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1 Introduction

In the modern era, work of all types is increasingly done by teams of individuals collaborating

towards a common goal - whether it be within the boundaries of a firm, across loosely organized

collections of volunteers, or even by students in a classroom (Charness and Holder, 2019; Emanuel,

Harrington, and Pallais, 2023; Fischer, Rilke, and Yurtoglu, 2023). Despite the frequent focus on

the output of the team as a whole, team production often hinges on so-called “linchpins”: highly

skilled workers that are not easily substituted for and therefore become indispensable components

of the production process (Ballester, Calvó-Armengol, and Zenou, 2006; Godin, 2010). However,

such individuals can easily become overburdened or burnt out from their heavy workload leading

to a bottleneck that prevents the team from functioning optimally.1 This linchpin problem can

be particularly salient in the context of distributed work (Hinds and Kiesler, 2002), where team

members are not co-located (increasingly the case in the post-COVID world) and communication

and coordination costs are high. It can be further exacerbated when the output of a team is a public

good as these are often produced largely through the disproportionate efforts of a relatively small

number of highly skilled individuals acting as part of a larger team (Fisher, Smith, and Welser,

2006; Panciera, Halfaker, and Terveen, 2009). With recent advances in technology, a potentially

novel solution to the linchpin problem may be to provide these critical team members with artificial

intelligence (AI) tools to reduce their burden and alleviate the bottleneck.

Throughout human history, there have been a handful of technological innovations that fun-

damentally shift how the economy works. The printing press, internal combustion engine, and

computers are oft-cited examples of such general purpose technologies. Although AI has existed

for some time, many have argued that recent advances may push it into this elite category of tech-

nologies that alter the course of history (Crafts, 2021; Goldfarb, Taska, and Teodoridis, 2023;

Eloundou et al., 2024). However, if AI — broadly defined as the use of computers and machines

to mimic human intelligence – is destined to have such a substantial impact, we are likely still at

1In the extreme, this can also lead to the challenge known as “key person risk” where one individual leaving a team
would mean the team would cease to be able to function. In our analysis, we focus on the overburdening of these
individuals rather than the possibility of them leaving the team.
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the beginning of this technological revolution that is slowly and steadily reaching all sectors of the

economy (Acemoglu et al., 2022). Importantly, the highest economic impact of AI is predicted

to be on productivity growth through the labor market (Bughin and Manyika, 2018; Sachs, 2023).

However, due to the novelty and breadth of AI, research is only starting to elucidate its impact

on the nature of work and task allocation in distributed production settings. This is particularly

true of generative AI (GenAI) — a subset of AI built on large-language machine-learning models

(LLMs) — which exploded on to the scene in 2022 and currently represents the cutting-edge of

AI. These models, including OpenAI’s GPT4, Google’s Gemini,2 Meta’s LLaMa, and numerous

others, are trained on massive, Internet-scale databases and use billions of parameters to construct

a probabilistic model that predicts what the next word in an answer to a prompt from a user should

be. These models can also be trained on datasets that are more focused on specific contexts —

e.g., health, finance, customer service, software development, etc. Whether and how these new

technologies will shape the nature of work remain open questions. Further, whether AI can be a

complement to skilled workers (Autor, 2024) and help address critical aspects of team production

like the linchpin problem, especially in the context of distributed work has gone under-explored.

Answering such questions is of the utmost importance to better understand how distributed

digital work processes are affected when AI is introduced and how it can assist in workforce op-

timization as a goal for strategic human capital management (Wright, Coff, and Moliterno, 2014).

Although some early studies on generative AI have shown positive high-level productivity impacts

(Brynjolfsson, Li, and Raymond, 2023; Dohmke, Iansiti, and Richards, 2023; Noy and Zhang,

2023; Peng et al., 2023), it is less clear what the mechanisms behind these improvements are. Does

the use of generative AI shift users to focus on particular types of tasks that lead to those produc-

tivity improvements? If so, which tasks? How exactly does the work process change when using

generative AI? Does AI present a potential solution to the linchpin problem? Understanding these

impacts informs labor strategy relevant to both firms (Tamayo et al., 2023) and policymakers (U.S.

Department of Labor, 2024), including hiring policies, work training programs, and upskilling or

2Formerly known as Bard.
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reskilling efforts for current employees.

The key challenge in assessing how AI changes the nature of distributed work is to identify a

setting where (1) work patterns are observable and (2) an AI tool consequential to linchpin workers

has been introduced in a pseudo-exogenous manner. Our setting - the introduction of GitHub Copi-

lot - a software development focused GenAI tool - for key developers (known as maintainers) in

open source software (OSS) projects addresses both of these criteria. OSS - software whose source

code is publicly available for use and modification and that is frequently developed by distributed

teams of developers - is a classic example of a product that is produced through the distributed

work of teams and is generally free (Moon and Sproull, 2002). Further, OSS also suffers from the

linchpin problem as a small set of maintainers are the driving force behind the widely used and

incredibly valuable digital infrastructure that has come to underlie software development and the

modern economy as a whole (Eghbal, 2020; Geiger, Howard, and Irani, 2021; Hoffmann, Nagle,

and Zhou, 2024). The linchpin problem in OSS production can be exacerbated by a number of

factors which shift larger workloads onto maintainers. First, considerable demand for OSS scales

in part due to its zero price and cost of reproduction. Second, the public nature of OSS gives rise

to strong incentives for non-contributors to free ride on the efforts of maintainers who cannot ex-

clude them. Finally, communication technologies and platforms designed to reduce collaboration

frictions in distributed work have dramatically lowered barriers to participate in OSS ecosystems.

In practice, an influx of non-experts creates an additional burden on maintainers, who must triage

support requests, review contributions, and otherwise manage their project’s growing community.

Indeed survey evidence documents that maintainers tend to be overburdened with too little of their

time spent on their core work (coding) and too much on managerial (project management) tasks

(Nagle et al., 2020a). With these factors in mind, interventions with the potential to relax con-

straints on linchpins are of great interest to the distribution production setting of OSS.

GitHub’s Copilot is based on OpenAI’s Generative Pre-trained Transformer (GPT) models,

which also underlie ChatGPT. Copilot was developed jointly by OpenAI (an AI research organi-

zation) and GitHub, a subsidiary of Microsoft that offers cloud-based software development and
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version control services and is also the world’s largest host of open source software (OSS) projects.

Copilot was trained on vast amounts of publicly available software code, including code hosted as

OSS on GitHub itself. Originally released to a subset of users as a technical preview starting in

June 2021, it became more broadly available as a full product in June 2022. As part of this roll out

process, GitHub offered free access to a subset of users, including students and maintainers of top

OSS projects hosted on GitHub. This roll-out process assists us in identifying the causal effects of

access to Copilot.

We exploit aspects of the general access launch of Github Copilot to the broader public. In

particular, a segment of linchpin developers who maintain the top OSS projects on GitHub receive

free Copilot access. Eligibility is determined by an internal ranking known to GitHub, and not the

individual developers, allowing us to make credible claims about non-manipulation to establish a

causal identification strategy to recover the effect of generative AI on developer activity. In the

most basic version, maintainers with a ranking below zero become eligible to receive free access

to Copilot and those above do not. We use a panel of 187,489 distinct maintainers observed weekly

from July 2022 through July 2024, which results in millions of maintainer-week observations for

activity levels in public GitHub repositories and Copilot usage. Within the data set of linchpin

top maintainers, we find that those who receive access to Copilot during the general access period

increase their relative share of coding tasks while reducing their relative share of project manage-

ment activities. The dynamics of the treatment effects are stable for our two year period. When

decomposing these categorizations into more granular activities, we find that increased coding ac-

tivities are primarily driven by maintainers increasing their relative volume of code contributions3

while project management reductions stems from the reduction in problem solving activities with

others. The results are stable not only on the individual level but also consistent when using a

supplementary identification on the repository level. Additional heterogeneity assists us in under-

standing the linchpin problem. In particular, we find that linchpins with relatively lower ability

are more sensitive to the treatment. Lower ability maintainers who receive access to AI increase

3On the GitHub platform, this is measured when a contributor uploads or “pushes” a change of code (i.e. commit)
to a codebase.
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coding and reduce project management to a greater extent compared with their higher ability peers.

Our results contribute to a growing literature on the productivity impacts of AI in important

ways. Early work in this area posits general productivity gains (Agrawal, Gans, and Goldfarb,

2019; Corrado, Haskel, and Jona-Lasinio, 2021; Raj and Seamans, 2018), but that the gains may

not be evenly distributed (Brynjolfsson, Rock, and Syverson, 2018; Furman and Seamans, 2019).

Empirical work confirmed such predictions and found wide-ranging productivity benefits to using

AI, at both the firm level (Czarnitzki, Fernández, and Rammer, 2023) and the individual level

(Fügener et al., 2022). Our work is consistent with this prior research but adds additional nuance to

the labor augmenting technical change literature (Acemoglu, 2003) by going beyond productivity

when focusing on the nature of work as we provide one of the largest natural experiments of

generative AI and it’s impact on highly disaggregated measures of distributed work processes for

a two year time horizon “in the wild”.

Our main findings identify changes in the nature of work of linchpin AI adopters in their digital

work processes. We show that when software developers leverage AI more, they reallocate their

efforts towards technical coding activities and away from auxiliary project management activities

that involve social interactions with other maintainers. This is a sign that the maintainers intensify

contributions to the public goods of open source software through AI. It is also consistent with re-

ducing collaborative frictions during the problem solving process of work and a change in the way

voluntary workers interact with each other on the platform. We complement the current literature

that leverages IT and consultancy chat support AIs and focuses on high-level productivity impacts

through experimentation (Brynjolfsson, Li, and Raymond, 2023; Dell’Acqua et al., 2023) by in-

vestigating the nature of work through changes in work activities and human interaction processes

over two years after the introduction of the programming LLM.

Beyond the identification of causal effects that generative AI has on decentralized work, our

results suggest important implications for the future of OSS. OSS has received growing attention

(Lerner and Tirole, 2002) as it has become an increasingly critical part of the modern economy,

such that 96% of corporate codebases include some OSS (Synopsys, 2023). Further, recent studies
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estimate the value of OSS to be on the order of billions of dollars for the supply side (Blind et al.,

2021; Robbins et al., 2021) and trillions of dollars when accounting for usage (Hoffmann, Nagle,

and Zhou, 2024). Additionally, firm usage of, and contribution to, OSS has important implications

for firm productivity (Nagle, 2018, 2019), firm competition (Boysel, Hoffmann, and Nagle, 2024)

and entrepreneurial activity (Wright, Nagle, and Greenstein, 2023). However, despite the impor-

tance of OSS, many critical projects are under-resourced (Nagle et al., 2020b) as numerous firms

free-ride on the efforts of others without giving back (Lifshitz-Assaf and Nagle, 2021) leaving

volunteer maintainers burnt out and overwhelmed (Raman et al., 2020). As our results show, gen-

erative AI may offer a solution to help address these concerns and allow top maintainers to more

easily contribute to the common good by solving issues faster. Prior research has shown that OSS

developers and maintainers generally contribute to OSS because it gives them a creative outlet and

they do not want to spend their time on managerial tasks like security and documentation (Nagle

et al., 2020a). AI-powered tools may make it easier to quickly address such managerial tasks, so

developers can spend time in a manner they prefer, while still ensuring the security, stability, and

usability of OSS.

The remainder of this paper proceeds as follows. In Section 2 we discuss the environment

within which the study occurs. In Section 3 we characterize our dataset and discuss the construction

of our sample. We hone into the set of developers that are obtaining Copilot eligibility for free via

an internal ranking from GitHub and present our estimation strategy in Section 4. We then present

our results using a regression discontinuity design (Section 5) while exploring mechanisms. We

discuss the limitations, implications, and a back-of-the-envelope calculation to understand how the

results may apply to private software development activity in Section 6. Section 7 concludes.
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2 Institutional Background

2.1 The GitHub Platform

GitHub was established in 2008 and is the world’s largest hub for OSS development.4 It is

a “social coding” platform that offers cloud-based software development and version control ser-

vices. Importantly, it is specifically designed for dispersed teams to collaborate on software devel-

opment projects, and it chronicles all activities performed on the system to ensure any contributor

can observe all prior activity. Activity on the GitHub platform can therefore provide the researcher

unique and granular insights into patterns of distributed work, which are increasingly becoming

the norm in all areas of knowledge work. Furthermore, the platform allows us to observe the de-

centralized production of OSS as a public good. Although the details can be quite intricate, the

primary workflow of a GitHub contributor is straightforward.

A user who wants to start a new project creates a repository and then writes their code within

this repository.5 Alternatively, a user may “fork” another repository, which entails copying ev-

erything into another repository to have the same exact information, but allows them to take the

project in a different direction than the primary repository. When the user modifies project code in

a local copy of the repository on their machine, these changes to the codebase are condensed into

a “commit” that attributes authorship to a user. Uploading these commits from the local repository

to the remote GitHub repository is called a “push”. GitHub also has popularized the “pull request”

paradigm for OSS contribution in which users contribute to projects by requesting the project’s

maintainer to integrate their proposed changes. For example, if user A maintains a repository and

user B wants to add a new feature to it but does not have permission to edit the code directly, user

B can issue a “pull request” which includes the suggested changes as a sequence of commits to a

4According to the Engagement platform 6Sense, GitHub had a market share of 78.81% on March 18, 2024. Further,
93% of individuals are using Git as a version control system which underlies GitHub. Other alternatives: GitLab,
Bitbucket, Codeberg, Gitee, SourceForge, SrcHut, to name a few.

5A project “repository” is a focal point for collaboration over a particular codebase. While a repository technically
refers to the collection of source code files for the project, the GitHub platform adds important social and project
management features to a repository’s profile, including a detailed version control viewer, a forum to raise issues and
discussions, and a formal contribution system based on “pull requests”. Throughout this paper, we will refer to a
“repository”, “project”, or “codebase” somewhat interchangeably.
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fork of the original project. If user A accepts the proposed change, the changes proposed by user B

are integrated or merged into the codebase. Finally, any user can report an “issue” for a particular

repository (e.g., identifying a bug or asking for a new feature) and when the issue is addressed, it

is considered “closed.”

2.2 GitHub Copilot

The empirical focus of this paper centers on the introduction of the generative AI coding tool

GitHub Copilot. Copilot was built collaboratively between OpenAI and Microsoft/GitHub and

was based on models similar to those that underlie ChatGPT.6 The version of the Copilot AI under

consideration in this study is based on the Generative Pre-trained Transformer 3 series (GPT-3)

from OpenAI. Copilot can be used by programmers to obtain code-snippets for work while they

are coding, and it allows them to easily integrate those snippets into their coding projects. As a

large language model, Copilot operates on the idea of next word prediction and instead of a text

completion tool it is a code completion tool with the goal of assisting programmers to code faster,

solve problems more quickly, and learn code that they previously did not know. Figure A1 provides

an example of how the generative AI Copilot can be used to complete a full function after a user

generated only the function header.

— Figure 1 about here —

Figure 1 shows the timeline of the introduction of the AI for programmers. GitHub’s Copilot

was first launched on June 29, 2021, as a “technical preview” (TP), and then fully launched for

“general access” (GA) on June 21, 2022.7 GitHub users can access Copilot through several path-

ways. During the technical preview period, every individual was eligible to access Copilot for free.

During the general access period, individuals could access Copilot by obtaining a free trial for 60

days and later for 30 days. After the trial period, they must pay $10 per month (or $100 dollars per

6GitHub Copilot is not the same as Microsoft Copilot which was launched after GitHub Copilot. In June 2023,
92% of programmers had used some coding AI tool according to a GitHub programmer survey.

7Start date of general access announcement: GitHub blog post.
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year) for continued access. For some individuals, GitHub provides free access after the technical

preview period. Students can obtain Copilot and pay $0 per month. Similarly, GitHub rewards

top OSS maintainers with free Copilot access based on an internal eligibility ranking. Finally,

individuals can obtain access through their company starting on February 14, 2023. Companies

can sponsor their employee access to Copilot with the employer paying $19 per employee for each

month.

In this study, we leverage the internal eligibility ranking from GitHub which determines that a

sub-population of top maintainers, i.e. linchpins, receive complimentary Copilot access which we

leverage as a natural experiment. GitHub ranks selected repositories based on an internal ranking

that is unknown to the community. Any individual who has been added as a “collaborator” to

those repositories is considered a maintainer and is therefore potentially eligible for free access to

GitHub Copilot.8 Maintainers for projects below a given threshold of the eligibility ranking are

granted complimentary Copilot access for one year. After a year, GitHub will check if you are still

eligible through the top maintainer channel and continue granting access if that is the case.

A key feature of this program is that the exact ranking system is largely unknown to maintain-

ers. Public discussions between users suggests there exists a considerable degree of uncertainty

over what makes a given project eligible.9 As GitHub does not reveal the exact composition and

ingredients of the ranking, the maintainers can only guess. This vagueness in the composition and

ingredients of the eligibility ranking lends additional credibility to our identification strategy as it is

virtually impossible to manipulate the ranking as a maintainer. Moreover, GitHub does not engage

in any additional messaging to communicate the eligibility status to maintainers. Each maintainer

has to check whether they are eligible to access the AI for free when they apply for Copilot.

8The nominal owner of the repository, i.e. the GitHub user who created the repository, can add collaborators in the
repository’s settings page.

9See YCombinator and GitHub discussions.
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3 Data

We use a mixture of openly available and proprietary data from GitHub to understand the ef-

fects of the Copilot AI program for linchpin maintainers. Maintainer activity is publicly available

while Copilot AI usage is proprietary to GitHub. In collaboration with GitHub, we link the pub-

lic platform activity to Copilot usage for a set of pseudonymized developers to form a panel of

linchpin maintainer-week observations. From the granular activities data observed on the GitHub

platform, we develop a set of two broad classifications of maintainer activities that are essential

to collaborative software development. We consider the extent to which maintainers engage in (1)

coding and (2) project management activities. Precise definitions for each classification can be

found in Appendix B. We detail these categories in turn in the following sections.

First, coding includes maintainer activities that form the core of OSS contribution: pushing

commits from local repositories to GitHub, forking existing projects to begin new development di-

rections, and submitting pull requests for other maintainers to integrate proposed changes. These

activities characterize the more technical process of writing lines of software code. Second, one

can think of all other activities as non-coding activities. We classify an important subset of these

non-coding activities as “project management”, process-oriented community interactions that seek

to progress project development and require a more than purely technical skill set. A critical com-

ponent of OSS collaboration is engagement within the repository’s “issues board”. It is here where

project maintainers engage with the wider community to assist with software issues, introduce

new ideas, and discuss longer term project objectives.10 Other activities related to project manage-

ment include the creation of project boards, which assist maintainers with project organization and

“road-mapping”, and systematically reviewing the proposed contributions stemming from pull re-

quests. Finally, we aggregate all items to obtain a measure of the total activities for each maintainer

on the platform.

Table A1 shows univariate statistics for the Copilot AI treatment, the work activities and the

10For example, maintainers can open issues themselves, assign other maintainers to investigate certain issues, give
issues labels for organization, and close the issue itself, thereby signaling that it is no longer an outstanding concern.
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ranking for the first year.11 We use a sample of active top maintainers who are collaborators on

a repository that receives an eligibility ranking during the general access period. To leverage

meaningful variation for the sub-sample of maintainers who received access for the first time, we

exclude any maintainers who had Copilot experience during the technical preview. All individu-

als in our top maintainer dataset engaged in at least one of the activities mentioned above during

our time window and, thus, are considered active users. This leads to a sample of 50,032 unique

“top maintainers” — those who are maintainers of OSS projects that are amongst the most popular

and widely used on GitHub. In this dataset, the average developer uses Copilot for approximately

8 days and on average 16% of the top maintainers use Copilot at some point within the general

access period from July 2022 to July 2023. During each week, usage is relatively low, with 3%

weekly exposure and 0.17 days of Copilot adoption per week. For coding and project manage-

ment, we create a cumulative share measure defined as the cumulative sum of the activity over

the maintainers overall total cumulative activity.12 By conditioning on overall individual activity

levels, we are better able to directly compare work allocation across maintainers and identify any

potential reallocation in response to AI adoption. The average maintainer allocates 44% of their

engagement towards coding and, 37% towards project management.13 Finally, our measure for

our natural experiment is the best (minimum) normalized ranking across eligible repositories that

maintainers are connected to. For example, if an individual is a maintainer for two OSS projects,

then the ranking of the lower ranked repository is used. The ranking distribution is right skewed

with an average maintainer rank around -364 implying that a substantial amount of variation can

be found before the normalized threshold of zero.
11A honed version of the descriptive statistics for the top maintainer within the bandwidth of h ∈ [−100, 100] can

be found in Table A3. More granular statistics on work items are displayed in Table A4.
12Specifically, we use the following cumulative share version:

∑
s≤t Activityit∑

s≤t TotalActivitiesit
.

13Table A2 provides the same statistics for a two year time period. AI usage increases substantially across all
statistics.
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4 Methodology: Natural Experiment

If we were to simply investigate the correlation between AI adoption and work patterns, a nat-

ural concern is that more able or motivated linchpins sort into higher usage of AI. This would

immediately lead to an overestimation of the influence of AI on the nature of distributed work. To

mitigate concerns over selection bias, we instead exploit quasi-random variation in Copilot access

through GitHub’s “top maintainer” program. To credibly establish a causal effect of Copilot on

OSS activity, we leverage a natural experiment. GitHub awarded free Copilot access to maintain-

ers of the most popular public repositories according to an internal ranking. The top maintainer

program was launched at the beginning of the general access period and was at least partially mo-

tivated by a desire to support critical OSS infrastructure. GitHub determines that a certain number

of repositories are worthy of ranking and those repositories receive a ranking. The exact calcula-

tion of the ranking that determines which repositories receive rankings is not publicly disclosed by

GitHub.

Since the ranking occurs at the project level, we assign each maintainer a weekly rank from

the projects for which they are designated as collaborators. Specifically, the rank assigned to each

maintainer is the running best (i.e. cumulative minimum) rank received across all repositories

through the current observation period. Maintainers who receive a ranking below 0 are eligible

for free access to Copilot while others are not. Maintainers only become aware of their eligibility

status when applying for Copilot access. Since the maintainers have to check themselves whether

they are eligible for free Copilot access in contrast to receiving a message from the platform, we

expect the adoption of the AI to be less sharp than it would have been under alternative program

implementations. However, we believe that a regression discontinuity design (RDD) is the best

methodology in this environment allowing us to test not only its underlying assumptions while

coming close to a randomized control trial from an internal validity perspective but also being able

to study developers in their natural environment over a long time horizon.

This setting allows us to employ an RDD which in practice can be interpreted as a localized

randomized control trial close to the threshold of AI eligibility. Whether a top maintainer receives
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a ranking just above or just below the threshold can be considered to be as-good-as-random. For-

tunately, the regression discontinuity design allows us to test it’s assumptions. For example, it is

important to have no manipulation across the ranking for the RDD to be valid.14 We have checked

the credibility of this assumption through frequency plots and statistical tests of the running vari-

able as well as covariate checks along the running variable and find evidence that is consistent with

this assumption.15

To estimate the first stage of Copilot adoption, we employ the following model:

Copilotit = α0 + α11Eligibleit + α2Rankingit + α3Eligibleit ×Rankingit + ϵit

where Rankingit is the cumulative minimum Ranking across each eligible repository of a

maintainer. Eligibleit is defined as 1(Ranking < 0) which is a parameter of interest from which

we identify a change of Copilot usage at the normalized ranking threshold while considering a

bandwidth of h ∈ [−100, 100].

By construction, a change in access and, therefore, ultimately an exogenous change in adoption

of GitHub Copilot is the only policy intervention operating on a linchpin maintainer as one crosses

the ranking threshold of zero. We can therefore interpret any activity change across this threshold

as caused by Copilot through the following intent-to-treat (ITT) estimation:

Activityit = β0 + β11Eligibleit + β2Rankingit + β3Eligibleit ×Rankingit + ϵit

where β1 shows the causal effect of crossing the threshold — and through it, increased Copilot

access — on the work activity of interest.

14In other words, neither the maintainer can manipulate the ranking to receive Copilot access nor should GitHub be
able to manipulate the ranking to the benefit of some maintainers.

15Figure A2 visually shows a the distribution of the ranking without bunching at the threshold of zero. Table C1
shows the McCrary test and statistically does not identify any bunching, which adds to the idea that there is no evidence
for a manipulation at the threshold. Visual depictions of covariate smoothness are shown in Figure C1
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5 Main Results

5.1 Adoption of the Copilot Generative AI

As a society, we are at the beginning of the S-shaped adoption curve of generative AI overall.

This is not any different for the programming AI Copilot from GitHub. 19 percent of maintainers

used Copilot at least once (see Table A1). Further, GitHub was not engaging in any kind of adver-

tising informing the top maintainers about their eligibility for free Copilot access. Top maintainers

had to visit the GitHub Copilot website and check by themselves whether they were eligible or not.

Fortunately, due to the large scale of our data based on the weekly level, we are able to identify

even small changes.

— Figure 2 about here —

Figure 2 shows how crossing the threshold of zero from left to right alters programming AI

adoption. Maintainers that are below the threshold of zero are eligible to receive Copilot for free

with certainty while those above are not eligible for free through this channel. We find a significant

drop of AI adoption based on the total number of days that AI has been used over the sample period

when we cross the threshold, which implies that maintainers with free access are more likely to

use the generative AI.16

— Table 1 about here —

Table 1 shows the exact coefficients on generative AI adoption of the top maintainer population

across those who are eligible to access Copilot for a prize of zero dollars (i.e. ranking below zero)

and those who are ineligible to access Copilot through the top maintainer channel (i.e. ranking

above zero). The first two columns show estimates from the cross-section and the last two columns

show estimates from the panel. We find an increase of AI adoption independent of the measure

that is employed. For the cross-section, we observe an increase of 6.90 days (321% relative to

16The first stage is robust to a polynomial of degree two (see Figure C2)
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the baseline) overall in AI adoption and an increase of 6.14 percentage points (61.2% relative to

the baseline) of maintainers that ever adopted Copilot. For the panel, we find an increase of 0.12

days per week (223% relative to the baseline) and an exposure increase of 1.8 percentage points

(214% relative to the baseline). Despite not widely advertising Copilot maintainer access, we find

very strong effects ranging from 61% to 321% adoption, depending on the definition of the first

stage. Independent of the definition of AI adoption, we find that our first stage is relevant with an

F-value substantially beyond the recommended threshold of 10 where the cross-section F-values

range from around 17 to 18 and the panel from 435 to 557.

5.2 Consequences of GenAI Usage

In this step, we analyze how generative AI causally changes work behavior in the digital world,

namely the distributed work behavior of linchpin programmers that contribute to the public good

of open source software.

— Table 2 about here —

Table 2 shows the intent-to-treat estimates of the Copilot generative AI on work activities. The

table displays the reduced form effect of AI on activities that relate directly to programmer work.

We find that coding activities increase by 5.4 percentage points (12.37% relative to the baseline)

while project management drops by 10 percentage points (24.93% relative to the baseline). This

indicates that overall coding activity is increasing due to the availability of Copilot (Figure 3 shows

the same effects graphically).17 In line with Copilot being a teacher and problem solver tool well

suited to address problems or inquiries that would typically arise in the repository’s issues page, we

observe a substantial drop in the average maintainers relative allocation towards activities related

to project management. It implies that maintainers are less likely to seek out assistance from other

humans. In this spirit, generative AI is helping the public good of open source programming since

17The results are robust to different bandwidth selections and functional form as shown in Figure C4. They are also
robust to different kernel selections, as shown in Table C2.

15



linchpin maintainers have to solve fewer issues and they can focus on the core work: writing

software code.

— Figure 4 about here —

Figure 4 shows the dynamic impact of a heightened propensity to use Copilot for free in the

two years following general access. We find relatively stable coefficients across each period al-

beit with some ramp up and attenuation. In the first quarters, the effects are slightly weaker (in

absolute terms) for the effect of Copilot on coding and project management relative to the first

quarters where effects on increases up to 10 percent and -27 percent, respectively. The impacts

of the generative coding tool Copilot continuously attenuate from the fourth quarter onward and

stabilize around 2.5 percent for coding and 8 percent for project management. Hence, the strongest

treatment effects of Copilot arise in the first year which is consistent with the idea that eligibility

of the maintainers is re-evaluated after year one. Generally speaking, the pattern indicates that the

benefits of accessing Copilot seem to be arising quite instantaneously and after some experimenta-

tion of the developers with it, the impacts are stable up to approximately two years for the sample

of top maintainers.

To better understand the mechanisms of our treatment effect, we decompose our measures of

coding and project management. Figure A3 Panel A shows that the positive effect of coding is

driven mainly by pushes and some creation of repositories. In contrast, Copilot slightly reduces

forking and the creation of pull requests. Illustrating some background on OSS contribution can

help interpret these results. Following the contribution pattern popularized by the GitHub platform,

if a developer wishes to make a contribution to an OSS project, they first fork the project, make

their changes in the forked copy, and then formally ask the maintainer of the original project to

integrate their changes (e.g. a “pull request”). This paradigm, while the basis of OSS development,

is naturally beset with some degree of collaboration frictions. In contrast, pushes and the creation

of repositories can happen autonomously by the linchpin maintainer. Together, these coefficient

estimates indicate that generative AI enables linchpins to bypass collaboration frictions and more

easily make unilateral code contributions to projects. The AI seems to increase not only new
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innovations, but since adding code to already established projects exhibits the highest coefficient,

the AI leads to a substantial upward shift in code contributions. This implies that the Copilot AI

allows developers to shift their attention towards their core work activity while working more by

themselves and less with others.

Figure A3 Panel B shows the decomposed treatment effects of the generative programming

AI on project management. The itemized treatment effects are similarly heterogeneous for project

management relative to coding. While most of the coefficients are negative, a few are zero (or close

to it) and two are even positive. Linchpin maintainers with Copilot access close and merge issues

at a higher rate than those that do not have access to the programming AI.In this process, they

require fewer outside assistance which is consistent with a lower rate of requests for reviewers

to other maintainers or the assignment of issues to others. They also have to review fewer pull

requests and are subscribed to fewer issues which is consistent with those issues having been

closed at a faster rate. Overall, the effect of Copilot on each component of project management

measures is consistent with linchpins substituting away from work patterns that rely on others to

solve coding issues and instead utilizing Copilot in place of human capital required in the previous

interactions.18

In a next step, we leverage the same identification from the individual level and apply it to

the project (repository) level. Figure A5 shows outcomes on coding and project management at

the higher level. For coding, we know the amount of forking for each repository and we find

that forking increases when a project provides AI access to linchpin maintainers. This implies

that the individual-level coding effects are visible on the same repositories that the maintainers

are connected to. Conversely, we observe project watching behavior as well as the average days

issues are open and closed go down. Both the coding and the project management effects on the

repository level are consistent with the individual level effects.

— Figure 5 about here —

18Another robust channel that would strengthen the Project Management effect if included is ”Commenting”. Linch-
pins with AI access seem to comment substantially less than those without (result upon request).
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Finally we want to understand who benefits the most and if there is the potential to reduce

inequality in the open source setting that is highly dependent on a few highly skilled developers.

Figure 5 shows that the AI treatment effects across ability proxies where we conduct a median

split across the measures of the centrality of the maintainer to a repository (where centrality is

defined as the maintainer’s share of overall commits within a repository), their follower count and

their organizational affiliation. We find that individuals that we classify as low on these measures

exhibit larger increases of coding and larger reductions in project management. It indicates that

the low ability linchpins benefit more from the Copilot programming AI and that the AI has the

potential to reduce inequality of contributions for our digital infrastructure of open source software.

6 Discussion

Our empirical setting allows us to push the boundaries of existing knowledge on the impact

of AI on the nature of work. The primary benefit of this natural experiment is that we are able to

observe activities that are driven by AI for a longer period of time than most prior studies (two

years) while still using very granular level work activity data. On the other hand, a limitation of

this study is that we are not observing the exact code that individuals are programming and we are

not observing precisely how individuals are using Copilot. While randomized controlled trials can

focus on this aspect, they often have to restrict themselves to a small set of individuals. In contrast,

we are able to study the long-run effects of AI on many daily work activities for a large group of

programmers that are extremely important linchpin contributors to the public good open source

software.

Another limitation of this study is that we are only observing contributions to public reposito-

ries. Much of the activity with AI may happen in private repositories and as such, we are likely

substantially underestimating the impact that generative AI has on coding and project management

behavior. Based on our data, we find that 45.51% of Copilot usage happens in weeks where no

public (OSS) work activity is observed and GitHub has confirmed that the Copilot activity must
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therefore be related to private repository activity. Further, there is likely an even higher fraction

of private activity since this activity - while not measurable - is also likely occurring during weeks

where public activities are also occurring. As such, we expect that around 50 percent of the activity

of highly active programmers happens on private and 50 percent on public repositories. Hence, a

reasonable estimate for the overall private-public effort could be doubling our estimates conditional

on private behavior being affected in similar ways to publicly observable behavior. A further inter-

esting feature of the open source software platform is that private repositories can become public

over time, which implies that not only will learning from private repositories spill over to public

ones due to maintainers programming with the AI in public repositories but also AI generated code

may appear at an increased rate over time in the public sphere.

7 Conclusion

This study seeks to shine light on the importance of AI, and in particular generative AI and it’s

consequences on distributed work. Going beyond the first level understanding of whether or not

it increases productivity, we dig deeper to understand how it changes the nature of digital work

processes of linchpin adopters. We find that top developers of open source software are coding

more and are engaging less in project management tasks. The decrease in project management

activities is largely driven by maintainers addressing fewer problems that would arise on the project

issue boards. It implies that those problems might have been solved by generative AI instead

of a human, reducing overall collaboration frictions and other transaction costs characteristic of

distributed work. We further find that the programming AI Copilot assists developers more with

low ability relative to high ability.

Overall, our results are amongst the first that are able to illuminate the deeper level changes

in a decentralized work processes instigated by AI over a long time period with very granular

level information using a natural experiment. Furthermore, our study yields early insight into how

generative AI shapes the voluntary private provision of critical digital public goods infrastructure
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and how it ameliorates the linchpin problem. Indeed the scope for positive externalities inherent to

the public goods setting suggests the efficiency gains that arise from introducing generative AI to

the OSS production process can generate far-reaching spillover benefits to downstream users. We

believe they will help managers and policy makers better understand the nuances of this nascent

yet transformational technology.
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Figures and Tables

Figure 1: GITHUB COPILOT AI DEPLOYMENT TIMELINE

Note: The figure shows the timeline for the introduction of the generative AI GitHub
Copilot.
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Figure 2: COPILOT AI ADOPTION ACROSS RANKS
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Note: The figure shows the total number of days the Copilot GenAI was used across the overall normalized
minimum ranking on GitHub using a linear fit on either side of the threshold within the bandwidth of
h ∈ [−100, 100]. Maintainers with rankings below zero receive free access to the AI through the top
maintainer channel while those above do not. Time frame: July, 2022 to July 2023. Robust standard errors
are in parentheses.
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Figure 3: INTENT-TO-TREAT AVERAGE EFFECTS OF COPILOT AI
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Note: The figure shows the intent-to-treat (ITT) effect of the GitHub Copilot GenAI on the outcomes of
Coding and Project Management using the overall normalized minimum ranking on GitHub via a linear fit
on either side of the threshold within the bandwidth of h ∈ [−100, 100]. Maintainers with rankings below
zero receive free access to the AI through the top maintainer channel while those above do not. Time frame:
July, 2022 to July, 2023. Robust standard errors are in parentheses.
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Figure 4: INTENT-TO-TREAT EFFECTS OF COPILOT OVER TWO YEARS
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Panel B: Project Management
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Note: The figures plots intent-to-treat (ITT) coefficient estimates and confidence intervals for top main-
tainers being ranked below zero relative to above a zero ranking on the outcomes of Coding and Project
Management by pooling observations in quarters since the general access (GA) period. Time frame: July,
2022 to July, 2024. The confidence intervals are based on robust standard errors.
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Figure 5: INTENT-TO-TREAT EFFECTS OF COPILOT ACROSS ABILITY
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Note: The figures show intent-to-treat (ITT) coefficient estimates and confidence intervals on the outcomes
of Coding and Project Management for top maintainers being ranked below zero relative to above a zero
ranking across low and high ability developers. Ability is measured based on ability proxies of developer
centrality, follower count and achievements split by the median since the general access period. Low ability
individuals are below the median for each ability proxy while high ability are above the median. Time
frame: July, 2022 to July, 2023. The confidence intervals are based on robust standard errors.
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Table 1: AI ADOPTION ACROSS MAINTAINER RANKING

AI Adoption
Cross Section Panel

Total Days Ever Adoption Days/Week Exposure Share

1(Eligible) 6.896*** 0.0614** 0.1247*** 0.0180***
(1.574) (0.023) (0.008) (0.001)

Baseline 2.146*** 0.1004*** 0.0557*** 0.0084***
(0.593) (0.013) (0.003) (0.000)

Rel. TE (%) 321.4 61.2 223.8 214.3

F 18.00 17.75 435.7 557.5
N 4,268 4,268 215,169 215,169
Note: This table shows the first stage uptake of the generative AI tool Copilot for
top maintainers that are eligible based on the internal GitHub ranking relative to
those who are not eligible through this pathway using a bandwidth of ranks h ∈
[−100, 100]. The first two columns show cross-sectional estimates on the total days
of AI adoption and whether a maintainer ever adopted the AI. The last two columns
show the panel estimates of the days per week of AI adoption and exposure shares, i.e.
the cumulative days of AI adoption over the cumulative total days from the general
access period onward. Time frame: July, 2022 to July, 2023. Robust standard errors
are in parentheses. ∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05
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Table 2: INTENT-TO-TREAT EFFECT OF COPILOT AI ON WORK ACTIVITIES

Panel A: Coding

1(Eligible) 0.0537*** 0.0354***
(0.002) (0.002)

Baseline 0.4338*** 0.4338***
(0.001) (0.001)

Rel. TE (%) 12.37 8.16

N 269,546 248,054
Controls ✓

Panel B: Project Management

1(Eligible) -0.1002*** -0.0969***
(0.002) (0.002)

Baseline 0.4019*** 0.4103***
(0.001) (0.001)

Rel. TE (%) -24.93 -23.61

N 269,546 248,054
Controls ✓
Note: This table shows the coefficient estimates from the intent-
to-treat specification across each activity classification for top
maintainers that are eligible based on the internal GitHub ranking
relative to those who are not eligible through this pathway using a
bandwidth of ranks h ∈ [−100, 100]. Covariate controls include
the maintainer’s number of GitHub achievements, number of fol-
lowers, and a measure of their share of repository activity (i.e.
centrality). Time frame: July, 2022 to July, 2023. Robust stan-
dard errors are in parentheses. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p <
0.05
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Appendices

Appendix A Additional Tables and Figures

Figure A1: GITHUB COPILOT: ARTIFICIAL INTELLIGENCE IN ACTION

Panel A: Function Header

Panel B: Code Completion

Note: The figure shows a function generated by GitHub Copilot. The user wrote the
function header (Panel A) and Copilot suggested the rest of the function (Panel B).
Source: GitHub 2022
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Figure A2: DISTRIBUTION OF MINIMUM RANKINGS
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Note: The figure shows the distribution of the minimum rankings for the top main-
tainer based on the internal ranking system from GitHub. The dashed line is at the
eligibility threshold of the rank zero.
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Figure A3: GRANULAR INTENT-TO-TREAT EFFECTS OF COPILOT

Panel A: Coding
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Note: The figures show the intent-to-treat (ITT) coefficient estimates on the granular outcomes of Coding
and Project Management since the general access period. Time frame: July, 2022 to July, 2023. Confidence
intervals are based on robust standard errors.
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Figure A4: INTENT-TO-TREAT QUANTILE EFFECTS OF COPILOT AI
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Note: The figure shows the quantile intent-to-treat (ITT) effects of the Copilot GenAI on the outcomes of
Coding and Project Management using the overall normalized minimum ranking on GitHub via a linear fit
on either side of the threshold. Maintainers with rankings below 0 receive free access to the AI through the
top maintainer channel while those above do not. Time frame: July, 2022 to July, 2023. All confidence
intervals are based on robust standard errors.
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Table A1: DESCRIPTIVE STATISTICS OF TOP MAINTAINERS FOR 1 YEAR

Mean SD Min Max

AI Treatment

AI Total Days 8.12 29.17 0 349
AI Ever Used 0.16 0.37 0 1
AI Exposure Share 0.03 0.11 0 1
AI Days Used / Week 0.17 0.87 0 7

Work Activities

Coding 0.44 0.22 0 1
Project Management 0.37 0.20 0 1
All Activities 25.79 267.70 0 8,665

Ranking

Normalized Ranking -363.94 560.98 -999 1000

Note: The table shows univariate descriptive statistics for top maintain-
ers over one year with the arithmetic mean (mean) in the first column,
followed by the standard deviation (SD), the lowest value of a variable
(min), the highest value of a variable (max) and the number of observa-
tions (N). Our full balanced panel contains 2,422,916 observations for
50,032 maintainers within a time period from July 2022 - July 2023.
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Table A2: DESCRIPTIVE STATISTICS OF TOP MAINTAINERS FOR 2 YEARS

Mean SD Min Max

AI Treatment

AI Total Days 27.66 76.52 0 717
AI Ever Used 0.24 0.43 0 1
AI Exposure Share 0.05 0.14 0 1
AI Days Used / Week 0.29 1.12 0 7

Work Activities

Coding 0.45 0.22 0 1
Project Management 0.36 0.19 0 1
All Activities 23.74 253.10 0 198,498

Ranking

Normalized Ranking -368.22 558.72 -999 1000

Note: The table shows univariate descriptive statistics for top maintain-
ers over two years with the arithmetic mean (mean) in the first column,
followed by the standard deviation (SD), the lowest value of a variable
(min), the highest value of a variable (max) and the number of observa-
tions (N). Our full balanced panel contains 5,381,132 observations for
55,496 maintainers within a time period from July 2022 - July 2024.
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Table A3: DESCRIPTIVE STATISTICS OF TOP MAINTAINERS WITHIN MAIN BANDWIDTH

Mean SD Min Max

AI Treatment

AI Total Days 4.46 19.06 0 264
AI Ever Used 0.13 0.34 0 1
AI Exposure Share 0.02 0.09 0 1
AI Days Used / Week 0.11 0.70 0 7

Work Activities

Coding 0.44 0.22 0 1
Project Management 0.37 0.19 0 1
All Activities 17.28 51.50 0 4,942

Ranking

Normalized Ranking 0.62 60.33 -100 100

Note: The table shows univariate descriptive statistics for top main-
tainers within a bandwidth of h ∈ [100, 100] with the arithmetic mean
(mean) in the first column, followed by the standard deviation (SD), the
lowest value of a variable (min), the highest value of a variable (max)
and the number of observations (N) for top maintainer within the band-
width of h ∈ [−100, 100]. Our full balanced panel contains 215,169
observations for 5,521 maintainers within a time period from July 2022
- July 2023.
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Table A4: DESCRIPTIVE STATISTICS OF TOP MAINTAINER FOR ALL WORK ACTIVITIES

Mean SD Min Max

Coding

Create Repository 0.04 0.32 0 173
Fork Repository 0.07 1.40 0 1,327
Pull Request 1.03 15.52 0 5,468
Push 10.15 236.12 0 85,302

Project Management

Issue: Assigned 0.48 3.79 0 1,616
Issue: Closed 1.97 17.21 0 4,889
Issue: Created 0.30 3.97 0 1,591
Issue: Comment Deleted 0.01 0.49 0 225
Issue: Labeled 1.94 43.13 0 10,161
Issue: Merged 1.18 9.04 0 4,338
Issue: Reopened 0.04 1.02 0 340
Issue: Review Requested 1.08 12.06 0 2,687
Issue: Subscribed 1.47 8.91 0 1,550

Note: The table shows univariate descriptive statistics with the arithmetic mean (mean) in the first
column, followed by the standard deviation (SD), the lowest value of a variable (min), the highest
value of a variable (max) across all individual work activities that are included in the categories
from Table A1. Our full balanced panel contains 2,422,916 observations within a time period from
July 2022 - July 2023.
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Table A5: REPOSITORY LEVEL EFFECTS OF COPILOT AI

Coding Project Management (Issues)
Forks Avg. Days Open Avg. Days Closed

1(Eligible) 0.051*** -43.881*** -3.162***
(0.010) (4.776) (0.680)

N 196,539 493,271 507,820
Note: The table shows treatment effects of at the repository level on outcomes for repositories
that have a ranking just below zero and provided free access to Copilot relative to those above
the threshold which did not. Time frame: July 2022 - July 2023. Robust standard errors are in
parentheses.
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Appendix B Classification of Work Activities
Each activity is defined as the sum of its disaggregated constituent activities. See below:

Coding Project Management
Create Repository Created Project Board
Fork Repository Issue Assigned
Pull Request Issue Closed
Push Issue Comment Deleted

Issue Closed
Issue Labeled
Issue Merged
Issue Reopened
Issue Review Requested
Issue Subscribed
Reviewed Pull Request
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Appendix C Robustness Checks

Figure C1: COVARIATE SMOOTHNESS
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Note: The figure shows the covariate smoothness check across the overall minimum ranking on GitHub for
measures of maintainer platform achievements, follower counts, and a measure of the maintainer’s centrality
within their repository. After the general access period, maintainers with rankings below 0 receive free
access to the AI through the top maintainer channel while those above do not. Time frame: Covariates are
observed between January, 2021 and July, 2023. Maintainer rankings are observed form July 2022 through
July 2023. Robust standard errors are in parentheses.
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Figure C2: COPILOT AI ADOPTION ACROSS RANKS WITH POLYNOMIAL OF DEGREE 2
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Note: The figure shows the total number of days the Artificial Intelligence (AI) GitHub Copilot was used
across the overall minimum ranking based on the six top languages on GitHub with a quadratic fit on either
side of the threshold. Maintainers with rankings below 0 receive free access to the AI through the top
maintainer channel while those above do not. Time frame: July, 2022 to July, 2023. Robust standard errors
are in parentheses.
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Figure C3: INTENT-TO-TREAT EFFECTS OF COPILOT AI WITH POLYNOMIAL OF DEGREE 2
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Note: The figure shows the total number of days the generative AI tool Copilot is used across the overall
minimum ranking on GitHub using a linear fit on either side of the threshold. Maintainers with rankings
below zero receive free access to the AI through the top maintainer channel while those above do not. Time
frame: July, 2022 to July, 2023. Robust standard errors are in parentheses.
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Figure C4: ITT OF VARYING BANDWIDTHS, POLYNOMIAL OF DEGREE ONE

Panel A: Polynomial of Degree 1
Coding Project Management

Panel B: Polynomial of Degree 2
Coding Project Management

Note: The figure shows the ITT effects when crossing the ranking threshold from the right to the left.
Panel A (B) displays linear (quadratic) ITT effects. The bandwidth of 100 is our baseline estimation using
h ∈ [−100, 100]. Time frame: July, 2022 to July, 2023. Confidence intervals are based on robust standard
errors.
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Table C1: MCCRARY DENSITY TEST

Ranking Frequency

1(Eligible) -477.607
(417.169)

N 201
Note: This table shows results from the McCrary test (McCrary 2008) for the fre-
quency of a ranking ∈ [−100, 100] bandwidth, aggregated to the rank level. Robust
standard errors are in parentheses. ∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05
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Table C2: DIFFERENT KERNELS FOR COPILOT INTENT-TO-TREAT EFFECTS

Coding Uniform Triangular Epanechnikov

1(Eligible) 0.0537*** 0.0523*** 0.0539***
(0.002) (0.002) (0.002)

N 215,169 215,169 215,169
Project Mgmt. Uniform Triangular Epanechnikov

1(Eligible) -0.1002*** -0.1067*** -0.1101***
(0.002) (0.001) (0.002)

N 215,169 215,169 215,169
Note: This table shows the intent-to-treat effects of the generative AI tool
Copilot on work activities of coding and project management using a uniform
kernel, a triangular kernel and an Epanechnikov kernel in column one, two,
and three. Our full balanced panel is observed within a time period from July,
2022 to July, 2023. Robust standard errors are in parentheses. *** p < 0.001,
** p < 0.01, * p < 0.05
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Table C3: OPTIMAL BANDWIDTHS FOR COPILOT INTENT-TO-TREAT EFFECTS

Coding MSE CER

1(Eligible) 0.0442*** 0.0300***
(0.003) 0.003

N 97,367 71,222
Optimal bandwidth [-47, 47] [-35, 35]
Project Management MSE CER

1(Eligible) -0.0964*** -0.0580***
(0.002) 0.003

N 105,027 74,668
Optimal bandwidth [-51, 51] [-38, 38]
Note: This table shows the intent-to-treat effects of the generative AI tool
Copilot on work activities of coding and project management using the op-
timal bandwidth mean squared error (MSE) and the coverage error rate (CER)
estimator in column 1 and 2. Our full balanced panel is observed within a time
period from July, 2022 to July, 2023. Robust standard errors are in parenthe-
ses. *** p < 0.001, ** p < 0.01, * p < 0.05
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