k x k matriz X ¢ such that N1 ZZ]\LI WitAiA;-r LN YAt for any t.

4. Idiosyncratic errors: €; i (0,02) and E[e},] < M.

5. Independence: o, &, F, A and € are mutually independent.

The simplified model is a special case of our general approximate factor model, that is, the
simplified assumption implies the general Assumption 2. Assumption 5 assumes that the unit fixed
effects, factors, loadings, and idiosyncratic errors are i.i.d and have bounded moments. In addition
to Assumption 5, the asymptotic normality results require further assumptions on the observation
pattern and its dependency on the factor model. We use I; = I;1U- - -U ;7 to denote the information

set that impacts the full time-series of the observation pattern of unit <.
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Assumption 6 (Additional Conditions for Central Limit Theorem).

1. For any t, we have the limits plimy_, . N~ Zjvzl Wi, plimy_, N~} Zjvzl I/VjtVT/;lAj,
and plimy_,  N~! Zévzl I/I/jtl/T/]T,lAj/\jT exist.

2. For any t, N~! Zévzlp;tl 2 s as N — oo. Furthermore, N~ Z;VZI E[W;:Wis/(pjtpis) |
L] JQ N Sast and N1 E;yzlE[thst/(pﬁpjs) | Ij]AjAjT N sast for any s and t, and
plimp_, T2 Zzu:l WisWiuSa,su ezists for any i.

3. For any 1i,7,h,l, |Q4j|/T 2 gij and |Qi; N Qul|/T 2 Gijmu as T — oo. Furthermore,
lHmpy oo N2 ZZ:I ¢iji; and limpy_ e N4 Z%Lh:l Gijan/(@Gjan) exist.

4. When Case 2 holds, N~* ZévzlE th®2/(WJ%,v?) \ I]} L 5, and Assumption 6.2 holds with
Wit /pje replaced by thl_}/(Wj’.Ut) and Sq.st, SA,st Teplaced by 34.st, 58,5 for any j,s,t. When
Case 3 holds, \/ﬁcfl djen, N LA N(0,3,c) for some Xpc.

Assumption 6.1 assumes that weighted averages of the loadings converge. Assumption 6.2 is
necessary to show that the estimator g + a; + & is asymptotically normal, which is necessary
for showing the asymptotic normality of the estimated factor model. Assumption 6.3 imposes
assumptions on the proportion of time periods when multiple units are observed together. Lastly,
Assumption 6.4 contains additional assumptions for Cases 2 and 3.

Below we present the asymptotic distribution of the estimated common components under all
the aforementioned assumptions. To show this result, we first need to derive the asymptotic joint
normal distributions of the estimators of the fixed effects, factors and loadings. Theorem 2 only
presents the asymptotic results for the estimated common components, as the primary interest is

the construction of confidence intervals for imputed values or draw inferences on treatment effects.

Theorem 2 (Asymptotic Normality). Suppose Assumptions 1, 4, 5 and 6 hold. We define dn 1 =
min(N,T) and specify the weights for &; and & appropriately based on Case 1, Case 2 or Case 5.
Then, as N,T — oo, the asymptotic distribution of the common components estimated by wi-PCA

satisfies
— ~ d
Van gl (Cie = Cu) SN (0,1),
where aéit =dn7/N - U%’im +n7/T - aéiw for some aéit,l and U%’im .
The inclusion of the grand mean and fixed effects substantially complicates the derivation and
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asymptotic variances O'%«ﬂ»t,l and U%’im, which contain more terms than the asymptotic variance
for the pure factor model in Xiong and Pelger (2023). Specifically, we need to deal with the first-
stage estimation error Ay = (i 4+ &; + &) — (1 + a; + &) as well as two additional terms, which
are respectively VTN ! Zf\il AZ-AZT |Qij|_1 Ztesz F,A;; in the asymptotic distribution of A; and
N—1/2 Ef\il WitAiAit in the asymptotic distribution of Ft. In order to simplify the expression and
focus on the main result, we do not explicitly state the form of Ug7it’1 and Uéim . Instead we propose

in the next section a practical bootstrap approach for the variance estimation of relevant quantities.

5 Application to Causal Inference

In this section, we discuss the application of our estimator to causal inference and provide a

feasible variance estimator for the average treatment effects.

5.1 Estimation of Treatment Effects

A key application of our estimator is to estimate the treatment effects in causal inference.
The fundamental problem of causal inference is that we observe either the control outcome or the
treated outcome, but not both, for any unit at a specific time period. We can view the unobserved
counterfactual control outcomes as missing values, which we impute with wi-PCA. By comparing
the observed treated units with the imputed control units, we can estimate the treatment effects on
the treated.

In the causal inference context, the outcome panel Y;; has both control and treated observations.
We view the treated values as missing control observations, which results in the partially observed

)

panel of control units Yéa . Correspondingly, the partially observed panel of treated units is denoted

as Y;gtr). The treatment effect of unit ¢ at time ¢ is defined as
(tr) (ct)
D (e

Tit = Y;

Our focus is on the estimation and inference of the average treatment effect on a treated unit ¢
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over time, denoted by 7;, which is formally defined as

e S () - Y

U teT e 7 t€ T e
where 7; ;- and T; 4 denote the set and number of treated time periods of unit %, respectively. The
average treatment effect on treated (ATT) is an important quantity that is often used in practice.
Alternatively, we can also study the average treatment effects that are averaged over units, and
over both time and units. This follows the same conceptual arguments as for 7; and would be a
straightforward extension of our framework.

We specify a model for the control panel to estimate the unobserved control units. We argue that
the wi-PCA is particularly well suited for imputing the counterfactual control units. As discussed
before, in the special case of only the fixed effect structure, but without the latent factor model, wi-
PCA can simplify to a difference-in-difference estimator, which is widely used in causal inference.
The latent factor model can be interpreted as a data-driven approach for constructing synthetic
controls. Conceptually, synthetic controls are weighted averages of untreated units, where the
weights depend on unit-specific features. Our approach does not require priori knowledge about
which covariates describe if treated and control units are a good match. Instead, our latent loadings
capture complex unit-specific information in a data-driven way. Our wi-PCA can be interpreted as
combining a difference-in-difference estimator with a general synthetic control.

Specifically, under the assumption that the control panel Y (¢ follows the approximate factor
model with two-way fixed effects in Equation (1), we use the common component Cj; estimated

with wi-PCA to impute all values in Y(°). This yields the following estimator for 7;:

. 1 t = 1 ~ 1
z,tr teﬁ,tr 17”1 teﬂ,tr l,tT’ tEITi,tT

The estimator 7; is consistent if C’it is consistent and the average over the idiosyncratic terms
vanishes (which holds for T going to infinity). Moreover, if the assumptions of Theorem 2 are
satisfied, then 7; is asymptotically normally distributed. In the next section, we provide a feasible

estimator for the asymptotic variance of 7; .
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5.2 Feasible Variance Estimator for ATT

In this section, we show how to estimate the asymptotic variance and construct asymptotically
valid confidence intervals for the average treatment effect on the treated 7; using a resampling
bootstrap approach. As discussed in the previous section, we can estimate the counterfactual

control outcomes Cy; with wi-PCA and obtain the estimation error for 7; as

Ti—Ti = Tiltr Z (C; —C’,‘)-i-Tz;W Z €it -
ET; i T ET
Theorem 2 implies that the first term in the estimation error has an asymptotic normal distribution.
Under mild assumptions and for 7} ;» — oo, the second term has mean zero and is jointly asymptot-
ically normally distributed with the first term. Hence, the sum of the two parts is asymptotically
normal, and the convergence rate is the smaller of the rate of each term.

Under the asymptotic normality, we obtain valid confidence interval (CI) for 7;:

P (Ti € [ﬂ' = 21—a/2VVis Ti + 2102V Vi D R

where V; is the asymptotic variance and z, is the a-quantile of standard normal distribution.

We propose to estimate V; with a resampling bootstrap procedure, which is easy to use despite
the complex form of V;. This procedure has three steps. First, we sample the idiosyncratic errors
€; = (€1, -+ ,€7) of the treated unit ¢ for which we aim to draw inference. To obtain the sample
distribution of these errors, we iteratively mask a control unit j with the same treatment pattern
as the target treated unit ¢ and apply wi-PCA to this new panel.® The difference between the
estimated common components and observed outcomes of unit j serves as a residual time series in
the sampling distribution. In the second step, we obtain estimates of 7; from the bootstrap samples.
We obtain a bootstrap sample by sampling N — 1 units with replacement from all units besides
the i-th one, and concatenating them with a “bootstrapped version” of unit i’s time series. This
“bootstrapped version” is obtained by adding unit ¢’s estimated common components to a draw of

€; from the sampling distribution obtained in step one. In the last step, we calculate the variance

8For brevity, we only consider the case where control units exist. If there is no control unit, we need to assume
that the idiosyncratic errors are i.i.d. in the cross-sectional and time series dimension.
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Vi using the estimates of 7; from step two. This bootstrap provides consistent estimates of V; under
additional assumptions on the error terms. We provide a detailed description of this bootstrap
procedure with the formal statements and assumptions in Appendix B.1.

The simulations in Appendix B.3 demonstrate the good finite sample performance of our boot-
strap procedure and that it works well in general setups. We also show the benefits of sampling only
the variance and leveraging the theoretical normal distribution, instead of sampling the complete
distribution in step two. The procedure above assumes that ¢;; is i.i.d. in the cross-section. This
assumption can be relaxed by using a block resampling procedure, where the sampling is based on

blocks of correlated units. We provide the details of a block resampling procedure in Appendix B.2.

6 Discussions

6.1 Model with Observables

In empirical studies, researchers might observe additional covariates X;; which can capture
variation in the outcome variables Y;;. Including these exogenous observables can reduce the variance
of the imputed values and estimated treatment effects. In this section, we show how to extend wi-
PCA to include additional exogenous observed covariates.

Formally, we can extend our model from Equation (1) by incorporating the observables X;; € R?
as follows:

Yit:ﬂTXit+M+0<i+§t+A¢TFt+€it,

with the coefficient 8 € R%. The common component now becomes Cj; = BTXZ-t—l—u—kai—i—ft—kAiTFt ,
and the goal is to estimate and draw inferences on the estimated common component. Note that
C;t has three components: the fixed effects, latent factor structure and regression on observables.
The estimator for wi-PCA with observables becomes a three-step approach with one step for each of
the components. For the sake of brevity, we present the results for the case with known observation
probability, and the arguments extend accordingly to the other cases.

The first step is the within transformation, which estimates the fixed effect structure and nor-
malizes the observables. Note that with non-stationary fixed effects it is necessary to first apply the

within transformation before running regressions or PCA. We apply the first step of the wi-PCA
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estimator to estimate the grand mean and fixed effects by calculating the weighted averages of

observations in Y. Then, we subtract the first-stage estimators from Y;; and obtain
Vie = B Xu + A Fy +

where Yj; = Yi; — i — ét —d;and X = Xi— X ot X}-,. + X. The within transformation of observed
covariates is needed for the purpose of identification, and does not pose any challenges as X is fully
observed.

The second step estimates the coefficient S by running a regression

N T LN 7T
5o (zzwitxﬁxg S WXty
i=1 t=1 i=1 t=1
The residual from this regression Ylt = Y;t — BTXZ-t has a latent factor structure, that is, Et =
AZ-TFt + €;t. In the third step, we estimate the latent factor structure. By applying the PCA step
of wi-PCA to Yy, we obtain A;rﬁ’t Aggregating all three estimations yields the estimate of the
common components:
Ci=p+&+ai+B" (Xu— Xy — Xi. + X)+ A E.

We call this approach “wi-PCA with observables”. The following assumption and proposition for-

malize the asymptotic inference.

Assumption 7 (Observables). The observables X;; are independent of factors and idiosyncratic
errors. Furthermore, for any i,t, E[||Xy|/'] < M, E[||T* Zthl WiuXil|®] < M/T*, and the

smallest eigenvalue of (NT)™1 D Wi X3 X ) is positive and bounded away from 0.

Assumption 7 guarantees that the regression on X is well behaved. Proposition 1 shows the

consistency and convergence rate.

Proposition 1. Assume Assumptions 1, 2, 8, 7 and Case 1 in Assumption 4 hold. Furthermore,

the eighth moments of the unit fized effects, factors and loadings are bounded. Let o7 = min(N,T').
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Then, as N, T — oo, wi-PCA with observables consistently estimates the common component:

VonT(Cit — Cit) = Op(1).

Note that the regression on observables does not affects the overall convergence rate. Including
the observables does not make the analysis more challenging and hence we omit it in the main
model in equation (1). It is possible to generalize the regression to a non-parametric regression if
its convergence rate is not slower than m . It is also possible to change the order of the steps
and estimate the latent factors before applying the regression of the residuals on observables X.
However, this alternative order implies different assumptions, which for many applications seem to

be more restrictive.

6.2 Number of Factors

We assume that the number of factors k is consistently estimated. Given a consistent estimator
for the number of factors, we can treat k as known. The discussion in Xiong and Pelger (2023)
about how to estimate the number of latent factors also applies to our estimator. After removing
the fixed effects component, the latent factor structure is similar to Xiong and Pelger (2023), and
we can build on the same insights. Fundamentally, the number of factors is a tuning parameter,
and in practice, can be determined by cross-validation arguments. Specifically, we can mask entries
in the panel and evaluate the accuracy of the imputed masked values with the actual observed
entries for different number of factors. The model with the smallest validation imputation error
is selected. However, the appropriate masking is a challenging problem, in particular for complex
missing patterns that can depend on the factor structure. Conceptually, the correct masking would
use the actual probability of missingness, which is generally unknown in observational studies. As a
practical approach, in our empirical study we use a variety of realistic masking schemes and repeat
the masking simulation many times. We find that our estimator is relatively robust to the number

of factors once we include sufficiently many. Other estimators do not seem to share this robustness

property.
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7 Simulation

We demonstrate in comprehensive simulations the good performance of our wi-PCA estimator.
For this purpose, we show that our estimator dominates natural benchmarks for a variety of relevant
missing patterns and data generating processes. Specifically, we demonstrate that it is important to
include the fixed effect structure and latent factor structure, and omitting one of them deteriorates

the performance. We compare wi-PCA with the following three estimators:

e PCA: Special case of wi-PCA without estimating the fixed effect structure separately. This
estimator corresponds to the PCA estimator using all observations proposed by Xiong and
Pelger (2023).

e Block-PCA: PCA estimator that estimates factors only from fully observed blocks proposed
by Xu (2017).

o TWFE: Two-way fixed effects estimator, which is the special case of wi-PCA without latent

factors.10

The PCA and TWFE estimators correspond to two special cases of wi-PCA with either only a latent
structure or only the two-way fixed effects. The TWFE estimator corresponds to the conventional
difference-in-difference (DID) estimator for monotone missing patterns. The Block-PCA serves as
an alternative way to estimate a latent factor model without directly modeling the two-way fixed
effects, and has been used for causal inference on panels.

We generate the data from a one-factor model with two-way fixed effects Yy = pu + a; + & +
A;Fy + €, where p = 1, «; ki (0,1), F; i (0,1), A; i (0,1), and €; i1 (0,02).
We consider both stationary and non-stationary time fixed effects &. The stationary time fixed
effects follow & e (0,1), while non-stationary time fixed effects include a trend process and are
generated as & = 0.05¢t + N(0,1) for any ¢. The main text uses the parameters o2 = 4, while the

Internet Appendix shows that the results are robust to other choices.

We consider three different observation patterns for Y:

9We provide the details of this method in Appendix C.
"The TWFE estimator obtains the two-way fixed effects as

N T
(ﬂ7d7§) = arg ml%ZZWz (Yz — M= O — 615)27
and the common components as C’iz =0+ & + ft.
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1. Missing-at-random: Entries are missing independently at random with probability p = 0.2.

2. Simultaneous treatment adoption: 50% randomly selected units are completely missing after
time 0.4 - T

3. Staggered treatment adoption: Starting form 0.1-7, units are selected to adopt the treatment
with probability 0.1 - I(|a;&| > 2.5). Once a unit adopts treatment, it stays treated without

subsequent observations.

The observation patterns are illustrated in Table 2. The missing-at-random pattern is conceptually
the simplest, and all entries are missing independently and exogenously. With simultaneous treat-
ment adoption the entries are still missing exogenously but the missingness has dependence in the
time series dimension. The simulated staggered treatment adoption pattern is the most complex as
in addition to the monotone missingness we further allow endogenous missingness that depends on
both two-way fixed-effects.

In Table 2, we compare the performance of different estimators in estimating the common
components of Y on the observed, missing, and all entries and report for each method the relative

mean squared error (relative MSE) defined as

Z(i,t)ES(éit -G )2
Z(i,t)es Ci2t ’

relative MSEgs =

where S denotes the set of either observed, missing or all entries in Y. We pay particular attention
to the relative MSE for the missing entries in Y, which serves as the out-of-sample evaluation.
This is important as models with more parameters are expected to approximate the data better
in-sample, but due to overfitting the noise can perform worse out-of-sample. In the main text we
show the results for one latent factor with wi-PCA and up to three latent factors for the pure factor
models. Internet Appendix IA.A collects the results for other parameters of the data generating
process. Note that for stationary data a pure latent factor model with three latent factors should
theoretically be able to recover the same model as a one-factor model with two-way fixed effects.
Table 2 shows that wi-PCA dominates all other benchmarks in terms of in-sample and out-
of-sample performance. We discuss the findings for each missing pattern. In the case of missing-
at-random, both wi-PCA and PCA perform well for either stationary or non-stationary data, but

wi-PCA is overall more efficient. A pure factor model with less than three factors suffers from an
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Table 2: Relative MSE of common components for different estimators
wi-PCA PCA Block-PCA TWFE
(FE-+factor model) | (factor model only) (factor model only) | (FE only)
& S known unknown | k=1 k=2 k=3 |k=1 k=2 k=3
obs 0.055 0.055 0.360 0.147 0.088 - - - 0.270
S miss | 0.056 0.056 0.377 0.157 0.093 - - - 0.283
all 0.055 0.055 0.364 0.149 0.089 - - - 0.273
obs 0.036 0.036 0.292 0.145 0.059 - - - 0.177
N miss | 0.037 0.037 0.305 0.157 0.063 - - - 0.186
all 0.036 0.036 0.294 0.148 0.059 - - - 0.179
obs 0.064 0.069 0.369 0.156 0.104 | 0.372 0.161 0.110 0.283
S miss | 0.108 0.105 0.414 0.210 0.165 | 0.412 0.204 0.152 0.314
all 0.077 0.079 0.383 0.172 0.122 | 0.384 0.174 0.122 0.292
obs 0.048 0.051 0.376 0.209 0.091 | 0.359 0.186 0.080 0.207
N miss | 0.055 0.054 0.594 0.573 0.527 | 0.476 0.322 0.154 0.162
all 0.051 0.052 0.460 0.349 0.259 | 0.404 0.238 0.108 0.190
obs 0.054 0.050 0.362 0.132 0.088 | 0.363 0.131 0.086 0.283
S miss | 0.083 0.079 0.431 0.325 0.213 | 0.440 0.310 0.176 0.206
all 0.058 0.055 0.371 0.159 0.106 | 0.373 0.157 0.100 0.271
obs 0.056 0.045 0.301 0.178 0.078 | 0.287 0.126 0.083 0.216
N miss | 0.097 0.081 0.911 0.759 0.602 | 1.135 1.065 0.494 0.175
all 0.068 0.055 0.487 0.353 0.237 | 0.541 0.408 0.207 0.204

This table reports the relative MSE of different estimators for different setups. We compare the performance of
wi-PCA, with known and unknown observation probability, with three benchmarks: PCA, block-PCA, and TWFE.
The figures on the left show the observation patterns with shaded entries indicating observed entries and unshaded
entries indicating missing entries. Each observation pattern corresponds to two rows with either stationary time
fixed effects (S) or non-stationary time fixed effects (N). Bold numbers indicate the best out-of-sample relative
model performance. We set N =T = 100 and run 200 simulations for each setup.

omitted variable bias, while the three-factor model is less efficient than directly modeling the two-
way fixed effects. Using only the two-way fixed effects without a factor structure (TWFE) provides
the worst results as it also suffers from an omitted variable bias. The block-PCA method is not
applicable as there are no sufficiently large fully observed blocks.

In the case of simultaneous treatment adoption, wi-PCA continues to dominate the other meth-
ods. For data with stationary time fixed effects, all three PCA methods perform relatively well.
However, for the non-stationary data, the PCA method has poor performance due to the correlation
between the upward trend and missing pattern in the time series dimension. This correlation deteri-
orates the estimation of the covariance matrix in PCA, whereas block-PCA is unaffected because it

only uses the fully observed block to estimate factors. This property of block-PCA, however, makes

it less efficient than wi-PCA which leverages all the data to estimate factors. TWFE continues to
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suffer from omitting the latent factor structure. Note that with the upward trend in the time-fixed
effects, the two-way fixed effect component explains more of the overall variation.

In the last setting of staggered treatment adoption, wi-PCA significantly outperforms the other
methods for both stationary and non-stationary data. In this setting, we assume an endogenous
observation pattern that depends on both cross-sectional and time series components of the model.
This endogeneity cannot be accounted for by both PCA and block-PCA methods, leading to their
poor performance. Their performance deteriorates even more with non-stationary data. In contrary,
TWFE suffers less from non-stationarity and complex missingness, but obviously still omits the
factor component. The performance gains of wi-PCA are impressive as it has two to eight times
better out-of-sample accuracy.

We conclude that wi-PCA combines the advantages of the three benchmark methods for different
settings and is more efficient than any of them. Moreover, wi-PCA with unknown or known obser-
vation probability perform quite similarly. The wi-PCA with unknown observation probability can
have even smaller relative MSEs compared to its counterpart with known observation probability,
as illustrated in the last two settings. Intuitively, the direct estimation can correct for variability in
the sampling distribution of the observation pattern.

Our findings are robust to the parameters of the simulation. The Internet Appendix collects the
results for different proportions of missing data and noise variances. Our wi-PCA dominates the
benchmarks in all setups. We conclude that it is crucial to explicitly combine both the latent factor

model and two-way fixed effects in a model.

8 Empirical Study: Liberalization of Marijuana Policy

We demonstrate the benefits of our wi-PCA estimator in an empirical application in causal
inference: the liberalization of marijuana. This empirical application is originally studied in Li and
Sonnier (2023), where they estimate the effect of legalizing recreational marijuana on retail sales
for beer. The underlying question is whether marijuana represents a substitute or complement to
alcohol.

We use the weekly NielsenlIQ retail scanner beer sales data from the Kilts Center for Marketing.

Our data consists of 208 weekly observations of beer sales revenue from January 01, 2017, to
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December 26, 2020, aggregated at the state level for the U.S.1!

Our cross-section consists of 45 states, of which 39 are control states and 6 are treated states
that legalized the retail sale of marijuana at different times. In our study, we have to drop three
states (Colorado, Washington, and Oregon) as they legalized recreational marijuana before 2017.
Table 4 shows the treatment times of the 6 treated states. Different from Li and Sonnier (2023), our
outcome variable is the weekly beer sales revenue normalized by the number of stores included in the
Kilts Center dataset. This normalization is important as the number of stores changes substantially
over time, which we discuss in more detail in Internet Appendix [A.B.

In this empirical study, we continue to compare wi-PCA with the three benchmark estimators
introduced in Section 7: PCA estimator (with factor model only), block-PCA estimator (with factor
model only), and TWFE estimator (with fixed effects only). The PCA and TWFE estimators
correspond to two special cases of our model with only a factor model or fixed effects, and the

block-PCA method is implemented as in Li and Sonnier (2023).

8.1 Synthetic Treatment Assignment

We start our analysis by comparing the performance of the four estimators. For this purpose
we generate synthetic treatment assignments on the control panel that consists of the 39 control
states. Specifically, we generate synthetic treatment patterns for the control panel and mask the
corresponding control outcomes in the data as if they were treated. Then, we compare the estimation
accuracy of different estimators on these synthetic treatments, which should have zero effects on the
outcomes. This type of synthetic treatment is frequently considered in this literature, for example
in Bertrand, Duflo, and Mullainathan (2004) and Arkhangelsky, Athey, Hirshberg, Imbens, and
Wager (2021).

This analysis allows us to answer the following questions. First, as this is an out-of-sample
evaluation of the factor models, it allows us to compare the accuracy of the different models. The in-
sample fit of a model naturally increases with the complexity of the model; however, due to potential
overfitting, this is not the case out-of-sample. Second, it shows how the masking mechanism affects

the estimation and accuracy of models. Third, this analysis can also serve as a validation to select

" Guha and Ng (2019) show the benefit of using factor models for the weekly scanner data and the presence of
common seasonality in this type of data.
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Table 3: Results for synthetic treatment patterns (unit: $100/store)

wi-PCA PCA Block-PCA TWFE
(FE+factor model) | (factor model only) | (factor model only) | (FE only)
k=1k=2%k=3|k=1k=2 k=3 |k=1k=2 k=3

== ==+ RMSEy 2.21 1.93 2.01 2.53 2.64 2.95 - - - 2.54
8 |Biasarr| | 0.16 0.14 0.16 | 0.22 0.59 0.98 - - - 0.22
Srte- m RMSExrr | 124 111 118 | 1.68 176 2.03 - - - 1.57
RMSEy 242 209 1.94 | 237 461 545 231 225 213 2.45

|Biasarr| | 0.26 0.27 026 | 0.83 3.76 4.19 | 045 0.32 0.30 0.42

RMSEarr | 0.99 1.03 1.06 1.67 4.08 4.52 1.57 1.13 1.18 1.53

RMSEy 430 3.92 4.10 | 500 6.77 7.46 | 4.88 7.16 5.93 4.60

|Biasarr| | 0.75 0.47 0.57 | 1.45 4.47 525 090 126 1.04 0.59

RMSEarr | 2.89 2.77 291 | 412 543 6.06 | 3.88 511 4.21 3.50

This table shows the results for three synthetic treatment patterns. The figures on the left illustrate the treatment
patterns where the shaded entries indicate the observed control outcomes and the blank entries represent the missing
observations. For each of the treatment pattern, we compare the RMSE of the imputation (RMSEy ) and the absolute
estimation bias and RMSE of the ATT (|Biasart| and RMSEart) for different methods. Bold numbers indicate
the best relative model performance. The three treatment patterns are generated as follows: (1) Uniformly random
treatment pattern: for each unit, we set 20 time periods as a group and randomly assign treatment with probability
0.2 for each 20 time periods. (2) Simultaneous treatment adoption pattern: States are randomly selected into the
treatment group with a probability of 0.5. Treated units simultaneously adopt the treatment at time Ty, = 140
and stay treated afterward. (3) Staggered treatment adoption pattern: States with unit fixed effects «; > 0.5 are
randomly selected into the treatment group with a probability of 0.9. For treated units, they adopt the treatment
with probability 0.1 in each time period with time fixed effects £ > 1 and stay treated afterwards. We iterate 100
times in the simulations for each setup.

the number of latent factors. Tuning parameters like the number of factors can be selected based
on which model provides the best out-of-sample performance for relevant masking schemes.

Table 3 summarizes the results for three treatment patterns, and provides a detailed description
of how we generate the treatment patterns. The first pattern is a uniformly random pattern where
we randomly assign treatments to each unit. The second pattern is a simultaneous treatment
adoption pattern where units are randomly selected to adopt treatment at a given time. The
last one is a staggered treatment adoption pattern where the treatments are endogenous and can
depend on the two-way fixed effects. To generate endogenous treatment patterns, we first estimate
the two-way fixed effects as the natural averages i = (NT)~! >is Yiss & =N1 > Yje — fvand
& = T71 > Yis — [1 for the fully observed control panel. Then, we determine the treatment
mechanism based on these fixed effects.

We use the four estimators to impute the missing observations in the control panel and estimate
the state-level ATT for each treated state. Table 3 compares the performance of different methods

in estimating the out-of-sample counterfactual outcomes and treatment effects and reports for each
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method the root-mean-squared error (RMSE) of the imputation as well as the absolute bias and

RMSE of the estimated ATT, which are respectively defined as

RMSEy = [ Y (Ci—Ya)?,
(ivt)esmiss
, 1 X 1 R )
|B1asATT| = N Z (Ti — Ti) y RMSEATT = N Z (Ti — Ti) y
N, T iEeN

where Spiss denotes the set of missing entries in Y, ANy and Ny, denote the set and number of
treated units, and 7; denotes the ATT estimator for unit 7.

For conciseness, Table 3 shows the results for only three latent factors, but all the results extend
to up to 8 factors. Appendix D provides detailed robustness results for more factors. In fact, wi-
PCA is remarkably stable and including “too many” factors has only a marginal effect. In contrast,
other PCA methods deteriorate substantially for too many factors. We will revisit this important
point in the next section.

The results demonstrate three main insights. First, wi-PCA dominates all benchmark estimators
and is the most accurate estimator under all treatment assignments and error metrics. This means
wi-PCA has the most precise estimates of first and second moments on the out-of-sample data.
Second, wi-PCA is extremely stable for different number of factors, which is not the case for PCA and
Block-PCA. Our findings also demonstrate the importance of estimating both the fixed effects and
the factor model. Note that under stationarity assumptions PCA and Block-PCA could include the
fixed effects as additional factors, but even with more latent factors their performance is substantially
worse than separately estimating the fixed effects. On the other hand, there is a benefit of including
at least one latent factor in addition to the fixed effects, that is, TWFE, which can be interpreted
as the “zero-factor model” of wi-PCA, is never optimal.

Third, we demonstrate how the performance of models depends on the treatment assignment
and confirm that wi-PCA outperforms for all the different treatment patterns. The case of missing
uniformly completely at random can be viewed as the simplest case. In this setting, wi-PCA, PCA,
and TWFE estimators exhibit comparable performance; however, wi-PCA excels in providing more
precise imputations of counterfactual outcomes and more accurate estimations of treatment effects.

Note that the block-PCA method is infeasible as there are no fully observed control units. In the case
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of simultaneous treatment adoption, wi-PCA and block-PCA perform well, while the PCA estimator
performs poorly because of the dependency between the time series missingness. This result aligns
with the simulation results with non-stationary fixed effects. Our wi-PCA significantly outperforms
the other three methods for the staggered adoption pattern where the treatment assignment is
endogenous and correlated with cross-sectional and temporal components.

Our findings are supported by our theory. In contrast to TWFE, wi-PCA incorporates interactive
effects that better explain the correlation structure in the panel. In contrast to the PCA and block-
PCA estimators, wi-PCA explicitly estimates and controls for the additive effects in the panel data.
In contrast to all three benchmarks, the estimation of wi-PCA is valid under more general treatment

assignments.

8.2 Estimation of ATT

In the second part, we estimate the treatment effects and their significance for the six actually
treated states. We demonstrate how the economic conclusions are affected by the choice of estima-
tion approach. Table 4 shows the estimated ATTs and corresponding standard errors estimated with
the resampling bootstrap. We report the results for the wi-PCA, PCA, and block-PCA estimators
for up to k = 4 latent factors.

There are three key observations. First, Table 4 shows that different estimators give substantially
different point estimates of ATT. The point estimates of PCA and block-PCA can be more than 10
times larger than the ones for wi-PCA. Hence, the economic magnitude of the estimates seems to
be largely exaggerated with PCA and block-PCA. Second, the standard errors of the benchmarks
are generally much larger than with wi-PCA. In particular, for block-PCA, which uses the data
inefficiently, the standard errors can explode for a larger number of factors and be twice as large as
with wi-PCA. The different point estimates and standard errors can lead to different conclusions.
Our wi-PCA finds that in none of the six states legalizing marijuana causes a change in beer sales.
In contrast, for both PCA and block-PCA there are cases with statistically significant treatment
effects.

Third and most importantly, wi-PCA is extremely stable for different number of latent factors,
while the instability of PCA and block-PCA makes them unreliable. To illustrate this point, we

focus on the states of Massachusetts (MA) and Nevada (NV). For both states, the ATT of wi-PCA
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Table 4: Average treatment effects on the actually treated states (unit: $100/store)

CA. MI. IL. MA. NV. ME.
k | ATT SE | ATT SE | ATT SE | ATT SE | ATT SE | ATT SE
wi-PCA 1] 052 378 043 117 | 032 121 |-048 1.11 | -047 3.18 | -1.15 1.11
(FE+factor 2 | 057 3.64 | 044 117 | 031 1.22 | -0.37 1.07 | -0.47 3.02 | -0.95 1.18
model) 3| 055 368 | 052 112 | 009 1.12 | -042 128 | -048 3.05 | -0.96 147
4| 054 369 | 1.00 1.14 | 0.08 1.08 | -0.86 1.54 | -047 3.02 | -0.16 0.60
PCA 1] 296 38 | 319 164 | 1.20 1.64 | -1.29 236 | 3.02 3.10 | -1.32 1.34
(factor model 2 | 7.44 361 | 274 115 | 227 1.21 | 3.63 149 | 535 3.01 | -1.06 1.11
only) 3| 765 362 | 656 244 | 539 237 | 418 235 | 549 3.04 | -0.36 113
4| 801 360 | 6.66 231 | 555 227 | 428 236 | 494 3.03 | 032 108
Block-PCA 1 | -030 4.26 | 1.65 152 | -0.05 153 | -4.41 250 | -1.24 3.44 | -1.32  1.19
(factor model 2 | 4.25 6.65 | 0.38 146 | 033 1.31 | 1.16 141 | 7.79 832 | -1.18 1.09
only) 3| 018 614 | 032 141 | 036 1.29 | 1.36 174 | 2.84 6.37 | -0.91 131
4] 169 692 | 030 1.44 | 033 141 | 1.26 183 | 480 6.68 | 0.31 1.15
TWFE (FE only) | 056 3.73 | 1.73 1.64 | 0.02 1.62 | -2.94 229 | -047 3.04 | -1.28 1.19

This table reports the point estimations (ATT) and standard errors (SE) of ATT with different estimators. We show the
results of wi-PCA, PCA, and block-PCA estimators with respectively k = 1,2, 3,4 latent factor(s). The standard errors are
calculated by the resampling bootstrap method with B = 1000. The full name and treatment time of each treated state is
CA: California (Jan. 1, 2018), MI: Michigan (Dec. 1, 2019), IL: Illinois (Jan. 1, 2020), MA: Massachusetts (Nov. 20, 2018),
NV: Nevada (Jul. 1, 2017) and ME: Maine (Oct. 9, 2020).

Figure 2: Observed time series and estimated control time series of per-store beer sales
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These figures show observed time series and estimated control time series of beer sales per store for Massachusetts and Nevada.
We use wi-PCA estimator with k = 2 factors and PCA and block-PCA estimators with k = 4 factors. The grey vertical curve
denotes the time of treatment.

is essentially identical for 1 to 4 factors. In contrast, for block-PCA and PCA the magnitude varies
drastically and even the sign of the ATT can change for different number of factors. The choice
of the unknown number of factors can result in drastically different economic conclusions for these

benchmark estimators.

Figure 2 provides an explanation for our findings and shows the observed time series and esti-
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mated control time series of Massachusetts and Nevada. We use wi-PCA with k = 2 factors and
PCA and block-PCA with k = 4 factors to have a fair comparison in terms of the degrees of freedom.
We start with the right subfigure for Nevada. Before the treatment, the orange line representing
the control outcomes with wi-PCA is close to the observed blue time-series. After the treatment
the orange line continues to be close to the blue line, and therefore we do not find a significant
treatment effect with wi-PCA. The fact that wi-PCA is very close to the control and treatment
observations suggests that the same model can describe the full sample. In contrast, the purple line
for PCA is far away from the blue line on the control and on the treatment data. This indicates
that finding a treatment effect with PCA is due to a bad model fit. Similarly, the green line for
block-PCA seems to deviate because it does not capture the variation in the time-series well. We
now turn to the left plot for Massachusetts. While obtaining similar results for PCA, we want to
draw attention to the red line of TWFE. A pure fixed effect model suffers from an omitted variable
bias and neglects relevant time-series variation on the control and treatment data. Hence, it might
imply spurious treatment effects due to this omitted variable bias.

Figure 2 suggests that the discrepancy of other methods seems to indicate either an omitted
variable bias or overfitting of noise on the control data and hence a high variance on the treat-
ment data. In summary, the economic conclusions can largely differ depending on the estimation
approach, and the accuracy and generality of wi-PCA indicates that for this empirical study we do

not find evidence for a significant treatment effect.

9 Conclusion

In this paper, we study the imputation and inference for large-dimensional non-stationary panels
with general missing patterns. We propose a novel method, Within-Transform-PCA (wi-PCA), to
estimate an approximate latent factor model and non-stationary two-way fixed effects. The general
missing patterns can depend on both the latent factor model and two-way fixed effects. We show
the consistency and provide entry-wise inference for the imputed values with wi-PCA. Including
general fixed effects, which can affect missingness, is particularly important for applications in causal
inference for panels. In an empirical study on the liberalization of marijuana, we illustrate that wi-

PCA yields more accurate estimates of treatment effects and more credible economic conclusions
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compared to the benchmark estimators.
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A Inconsistency of Symmetric Fixed Effect Estimators: An Illus-

trative Example

In this subsection, we provide an illustrative example to demonstrate the importance of sub-
tracting é’t in the estimation of «; . In this toy example, we consider a block-missing pattern, where
each unit has 50% chance of being observed for all time periods or of being observed for only the
first half of times.

For simplicity, we assume that!?

S1=-=8&rp=1, §rjpr1=""=8&r=—

ACRE(0,20),  FRURN(0,SR), e R (0,02).

In this illustrative example, the observation probability equals py = P(Wy = 1) = 1if t < T/2
(with & = 1) and p; = 1/2 otherwise (with §& = —1), that is, the observation pattern is correlated
with the time fixed effects.

Our key point is to illustrate what goes wrong when we do not properly account for the time fixed
effects. If we do not subtract & from the estimator for a; and instead use an estimator symmetric

to the one of §~t with inverse probability weighting, then the estimation error is

a;rm — o = — o
‘ <T Z Dit ) T Z pzt
T -1 T T T
1 Lo Wi, 1 Wi 7, 1~ Wa
Lz—’ ( tz; ) T;Pit& T;Pit ! T;Pit !
op(1) a — —
op(1) op(1)
Straightforward calculations yield
1 W, o 1AW, —1/3 if unit i is fully observed
it it ’
Dl D D (7)
= Pit =1 Pit 1 otherwise,

implying that &>™ is a biased estimator of ; and the bias does not diminish as 7' grows.!® This

example illustrates why we propose to remove the bias by subtracting ét in the estimation of &

12For simplicity, assume T/2 is an integer.
13Note that this issue does not occur in the estimation of &;. The reason is that we can show that

%) 152

This follows from Assumption 1.3, stating that W;; and Wj, are conditionally independent for any ¢ # j, and
Assumption 3.2. In more detail, the proof relies on the key property that ﬁCov (ZN Wiy ai,ZN Wit ai) =

=1 pi¢ =1 pi¢
N2 ZZ 1 E] 1 pitp; ,E[E[ w0 Wi | Izt7[Jt” N2 ZiV:1 Zivzl Qi + O(%) = O(%)
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After subtracting g}, we do not need to use an inverse probability weighting to adjust for the
selection bias because Wj; does not depend on the remaining temporal information (that is F; and

€¢). Therefore, we can use the equal weights M for all observed entries in Equation (3).

B Feasible Variance Estimators for ATT

In this section, we provide the detailed description of the resampling bootstrap method in Section
5.2, and discuss how to extend it to allow for cross-sectional dependency through a block resampling

bootstrap method.

B.1 Resampling Bootstrap Method

In Section 5.2, we show that under the asymptotic normality, the valid confidence interval (CI)

P(TZ |:’7'Z—Zl a2V VisTi + 21-a)2 /v D asympt .

where V; is the asymptotic variance and z, is the a-quantile of standard normal distribution.

for 7; is:

We propose to estimate V; with a resampling bootstrap procedure, which is easy to use in spite
of the very complex form of V;. To implement this method, we assume that conditional on the
factors and time fixed effects, the time series and its observation pattern of each unit are drawn
independently from the same distribution P. To estimate the conditional variance Var(7; | &, F),
we need to resample the error for target unit 7. This requires the assumption that the residual time
series are homoscedastic across units.

We describe the resampling bootstrap method in the following. For brevity, we denote the
observed time series in the control panel as 172.(“) = (Yi(ft), e ,Y;Sﬁt)) © Wit, -, Wir).

Resampling Bootstrap Algorithm:

1. Construct sampling distribution of the idiosyncratic errors €; = (€1, -+, €7) of the treated

unit 7.
Start a loop for j € {control units}:
e Mask unit j’s observations as if it had the same treatment pattern as unit i, i.e. ffj(Ct)/ =

Yj(Ct) ® W;. Construct a new control panel Y()' = (v(¢¥ . ?.(Ct)/).

[NI\5* " j
e Estimate C’;t with wi-PCA. Calculate residual time series €§-Z) = Yj(Ct) - C~’J’
Collect € = {e : J € control units}.
2. Obtain estimates of 7; from bootstrap samples.
Start a loop for b € {1,--- , B}:
e Randomly sample N —1 indices iy, - - - ,iny—1 from [N]\ ¢ with replacement and randomly
sample e( " from &), Construct a new control panel Yb(Ct)* = (f@(ft); e ngt)l, Ci + e( ))

with the target unit ¢ in the last row.
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e Estimate Cj,, with wi-PCA. Calculate 7, = T} ,} D oteT: tr(éit + E—fl(fz — Gy )M

2,tr

2
: vy pel B (ax _ _ 1B -
3. Calculate the variance as Varp(7;) = B~ > ;7 (Ti’b - TZ) , where 7, = 530,74 77

We show the good finite sample performance of the CI obtained from this procedure in Appendix
B.3. We also show the benefits of leveraging the asymptotic normal distribution and only sampling
the variance, instead of sampling the complete distribution. The bootstrap procedure assumes
that o; and A; are independent in j and €j; is i.i.d. in j. This assumption can be relaxed by
sampling blocks of correlated units. We provide the details of block resampling procedure in the

next subsection.

B.2 Block Resampling Bootstrap Method

We discuss how to extend the resampling bootstrap algorithm in Section 5.2 to allow for cross-
sectional dependency in the idiosyncratic errors if the the off-diagonal elements of the covariance
matrix of the errors have a sparse structure. Specifically, we assume that the number of non-zero
off-diagonal entries grows slowly with respect to NV and 7. Under this assumption, we can use a
block resampling bootstrap method to estimate the variance, which treats correlated units as an
entirety for the resampling. Intuitively, we apply a similar bootstrap algorithm as before, but apply
it to uncorrelated blocks instead of individual units.

In some applications we might know these blocks, for example, based on geographical or industry
clusters. Alternatively, we can identify blocks statistically with threshold techniques. Specifically,
we first estimate the common components Cj; of the control panel Y(¢®) and derive the idiosyncratic

~ ct ~ . .. .
error €;; = st; ) _ Cy for each entry. Based on this, we calculate the empirical error covariance

matrix
- 1 &
Se=r dE@-a@E - e RV,
t=1
where & = (&1, - ,&N)', € = T} Zthl ¢;. Then, we can apply a thresholding technique like

in Fan, Liao, and Mincheva (2011) to ¥ to obtain a sparse error covariance matrix 7. We can
rearrange the cross-sectional units of f);r to obtain a block-diagonal matrix.

Given the block structure, the block resampling bootstrap method works as follows:

Block Resampling Bootstrap Algorithm:

1. Get the block structure of panel YY), Group the units into N groups gi,- - ,gn,. Denote
by ¢\ the group containing the target treated unit i.

2. Construct sampling distribution of of the idiosyncratic errors of group ¢(®.

Start a loop for j € {control groups U groups with the same error structure as g(i)}:

e Mask group j’s observations as if it had the same treatment pattern as group g, i.e.

f’g(ft)/ = Yg(].Ct) ® W) Construct a new control panel y(et) — (ﬁ%{gj;)z(f)l).

M The treated outcome for unit i at time ¢ can be drawn as C’it + (7:1(;3 + 7i¢. However, since 7;; would not affect the

variance of 7;, we directly use C’it + €§3 (1s+ = 0) for the bootstrap treated outcome in estimating the variance.
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e Estimate C’ from Y (Y with wi-PCA. Calculate the residual time series €§? = Yg(th) fé;j.

Collect € == {éé?}.
3. Obtain estimates of 7; from bootstrap samples.
Start a loop for b € {1,---, B}:

e Randomly sample groups g;,, - - , gj, from the Nyg—1 groups with replacement, where d is
the smallest number such that the number of sampled units |gj, | +- - -+ |gj,| > N —|g@|.
Then, randomly remove |g;, |+ - +]g;,] — (N — [¢)|) units. Randomly sample él(f) from
¢@ . Combine the sampled units with ég(i) + €l(f) to construct a new control panel %(Ct)*.

e Estimate C} from Yb(Ct)* with wi-PCA and calculate 7, = Tl_mln Zteﬁ,tr(éi+gl(;l) - Nlj,(i)t) )

where (i) denotes the position of unit i.

4. Calculate the variance as

1< 2 1<
Var (7)) = B Z (75 —7)", where 7; = 5 ngb.
b=1 b=1

Vi = Var 5 (7;) is the estimate of Var(7;|¢, F').

i
The resampling bootstrap algorithm proposed in Section 5.2 is a special case of this block

resampling bootstrap algorithm with Ng = N. The performance of the block resampling bootstrap

algorithm increases in the number of groups Nj.

B.3 Bootstrapped Asymptotic Variance

In this section, we demonstrate the good finite sample performance of our bootstrap proce-
dure from Section 5.2 for estimating the asymptotic variance and constructing asymptotically valid
confidence intervals for the average treatment effect on the treated. In particular, we show that
the bootstrapped variances can still be reliable estimates even if some of the assumptions are vio-
lated, and that leveraging the normal distribution of the estimator provides better coverage than
estimating the complete distribution with the bootstrap.

We generate the control panel YY) from the same one-factor model with two-way fixed effects
specified as in Section 7, that is, }/igct) =u+a;+&+ NFy+ €, where p = 1, o iid N(0,1),
A; i (0,1), and F; iid (0,1). We consider both stationary and non-stationary time fixed
effects & and both homoscedastic and heteroscedastic idiosyncratic errors. The stationary time
fixed effects follow & i (0,1), while non-stationary time fixed effects include a trend and are
generated as & = 0.05¢ + N(0,1) for any ¢. The homoscedastic errors follow € YN (0,4)
for any ¢ and t. For heteroscedastic errors, we let e i (0,4) for the target unit 7, while
€t b (0, az’j) with o ; <y Uniform(1, 3) for units other than i. We assume the treated panel
Y(tr) — y(et) je. the treatment effect is zero for any unit i at any time period ¢. We consider the
three treatment patterns in Section 7: treated-at-random, simultaneous treatment adoption, and

staggered treatment adoption.
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Table A.1: Coverage of constructed confidence intervals (CI)

Homoscedastic Error Heteroscedastic Error

& 95% 90% 80% 95% 90% 80%

95.0% 89.8% 80.0% | 94.4% 89.8%  80.5%
N | 95.0% 89.8% 80.0% | 94.4% 89.8% 80.5%

94.3% 89.2%  79.5% | 94.1% 89.6%  80.6%
N | 943% 89.2% 79.5% | 941% 89.6%  80.6%

94.1% 89.2%  781% | 94.2% 89.4%  79.7%
N | 941% 89.2% 781% | 942% 89.4% 79.7%

This table reports the coverage of CI for ATT using wi-PCA with unknown observation probability. The figures
on the left show the observation patterns for the control panel with shaded entries indicating observed entries
and unshaded entries indicating missing entries. Each observation pattern corresponds to two rows with either
stationary time fixed effects (S) or non-stationary time fixed effects (N). We set N = T = 100, B = 100 and run
1000 simulations for each setup.

Table A.1 shows the good finite sample coverage of the confidence intervals for 7; for all the three
treatment patterns. In the setting with homoscedastic errors, our theoretical results guarantee
that our constructed confidence intervals are asymptotically valid. However, for the case with
heteroscedastic errors, the confidence intervals maintain good coverage, which demonstrates the
robustness of the bootstrap procedure to minor deviations from the i.i.d assumption of the error
time series.

Additionally, Figure A.1 shows the histograms of bootstrap ATTs for the three treatment pat-
terns under both homoscedastic and heteroscedastic settings. In both settings, the bootstrap dis-
tributions closely resemble normal distributions.

We also show the benefits of sampling only the variance and leveraging the theoretical normal
distribution, instead of sampling the complete distribution in the second step of the bootstrap
procedure. Table A.2 compares the coverage of the confidence intervals constructed by two methods,
where the first method (“bootstrapped variance with normal distribution”) is our proposed bootstrap
method that samples only the variance and uses the asymptotic normal distribution implied by our
theory, while the second method (“bootstrapped distribution”) uses the complete distribution of the
bootstrap estimators %i":b for b=1,...,B. In the second method, we construct confidence intervals
as [7], /2 T /2], where 7 and 77, are respectively the a/2 and 1 — /2 quantiles of the
bootstrap estimators 7;,. Table A.2 shows that the method that samples only the variance and
leverages the theoretical normal distribution achieves better coverage than the method that uses

the quantiles of the entire distribution.
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Figure A.1: Histograms of bootstrap ATT’s
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(b): Heteroscedastic error

These figures show histograms of bootstrap ATT’s of the three treatment patterns (from left to right): treated-at-
random, simultaneous treatment adoption, and staggered treatment adoption. We set B = 2000 for each setup.

C Block-PCA Estimator

In this section, we briefly review the generalized synthetic control (GSC) estimator proposed
in Xu (2017), which we refer to as “block-PCA”. The GSC estimator with latent confounders also

employs a latent factor model to describe the control outcomes, that is, it assumes the model
Yie = AiTFt + €t (8)

for units ¢ = 1,--- , N and time periods t =1,--- ,T.

GSC estimator requires a block of fully observed control units. It estimates the model in three
steps. First, it estimates the factor model using only the control units and obtain the latent factors
F and factor loadings for the control units Ag,. In the second step, it estimates the factor loadings
for each treated units by regressing the observed control outcomes on estimated factors F using the
pretreatment period. Finally, in the last step, it estimates the counterfactual control outcomes by
combining the estimated factors and loadings, as C’it = AIE.

The GSC estimator with observed covariates X takes the form:
Y:it = /BTXZ‘t + A;FFt + €it- (9)

The coefficients 3 on the observables are estimated in the first step, using only the fully observed
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Table A.2: Comparison between confidence intervals (CI) constructed by different methods

Bootstrapped Variance Bootstrapped Distribution
with Normal Distribution

& 95% 90% 80% 95% 90% 80%

95.0% 89.8%  80.0% | 93.4% 88.6% 78.8%
N ]95.0% 89.8% 80.0% | 93.4% 88.6% 78.8%

94.3% 89.2%  79.5% | 92.4% 87.5% 80.4%
N | 94.3% 89.2% 79.5% | 92.4% 87.5% 80.4%

94.1% 89.2%  78.1% | 92.6% 87.2% 76.4%
N | 94.1% 89.2% 78.1% | 92.6% 87.2% 76.4%

This table reports the coverage of CI for ATT where we either bootstrap the variance and use the asymptotic
normal distribution or bootstrap the full distribution. The figures on the left show the observation patterns for the
control panel with shaded entries indicating observed entries and unshaded entries indicating missing entries. Each
observation pattern corresponds to two rows with either stationary time fixed effects (S) or non-stationary time
fixed effects (N). We consider the setting with homoscedastic errors. We set N =T = 100, B = 100 and run 1000
simulations for each setup.

control units.

D Empirical Study: Synthetic Treatment Assignment

In Section 8.1, we compare the performance of different estimators through synthetic treatment
assignments on the control panel that consists of the 39 control states. Specifically, we generate
synthetic treatment patterns for the control panel and mask the corresponding control outcomes in
the data as if they were treated. Then, we compare the estimation accuracy of different estimators
on these synthetic treatments.

Tables A.3-A.5 provide detailed robustness results with a larger number of factors for wi-PCA,
PCA and block-PCA. For conciseness, Table 3 in the main text shows the results for only three

latent factors, but all the results from the main text extend to up to 8 factors.
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Table A.3: Results for the uniformly random treatment pattern

RMSEY |BiasATT\ RMSEATT

k=1 2.207 0.156 1.236
k=2 1.933 0.139 1.110
k=3 2.012 0.158 1.179
wi-PCA
k=4 2.033 0.167 1.206
(FE+factor model)
k=5 2.026 0.173 1.214
k=6 2.051 0.177 1.258
k=7 2.061 0.177 1.291
k=8 2.067 0.177 1.303
k=1 2.525 0.216 1.677
k=2 2.642 0.586 1.755
k=3 2.952 0.979 2.032
PCA
k=4 3.302 1.357 2.368
(factor model only)
k=5 3.598 1.637 2.615
k=6 3.764 1.806 2.782
k=7 3.883 1.929 2.908
k=8 3.978 2.022 3.002
k=1 ; ; ;
k=2 ; ; ;
Block-PCA - ) ) )
(factor model only)
_7 B} B} B}
TWFE
2.576 0.218 1.604
(FE only)

This table reports the complete results for the uniformly random treatment pattern for a larger number of factors
in wi-PCA, PCA, and block-PCA estimators. Note that the block-PCA method is infeasible here because we do
not have control units with fully observed data. We simulate the masking 100 times and report the average results.

The units are 100 dollars per store.
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Table A.4: Results for the simultaneous treatment adoption pattern

RMSEY |BiasATT| RMSEATT
k=1 2.424 0.255 0.995
k=2 2.090 0.275 1.029
k=3 1.942 0.262 1.056
wi-PCA

k=4 1.909 0.284 1.084

(FE+factor model)
k=5 1.955 0.299 1.138
k=6 2.006 0.299 1.166
k="7 2.025 0.301 1.177
k=8 2.039 0.304 1.184
k=1 2.374 0.825 1.672
k=2 4.605 3.760 4.076
k=3 5.450 4.190 4.523

PCA

k=4 5.123 4.131 4.459

(factor model only)
k=5 5.038 4.138 4.467
k=6 5.009 4.147 4.478
k=7 5.005 4.152 4.483
k=8 5.012 4.151 4.482
k=1 2.307 0.450 1.568
k=2 2.246 0.318 1.128
k=3 2.125 0.304 1.176

Block-PCA

k=4 2.085 0.284 1.218

(factor model only)
k=5 2.037 0.289 1.228
k=6 1.968 0.282 1.209
k=7 1.940 0.272 1.208
k=8 1.924 0.286 1.204

TWFE
2.445 0.415 1.528
(FE only)

This table reports the complete results for the simultaneous treatment adoption pattern for a larger number of
factors in wi-PCA, PCA, and block-PCA estimators. We simulate the masking 100 times and report the average

results. The units are 100 dollars per store.
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Table A.5: Results for the staggered treatment adoption pattern

RMSEY |BiasATT| RMSEATT
k=1 4.299 0.751 2.893
k=2 3.923 0.475 2.770
k=3 4.097 0.574 2.911
wi-PCA

k=4 4.185 0.642 2.985

(FE+factor model)
k=5 4.241 0.692 3.068
k=6 | 4.270 0.733 3.102
k=7 4.289 0.735 3.114
k=8 4.278 0.726 3.096
k=1 5.004 1.445 4.119
k=2 6.766 4.472 5.430
k=3 7.463 5.246 6.063

PCA

k=4 7.715 5.437 6.242

(factor model only)
k=5 7.794 5.558 6.369
k=6 7.900 5.647 6.467
k=7 | 7.985 5.719 6.539
k=8 8.016 5.764 6.580
k=1 4.877 0.902 3.884
k=2 7.163 1.256 5.114
k=3 5.934 1.035 4.212

Block-PCA

k=4 6.237 1.015 4.456

(factor model only)
k=5 6.243 1.009 4.434
k=6 | 6.359 1.008 4.521
k=7 6.617 1.039 4.731
k=8 6.725 1.034 4.793

TWFE
4.603 0.593 3.498
(FE only)

This table reports the complete results for the staggered treatment adoption pattern for a larger number of factors
in wi-PCA, PCA, and block-PCA estimators. We simulate the masking 100 times and report the average results.

The units are 100 dollars per store.
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IA.A Simulation

IA.A.1 Comparison with Benchmark Estimators

Table TA.1: Relative MSE of common components for missing at random with stationary time

fixed effects

wi-PCA PCA Block-PCA TWFE
(FE-+factor model) | (factor model only) (factor model only) (FE only)
Parameters S known unknown | k=1 k=2 k=3 |k=1 k=2 k=3

obs 0.041 0.041 0.352 0.138 0.075 - - - 0.252

o.=1 miss | 0.050 0.050 0.386 0.167 0.101 - - - 0.278

all | 0.046 0.047 0.372  0.155 0.091 - - - 0.268

obs 0.121 0.122 0.390 0.221 0.214 - - - 0.290

p=04 o.=2 miss | 0.133 0.133 0.425 0.254 0.253 - - - 0.319
all 0.128 0.129 0.411 0.241 0.238 - - - 0.308

obs | 0.273 0.274 0.464 0.388 0.495 - - - 0.352

0. =3 miss | 0.288 0.289 0.503 0.428 0.551 - - - 0.383

all | 0.282 0.283 0.487 0.412 0.529 - - - 0.370

obs 0.024 0.024 0.347 0.119 0.042 - - - 0.252

e =1 miss | 0.028 0.028 0.369 0.134 0.052 - - - 0.270

all | 0.026 0.026 0.355 0.125 0.046 - - - 0.259

obs | 0.076 0.077 0.370 0.172 0.128 - - - 0.276

p=06 o.=2 miss | 0.080 0.081 0.393 0.188 0.139 - - - 0.295
all | 0.078 0.078 0.379 0.178 0.132 - - - 0.283

obs 0.172 0.172 0.419 0.272 0.308 - - - 0.319

0e =3 miss | 0.177 0.177 0.443 0.291 0.325 - - - 0.337

all 0.174 0.174 0.429 0.279 0.315 - - - 0.326

obs | 0.015 0.015 0.336  0.107 0.026 - - - 0.245

oe =1 miss | 0.017 0.017 0.352 0.117 0.029 - - - 0.257

all 0.016 0.016 0.339 0.109 0.026 - - - 0.247

obs 0.055 0.055 0.360 0.147 0.088 - - - 0.270

p=08 o.=2 miss | 0.056 0.056 0.377 0.157 0.093 - - - 0.283
all | 0.055 0.055 0.364 0.149 0.089 - - - 0.273

obs 0.124 0.124 0.398 0.219 0.213 - - - 0.303

o¢ =3 miss | 0.126 0.126 0.413 0.230 0.219 - - - 0.315

all 0.124 0.124 0.401 0.221 0.214 - - - 0.305

This table reports the relative MSE of different estimators for the missing at random pattern with stationary time
fixed effects. We compare the performance of wi-PCA, with known and unknown observation probability, with three
benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with two-way fixed effects:
Yie = p+ai + & + A Fy + €1, where = 1,04, &, Fy, Ay i N(0,1), and errors € S N(0,02) with different o..
The entries of Y are uniformly missing at random with observation probability p. Bold numbers indicate the best

out-of-sample relative model performance. We set N =T = 100 and run 200 simulations for each setup.



Table TA.2: Relative MSE of common components for missing at random with non-stationary

time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE-+factor model) | (factor model only) (factor model only) (FE only)
Parameters S known unknown | k=1 k=2 k=3|k=1 k=2 k=3

obs 0.027 0.027 0.293 0.148 0.065 - - - 0.168

o¢=1 miss | 0.033 0.033 0.322 0.182 0.090 - - - 0.185

all | 0.030 0.030 0.311 0.168 0.080 - - - 0.178

obs | 0.080 0.080 0.318 0.203 0.151 - - - 0.191

p=04 o.=2 miss | 0.087 0.087 0.347 0.240 0.184 - - - 0.209
all 0.084 0.084 0.336 0.225 0.171 - - - 0.201

obs 0.179 0.180 0.361 0.307 0.325 - - - 0.222

0c=3 miss | 0.190 0.190 0.393 0.350 0.372 - - - 0.246

all | 0.186 0.186 0.380 0.332 0.353 - - - 0.236

obs 0.016 0.016 0.284 0.129 0.034 - - - 0.166

oe=1 miss | 0.018 0.018 0.303 0.147 0.043 - - - 0.178

all 0.017 0.017 0.292 0.136 0.038 - - - 0.171

obs | 0.050 0.050 0.299 0.163 0.088 - - - 0.181

p=0.6 o.=2 miss | 0.053 0.053 0.317 0.182 0.098 - - - 0.194
all | 0.051 0.051 0.306 0.171 0.092 - - - 0.186

obs 0.112 0.113 0.328 0.226 0.192 - - - 0.202

o¢ =3 miss | 0.115 0.115 0.345 0.246 0.204 - - - 0.214

all | 0.113 0.114 0.335 0.234 0.197 - - - 0.207

obs 0.010 0.010 0.277 0.117 0.019 - - - 0.162

oe =1 miss | 0.011 0.011 0.290 0.129 0.023 - - - 0.170

all 0.010 0.010 0.279 0.119 0.020 - - - 0.163

obs 0.036 0.036 0.292 0.145 0.059 - - - 0.177

p=08 o.=2 miss | 0.037 0.037 0.305 0.157 0.063 - - - 0.186
all | 0.036 0.036 0.294 0.148 0.059 - - - 0.179

obs | 0.082 0.082 0.316 0.193 0.133 - - - 0.192

oe =3 miss | 0.083 0.083 0.328 0.205 0.137 - - - 0.205

all 0.082 0.082 0.318 0.196 0.134 - - - 0.194

This table reports the relative MSE of different estimators for the missing at random pattern with non-stationary
time fixed effects. We compare the performance of wi-PCA, with known and unknown observation probability, with
three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with two-way fixed

i.4.d.

effects: Yie = u+ a; + & + A By + €, where p =1, a;, Fi, Ay "~ N(0,1),the time fixed effects & = 0.05¢ + AN (0,1),

and errors €;¢ ik N (0, of) with different o.. The entries of Y are uniformly missing at random with observation
probability p. Bold numbers indicate the best out-of-sample relative model performance. We set N =T = 100 and

run 200 simulations for each setup.



Table IA.3: Relative MSE of common components for simultaneous treatment adoption pattern

with stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) | (FE only)
Parameters S known unknown | k=1 k=2 k=3 |k=1 k=2 k=3

obs | 0.017 0.017 0.339 0.106 0.025 | 0.340 0.108 0.026 0.250

oe=1 miss | 0.036 0.031 0.374 0.137 0.050 | 0.373 0.131 0.038 0.274

all 0.023 0.021 0.349 0.115 0.032 | 0.350 0.114 0.030 0.257

obs | 0.064 0.069 0.369 0.156 0.104 | 0.372 0.161 0.110 0.283

¢c=40% o.=2 miss | 0.108 0.105 0.414 0.210 0.165 | 0.412 0.204 0.152 0.314
all 0.077 0.079 0.383 0.172 0.122 | 0.384 0.174 0.122 0.292

obs 0.149 0.161 0.412 0.253 0.256 | 0.418 0.261 0.265 0.321

0e =3 miss | 0.232 0.233 0.477 0.344 0.377 | 0.469 0.327 0.335 0.368

all 0.173 0.182 0.431 0.279 0.292 | 0.433 0.280 0.285 0.334

obs | 0.015 0.016 0.344 0.106 0.023 | 0.347 0.108 0.026 0.255

e =1 miss | 0.029 0.025 0.367 0.128 0.041 | 0.367 0.124 0.033 0.268

all 0.019 0.018 0.349 0.111 0.028 | 0.351 0.112 0.028 0.258

obs 0.059 0.064 0.366 0.151 0.093 | 0.373 0.161 0.106 0.280

¢c=50% o.=2 miss | 0.093 0.090 0.406 0.197 0.144 | 0.404 0.192 0.132 0.302
all 0.067 0.070 0.376 0.162 0.106 | 0.380 0.168 0.112 0.285

obs 0.137 0.152 0.400 0.234 0.234 | 0413 0.256 0.259 0.319

0e =3 miss | 0.205 0.205 0.456 0.311 0.334 | 0.452 0.296 0.289 0.354

all 0.154 0.165 0.414 0.253 0.258 | 0.423 0.266 0.266 0.327

obs 0.014 0.015 0.340 0.104 0.021 | 0.344 0.108 0.025 0.252

oc=1 miss | 0.027 0.022 0.369 0.127 0.036 | 0.369 0.126 0.031 0.263

all 0.016 0.016 0.345 0.108 0.024 | 0.348 0.111 0.026 0.254

obs 0.054 0.061 0.359 0.145 0.086 | 0.368 0.159 0.103 0.277

c=60% o.=2 miss | 0.084 0.082 0.397 0.183 0.129 | 0.396 0.179 0.118 0.300
all 0.060 0.065 0.366 0.152 0.094 | 0.373 0.162 0.106 0.281

obs 0.125 0.140 0.399 0.220 0.209 | 0.415 0.248 0.247 0.321

0 =3 miss | 0.190 0.189 0.456 0.294 0.301 | 0.451 0.279 0.264 0.353

all 0.137 0.149 0.410 0.234 0.227 | 0.422 0.253 0.250 0.327

This table reports the relative MSE of different estimators for the simultaneous treatment adoption pattern with

stationary time fixed effects.

We compare the performance of wi-PCA, with known and unknown observation

probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model
with two-way fixed effects: Yir = p + i + & + AiFt + €i¢, where p = 1, a4, &, Fi, A ik N(0,1), and errors

i.4.d.

eir "R N(0,02) with different .. The entries of Y are fully observed in the first ¢T" time periods with different p.
Starting from ¢t = ¢TI+ 1, units adopt the treatment with probability 0.5. The units selected in the treatment group
do not have observation in the last (1 — ¢)7 time periods. Bold numbers indicate the best out-of-sample relative
model performance. We set N =T = 100 and run 200 simulations for each setup.



Table TA.4: Relative MSE of common components for simultaneous treatment adoption pattern
with non-stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE+factor model) (factor model only) (factor model only) | (FE only)
Parameters S known unknown | k=1 k=2 k=3 |k=1 k=2 k=3

obs 0.013 0.013 0.355 0.180 0.041 | 0.334 0.147 0.019 0.185

oe=1 miss | 0.019 0.016 0.579 0.554 0.480 | 0.416 0.253 0.038 0.142

all 0.015 0.014 0.440 0.323 0.208 | 0.365 0.187 0.027 0.169

obs | 0.048 0.051 0.376 0.209 0.091 | 0.359 0.186 0.080 0.207

¢c=40% o.=2 miss | 0.055 0.054 0.594 0.573 0.527 | 0.476 0.322 0.154 0.162
all 0.051 0.052 0.460 0.349 0.259 | 0.404 0.238 0.108 0.190

obs 0.111 0.120 0.399 0.266 0.183 | 0.387 0.254 0.189 0.228

0e =3 miss | 0.119 0.120 0.607 0.599 0.586 | 0.549 0.437 0.324 0.191

all 0.114 0.119 0.478 0.392 0.336 | 0.449 0.324 0.240 0.213

obs | 0.012 0.012 0.368 0.179 0.046 | 0.347 0.152 0.019 0.192

oce=1 miss | 0.014 0.011 0.496 0.453 0.402 | 0.278 0.143 0.027 0.126

all 0.012 0.012 0.413 0.276 0.172 | 0.323 0.149 0.022 0.168

obs 0.044 0.049 0.382 0.209 0.092 | 0.366 0.191 0.079 0.207

c=50% o.=2 miss | 0.043 0.042 0.503 0.468 0.433 | 0.317 0.202 0.104 0.141
all 0.044 0.046 0.425 0.300 0.211 | 0.349 0.195 0.088 0.183

obs 0.104 0.116 0.410 0.271 0.180 | 0.402 0.266 0.189 0.230

0e =3 miss | 0.095 0.095 0.509 0.508 0.493 | 0.363 0.285 0.230 0.165

all 0.101 0.108 0.445 0.354 0.290 | 0.388 0.273 0.203 0.207

obs | 0.011 0.011 0.372 0.180 0.043 | 0.352 0.159 0.019 0.192

oce=1 miss | 0.011 0.009 0.381 0.330 0.287 | 0.176 0.082 0.019 0.111

all 0.011 0.011 0.375 0.227 0.119 | 0.297 0.135 0.019 0.166

obs 0.041 0.046 0.379 0.205 0.089 | 0.365 0.193 0.078 0.205

c=60% o.=2 miss | 0.035 0.034 0.387 0.347 0.324 | 0.216 0.125 0.076 0.126
all 0.039 0.042 0.382 0.249 0.163 | 0.318 0.171 0.077 0.180

obs | 0.095 0.107 0.409 0.259 0.170 | 0.402 0.260 0.182 0.231

oc=3 miss | 0.078 0.078 0.408 0.384 0.384 | 0.269 0.203 0.170 0.148

all 0.090 0.098 0.408 0.298 0.237 | 0.360 0.242 0.178 0.205

This table reports the relative MSE of different estimators for the simultaneous treatment adoption pattern with
non-stationary time fixed effects. We compare the performance of wi-PCA, with known and unknown observation
probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with
two-way fixed effects: Yir = pu+ a; + & + AiFi + €, where p = 1, a4, Fy, Ay i N(0,1), the time fixed effects
& = 0.05t+MN(0,1), and errors € i N(0,02) with different o.. The entries of Y are fully observed in the first ¢T'
time periods with different p. Starting from ¢ = ¢T' + 1, units adopt the treatment with probability 0.5. The units

selected in the treatment group do not have observation in the last (1 — ¢)T" time periods. Bold numbers indicate
the best out-of-sample relative model performance. We set N =T = 100 and run 200 simulations for each setup.



Table TA.5: Relative MSE of common components for staggered treatment adoption pattern

with stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE-+factor model) | (factor model only) (factor model only) (FE only)
Parameters S known unknown | k=1 k=2 k=3|k=1 k=2 k=3

obs 0.035 0.017 0.345 0.080 0.032 | 0.343 0.078 0.026 0.282

0e=1 miss | 0.063 0.039 0.423 0.291 0.122 | 0.432 0.268 0.071 0.200

all 0.044 0.023 0.368 0.141 0.059 | 0.370 0.133 0.040 0.258

obs 0.090 0.066 0.374 0.136 0.119 | 0.369 0.126 0.115 0.308

p=05 o=2 miss | 0.135 0.110 0.455 0.363 0.292 | 0.471 0.355 0.287 0.226
all 0.104 0.080 0.398 0.205 0.172 | 0.400 0.196 0.168 0.283

obs 0.206 0.161 0.424 0.247 0.274 | 0412 0.215 0.289 0.346

0e =3 miss | 0.307 0.252 0.541 0.529 0.569 | 0.548 0.514 0.621 0.290

all 0.236 0.188 0.457 0.328 0.360 | 0.452 0.304 0.389 0.330

obs 0.026 0.015 0.345 0.084 0.029 | 0.346 0.083 0.024 0.279

oe =1 miss | 0.047 0.032 0.404 0.279 0.111 | 0414 0.265 0.061 0.181

all 0.031 0.019 0.359 0.132 0.049 | 0.362 0.127 0.033 0.256

obs 0.080 0.061 0.363 0.134 0.111 | 0.361 0.129 0.105 0.294

p=07 o.=2 miss | 0.120 0.099 0.439 0.356 0.264 | 0.447 0.339 0.233 0.213
all 0.090 0.071 0.381 0.189 0.149 | 0.383 0.181 0.138 0.274

obs 0.178 0.144 0.411 0.232 0.255 | 0.406 0.211 0.270 0.334

0e =3 miss | 0.257 0.219 0.512 0.499 0.531 | 0.517 0472 0.534 0.261

all 0.198 0.163 0.435 0.297 0.322 | 0434 0.276 0.337 0.317

obs 0.015 0.013 0.343 0.092 0.022 | 0.344 0.092 0.020 0.264

oe=1 miss | 0.034 0.030 0.395 0.264 0.094 | 0.407 0.251 0.044 0.179

P =09 all 0.018 0.015 0.349 0.116 0.032 | 0.352 0.114 0.023 0.252
obs 0.054 0.050 0.362 0.132 0.088 | 0.363 0.131 0.086 0.283

0e =2 miss | 0.083 0.079 0.431 0.325 0.213 | 0.440 0.310 0.176 0.206

all 0.058 0.055 0.371 0.159 0.106 | 0.373 0.157 0.100 0.271

obs 0.123 0.119 0.401 0.206 0.218 | 0.402 0.201 0.215 0.318

0 =3 miss | 0.186 0.183 0.482 0.447 0487 | 0.489 0.426 0.407 0.244

all 0.132 0.128 0.412 0.239 0.255 | 0.414 0.233 0.241 0.308

This table reports the relative MSE of different estimators for the staggered treatment adoption pattern with

stationary time fixed effects.

We compare the performance of wi-PCA, with known and unknown observation

probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model
with two-way fixed effects: Yir = p + i + & + AiFi + €ir, where p = 1, a4, &, Fi, A; it N(0,1), and errors
e R N(0,02) with different o.. The entries of Y are fully observed in the first 0.1-T time periods. Starting from
t = 0.1-T 41, entries are missing with probability. Specifically, if Y;; is missing, the observations for that unit in the
following time periods are also missing, i.e. if W;; = 0, then W;,s = 0 for ¢’ > t. If Y;; is observed, the observation
probability of Y; 41 is p when |a;&:| > 2.5 and 1 otherwise. Bold numbers indicate the best out-of-sample relative
model performance. We set N =T = 100 and run 200 simulations for each setup.



Table TA.6: Relative MSE of common components for staggered treatment adoption pattern
with non-stationary time fixed effects

wi-PCA PCA Block-PCA TWFE
(FE-+factor model) | (factor model only) (factor model only) (FE only)
Parameters S known unknown | k=1 k=2 k=3|k=1 k=2 k=3

obs 0.034 0.016 0.260 0.101 0.034 | 0.241 0.057 0.026 0.217

0e=1 miss | 0.066 0.042 0.961 0.818 0.584 | 1.099 0.985 0.255 0.177

all 0.049 0.028 0.586 0.433 0.290 | 0.637 0.487 0.133 0.199

obs 0.100 0.066 0.295 0.153 0.104 | 0.265 0.101 0.111 0.258

p=05 o=2 miss | 0.158 0.120 1.037 0.868 0.685 | 1.156 1.081 0.868 0.232
all 0.127 0.091 0.640 0.485 0.374 | 0.679 0.555 0.466 0.246

obs 0.229 0.169 0.342 0.255 0.245 | 0.291 0.177 0.255 0.325

0e =3 miss | 0.346 0.268 1.131 0.976 0.873 | 1.257 1.313 1.468 0.333

all 0.283 0.215 0.713 0.595 0.541 | 0.745 0.711 0.828 0.328

obs 0.030 0.015 0.264 0.111 0.033 | 0.245 0.065 0.025 0.209

oe =1 miss | 0.056 0.036 0.981 0.816 0.578 | 1.118 1.016 0.212 0.165

all 0.041 0.023 0.562 0.404 0.260 | 0.608 0.460 0.103 0.191

obs 0.093 0.059 0.290 0.162 0.095 | 0.268 0.107 0.105 0.250

p=07 o=2 miss | 0.146 0.108 1.006 0.844 0.660 | 1.157 1.118 0.790 0.220
all 0.115 0.079 0.592 0.449 0.334 | 0.643 0.533 0.396 0.238

obs 0.206 0.151 0.339 0.251 0.221 | 0.301 0.181 0.247 0.320

e =3 miss | 0.319 0.247 1.147 0.952 0.839 | 1.297 1.324 1.389 0.316

all 0.254 0.191 0.683 0.548 0.484 | 0.724 0.665 0.733 0.318

obs 0.018 0.011 0.283 0.141 0.030 | 0.269 0.091 0.019 0.194

oe=1 miss | 0.039 0.029 0.898 0.734 0.544 | 1.119 1.012 0.129 0.144

p=09 all 0.024 0.016 0.469 0.320 0.186 | 0.523 0.366 0.053 0.179
obs 0.056 0.045 0.301 0.178 0.078 | 0.287 0.126 0.083 0.216

0e =2 miss | 0.097 0.081 0.911 0.759 0.602 | 1.135 1.065 0.494 0.175

all 0.068 0.055 0.487 0.353 0.237 | 0.541 0.408 0.207 0.204

obs 0.125 0.109 0.328 0.232 0.170 | 0.312 0.182 0.202 0.246

0e =3 miss | 0.202 0.185 0.982 0.840 0.741 | 1.198 1.190 1.028 0.217

all 0.147 0.132 0.524 0.413 0.341 | 0.576 0.483 0.450 0.237

This table reports the relative MSE of different estimators for the staggered treatment adoption pattern with
non-stationary time fixed effects. We compare the performance of wi-PCA, with known and unknown observation
probability, with three benchmarks: PCA, block-PCA, and TWFE. We generate data from a one-factor model with
two-way fixed effects: Yir = pu+ a; + & + AiFi + €, where p = 1, i, Fy, A; i N(0,1), the time fixed effects
& = 0.05t + N(0,1), and errors e;; "~ N(0,02) with different 0. The entries of Y are fully observed in the first
0.1-T time periods. Starting from ¢ = 0.1-7T + 1, entries are missing with probability. Specifically, if Y;; is missing,
the observations for that unit in the following time periods are also missing, i.e. if W;; = 0, then W,y = 0 for
t' > t. If Y, is observed, the observation probability of Y; :+1 is p when |a;&| > 2.5 and 1 otherwise. Bold numbers
indicate the best out-of-sample relative model performance. We set N =T = 100 and run 200 simulations for each

setup.



IA.B Empirical Study

IA.B.1 Data for Empirical Study

We use the weekly NielsenlQ) retail scanner beer sales data from the Kilts Center for Marketing.
Our data consists of 208 weekly observations of beer sales revenue from January 01, 2017, to
December 26, 2020, which is aggregated at the state level for the U.S. Our cross-section consists
of 45 states, of which 39 are control states and 6 are treated states that legalized the retail sale of
marijuana at different time points during this period.

We explain why it important to normalize the weekly beer sales revenue by the number of stores
in each state. The coverage of stores in the Kilts Center dataset fluctuates over time, in particular
at the end of the sample. Figure IA.1(a) shows an example of the varying number of stores over
time in Connecticut covered by Kilts Center dataset. Notably, there is a substantial increase in
the number of stores in 2018. Therefore, a straightforward aggregation of sales revenue from the
archived stores would yield misleading results. To address this issue, we normalize the total beer
sales revenue by the number of stores in each state at each time period. As demonstrated in Figure
IA.1(b), this normalization procedure helps to mitigate the impact of changes in store coverage and

provides a more accurate representation of the beer sales data.

Figure TA.1: Number of stores and per-store beer sales revenue of Connecticut
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JA.B.2 Observed and Estimated Time Series

We present the observed time series and estimated control time series for all six treated states.
We use wi-PCA, PCA, block-PCA and TWFW to estimate the common components, which serve
as the control outcomes. We use wi-PCA with k = 2 factors and PCA and block-PCA with k =4
factors to have a fair comparison in terms of the degrees of freedom. We also show the results for

k =1 factor for PCA and block-PCA.



We observe that the results from the main text for Massachusetts and Nevada generalize to the
other treated states. We see that using more factors for PCA and block-PCA can lead to overfitting

on the in-sample data, while using too few factors leads to an omitted variable bias.



Figure IA.2: California
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These figures show observed outcomes and estimated control outcomes of beer sales per store for California. The
figure above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k& = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure TA.3: Michigan
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These figures show observed outcomes and estimated control outcomes of beer sales per store for Michigan. The
figure above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and block-PCA
with k& = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure TA.4: Illinois
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These figures show observed outcomes and estimated control outcomes of beer sales per store for Illinois. The figure
above uses PCA and block-PCA estimators with £ = 1 factor, while the figure below uses PCA and block-PCA
with k& = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure TA.5: Massachusetts
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These figures show observed outcomes and estimated control outcomes of beer sales per store for Massachusetts.
The figure above uses PCA and block-PCA estimators with k = 1 factor, while the figure below uses PCA and
block-PCA with k = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure IA.6: Nevada
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These figures show observed outcomes and estimated control outcomes of beer sales per store for Nevada. The figure
above uses PCA and block-PCA estimators with £ = 1 factor, while the figure below uses PCA and block-PCA

with k& = 4 factors. The grey vertical curve denotes the time of treatment.
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Figure TA.7: Maine
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These figures show observed outcomes and estimated control outcomes of beer sales per store for Maine. The figure
above uses PCA and block-PCA estimators with £ = 1 factor, while the figure below uses PCA and block-PCA
with k& = 4 factors. The grey vertical curve denotes the time of treatment.
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IA.C Proofs

To simplify the exposition we use the notation Dy = % Zfil Wit/ Dit, V_VZ =z Zt 1 Wit, and
the information set I; = I;1 U--- U I;p for any unit ¢, and I = I U--- U I.

IA.C.1 Proof of Theorem 1: Consistency
IA.C.1.1 Consistency for the sum of grand mean and fixed effects

Lemma 1. Let §y 7 = min(N,T). Suppose Assumptions 1, 2, 3 and Case 1 in Assumption 4 hold.
When N, T — oo, wi-PCA with weights (4) consistently estimate the sum of grand mean and fized

effects:

B|((+ a4 6) - (o) < 50

T ONT
which implies that \/dn T ((ﬂ +ai4+ &) — (n+ o + ft)) = 0p(1).

Proof. Plugging the expression of Yj; into &, we have

N
1 -
Dtl Ngl (H"‘Oéz_"ét"_A;rFt"‘Elt)—,u
N
. 1 W;
:gt'i‘(li_/i)-i-Dtl'NE p.Zt(Ozz'—i-AiTFt-l-eit).
i=1 Pt

Then, plugging Y;; and g} into &; yields
1 & X
i =W;1-T;Wu <M+Oéi+ft+AlTFt+€it_ft> — [i
1 & .
=i+ (p— i) + W TZWit (St—ft+AiTFt+€z‘t>
t=1
1 T 1 N T W
=y + Wijl . T Z Wit <AIF¢ + 6it> — VV;l [ Z Z Witpitht_l (Oéj + A]TFt + Gjt) .
jt

NT 4
t=1 7j=1t=1
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We combine these two terms and derive the estimation error of i 4+ &; + thi

Aip= ji+a+&— (u+ai+&)

1 < W, d
= D' ~ Z pj: (aj +AF+ ejt> + Wit Z Wis (AZTFS + qs)
Ait 1 A::v?
- Wi NTZZWZS .J: (O‘J+A Fy +6J8)'
j=1s=1
A'Lt,iﬂ

In the next steps, we derive bounds for the fourth moments of the three terms Ait,l, Ait,Q and
Ait’g, respectively. To simplify the exposition, we use the notation X;; = Wi, /pi.

First, we consider the term Aim =D, 1L Z] 1 Xje(oy + A F; + €j;). By Assumption 1.2, we
have ¢ < W;. <1 and ¢ < D; < 1/n. We denote \iy = o + A Ft + €;¢. Since X 1L \js|I for any
1,7,S,t, it holds that

4
N
_ 1
[Azt 1<q *E N Z XjtAjt
j=1

N
_ 1
=¢ s D E[EXa XX Xull] - E Diedjedn | T]].
i»jvhvl:]-

By Assumption 1.3, Wj, 1L Wy|l for any i # j. When ¢,j,h,[ are distinct, we have that
E[X: Xt XnXye|I] = 1 and E[XiAjsAndie] = El(ai + A F) (o + A] F) (o + A Fy) (o + A B)J;
when i, h, [ are distinct, E[X2 X5, Xy |I] = E[X2|I] and EN2Z A |I) = E[(c; + A By + €i)? (o, +
Al Fy)(aq + A Fy)|I]. Furthermore, since Zf\il a; =0 and Zfil A; =0, it holds that

i,h,l=1
6 M
+ q 4. W Z E |:X,L2t(OZfL + AZTFt + Ezt) (Oéh + Ah Ft)(Oél + Al Ft):| m S m
i,hl=1
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Next, we consider the term Ait72 = Wfl% ZT Wis(AIFS + €;5). We have

1, s=1
T
~ _ 1
EAL) <8t = Y E [WiSWitWinizAiT F A AT F,A]F,
s,t,y,z=1
.z
+8¢7%- T Z E [WiWisWiy, W] - E [er€is€iyeiz] -
s,t,y,z=1

Since factors are independent of the missing patterns and loadings, and the loadings have bounded
fourth moments, the first term on the RHS is bounded by

T

1

5 > E {WitWiSWinizAiTFtAiT FA] E,ATE,
s,t,y,z=1

T k
1
= Z Z E [WitWisWinizAi,pAi,in,rAi,h] ‘E [Ft,st,qu,er,h]
2=1p

T4
sty ,q;r,h=1
T k
M M
< T4 Z Z |E [Ft,st,qusz,h” < T2’

s,t,y,2=1p,q,r,h=1

where the last inequality holds by Assumption 3.3. Furthermore, we have that

T T
1 1
7 > E[WuWisWiy Wil B [eiciseiyeiz] < 7i > |E [euciseiyeizl| < M/T?.
s,t,y,z=1 s,t,y,z=1

Combining these two terms gives us E[Afw] < M/T?.

Finally, for Ait,g, we can write it as

N T
~ = 1
Ait?g = VVL_I . ﬁ Z Z Wiszs (l);1 — 1) (Oéj + A;rFs + €js>

j=1 s=1
w1
1 N T
Fr—1 T
+ Wi,~ . W Z Z Wiszs (Oéj + Aj F + 6j5> .
J=1 s=1
o

For any t, we observe that

_ 4

I] <q*E[1-D)] < %
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Therefore, the fourth moment of w; can be bounded by

4 M L -1 4 AT 4
E o] < 37 2 S E [E [0 = )'11] E () + AT+ 30)'11]
M

IN

N T M
-
N3T ZZE [(aj +A; Fs+ 63’5)4} < N2

Additionally, following the proof of Ait’l, we can show that

4 4
T T N T N
1 1 1 1 1 M
s=1 s=1 j=1 s=1 j=1
Therefore, E[AEL“,’] < M/N? and we complete our proof. O

Lemma 2. Let dy 7 = min(N,T). Suppose Assumptions 1, 2 and 3 and Case 2 in Assumption 4
hold. When N, T — oo, wi-PCA with weights (5) consistently estimates the sum of grand mean and
fixed effects:

- M
E [((ﬂmﬁ&) - (u+ai+§t>)4} <5
which implies that \/dn ((/Z +a; + &) — (b+a; + {t)) =0,(1).

Proof. Similar to Lemma 1, we decompose the estimation error Ay = (i 4 d; + &) — (1 + o + &)

into three components

A S 1 s Wy T 1 1y T
Ait: D Z = (Oéj+Aj Ft+€jt>+Wi7. TZWW (AZ Fs‘l—éis)

. —
Nj:1 W],-Ut s=1
~7Lt,1 Ait,2
N T _
= 1 Wisv =~
-1 Js —1 T
_Wi,- ﬁ ZWZSW U ‘DS (a]+AJ F3+6j5>,
j=1s=1 2o 78
Ait3

where D; = % Zfi L Wio/ (W;.vt). Based on Lemma 1, Aim has bounded fourth moment. Next,

we bound the other two terms Ait,l and Az‘t73.
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Consider the first term Ait,l- We decompose it as follows

A it Wi AT 4
A1 =Dy NZ<W ’Ut_pjt> (Oéj +Ath+€jt)

~ 1 W -
—1 E t T
+Dt c p]]t<OéJ+A]Ft+EJt>
N=

Since Wi AL Wis|I; for any s and ¢ satisfying [s —t| > c and v = LS T o+ O(%) it is easy to
see that E [(W). — u;0)*|I] < M/T?, and thus,

4
(W)
Wjve  pii
Moreover, by Assumptions 1, D, satisfies ng < D, < 1/ng. As a result, the first part of Ait’l can
be bounded by

E

1 M
I] S E [(W), — o) 1] < 7.

4

N _
~ 1 W'tU W‘t
E Dl-—Ej itz ot ( L ATE >
t N (Wj,.vt pjt> @Ay et

<Wﬂv _ W)
Wij.oe  pijt

T 4
o + Aj Fi + €jt>

IA
=
&
=
M) =
&=

1 & - 4

IN

/N

M N
o % |

olE

According to Lemma 1, we can bound the fourth moment of the second part of Ait’l by M/N?2.
Therefore, we get that E[Afm] <M/ 1

The last term Ait73 can be decomposed as

N T _
Az‘t,?) = lel . L Z Z Wis ( YV?SU — VV]S) D;l <O¢j + AjTFs + €js)

NT &~ W, vs  Djs
N T
T Wis [~ 1
+ W WZZWM# (Ds1 — D; 1) (oz] +AF, —|—e]5)
j=1 s=1 Pjs

N T
1 Wi
W S D S Wam D (a4 A Byt 6 ) -

j=1s=1 Pjs

Note that the last part on the RHS is the term Amg in Lemma 1, and thus its fourth moment can
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be bounded by M/N?2. We can bound the first part of Ait,g by

4
N T _
- 1 W.so  W; ~
—1 § : Js _ Js —1 X T .
S\ =1 ;WZS (ijs Pjs ) D <a] A E 638)
N T _ 4 N T
1 stv st 1 T 4
j=1 s=1 ’ Jj=1s=1

j:
N T
M 1 T 4
< TNt 2 2 F [(aﬂ' +ATE + o) ]
M
=72
Observe that E[(D;! — Dy NI < M - E[(Ds — Dy)*I] < M/T?. By similar arguments, we can
bound the fourth moment of the second part of Ait73 by M/T?. This completes our proof. ]

Lemma 3. Let dny 7 = min(N,T). Suppose Assumptions 1, 2 and 3 and Case 3 in Assumption 4
hold. When N, T — oo, wi-PCA with weights (6) consistently estimates the sum of grand mean and

fized effects:
- 4
EK@+@+&%%M+%+&D}sg&,

which implies that \/dn 7 ((/Z +a; + &) — (b+a; + {t)) =0,(1).

Proof. Since the observation pattern is monotone and % Zf\il Wi > q for any t, there are at least
gN fully observed units. We denote by N, and N, the set and number of these units. The time

fixed effect estimator & can be decomposed as

~ . 1
§t=§t+(ﬂ—ﬂ)+ﬁz (ai+A¢TFt+€it).
€ ieN.

We plug ét into &; to obtain

T -1 7

N 1 1 1 1

a; = oy — ﬁ E aj + (T E Wit) T E Wi A:Ft + €t — ﬁ E (A;FFt + ejt>
t=1

cjeNc t=1 cje_/\/'c
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Combining these terms, we get the first-stage estimation error

T
Ait -_— Z (A Ft + Gjt) + W_ Z Wis (A;FFS + 61‘5)

]GNc s:l

Ait,l Ait,2
1 & 1
— VVZ’_1 . T Z Wzsﬁ (A‘;—Fs + 638)
s=1 € jeN:
Aus

According to the proof of Lemma 1, E[Afm] < M/(SJQV,T. Since E HN% D ieN. < M/dNT, it is
easy to see that E[Afm] < M/5]2V7T and ]E[A;ltyg] < M/8% . O

IA.C.1.2 Consistency for the common components

The transformed Y has an approximate factor structure
Vie = A} Fy + é

with a new idiosyncratic error term éy = e + (1 + a; + &) — (i + & + &). We denote Ay =
(f+ @+ &) = (u+ai + &)

We first estimate the cross-sectional second-moment matrix 3 with Zl] = |Q”\ ZteQ YnY;t
Then, we apply PCA to ¥ to estimate loadings. Specifically, we solve NEA AD, where D is the

diagonal matrix consisting of the k largest eigenvalues of 3 /N. Therefore, A; can be expanded as

N N
5 _ 1 - 1 1 . 1
A=D1T=N"AAT E:FFTA +D‘1—§:A Al —— Eer
' N & Qyl & T N & Qyl & T
J= tEQ” Jj=1 tEQW
1 1 1 1
+ D! EjAAT E:Fé-JrDl—E:]\ E:ee
N & (Qy] o N &Qyl & T

To simplify notation, we define three auxiliary terms

Nij = AFtEt AFth* t)

1 _
Ul teq, U1 teQ;

Yij = 6 6 —A' .
17 |Qz]| Z €it jt |Qz]| Z it T It ]t)

t€Qi; teQi;
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We let H; = ZJ 1A AT ‘Ql | ZteQ FyF," and consider a unified rotation matrix H for all i
as H = (NT) 1D 1ATAFTF This yields the decomposition

. - (1 - 1 . 1 -
Ai:HAi—F(Hi—H)Ai—f—D 1 NZAjnij+NZAj§ij+NZAj’Yij

Lemma 4. Let §y 7 = min(N,T). Suppose Assumptions 1, 2, 3 hold and the first-stage estimation
error E[A4] < M/5]2\,’T for any i and t. Then, it holds that

1. For any i and j, E[ﬁ%] < M/énr and E| 123] <M/énT.
2. For any j, %sz\; IE['yfj] <M/dnT.

Proof. 1. For n;;, we have

E[n;] < AT Ftejt +2-E 3 A RA,
‘QU tGQ ’QZ] tGQ

According to Lemma 1 in Xiong and Pelger (2023), E {(ﬁ ZteQ-j A:thjt)ﬂ < M/T. For any
ij i
1,4,t and s, by the Cauchy-Schwarz inequality, it follows that

AN FsAjs| < (E [(AIFtA;rFS)Q} B [(Aﬂﬁjs)ﬂ)m

- (s iat) < AL

Therefore, the second term E [(ﬁm ZteQij A;rFtAjt)ﬂ < M/dn 1, and thus, E[nf]] < M/énT. By
symmetry, E| fj] <M/onT.

2. Similar to part 1, we just need to bound the three terms % ZZ]L E [(IQ—I‘ Zttej gitejt)2]7
(¥ 2,

N X N X R
& T E (G5 Teeq, cbi)?] and £ T E | (1 Lieg,, Bulie)?].
The first term can be decomposed as

1 1
‘Qw‘ Z €it€jt = ’Qij’ Z leit€je) + m Z (€irejr — Elejreje]) -

t€Qi; t€Qyj t€Qij
By Assumption 2.3,
N 2
1 1 1 , M
N2 D Bl | SHigm 2 WS w
N = |Q”’ t€Qi; N3 Q5] SHEQi; N

Additionally, we have % Zf\ilE [(m ZteQij (€i€je — E[eiteﬁ]))Q] < M/T. Therefore, the first
term can be bounded by M /0N 7.
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Since E[A%] < M/éNT, the second term can be bounded by

2

_ 1 Y
Z €t N ; ’Qw’

teQi

~ M
D AN <.

ONT

N
1 1
N2 E
N = Qi £ ,

Similarly, the last term satisfies + SNE [(ﬁ ZteQ~j AitAjt)Q} < M/8%
(¥} 2, kl

Lemma 5. Suppose Assumptions 1, 2, 8 hold and the first-stage estimation error E[Aft] < M/8%

for any i and t. Then, as N,T — oo,
1 AT ' ' T 1
LA (Vomy ow)To [
2. AT ((AFT OW)AFT W) [ L ) A% D;
5. 4AT (ASFEAT) A D;

where D = diag(dy,--- ,dy) is the diagonal matriz consisting of the eigenvalues of XAXp.

Proof. Define T' = {\ € RV*1: AT\ = N}, and let

R(\) = %)\T ((Y@W)(Y@ T o |:‘Qlij|:|) A,

RN = %AT ((AFT OW)AFT o W) ® [IQZlD A

F'F
* T T
— A——A .
R (/\) N2/\ ( > A

We have the decomposition

R()) — R*(\) = R(\) — R(\) + R(\) — R*(\).

For R(\) — R(\), we have

~ 1
sup |[R(A) — R(A)| < sup —
)\GF’ 9@ 9l ,\eFN2

AT <(é®W)(éT®WT) ® [!Qlij!]) )\‘
— AT ((é@W)(FATG)WT)G) [!QlUID )\‘.
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The first part on the RHS satisfies

N
1 1
AT <(é® W owh o [ D /\’ = Sup - Z AiNjYij

sup —
Aer N2 Q] xer N2 12—
1/2 . 1/2
< sup Z NN 7 2 %
Al ij=1 ij=1
= 0p(1),

where the last equality follows from Lemma 4. Similarly,

AT<(é@W)(FAT@WT)®[ ! D ’—sup ngw = 0,(1).

Qi xer N2 | 2=

As a result, supyep |[R(A) — R(\)| 2 0. In the rest of this proof, we follow similar steps as in Lemma

4 in Xiong and Pelger (2023) and sequentially show that

super [R(A) = R* (V)] = 0, super [R(A) = R*(A)] 5 0

| super R(A) — supper R*(A)] = 0

supyer R* () Lody, supyer R(A) Lod

Let Ay = argsupyep R(\); then R(Ay) 5 dy, R*(Ay) 5 dy
R(A) B di, R(A) B dy, and R*(Ay) B di fori=1,--- k.

AR e

Lemma 6. Suppose Assumptions 1, 2, 3 hold and the first-stage estimation error E[A?t] < M/(5]2V7T
for any i and t. Then, as N, T — oo,

1. %]\TA 5= DI/QTE;UZ, where the diagonal entries of D are eigenvalues of XaXp, and
Y is the corresponding eigenvector matric such that Y'Y = 1.
2. H% (QT)™!, where H= =D 'ATAFTF.

Proof. We left-multiply ]{,EA AD on both sides by N( FTF)1/2AT and obtain
1 /2 4 o 1 1/2 4 o
~F'F) —SA'SA=(_F'F) —A"AD.
(777%) = (27F)
This can be written as

1 12 4 1 1 - 1

T Y2 TAF
TF F) NA AD

25



with
dvr=(~FTF " AT (S AlrTraT) 2R
N, T — T N T N .
For any i and j, (EN] — A%FTFAT)”- can be decomposed as A:AF,UA]- + nij + &j + 7vij, where
Afpi; = ﬁ Zteer FF, — %FTF. Therefore, it holds that
ij 3
2

1 - 1 1 -
AT (S A=FTFAT) =A
HN ( T ) N

k N
=Y % > Aiphjy [AZ-T ApiiAj +nij + &ij + %‘a}

p,q=1 3,j=1
L 1/2
2 %2 T
<> Z AGAY, N2 Z (A" Arijh; N2 Z my + N2 Z &+ N2 Z s
p,g=1 3,j=1 1,7=1 3,j=1 3,j=1 1,7=1

By Lemma 4, dy1 = Op(1/+/n,1). We follow the same steps as Proposition 1 in Bai (2003) and
show that .
x ~1/2
SATA L Q= DTy /2,

Furthermore, it holds that

1 - - _
H= D 'ATAFTE S D 'DV2ry My = DAY = (@)

Lemma 7. Let 6y = min(N,T). Suppose Assumptions 1, 4, 2 and 3 hold. For any t and
r=1,---,k, we have
1 & M
) WiWihi o Aj el || < — .
2 Z w VYV gtidgridgrCit gt =

= oNT
Proof. We only show the proof for Case 1 with known observation probability, and the proof for the
other two cases are similar. Based on Lemma 1, Ait can be decomposed as Ait = Ait,l +Ait,2 —Ait,g.

Since both of the idiosyncratic errors and factors are independent of the loadings, fixed effects and
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observation patterns, we have

N
1 ~
E ﬁ E WithtAi7rAj7T€itA]'t,3
=1

k
3 ‘IE W W W Wi X1 D i A | - BIF peil]

= [E N3 Z ZW Wi Wi Wis Xis D3 N N i (s + A Fy + €1,)

1,7,l= 1 s=1
< N3 Z Z ’E [ Wi W X s_lAi,rAj,r@l] - Eleq]
1,7,l= 1 s=1
N T
1
2T
i,7,l=1 s=1p=1
1 L 1w
+ ﬁ Z T Z ‘E [W IWthJtW]les 1Az TAj r} : [eztﬁls]
igl=1" s=1
N T k N T
M M
S NT Z > [ElFspeall + 2T Z > | Bl
i=1 s=1 p=1 i,l=1s=1
M
< —.
- T

By similar arguments, we can show the bounds ’E[ﬁ EZ 1 Wi Wii\;, TA],TeztA]t 1)| £ M/én, and

E[ﬁ le 1 Wth tAz T‘A T'EZtAjt 2]’ < M/(SN,T~
Proof of Theorem 1:
Proof. Step 1 — Consistency of loadings
Observe that for any unit i,
’ ~z - S ‘ ~z -

We can decompose the first term on the RHS as

1 Y 1Y
. -
J: :
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By Lemma 4 and Lemma 5, this implies that

_ 2 _ 2 1 M ’ 1 M ’ 1 M
‘Ai—HiAi §3HD_1H A 2o A ||+ | 2 A+ || Do A
j=1 Jj=1 Jj=1
ol T2 (1R, 1, al
<sfo- (A | b g
J j=1 j=1 j=1
1
:O _—
p<5N,T)

The second term ||(H; — H)A||* can be bounded by

N T
- .1 ~ 1 1
|(H; — H)A;|)* = || D 1N§ CAA] > RET - TE RF, | A
j=1 t=1

Qs

teQij

IN

= 1|2 9 1 AT 2 2
T RO Sy %1 = Sy 1 VI V-V
j=1 i=1

where Ap;; = m ZteQij FF, — % Zle FyF,". Following Assumption 2, we have

1 N

N
1
E |5 2o NI 18R 17| = 5 DRI B Ary] <
j=1 j=1

M
T

Therefore, ||(H; — H)A;||* = O, (), and thus,

Step 2 — Consistency of factors

T2 0)() + 0y(7) = Oyl

Ay — HA; b5

).

ONT

We derive the estimated factors Ft by regressing the observed Y;t on 1~\l

L -1 L
o AAT ALV -1 ...
F = (N ;1 Wit Ai A, ) <N ;1 WnAlYZt> , t=1, ,T.

We define an auxiliary F}* as

3 1 Y ! 1 N .
Er = (N Z Wi HAA, HT) (N Z WitAiSQt) .

i=1 i=1
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We have the decomposition

~ 2 ~ ~ 112 ~ 2
- o < -

We first analyze the second term ||F;* — (HT)~'F}||2. Observe that F}* can be expanded as
~ 1 N
Ff = (HT)—IFt + (HT)_IEX},: N ZWitAiéit

=1

N
~ 1 ~
+(HH) TS HT N > Wit(Ai — HA) (A Fy + éir),
i=1

where fJA,t = % Zfil WitAiAz-T. By Assumption 2.2, it holds that 2/\715 LN Y, for some positive
definite matrix ¥, ¢. Thus, it follows that

-y < 2oy sl
o)

LN
=) Wiy
N3

Op(1)
1 & ’
+2 H(HT)_IEX}tH_IH : HN Z Wir(Ai — HA)(A] Fy + éi0)
i=1
Op(1)

For the first part on the RHS, we have
L 2 T | X i
N Z Wit Niéir|| = ZE Nz Z Wit Wit i r N €i1€ e
i=1 r=1 |7 ij=1 |
o[ | i

= ZE m Z WithtAi,rAj,rfitejt -2 ZE N2 Z Wththz TAJ reztA]t
r=1 i i,j=1 ] 3,0=1

k N
1 - -
+ Z E e Z Wit Wit v Nj r Aie Nt
=1 ij—1
By Assumption 2.3, E |:N2 ZZ] 1 WithtAi rAj,Teitejt} = ﬁ ZN E [W VVthi TAJ' r] . [eitejt] <

2,7=1
M/N. By Lemma 7, ‘IE [W E Wit Wi N A, TeltA } ’ < M/on 7. For the last term, there is

1,7=1
N N
1 L 1 1/2 M
N2 Z Wit Wit N o Njr DN Ay | < N2 Z < . Aﬁ]) < Soo
ij=1 =1 NT
2
Therefore, we get that E H% Zfil WitNiéi|| < M/ON .
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Moreover, based on the consistency results for the loadings, we have

N 2
1 ~ .
N ; Wzt(Al — HAl)(A;rFt + eit)
<1§:(ATF +éin)? 1%\]\«—}1/\- Lo o,-1)
_N P 7 t €it N po 7 7 - P (5N7T .

Thus, we have derived that ||[F} — (HT) "' Fi||> = Op(2=).

ON,T
Next, we consider the term ||F; — Fj*||2. Observe that

) ) LN o -1 L o L )
Ef —F, = (N ; Wi A A ) [N Z} Wi A — ¥ ; Wi HNA HT | Y
Ape
We further decompose A At As
- 1 X - - - -
Bri=~> Wi (Rs = HA) T+ Wi(Ai — HA)HA)T + Wig(Ri — HA)(R; — HA)T|.
=1

Based on the consistency results for loadings, A At can be bounded by

N N
1Andl? < 6+ S IHA? 5 3[R - aad|
, a Ni:l Ni:l
N N
1 ~ 2 1 ~ 2 1
3. = ‘Ai—HAZ- = ’Ai—HAZ- — 0, (—).
+ N; N; p((;N’T)

Therefore, according to Lemma 6, iA,t = % Zﬁl Wzt]\l]\;r LN (QT)_12A¢Q_1. Furthermore, since
Ef = 0,(1) and By 4 = Op(1), it follows that

~ ~ 112 ~ 2 ~ 290 ~ 12
il < foud Jond
<oftnd il St 3 oo
+3 iA,tHQ Fy 2']1722‘&—[‘1/\1 2']1/;:’&—1{1\2‘ :
:op(éNlT).

)
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Therefore, it holds that

1

2 =172 B
|- @R < |F - et

g HF;‘ _ (HT)_lFtH2 = 0,

Step 8 — Consistency of common components:
We have

é,' —Cit:(/NL—Fdi—i-gt‘F]\;rFt)_(M“‘ai"i‘gt_'_AzTFt)

- - - - T
= A+ A (B— () R) + (K- HA) (HT) 'R
Based on the consistency results of loadings, factors and first-stage estimation, it holds that

(éit —Cy)? = <Ait + 1~\Z~T (Ft - (HT)_IFt) + (f\i — HAi)T (HT)_IF,5>2
< 3A2 +3 ( A;

1
INT )

2 - 2 -
. HFt _ (HT)_lFtH 43 ‘ A, — HA,

e

= Op(

TA.C.2 Proof of Theorem 2: Asymptotic Normality

First, we introduce the martingale central limit theorem that we will use in the main proof.

Theorem 1. Let {Spi, Fni, 1 < i < n,n > 1} be a zero-mean, square-integrable martingale array

with differences Xp;, and let n* be an a.s. finite r.v. Suppose that
D B [X2 | Fuica] 207,
i

ZE [‘Xm,‘2+6 | ]:n,i_1} 50 for some § > 0,
i

and the o-fields are nested: Fpn; C Fpiyr for 1 < i < n. Then Sp, =Y, Xp; i) Z stably, where
the r.v. Z has characteristic function Elexp(—3n*t?)].
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Proof. 1t holds for any € > 0 that

ZE (| X | > €) | Fizi]

IN

|Xm"2
> [65 T(1Xni] > €) | Fia
=1

1 n
& LB Xl P

=1

IN

Therefore, 3, E [| Xpni|**® | Fim1] 2 0 implies that 37 E[X2, - I(|Xni| > €) | Fnio1] 2 0. By
Corollary 3.1 in Hall and Heyde (2014), this completes our proof. O

TIA.C.2.1 Asymptotic normality for the sum of grand mean and fixed effects
Lemma 8. Suppose Assumptions 1, 5, 6 and Case 1 in Assumption 4 hold. When N,T — oo, the
asymptotic distribution of [t + ét + &; estimated by wi-PCA with weights (4) is

Voot (A& +a) = (n+&+ai) SN (0,1),

_ 5 6N,T 2 .
where o, = N i1 T 7 O with some ;1 and oy2. Moreover,

B (& ) = v ) | < o

Proof. We denote the re-weighted observation indicators by X;; = W;;/pit. According to Lemma 1,

the estimation error of fi + &; + & is

N T
~ 4 1 |
Ay = D; ' ~ > X (aj +AjF+ Gjt) +wit T > Wi (AZTFS + 615)

j=1 s=1

A t,1 A:’;Q
1 N T
i,~1 Nizz ZSX] D (O@‘{‘AIFS—FGJS)
Aiia

We decompose the first term Ait,l as
N

N

~ _ 1 _ 1

Ait,l =D, L NZ(th — 1) (Ozj + A;Ft + Ejt) + D, L. N Z (Oéj —I-A;-rFt + Ejt> .
J=1 J=1
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Similarly, we decompose the third term Ait’g as

'NT
j=1s=1
1 N T
FW S S W (X - ) (a5 + AT Py ¢ )
j=1s=1
1 N T
+ WZ’_l ﬁ ZZWZ& (Oé] + Aj FS + 635)
j=1s=1

Since o, Aj, s are i.i.d. and E[(D;* —1)* | I] < M/N?, the first part on the RHS of A;; 3 can be
bounded by

N T
1
-1 -1 T
E (Wi 7 20 o WasXye (D71 = 1) (g + A B+ 650
j=1s=1
4
N
E iE (a-+ATF+e~> | I
N j g L's js

|/\
N[ =
IIMH

,p
o~
]
™

n
Il

_
<

—_

4
N
M 1
§N2 TZE Z(a]+AF+6JS>
s=1 7=1
M
< N
For the second part of A;:3, we have
;] NI 4
T
E WZZWZ-S(XJS 1) (A} Fy + €j5)

=1
3 N T
iz D D EWaWiu(Xjs — 1)(Xis — 1)(Xnu — 1)(Xow — D)(A] Fs + €55)

(Al—rFs + 6ls)(AZFu + €hu)(AIFu + 6ouﬂ < W )

where the last inequality holds because E[W;s Wiy, (X5 —1)(Xis — 1) (Xpy — 1)(Xouw — 1)|1] = 0 when
1,7,1, h,0 are distinct or j,l, h, o take three different values other than ¢. For the third part in the
decomposition of Ait,g, we have ﬁ Zjvzl Zstl Wisoj = Wz% Z;V=1 a;j. Furthermore, it is easy
to see that = Z;VZI 23:1 Wis(A;—Fs +€js) = Op(ﬁ) and its fourth moment can be bounded by
M/T?. Therefore, we conclude that

N
Ait,i’) = WL_I 1 Z 1 ZWZS js — Ozj ZCKJ + O 5 )

j:1 5:1 N, T
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Combining the three terms Ait,l, Aim and Amg, we can show that

1

N
~ _ -4 1 1
Ait = Dt 1 N (th — 1) (OLj + A;Ft + 6jt> — VVZ-“I . Z Wis Z(st — 1)ozj

=

T T N
- 1 1 1 1
+ Wi,-l . (T Z Wisﬁis + A;r? Z ijst) + Dt 1, Z (A;—Ft + 6jt> + Op(i)
s=1 s=1 j=1
This proves that E[A%] < M/(52
We first analyze the abymptotlc distribution of + Z i=1(Xjt—1)a;. Conditional on I, (X —1)a;

and (Xj; — 1)y are independent for any j # [. The expectatlon satisfies E[(Xj; — 1)o|I] = 0. By
Assumption 6.2, as N — oo, it holds that

1 & 1 &
NZ t—122!I*NZ tu_l)a?%%ft

Furthermore, we have

N

Y E

Jj=1

==

1N
O

4
(\;N(Xﬁ—naj) ] NQZ@ E[(X;— D' 1] <

where the inequality holds because | X j¢| is bounded. By the law of large number, we have % Zjvz 1 a? LS

E[oz?] < M. Asaresult, Z;VZI E [(ﬁ(th — Day)?t| I} 2 0. According to Theorem 1, \/iﬁ Zé\;l(X ¢
1)Oéj ﬂ) N(O, Satt — O'Z).

Similarly, we can prove the martingale CLT for the other two terms 4 Zé\f:l(X it — l)AjTFt and
+ Zé-v:l(th — 1)ej;. According to Assumption 6.2,

Mz

1
P (B [X3 [ 1] = 1) AjA] B spu — a,

M=

1 O ZAAT
= ZIE[(XJt 1)2A;A] u} 1

<.
Il

and

=

N
1
Z (Xje—1)%, | 1] = o2 Z X2 1] —1) B (s, — 1)0?

J=1

2 \

By similar arguments, we get stable convergence in law for \F Z] 1 (Xj— )ATFt S N0, F,T (spp—
E0)F) and - SV (X0 — ege - N(0,02(s; — 1))

Next, we analyze the asymptotic behavior of & ST Wis~ Z;V:l(st —1)a;. We denote G5 =
% Zév:l(st — 1)aj. Note that VNG, - ,v/NGr| is jointly asymptotically normal. For any
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s,u, the asymptotic covariance between vV NG, and VNG, is
1 N
ACov(VNG, VNG,) = plimN_,OON Zajz (B[XjsXju | I] = 1) = Sa.su — 02
j=1

T
s,u=1

Furthermore, plim %oo% > WisWiusa,su €xists by Assumption 6. As a result, we have that
+ ZST:1 Wis+ Z;VZI(st — 1)y is asymptotically normal with zero mean. Note that the above four
terms are jointly asymptotically normal because their randomness comes from the cross-sectional
missing pattern.

Next, we analyze the term % Zzzl Wise€is. Conditional on W; = {Wis, s < T}, Wigeis and Wigeys
are independent for any s # t. We have E[W;s¢;5|W;] = 0, and by Assumption 6.1,

1 _
T ZE (Wiel | W] = Wi.o? 2 giio?.
s=1

Furthermore, % Zzzl E [Wisefs | WZ] 2 0. Therefore, ﬁ Z;,F:l Wis€is AN (0, g;i02). Similarly,
we can prove that \%T Zzzl VVZ-SAZ-TFS LA N(0, qn-AiTEpAi). Note that these two terms are asymp-
totically independent because the randomness of ﬁ 23:1 Wis€is comes from idiosyncratic errors

while the randomness of % 23:1 WisAl—-rF s comes from the factors.
Finally, for & Y7, (A] F} + €j¢), we have that 75 SLATF + €51) 4 N(0, FSAF, + 02).

Since Dy = % Zf\; 1 Xit 2 1 and WZ N @i , using Slutsky’s theorem we can complete our proof. [

Lemma 9. Suppose Assumptions 1, 5, 6 and Case 2 in Assumption 4 hold. When N, T — oo and
VN/T — 0, the asymptotic distribution of ji + & + &y estimated by wi-PCA with weights (5) is:

Voot (46 +a) = (n+ & +a))) SN (0,1),

where 03 = (SNT’TJZ-QM + (;NT’TJizt’Q with some ;11 and o44.2. Moreover,
o - 4 M
E ((N+£t+ai)_(ﬂ+£t+ai)) <5
0N, T
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Proof. According to Lemma 2, the estimation error of g + &; + ft can be expanded as

N T
. - 0 |
Ait = Z Wit (aj +AJF+ ejt) +Wit T Z; Wis (AZFS + eis)
: S—
Ait,l A1'15,2
N T _
- 1 W.sv =~
-1 —1 T
— Wi,- NT Z Z Wis W'JSU Dy (aj + Aj Fs + 6j5>,
j=1s=1 J s
Ais

where D, = % le\il Wi /(Wi vp).
Let Akno"? denote the first-stage estimation error of the wi-PCA estimator with weights (4) in

Lemma 8 for known observation probabilities. According to Lemma 8, we have

1 N 1 1
A known — W it T - T
A?t = Dtl‘— E 7J<Otj+zith+6jt>+Wi7,l-f Elwis <Ai FS—I—EZ‘S)

N .
j=1 p]t
Aknown Ai'(tr:gwn
- W ]S o +A Fs+¢;j
i,- NT 18 . J Js ) -
7j=1s=1 J8
Ak},gwn
it,

ObSGIWe ‘] at Alt7‘2 — A}L{tHQO Il’ SO
t — L \ 1 _ f! é known j 1
L S’L . ( 7,15 1 — Z‘[ ) ( Zt 3 Alt 3 ).

Next, we analyze the two differences separately.
First, the difference Ay — A};‘?{’W“ has the decomposition

X Ak U 7 Wit 1 T
A1 — A" = N Z <W] " - pT]tDt ) (%’ +A; F+ €jt>

N ~

1 Wi W,
:D_li _]t _7] ( ATF )
¢ NJZ (Wj’.vt pjt> Ay Pt

N _
> (s ) (o + AT Fv )
75

t
Jj=1 P

+ (Dt - t ) N Z p‘]]t (O(] + A Ft + 6]t>

2%
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Since E[(u;v

N

N2 E

SCRNITR

The second term in the decomposition of Aim

N

~ _ 1 th
E (D 1 l) A0
¢ Dt NZ th
Jj= 1 .]7
N
1 ~ N\ [ Wi
< S E|E (Dl—Dl) 2ttt
_N; t ¢ W; vt
N
M 1 - 4
§T4.N§1E|:<aj+Ath+6jt>:|
j:
M
< 71

Similarly, the fourth moment of the third term
bounded by M/N?T?. As a result,

N

D

Jj=1

1

N

th@
W]’"’Ut

known
Azt 1

Azt 1—

_Dt_l'

Considering the difference between Ay 3 and Aknown,

A known
Airg — ARS

1 &
_ Wz WZZWZS

j=1s=1

3 . . . Wis 7—1
Based on previous analysis, E {(—pjs D; o,

~ Wi

_ Wi

_ Wi

(W
pj

Wis® f

W;.)8|I] < M/T* for any i, it holds that

Wyv Wy ® <M

Wive it -
Aftnfwn can be bounded by
4

> (aj + A;Ft + ejt>
)4

Dbjt

1

DPjt

in the decomposition of Ait,l -

pjt>( A Ft+63t>+o< 1

s, we have

st’l_)

Js D~ i
W; v

s

1_

js

“1y4 | I] < M/T?.

S

4
N T
1 Wis -1 _ Wjsv T
N;;Wis (Pjs D Wj.vs ° (Aj Fs+ 6”)
Wit ~ 4 \* 1

< NT4ZZE (pij—l Wﬂs; D;1> |1 -E[(A]TFSJFGJ»S) |1

j=1s,t=1 PR
<M
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|

‘B [(aj+AJTFt+ejt)4'JH

A known
A

)-

D5_1> <aj + A;—Fs + €js) .

Furthermore, factors and
errors are i.i.d. with mean zero and are independent of observation patterns. As a result,
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Moreover, we have the decomposition

=1 =1 Djs - Us
N T

_ 1 w W.s ~

— Wl Wi | =25 — 238 (D—l — 1)
vNT ]Z: Sz:; : (Pjs Wjvs ) \ 7 aj
T N N T
_ 1 - 1 w - 1 w W0
T e W (D—l_ —1) = I8 4 W 147 < js "Vis >
& ; 18 s s N ]; Dis J W NT ]2; 15 Djs ij'vs J

Similar to previous steps, we can bound the fourth moments of the first part and second part on
the RHS by M /&% 5. Therefore,

N T 5
~ i ) 1 Wi Ws0 1
A‘ . Aknown — W»_li W Js i Js -+ O - ).
it,3 it,3 W NT ]Z; Sz:; * < Djs W . vs “ 4 )

Combining all the terms, we get that

N T _

~ ~ - 1 W, W;sv
A = AP =W NN Wi (2 - = )
¢ Bt ir NT ( W;s)

j=1 s=1 Pjs
1L Wus W, 1
+D; b — (ﬁﬁ)<a~+ATF+e-)+O —),
t N Jz; Wj,.vt Dt ! it 7 p((SN’T)
and it is easy to show that E [(Azt — Aﬁnown)ﬂ <M/ (5]2V7T. According to Lemma 8,
N _ N _
~ 41 W - 41 1 Ws
S o 3 (1) (o T e) -5 S 1 S (2 1)
= Jy j=1" s=1 Jr 8
1 & 1 & 1 Y 1
+ ‘/T/Zil : (* Z Wiseis + A;r* Z Wist> + D;l AT Z <A;|—Ft + ejt) + Op(i)
T s=1 T s=1 N =1 5N,T

Observe that the only difference between Ait and Ai-‘tnown is that, the randomness of the first
two terms of A;; comes from Wi/ (Wj,.vt) — 1 instead of Wj;/pj — 1. Consider the conditional

expectation of W v/ (W;.v) — 1, we have

s = E [Wﬁf’_l‘l} _ [th Wynlugo = W5) 1}
j,.’Ut .

= W]t(Uj@_W]7) I +E th(}L]@_W% )2 Il
u?vtv Wj7.ujzvtz7
<M/T
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By the short-term temporal dependency of the missingness, ‘% Zstl (W;Wis|I] — u 00| < MJT
for any j and t, so the first part on the RHS can be bounded by

E th(Uj@—Wj7.) I]

1 _
1— —5—E [W;;W;.|I]

U?’Ut’l_) UGtV
1 1< M
=|1-— - — EW. Wil < —.
u?vt@ TSZ:; (WiWis|T]) < T

As a result, |pj| = |E[ jtT)/(W ) — 1I]| < M/T for any j and t.

w.
We analyze the term N Z] 1(th11;)t

— 1)a;.  Conditional on I, [(V‘:/V”; —-1)— ,ujt] a; and

( Wi
Wi,.ve

0. By Assumption 6.4 and boundedness of p,

—-1)— ,Ult:| oy are independent for any j # . The expectation E [((ﬁw —1) — pje)ay | I] =

3, Ut

Furthermore, we have
N _ 4 N

th’U M 1 4

2" [( ( W ”‘“ﬁ> aj) “] <N WO

By Theorem 1, we have %ZN [(ny]t:t -1)— ,ujt} a; 4 N(0, 344 — 02). Furthermore, since

\F Z] L jtay 3 0, we get that \F Z] 1(th:; —1aj A N(0, 34,41 — 02). By similar arguments,

we can prove the asymptotic normality of other terms.
O

Lemma 10. Suppose Assumptions 1, 5, 6 and Case 8 in Assumption 4 hold. When N, T — oo,

the asymptotic distribution of fi + §~t + &; estimated by wi-PCA with weights (6) is

VonT ot ((ﬂ‘Fét + &) — (p+ & +az’)) £>/V‘(07 1),

2 N, T INT 2

where 03 = —§—03, 1 + 77— Tito with some ;11 and o4t.2. Moreover,
I 4 M
E |:((M+£t+0&i)_(,u+§t+04i)) } < 2
N,T
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Proof. According to Lemma 3, Aj; can be expanded by

T
A 1 Z T o1 1 Z T
Ay = ﬁc (A] F; + Gjt) + Wi,~ . T 2 Wis (Az Fy+ eis)

JEN.
Ait,l Ajt o
1 & 1
T7—1 T
WYy 3 (476 )
s=1 ]E_/\/C
Aus

We have \%Vi dien. AN (0,X7,0)- Accordin% to Lemma 8, Ay is aisymptotically normal with
zero mean and asymptotically independent with A 1. For the last term Ay 3, it is easy to show that
=+ P WiSN% D ieN. (A]-TFS +€j5) = Op(ﬁ) and E[Aﬁm] < M/T?. We complete our proof. [

TIA.C.2.2 Asymptotic normality for the common components

Lemma 11. Let y 7 = min(N,T). Suppose Assumptions 1, 5 hold and the first-stage estimation
error satisfies E[A%] < M/5]2V7T for any i and t. Then, it holds that

1. For any i and j, E[nfj] < M/énrT, E[ ZQJ] < M/dnT, and %Zf\; E[fyf]] < M/onT.

2. When N, T — oo, %AT ((Y oMWY oW e {@D A =D 5 D, where D = diag(dy, - - - ,dy,)
1s the diagonal matriz consisting of the eigenvalues of XpXp.

3. When N,T — oo, =ATA 5 Q= DI/QTZ;UQ, where the diagonal entries of D are eigenvalues
of SAYr, and Y is the corresponding eigenvector matriz such that Y'Y = I. Moreover,
H 5 Q)™ where H = ﬁ]:?_lf\—rAFTF.

4. For anyi, |Ai — HA|)? = Op(52=). Forany t, |E; — (HT) ' Fy|)? = Op(52).

ON,T ON,T

Proof. We can sequentially prove these statements following the proof of Lemmas 4, 5, 6 and
Theorem 1. O

In the following, we prove the asymptotic normality of the common components estimated with
wi-PCA with weights (4). We omit the proof for asymptotic normality of wi-PCA with weights (5)

and (6), which is similar to the proof in the following.

Lemma 12. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold. We have
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Proof. Observe that for any ¢;; = n;j,&;; and v;;,

N N
%ZIN\NM = %Z ([\i - HAi) ¢y + H - *ZA Gij-
i—1 i—1

Based on Lemma 11, the first term on the RHS can be bounded by

2
Si

1 & 1
2 _
'N;@j = Op((;T)-

NT

1 N
()

=1

Because H = O,(1), we just need to bound the three terms %Ef\il Ainij, %Zfil A& and
+ Zfil Ai7yi; respectively in the following.
1. For % Zf\;l HA;n;j, we have

N
%ZAmz‘j Z AT < ZFtEJt ZAATQ | ZFt gt
i=1 teQ” il eqs;

It is easy to see that the first part on the RHS

2

N
1 1 1
=) AA —— F, .. F = 0p(%).
- i
According to Lemma 8§,
- 1 & 1 L& W
Alt = W’le ?ZWM (AZ Fs+€zs) — WZZWM ?SDs_l (OZ] —|—A] Fs+€js>
s=1 j=1s=1 Pjs
Ai,l
| N
-1 gt
+ D, 'N;pﬁ (aj + A Ft+eﬁ)
At,Q
Plugging A;; into % > imq Ninij gives us
1 & 1 1 & 1 1 &
v 2 s = O ) = By DA [ D Fmy 3 A a g D Fildes
N i=1 VT N i=1 @il t€Qq; N ’Q” t€Qij
Op(557)

because Ajvl = Op(\/i) and ]{[ Zz 1A A |Q 1 ZtGQ Ft Op(ﬁ)

ON,T
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The last term % Zfil AiAZT% ZteQij FtAt,g can be further decomposed as

Qij
AA F,A AA E( 1 Wi A F,
A X R = L3 AT S R0 ) LY (s T
is| teQu; il 10, = Pu
w1
N
1 Wi T
+ =S A Z Z S0 1) (At
w2
Y T 1 T
+7QZA'LAZ m Z Ft (al+Al Ft+€lt).
i,l=1 t teQ;;
w3

Consider wy, we have

2
_ 1 Wy
!!w1!!2_NZ\IA I*- NZ\@U 2@: |5 (D, (N;plt(almmm)) :

where

N 2
_ 2 (1
b 0 (3325 (o T )

- Pu
) N W 4 1/2
_ 4
< (E[IF|Y] -E [(Dt '-1) } ‘E <szlit (al + A F +€lt>>
I=1
M
< N

Therefore, wy = Op(+). For wy,

|wQ||2<*Z||A I Z S s 3 men (M) (M),

i,l,h=1 5,t€Q;; put Phs
T T 1
(Oél + Al F + GZt) (Oﬁh + Ah Fq+ 6hs) = OP(N)’
where the last equality holds because E[F}; ,Fs (Wi /pi — 1) (Whs/phs — 1)(cu + AlTFt + eu)(an +

A;FS + €ns)] = 0 when [ # h. Furthermore, it is easy to show that

bt N,T

1 & 1 W, 1
_NZAiAT|Q Z FtFT Z(lt—1> Al—i-Op(r).
i=1 if| tEQy;
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Similarly, we have

1 1
AN —— F,F, AL +O0,( =0 .
Z |sz| teZQ: i N Z l p(\/éN,T)
Op(ﬁ)

Combining these terms, we get that + Zf;l Aimij = Op(\/éli).
N, T

2. For ¢ij = gijv we have

ZFT it Aj7

91 1eQu

1 N . N
N;Aifij— NZA QU tZF €it — N; Q

€Qi;

where it is easy to see that % Zfil Alﬁ EteQ-J Fley = 0,(:1).
ij 1]

oN,T

Similar to the first part, we can decompose % Zfil Azﬁ ZteQ-J- F{"Ait as
ij ©]

1 N
= F," Ay
N i=1 ‘Q” tE€Qyj t
1 N N 1 ~
= *Z iA Z ZAii Z E Ao,
N= |Q”’ tEQi; N3 Qi1 t€Qi;
where the first term on the RHS can be bounded by
N 2
Z A= Y F| < ZHAH A2, Z Zﬂ
=1 |Q ’teQ N Nz 1 ‘Q” teQi;
Oy 7) Op( 1)
1
- Op(T(SN7T)'

Plugging the expression of At,g into the second term, we can further decompose it as

Wi
YA X AR 3 i S 0 -0 (o AR )
|Q”|teQ N il=1 |Q” teQij
w1

Wi
Z |Q Z JA Ft (Oél—f‘AlTFt—FGlt).
=1 Wil eq,, Pit

w2
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We bound w; as

1 LW, :

2 2 It T

w A; 1)F,— — o+ A Fy+¢€

e | < Zn > Z w% tN;plt(l ! e+ e

N 2

izu AP Z SO =PRI (5 X (o + AT Fit )
N Z |ng "y ! N — py PR
\—/—’

Op(1)

According to part 1, E [(Dt_1 — 12| B (% SV, ‘gl: (o + A Fy + elt))z] < M/N?. As a result,

w1 = Op(3). For wy, we have

Z Z Wis Wor

Jeell? = Z Z me\Qh]\

ro=1 z,l,h S€EQ4; tE€EQp; Pls Pqt
1
Ai,rAh,rFs,oFt,o(al + AITFS + €ls>(aq + A(—;Ft =+ th> = Op(ﬁ)
As aresult, wy = Op(+) and + ZZ A& =0 (6NT)
3. For ¢ij = ’Yz'j;
1Y 1Y 1 1Y
=Y A= > N > i€ — Z > el
N3 N el & |Q”| teQi
_ _ 3
1 1 . 1Y 1 y
- Z A; Z Aztejt + Z A; Z AZtAjt
N i=1 ‘Q”L]‘ tEQ, N i=1 ‘QU‘ teQ;;
= iJ )

It is easy to see that % ZZN 1 N |Q1w| EteQ eireje = O (ﬁ) According to previous parts, A; =
A1+ Ao, where E[Af ] < M/83% ~.r and E[A# ol < M/5NT We have the decomposition

1 N 1 ~ ) N )
N;Aiw Z eirljr = Aj - NZA ‘sz\ Z €it + NZ:: ‘sz\ Z €itAya.

tEQi]‘ tEQ tEQij
Since Aj1 = Op(ﬁ) and
2 2
B ZHA Py (LS a) —odd
N &= "1Qi1 =N — | |Qi] nr
i=1 t€Qij Z=1 t€Qq;
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A 1 N 1 _ 1
we have Aj1- 5> i, Aim ZteQij €it = Op(m). Furthermore,

N

1
SN o 3 enbhia = NQZ o o (D7 =) Ay o0+ AT+ )
i t€Qy; ii=1 %4 t€Qi
w1

%%
Z |Q Z ltA i€t (Oél+Al Ft+€lt>
=1 Wil eq,, Pit

w2

Similar to part 2, we have w; = Op(%) and wy = Op(%). Thus, % sz\il Azﬁ EteQij 6itAjt =
Op(ﬁ)' We can also prove that + Zfil Azﬁ ZteQij ejthiy = Op(ﬁ)'
N x X .
For % Zizl Alm ZtEQij Ay Ajy, it holds that

1n, 1 P 1
N2 Nigyy 2 Aedal < D I 5 Z ao] 2 M =0y,
i=1 ey =1 il yeq, i N,T
Combining these terms, we get + El 1 Nivij =0 ( ) We complete our proof. O

Lemma 13. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold. We have

1
A — HA; = D7 H (wa, 1 — wa, 2 +wa,3) + Op(——),
ONT
where
| N
WA;1 = *ZA A — Z Fieit,
N —1 ‘ng
j= t€Qij
N N
1 1 1 1%
ona =y oA gy 3 RT3 e,
N = |Qz]| teQi; N Dt

T
and AF»U = m ZtEQij FtFtT - % ZtZI FtFtT'

Proof. For i =1,---, N, we have the decomposition

Ai— HA; = <A - HA) v (H; — H) A,
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According to Lemma, 12,

i LN LN LN
A, — HA\; = D! N Z Ajnij + N Z A& + N Z Njvij
j=1 Jj=1 J=1

N N
. 1 1 1 Wi
=D $ YA 5 3 Feus ZA N X R Yl
N &~ Qi5l o |Q | = N~ py
Jj= teQqj t€Qij =1
WA,;,1 WA, 2
1
N,T

For (H; — H)A;, we have

N
. 1 -
_ -1 T T T
Hi—H=D NZA ] ‘Q” > RF, TZFtF
j=1 t€Qy;

AFr,ij

N
— D! (Z\j - HAj) AjApij+D'H % > MA A

J=1

|~

Il
—

J
The first part + Ejyzl(]\j — HAj)AjTAF,Z-j can be bounded by
2

N AT 2 1 & 1
> (& - #0) AT Arg | < 5 30 R - | DI IPIARSI = Ol
j=1 j=1 j=1 ’

Oy (

2|~

N, T) by Lemma 11

where the last equality holds since E[||Ap;;[|?] < M/T. As a result,

1

L . _ -1
(H; — H)A; = D™'H — ZAA ApiiA; +O (6NT

] 1

)-

wA
Combining the two terms, we have

1

=D~ 1H(wA 1— Wp;2 +wa, 3)+O(5
N, T

)-

Lemma 14. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold. We have
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(A — HAADAT = 0p(s1-).

oN,T

Vi
LN WiAi — Hid)AT = 0,(51).
Z ’Lt(A HA )élt = OP(L)

oN,T

2\

2\

1.
2.
3.
Proof. 1. We have the decomposition
N : 1 L 1 1 < &
Z <A — HiA > = D71 |5 Do M+ 5 D0 NN &+ 5 D0 A
i=1 i,j=1 ij=1 ij=1
Observe that for any ¢;; = n;;,&; and 4,
1 X 1L 1 &
N2 > Aoy = e ) (AJ —HAj) Al i+ H -+ > A e
4,j=1 i,5=1 5,j=1

By Theorem 1 and Lemma 11, the first part on the RHS can be bounded by

2

1 X L
]\]QijZ:1 (AJ_HAJ>A2—¢U NZ::HA — HA; H NZH Adlf? - N2 Z% 1y

i,j=1 NyT

We bound the three terms N2 Z” AN g, N2 Z” L AGA €5 and N2 E” L AjA i respec-
tively in the following.
For w7 Z” 1 AjA iz, it holds that

N2 Z AN mij = N2 Z A; AT‘QU > Al Fej— N2 Z Aj AT|Q”| > A FA,.
t

1,7=1 3,j=1 €Qij 3,j=1 teQ;;

w1 w2

The first part w; satisfies

leon]|* = Z Z

p,q= 1 zghl 1

1

D> Ajphighiphn g AT FiA) Frejiers = Oy )

t€Qij s€Qmu

\ng\ IthI

where the last equality holds since E[AjypAivqAl,pAhﬁA;rFtAZFSEjtqs] = 0 when ¢t # s or j # L.
According to Lemma 12, Ajt = Aj,l + At,% S0 wo can be further decomposed as

1 1
wy = N2ZA31AAZT|Q |ZATFt+ ZAAI‘Q > A FA.
1,7=1 i teQij; i,j=1 ’L] teQij
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By Lemma 8,

N
1 " 1
=5 D AAA ) ATFt
N ij=1 |Qij] LEQj

A
2=
NNy

AZ 1A - ZHA I*- 22 ZFt
N |Qz] teQy;

= 4,7=1

20 O (%)

We plug At,g into the second part of wy and get

1 1 W,
wy = —= ZAAJ S AF(D 1)—2—“(@14—/\;—&—1—6“)
N 1 |Qij] N~ pu
i,j= teQij =1
w21
Wi 1
MAT —— STATR (,+AlFt+elt)+0( ).
;1 |sz tezQ: Z bt 5NT
w2 2
The first part wo 1 satisfies
1 & 1 &
2 g4 12,
femal < 5 S IA - 55 S gl
=1 7j=1
W 2
1 It T 1
N2 Z ‘QU PO AR D D (AT Fitean)| = Opl5).
1,7=1 teQ;; =1
We can also show that wpo = O (ﬁ) Combining these terms, we get N2 Z” 1 AjA;-rm-j =

@) (5NT) By symmetry, we have N2 Z A A &ij = Op(

4,j=1 5NT)

For N2 Zmzl AjAZ- Yij, we have

1 O 1 1 -
AT A g1 2 e~ 3 > Mgl & b

ivjzl 7] 1 tEQ 7.7 1 teQij
w1 w2
A it =gt -
N2 Z J ’L Z ? J
ij=1 |Ql]| tEQ
w3
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Since idiosyncratic errors are i.i.d. with zero mean and are independent with loadings,

M
| Z Z A ,pAz thpAl q] [Gitﬁjtﬁhsels] < W'

tEQz] S€EQmN

E [[lwn[?] Z Z

P,q= 1 i,5,h,l=1

|Qz]| |th

Similar to # SN AN A

i1 omi Ztte Al FtAjt =0 (ﬁ), we have wy = Op(ﬁ)' Since E[AL] <
M /6% .

1

1 N
ool < 5 D IAE ZHA 2 5 |Q 12 ANAL =0yl

52
1,7=1 teQij; N,T

).

Therefore, we have N2 Z” VAA = Op(ﬁ)'

2. Similar to the first part, we have the decomposition
1 .
= > W (Ai . HA) AT
i=1
' 1 XN . | X . | X )
=D N2 > Wik A i + N2 > WikjA &+ N2 > Wik A i
ig=1 ig=1 ig=1
For any ¢i; = 145, £ij and 7,
1 1 & - 1<
oo > WA ¢ij = 2 > Wa (Aj - HAj) A ¢y + H - 7 > Wauk;A[ 6.
1,5=1 1,j=1 1,j=1

Since % sz\il Wit | A2 < % sz\il |A;]|?, the first part on the RHS can be bounded by

2

% ZN: Wi (Aj - HAj> Aoyl < ]bi H]xj HA; H Z A2 N2 Z &2
ij=1 j=1 =1
= Op(éjgiT)-

By similar arguments with the first part, we can show that ﬁ Z;{szl WA ¢ij = Op(ﬁ) for
any ¢;j = 1;5,&; and ;.
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3. % Ef\il W’Lt(Az — HA;)é; has the decomposition

1Y - 1 X ) L X
N ; Wit (Ai - HAZ'> €it = N ; Wi (Ai - HZ'AZ'> €t + ~ ; Wi (H; — H) Ajey

w1=0p(51-) w2

1 & : A
_N;Wit (AZ-—HA¢> At .

~"~
w3

By definition, H; — H = D_lﬁ Z;Vﬂ A/N\J-A;-FAF@, where Ap;; = ﬁ ZtEQij FtFt—r — % Z?:l FtFtT.
So ws can be bounded by

2
1

= Op(ﬁ)

N
1
N Z Wit ApiiNi€it

=1

2 1?1 Qi 2 2 1 =
el < || D7 N PN 5 3

2
since E H% Ef\il Wit AN || <E [ﬁ Zfil |1 AR |1%]1 A 26%] < M/NT. Moreover,

N AT 2 1 e 5, 1
sl < % DO ||As = HA|| - 5 20 A% = 0y(5).
=1 =1

N,T

We complete our proof. O

Lemma 15. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold, we have

- _ 1
F — (HT) lFt = WF,,1 _wFt72_wFt,3+Op(5 )7
N.T

where

N
1eop 1

wra = (H)7IELL N > Wihica,

i=1

1 N

wr2 = (HT)'ELL N > WikiAy,

i=1
wrs=(H) 'S0 ZH (DY) (HT) R,

St =% Yoy WirlhiA], Ay = (Atai+&) — (ntai+&), and Zy = 35 30 Wi jAT ApiiAA]
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Proof. We estimate factors by regressing the observed Yy on A; as

| X -1 L
o E AAT E ALV -1 ...
Ft — (N 2 H/ltAzAi ) (N 2 LthAz}/zt> s t = ]., ,T.

As in the proof of Theorem 1, we define the auxiliary Ft* as
_ 1 o SN
EFr = (N Z; Wi HA A HT> (N z; WitAiYZ-t> :
1= 1=

We have the decomposition Fy — (H ")~ Fy = (Fy — F) + (Ff — (H")"'F)).
We first analyze Ft*, which has the decomposition

N
Ff=H")'F+H")'SL [ ZWnA €it — ZWitAZ-AZ-t
i:l

N
+ (HT)—lﬁ]K}tH_l . [;]Z Wit (Al — HAZ> €t + % Z Wit ([\z — HZAZ> A:Ft
=1 i=1

OP(51\11T) by Lemma 14 Op( ) by Lemma 14

1
SN, T

I

N
1
—l—NZlWit(Hz’—H)AiAiTFt

where i]At =1 ]\; Wi AN By Assumption 5, iAt N Ya¢. We further expand the last term
’ N =1 7 , ,
N ity Wit (H; — H) A A Fy as

N N

1 1 ]

= D Wa (Hi = HYAATFy = D71 5 ™ Wi (&) = HA;) AT Apg AT F
pam =1

+D'H - — Z Wit ;A Apii Al Fy,
1,j=1

where Apij = g Sieq, FE — 7 i B For i # 4, E | A PIAl1* AR 7] = ElI1A;]7]
E[||A:||*] - E[||AFq;||!] < M/T, so the first part on the RHS can be bounded by

2
N
% Z Wi (]\j - HAj> AJTAF,iinAiT
1L 2 1 O 21 A |14 2 1
N; |8 = a5 2 2 (1Al 1A rs %) = Oz )

i,j=1

o1



As a result,

N N
N 1 N 1 -
—HY R =@ET)TS) ~ > Withiew — (HT) 'S} - 5 > WirhiAg
=1 =1
1

+(H)T'SHTDTH - — Z Wi jA Apii AN F, + O, (5
N, T

1,j=1

)-

We let Z; = ﬁ nyj:l VVZ-tAjAjTAF,iinAiT. By Proposition 3 in Xiong and Pelger (2023), VT -7,
is asymptotically normal with zero mean.

Next, we consider the difference between F}* and F;. We have

N -1 N
Ef—F = (i, > Wai\AZ) [N > Wik AT — - Z Wi HANA HT | Fy.
i=1 =1 i=1

At

The difference A At can be expanded as

N
~ 1
Bni=~ ; (Wi HAN] (Hy = H)T + Wi (Hi — H)AA]H|
1 N
TT X T
+N;[WMHA(A Hih) T + Wi(A; — HiA)AT H ] Z (R — HA) (R — HiA)
(@) (5N T) by Lemma 14 o (5N ) by Theorem 1
1 & 1
— } AT (H. — T : _ TgT
N; |WiHAN] (H, — H)T + Wig(H; — H)AAHT | 40 (5r)
Plugging the expression of H; — H into the above equation, we get
Apry=D'HZH" + HZ,H" (DY) + Op(—— ! ).
ON,T

Z; = Op(ﬁ) implies A At 2 0. Therefore,

N N
1 . 1
NE WA = NE WiHMA H + Ay B HS ) H T

According to the first step, Fif = (H")"'F; + O (\[) We infer that
~ ~ ~ . . 1
Ff—F=H)'Sla! (D*letHT + HthT(Dfl)T> (H)'Fy + Op(5—).
’ N,T
Combining these two steps, we finish our proof. O
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Lemma 16. Suppose Assumptions 1, 5 and Case 1 in Assumption 4 hold, we have

— Z mtA Azt = Z WztA Z <jt - 1) (Oé] + AjTFt + ﬁjt)

i=1 p]t
1 1 1
+ N ; WitAiN Z (A;Ft + Ejt) Z Wi\ W 1AT ; Wi F
1 & _ Mg Wit 1
-~ ; Wi AW, ! ;1 ; Wis (pjs - 1) aj + op(%),

Proof. We denote X;; = Wy /pir. According to Lemma 8, % Zf\il VVZ-tAiAit can be decomposed as

1
N Z WltA Azt = D_ N Z Wzt N th (Oéj + A;rFt + €jt)

s 8L IM)=

=1
w1
1 & 1
i=1 s=1
w2
Z WztA VVZ’— NT Z Z Wst]sD (Oéj + A‘;FFS + Ejs) .
j=1s=1

~
w3

We can further decompose w; as

N N
1 Z 1 Z
i=1 j=1

N N
1 1
+ N E WztAzN E th (Oéj + A;Ft + Gjt) .
=1 7=1

We have shown that 3 Zfil Wi+ Zjvzl Xt (aj + A;-rFt + Ejt) = Op(ﬁ) and E[(D; ! —1)?]
M/N. Therefore, we have w; = + PR Withi~ Z;VZI Xjt(oj + A?Ft +€1) + Op(+).

For wo, since €;; are i.i.d. and independent of other terms,

IN

N T 2
1 =11 M
(N ;1 WitAiWi’. T ;_1 Wis@'s) < 7NT .

53



Observe that ws can be further decomposed as

N T
1 Z 1 Z =
ij=1" s=1

/

ws3,1

N T
1 1 o .
+ W Z T zWitAiWi7.1Wis(st — 1) (aj + Aj F, + Ejs>

ij=1" s=1
w32
1 N
~2 Z T Z WZtAZszl‘/Vw <Oéj + AJTFS + Ejs) .
ij=1" s=1
w3,3
The first part ws ; can be bounded by
T 2
1
P<o) (D Z Z WiWi X3 WAy (0 + AT Fi )
s=1 =1 ij=1
Op(%)
_ 2
Since EH el Z” 1 WitWiszSVVZ.?lAi(aj +A;Fs +e€js)|| < M/N, we have w31 = Op(%). For w3 2,

it holds that

2

1 L1 .
N2 Z;I T ; I/VitAiWi,.lI/Vis(st -1) (A;Fs + Ejs)

k N T
Z S 12 S BBV Wy Wi Wi X5 — 1)(Xi — 1)]1]
r=1 2,7,h,l=1 s,u=1

M

[Az rAh T(A;r + 6js)(Al Fy + 6lu)‘n:| NT

This is because when s # u, IE[AZ-,TAM«(AjTFS + Ejs)(AlTFu + e)|I] = 0. Additionally, when i, j, h, [

are distinct, E[WthhtW_lW_IWZSWhu( — 1)(Xj, — 1)[I] = 0. For ws 3, it is easy to see that
N2 Zzg 1T Zs 1 WltA W 1W7,s€]s =0 ( ) Furthermore

N2 Z ZWztAW Wi Fy = Z ZWztAW Wi F] - 1ZA = Op(— ! ).

i,j= 1 s=1 i=1 s=1 (5NT
1
() op%)

o4



Therefore,

N N T N
:% ; WitAiV_[/{l% ; % ; Wis(Xjs — 1oy + % ; Wih; - Z aj + Oy 5NT)
Combining wy, w2 and ws, we get the results. O
Proof of Theorem 2:
Proof. The estimation error of the common component is
Cit — Cit = (ﬂ+di+§t+1~\fﬁt) - (u+ai+£t+AiTFt)
—ATHT (Ft - (HT)‘IFt) v ETH (A - HAZ-> YA, +0 (&iT)

Following Lemmas 8, 13, 15, and 16, we can further decompose Cj; — Cyy as

N

- g 1

Cit — Ciyy = AjzX}t-NZthAjeﬂJerH 'D7'H . —ZA AT‘Q > Feeis
i=1 “ ste

~~

WCit,1 WC;¢,2

+ B H YD HZA — A 55 2, HT (DY (H) L F,

we;;,3

N T N
1 1 1
+Dtlﬁ§ (Xje = V(o +AJ Fy 4 e5) =W =) WZ-SNE (Xjs — Day

j=1 s=1 j=1
Wl 4
1 1 Y 1 Y
+ ATEMN Z WAy (W ZWJSN D (Xis = Doy — ¥ D (X = D(og + A Fy + er)
j=1 =1 =1
w5;5
1
—FH'D- gl ZA A — Z F,FT— ZXZSAZ
\Q \SGQ N
WCyy.6
1 1
+W ZWMQSJFW A= ZWF ATEMNZW],:W LA ZWJSFS
s=1 s=1 7j=1 s=1
we,y,7 WCyy,8
1Y 1
> WA (A j2 ) Dl (A F ) 0,
AtN]Z:1 gt ]NZ 1t e ) + Dy NJZ::I t €t )+ (5NT)
WC“,Q
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where SAﬂg = % Zi\il WZtAZA,LT 2) EA¢ by Assumption 5, ZZ = % Zjvzl AjAjTAFJ'j, Zt = % Zf\;l WZtZZAZA;r,
and X = Wi /pir. The first three terms we,, 1, we,, 2 and we,, 3 also appear in the asymptotic dis-
tribution of Cj; — Cj; in the pure factor model in Xiong and Pelger (2023). According to Xiong and
Pelger (2023), they are respectively asymptotically normal with zero mean. The other terms are

brought by the first-stage estimation error of the fixed effects. We analyze them in the following.

Step 1 — The terms wc;, 4 and wc;, 5 are asymptotically normal

According to Lemma 8, wc;, 4 is asymptotically normal with zero mean.

For wc;, 5, by Assumption 6, plimy _)ooﬁ Zjvz 1 Wit exists.  Slutsky’s theorem gives that
+ Z;Vﬂ WjiA; Zf\il(Xlt —1)(ay + A} Fy+ey) is asymptotically normal with zero mean. Consider

the term
1 & 1 1 &
AT 3 W S~
=1 s=1 =1

We denote G; = %ZSTZI Wjs+ Zl]\il(Xls —1)oy. By Lemma 8, [VV/NG1,VNGy,--- ,V/NGy] is
jointly asymptotically normal with asymptotic covariance oj; = ACov(v NG, VN Gj). We denote
v = vec(W/th/ltW]?VT/llejAlT) and vj;, is the r-th entry in vj. We have

N 2
E Z U]l r [Ujlm])
1 N
i Y. 0ok [(vijr — Blvig,)) (0nr — Elon,])] = o(1),
i hl=1

where the last equality holds because plimy _)oo% Zjvzl thWjilAj exists in Assumption 6. There-
fore, we have that plimN_mO# Zf?[j:l WithtWijlﬁ/]?loiinA;r exists. This implies that + Z] 1 Wit

1)ay is asymptotically normal with zero mean. Note that the randomness of both w¢,, 4 and wc;, 5

%l
ﬂ\:
]

~

come from the cross-sectional missingness, so they are jointly asymptotically normal.

Step 2 — The terms wc;, 6, we;,,7, Wo,,,8 and we;, 9 are asymptotically normal
Based on Lemma 8 and due to the fact that plimN_mO% Z;Vﬂ Wi\ exists, we,, 7 and we,, 9

are asymptotically normal with zero mean. Consider wc;, ¢, we have

1 Tl
AjA] Y F.F, ZXZSAZ
l:l

N

z:: 71Qs1 ol

N 1 1 Y 1Y 1 1
Z AAT ZFFST—Z(XZS—DAH——Z AAT ZFFT ZAZ
j=1 |Q”| S€EQj; N =1 N j=1 ‘Q”‘ SE€EQjj

It holds that Zj 1A A—r ‘Ql n ZSQQ F,E] 2 S ASF. By Slutsky’s theorem, the second part in
the decomposition of wc;, ¢ is asymptotically normal with zero mean. For the first part, we denote

G = % Z?;(st —1)A;. According to Lemma 8, [VNGy,--- ,v/NGr] is jointly asymptotically

o6



normal with covariance ACov(V NGs, VNG,,) = sp st. By similar arguments with wg,, 5, the first
part is asymptotically normal with zero mean. We can similarly show that wc,, g is asymptotically

normal with zero mean.

Step 3 — Combining all the terms

We have proved that the nine terms wc;, ,,7 = 1,---,9, which contribute to the asymptotic
distribution of CN'it — Cj; are all asymptotically normal with zero mean. Note that the randomness of
w4 and we;, 5 come from the cross-sectional average of the observation pattern. The randomness
of we;, 6 come from the cross-sectional average of the loadings. The randomness of wc;,. 1, wc;, 2,
we,,,7 and we;, 8 come from time series average of factors or idiosyncratic errors. The randomness
of we,, 9 comes from the cross-sectional average of the loadings and errors. We can show that
ﬁ ST Wi Fy and VTvec($ ST EFET — @ ZteQij FyF,") are jointly asymptotically normal

for any [, 4, j. Therefore,
‘/5N»TUE,1it . (ézt - Cf“g> i N(O, 1) s
On,T

on,m
where 0, = S0t 1 + “p 02y o With some 0f,, and of, 5.

Additionally, it is easy to Show that

N
- 1 ~ d
VOnaogh o (G = Ca) SN (0,1)
i=1
: ~2 INT 22 ONT =2
with some Ocit = N OCit,1 + 3 0C,it,2 - -

IA.C.3 Proof of Proposition 1

Lemma 17. Suppose the assumptions in Proposition 1 hold. Then, the error term é; in the second
step of wi-PCA with observables can be decomposed as é;y = €;x + wyt, where w;y satisfies E[w?t] <
M/oy 1

Proof. By definition,
Vi = B Xip + A Fy + é,

where Yit =Yy —p— ét — a; and Xit = X — X.7t — X@. +X. Rearranging the terms, we have
= Yu— B Xy — A F
e+ B (X + X —X) - (ﬂ+§}+di — (u+£t+a,~)> .

We denote A‘Z?tld the first-stage estimation error without covariates X;;’s in Lemma 1. The
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first-stage estimation error with covariates can be written as

ﬂ+f~t+&i—(/ﬁ+ft+ai)
T

1
= D! Nz pgt <5szt+aj+/\ Ft+eyt)+W71~fZWis (ﬁTXis+AIFS+eis)
7t s=1

Z Z s ?5 (,BTXJS +aj+ A Fo+ ejs)

T
- . _ 1
= A+ Dt 5D :p—fﬁTth W D WasB T Xis
j*l J —

Wi TZZW“ .]S D' X

j=1s=1 J8

By similar arguments in Lemma 1, we can show that E[(A99)8] < M/§% . For the last term on
the RHS, it holds that

1 N T 1 N T W
L LW DX = 3D W (07 1)

j=1s=1
+1§:ZW- (W >BTX + = ZZW BTX;
NTj:ls:l " Pjs " NT] 1s=1 " ]S

Since E[(D;! —1)% < M/N* for any s and E[Wjs/pjs — 1|I] = 0 for any j and s, it is easy to show
that the eighth moments of the first term and second term on the RHS can be bounded by M/N*.

Therefore,
fit &+ ai— (p+ &+ o)

-1 1NthT -1 1 <& T _— 1L S )
=Dyt D A Xk Wi Y W X = Wi Y Wi X
N = pit Ts—l T
N
N; pjjt'B thJrWi,.l *ZWzsﬁ Xis — X )+w

:Dt*l.

with some ), satisfying E[w] < M/6%; -
Plugging this into é;, we get that
1 & 1 o
=€ — Dyt =D JtﬁT( Xjp— X)) - W = > Wi (Xis — X — Xi + X) — wiy.

lepj

We have E [(% Zj\le I;I)/JJ: BT(Xji — X.4))®| < M/N*because ij:1(th_X~,t) = 0and E[W;./pj¢|I] =

o8



1. According to Assumption 7, E (% Zstl WisB Xis)®| < M/T*. We complete the proof. O

Lemma 18. Suppose the assumptions in Proposition 1 hold. Then, the error term €; in the final
step of wi-PCA with observables can be decomposed as € = (5 — B) it + €t = € +w;ip with some
wir satisfying Elw?] < M/5N,T

Proof. We estimate the coefficient 5 as

-1'Nn 7
— (Z Z Wi X Xl ) Z Z Wit Xt Vit

=1 t=1 =1 t=1

1
N T o -1y 7
= B+ (Z Z WitXitXit) Z Z Wit Xt (A Fy + € + wit

i=1 t=1 =1 t=1

N——

where wj; is defined in Lemma 17. Plugging this into €;, we have

-1

N T N T
Ez‘t zeit—l—wit—X;tr ZZstXjSXst ZZWjSXjS (AJTFS—I-G]‘S—FW]'S) .

j=ls=1 j=1s=1

Wit

In the following, we prove that w;; has bounded fourth moment.
We denote the smallest eigenvalue of NT ZZ 1 Zt 1 Zththt to be Amin. By Assumption 7,
there exists ¢ > 0 such that Apnin > ¢ > 0. Therefore, it holds that

4

N T 1 N T
S wixxl Y wh (AJTFS +ejs + ij>
7j=1

j=1s=1 —1 s=1
4

1 LZ _

<q’ WZZWJ’SXJ'SX;— (A;‘rFs-i-ﬁjs +sz)
j=1s=1

d 1 N T 4

=a ') | yF 22 Wis jlezth(A F, +€]S+w]8)
l,h=1 7j=1s=1

We can bound the fourth moment of ﬁ Z;Vﬂ Zle stst,lXit,h(A]TFs + €js) by M/T? since W ‘ ‘
and X are independent of F' and €. Furthermore, we can bound the fourth moment of ﬁ Zjvzl Zstl Wis X6 1 Xt pw
by M/ 5]2V’T because of bounded moments of w; and Xj;. O

Following the proof of Theorem 1, we can prove that the proposed three-step method consistently

estimates the loadings, factors, and common component.
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