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Abstract

This paper examines the macroeconomic cost and implications of transitioning to net zero
emissions. The macroeconomic cost of achieving net zero is a combination of lower output due
to higher energy prices and higher investment due to more costly technology. Along the tran-
sition path, a net zero target operates as both an anticipated negative productivity shock and
a negative capital shock. Thus, for monetary policy, net zero is a negative aggregate demand
shock that lowers the natural rate of interest. Using projected technology costs and net zero
modeling scenarios, decarbonization of US electric power generation is estimated to cost less
than 0.2% of steady state consumption.
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1 Introduction

In the wake of the Paris climate accords in 2015, the goal of net zero greenhouse gas emissions has

increasingly become the organizing principle around climate change. In the Paris accords, coun-

tries agreed that to limit warming to 2 degrees Celsius or, preferably, 1.5 degrees Celsius would

require achieving net zero greenhouse gas emissions by around mid century. Major emitters - in-

cluding the US, European Union and China - have taken meaningful steps since the Paris accords

to lower emissions. The Inflation Reduction Act (IRA), passed in 2022, represents the largest US

effort to address climate change via broad-based subsidies for clean energy investment.

The growing ambition around targeting net zero emissions and concrete steps taken in many

advanced and developing economies toward decarbonization have prompted questions about

the macroeconomic effects of the climate transition and its implications for monetary and fiscal

policy. The investment and fiscal expenditures required to transition the economy from fossil to

clean technologies across power generation, transportation, and industry have raised concerns

that interest rates may be structurally higher, with implications for both public debt dynamics

and monetary policy. Some have argued that direct fiscal costs on the energy transition may either

raise interest rates or stoke inflation.1

In particular, the macroeconomic costs of getting to net zero are highly uncertain. At one level,

the complete remaking of the world’s energy system over 30 years would appear on its face to

be an expensive undertaking. For some countries, the macroeconomic cost of getting to net zero

emissions is projected to be modest. The UK Treasury estimated that getting to net zero emissions

for UK would cost roughly 1-2% of GDP per year. The IEA estimated in 2021 that global annual

energy sector investment would have to roughly double in a net zero scenario, implying a one

percentage point of global GDP increase in investment (see International Energy Agency (2021)).

However, other estimates are significantly higher. The DICE model’s abatement function has a

net zero cost of 11% of global GDP in 2020, falling to 5.1% in 2050 (see Appendix E in Barrage

and Nordhaus (2023)). Morris et al. (2023) calculate that achieving global net zero would lower

consumption by 10-15% of GDP yearly while Smil (2023), drawing from a 2021 McKinsey Global

Institute study (Mckinsey Global Institute (2021)), estimates that investment required to reach net

zero would require a staggering 15-25% of GDP per year for high income countries.

In this paper, I examine the costs of getting to net zero emissions and the implications for mon-

etary and fiscal policy. Specifically, I consider the macroeconomic consequences of the transition

to net zero emissions through the lens of simple analytical model and through a quantitative ap-

plication to decarbonization of the electric power sector in the US. In considering the transition

to next zero, two dimensions are key: the shift in technology from fossil to clean (zero emissions)

1Bistline, Mehrotra and Wolfram (2023) find that the climate provisions of IRA could results in expenditures of up

to $1.2 trillion over ten years.
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and the turnover in the capital stock.

I start with a simple analytical model that is sufficiently general to consider decarbonization

for any particular sector (i.e. power generation, transportation, etc.) or for any country. The

planner invests in clean and fossil fuel capital that produces energy used in the production of a

final good. Clean and fossil fuel capital differ in their capital cost, productivity, and depreciation

rates. To render net zero feasible, there must exist a technology that at some price could fully

substitute for the incumbent fossil fuel technology. In the long-run, the macroeconomic cost of

achieving net zero depends on the difference in consumption when fossil fuel capital is available

or is banned. In the net zero case, the change in consumption can be decomposed into an output

cost and an investment cost. Output is lower under net zero since the cheaper fossil technology

is not available. Additionally, steady state investment may also increases as some combination of

more costly or less productive clean capital is needed on an ongoing basis.

Turning to the transition path, I show that a net zero target is analogous to a composite shock:

an anticipated negative productivity shock and an anticipated negative capital shock. In effect,

the shift to a zero emissions technology is a shift to a more costly or less efficient technology for

energy. The higher cost of energy shifts inward the production possibilities frontier. The planner

smooths out the effect of the negative productivity shock by gradually reducing consumption.

This equivalence is shown analytically in the case of full depreciation.

Additionally, a net zero target may also materialize as a negative capital shock. If capital cannot

be reallocated by the net zero date due to, for example, irreversibility, part of the capital stock is

rendered obsolete and output falls. Consumption falls at the point the capital stock is rendered

obsolete (relative to the previous period). From that point forward, the clean energy capital stock

rises towards its steady state level. Importantly, the negative effect on consumption during the

transition can still materialize even if there is very little long-run macroeconomic cost of attaining

net zero. If, for example, the capital cost of clean and fossil fuel capital are similar, steady state

consumption will be comparable, but consumption will fall during transition due to premature

capital destruction.

The transition path for consumption has clear implications for the real interest rate during

the climate transition that are contrary to the conventional wisdom. Both a negative productivity

shock and a negative capital shock imply a decline in consumption from the initial date to the

net zero date. This negative consumption growth implies a declining real interest rate during

the climate transition. This decline in consumption comes along despite a rise in investment.

Importantly this result suggest that, generically, one should not expect the climate transition to be

an upward force on the interest rate relevant for monetary policy (i.e. natural rate of interest rnt ).

Moreover, for stabilization purposes, the climate transition is a negative aggregate demand shock.

The analytical model also has implications for fiscal policy. Net zero emissions can be achieved

via either a carbon tax or clean energy subsidy, but optimal policy relies solely on a carbon tax
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and sets the subsidy to zero.2 If a subsidy is used to achieve net zero emissions, then electricity

production will be unchanged (relative to baseline) but at the cost of excessive investment. In the

net zero steady state, the carbon tax raises zero revenue but a subsidy represents an ongoing cost.

To the extent that the subsidy is financed by distortionary taxation on other factors of production,

the overall macroeconomic cost of achieving net zero also includes an additional fiscal cost.

The cost of net zero under a subsidy-only approach provides a useful upper bound on the

long-run cost of getting to net zero. I show that an upper bound on the cost of net zero is the

clean technology premium multiplied by the energy investment share in GDP. This upper bound

suggests why that macroeconomic cost of getting to net zero is likely to be low. The clean tech-

nology premium has fallen sharply in recent year in energy production and transportation and

is expected to fall further in coming decades. Moreover, the energy investment share is low for

advanced economies; for instance electric power generation investment is roughly 0.5% of GDP

in the US.

To assess the quantitative implications of net zero emissions, I modify the baseline model to

include adjustment costs, non-energy capital, and a more realistic model of electric power gener-

ation. Though the unsubsidized cost of clean power sources like wind and solar are now compet-

itive with natural gas fired power generation, these intermittent sources of power are imperfect

substitutes for dispatchable sources of power that are needed to ensure reliability. To capture this

property of power generation, I assume that electric power is produced via a variable elasticity

of substitution (VES) production function. When intermittent power is a low share of total power

generation, it is a strong substitute for dispatchable (fossil) power generation. But as its share

increases, intermittent (clean) power becomes less substitutable for fossil power making further

decarbonization with intermittent sources increasingly costly. Data on current and future capital

costs and baseline projections from energy systems models are used to estimate the parameters of

the VES electricity production function.

This electricity production function is calibrated to baseline scenarios from energy system

models. These models choose the optimal mix of clean, unabated fossil, and fossil with carbon

capture to both ensure reliability and minimize cost. Net zero scenarios are considered where

taxes or subsidies are imposed to drive the unabated fossil share down to the average levels in net

zero scenarios. I find that the macroeconomic cost of achieving net zero emissions for US power

generation is less than 0.1% of consumption under the assumption that energy and non-energy in-

puts are moderate complements. With Cobb-Douglas final good production, consumption losses

are less than 0.2% of consumption. Even in the extreme scenario of no technological progress to

2050, long-term consumption losses are still less than 1%. Quantitatively, transition path results

modestly attenuate these consumption costs as discounting effects dominate adjustment costs.

2The optimal subsidy may be non-negative if there are learning-by-doing externalities where the price of clean

energy capital drops with the capital stock as noted in Bistline, Mehrotra and Wolfram (2023).
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Though limited to only quantifying the cost of decarbonization of US electric power produc-

tion, these magnitudes are an order of magnitude lower than many estimates of the cost of attain-

ing net zero. This is largely a function of technological progress and of the small share of electricity

production in overall output and energy investment as a share of overall investment. The quanti-

tative model does not consider the benefits from mitigating carbon emissions, but the magnitude

of the consumption costs suggests that the reduction in conventional air pollutants alone would

justify the cost of attaining net zero.

The rest of the paper is organized as follows. Section 1.1 below outlines the related literature

in energy systems modeling and macro/climate models. Section 2 describes the simple analytical

model of the transition to net zero. Section 3 presents the quantitative model and calibration strat-

egy. Section 4 provides results on the long-run and transition costs of attaining net zero emissions

in the US power generation. Section 5 concludes.

1.1 Related Literature

This paper seeks to bring the results of energy system modeling into a conventional macroeco-

nomic growth framework. Energy systems models have been used to describe pathways for net

zero emissions for the US economy and to quantify the effects of recent US policy changes such

as the Inflation Reduction Act (IRA). Bistline, Mehrotra and Wolfram (2023) use the EPRI-REGEN

model to analyze the impact of the Inflation Reduction Act on US electric power generation, elec-

tric vehicle adoption adoption, carbon dioxide emissions, and electricity prices. Bistline et al.

(2023) offers a comparison across nine energy systems models to examine the energy market im-

pacts of IRA. Jenkins et al. (2021) provide several scenarios for the US to achieve net zero emissions

by 2050, while Huppmann et al. (2023) compare net zero scenarios across a range of energy sys-

tems models for the National Climate Assessment.

An extensive literature in macroeconomics has sought to incorporate climate change damages

and mitigation into a standard macroeconomic framework. Nordhaus (1993) provided that first

integrated assessment model with more recent updates of the DICE model in Barrage and Nord-

haus (2023). Golosov et al. (2014) characterize the optimal carbon tax in macro growth model with

climate damages, while Barrage (2020) studies the interaction between carbon taxes and other dis-

tortionary taxes. Compared to this work, this paper is focused on the turnover the capital stock

needed to achieve net zero and on the modeling electric power generation to account for variable

substitutability between intermittent and firm sources of electric power.

Lastly, this paper is related to macroeconomic models with energy production. Arkolakis and

Walsh (2023) examines the economic growth and spatial activity impacts of the falling price of

clean energy capital, finding a rapid increase in US clean energy power generation even account-

ing for limited interregional transmission capacity. Fried (2018) quantitatively examines how a
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carbon tax induces innovation in clean energy in a model with clean, fossil and non-energy capi-

tal. Casey, Jeon and Traeger (2023) study the implications of subsidies to clean energy relative to

a carbon tax in a dynamic macroeconomic model where clean and fossil energy are complements.

Carton et al. (2023) outline a large-scale open economy macro model with energy production and

trade; this model is used in Voigts and Paret (2023) to assess the energy and macroeconomic im-

pact of IRA. Relative to these papers, I focus on dynamics of the capital stock in net zero scenarios,

allow for variable elasticity of substitution across clean and fossil energy, and use evidence from

energy system models on current and projected technology costs.

2 Analytical Model

I begin by outlining a simple neoclassical model with clean and fossil capital to highlight the

key macroeconomic forces from a net zero emissions target. The model here follows closely the

framework introduced in Bistline, Mehrotra and Wolfram (2023) that was used to characterize

the macroeconomic impacts of the climate provisions of IRA. This section introduces the model,

characterizes the steady state and transition path, and considers implications for monetary and

fiscal policy.

2.1 Planner’s Problem

The model introduced here is a neoclassical growth model with energy production. The planner

chooses consumption and investment in two types of capital to maximize the discounted present

value of flow utility from consumption. The clean capital stock Kc
t and the fossil fuel capital stock

Kf
t produce energy Et from a generation function G (·, ·) that takes both types of capital as input.

The planner can invest in new clean or fossil fuel capital at relative prices pct and pft . The final

good production function is assumed to be constant returns to scale, with decreasing returns in

each input and satisfies the Inada conditions. Labor supply is inelastic at N̄ .

max

∞∑
t=0

βtu (Ct)

Ct + pctI
c
t + pft I

f
t = F

(
Et, N̄

)
Et = G

(
Kc
t ,K

f
t

)
Ki
t+1 = Iit + (1− δi)Ki

t i ∈ {c, f}

Ki
t+1 ≥ 0

The model presented here parsimoniously captures the essential features of the energy transi-

tion: the choice between fossil and clean energy technologies with different costs and underlying
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productivity, the importance of energy as an input into final goods production and the need to

turnover a energy-producing capital stock that depreciates slowly. This setup is sufficiently gen-

eral to capture decarbonization outside of electric power generation. For example, decarboniza-

tion of transportation likewise reflects a shift in transportation capital from fossil fuel power to

clean fuel with transportation services (instead of Et) as an input to overall final goods produc-

tion. Decarbonization of buildings and industry likewise require the production of alternative

fuels (i.e. hydrogen, synthetic natural gas) or a shift towards capital that can be electrified.3

The possibility of attaining net zero emissions depends on the energy generation function

G (·, ·).4 Typically, macro/climate or macro/energy models specify a constant elasticity of sub-

stitution across these two types of technologies (see, for example, Fried (2018) and Golosov et al.

(2014)). With constant elasticity of substitution, full decarbonization is infeasible since both types

of capital are essential. To allow for a net zero allocation (i.e. Kf
t = 0), non-negativity constraints

on capital are imposed.

The optimal allocation of clean and fossil capital satisfies the following intertemporal Euler

equations:

pctλt + µct = βλt+1

[
pet+1Gc

(
Kc
t+1,K

f
t+1

)
+ pct+1 (1− δc)

]
pft λt + µft = βλt+1

[
pet+1Gf

(
Kc
t+1,K

f
t+1

)
+ pft+1 (1− δf )

]
λt = uc (Ct)

pet = Fe
(
Et, N̄

)
0 = µitK

i
t+1

For an interior solution, the optimal level of investment in each type of capital equations the price

of capital today to the sum of the discounted value of undepreciated capital in the next period and

the marginal product of capital. The marginal product of clean or fossil fuel capital depends on

the value of energy in the production function pet and the incremental energy from another unit of

clean or fossil capital.

The model can be easily generalized to allow for endogenous labor supply. Assume that period

utility is now a function of utility less disutility from labor supply: u (Ct)−v (Nt) with the disutility

of labor supply v (·) increasing and convex. The optimal labor allocation equates the marginal cost

of supplying labor with the marginal benefit:

vn (Nt)

uc (Ct)
= Fn (Et, Nt)

3In the simple model, I do not model the consumption or provision of fossil fuel. Effectively, the model assumes

costless supply of fossil fuel and Leontif demand for fuel for energy production. This may neglect efficiency gains

where emissions and fuel usage can be reduced for a given level of energy production.
4The DICE model features a reduced form abatement function; the fraction of emissions abated directly reduces

production available for consumption. See Barrage and Nordhaus (2023) for details.
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2.2 Net Zero Steady State

A sufficient condition for ensuring the feasibility of a net zero allocation is perfect substitutability

and constant returns to scale for the energy production function G (·, ·):

G
(
Kc
t ,K

f
t

)
= Gc (Kc

t ) +Gf
(
Kf
t

)
Gi
(
Ki
t

)
= AiK

i
t

If this functional form is assumed, then, in steady state, all energy capital will be allocated to either

clean or fossil capital. The choice between clean and fossil capital satisfies the following condition:

pf
Af

(r + δf )− µ̃f =
pc
Ac

(r + δc)− µ̃c

The assumption perfect substitutability may appear strong and deserves further discussion.

First, no restriction is placed on how much more expensive the clean technology pathway pc is be

relative to the fossil pathway pf . Second, perfect substitutability is the tacit assumption in energy

systems modeling, which lays out pathways through which fossil fuel use can be replaced by

some combination of electrification, alternative fuels, or carbon capture and sequestration. Third,

for hard-to-abate sectors, a feasible though perhaps costly decarbonization strategy is always to

simply capture or offset the unabated emissions.

The assumption of constant returns also merits further discussion. There is little reason a priori

to think that zero carbon energy pathways require inputs in fixed supply. Land is an important

input for biofuels or negative emissions technologies like bioenergy with carbon capture; however,

higher cost options that are not land-constrained are available for both zero carbon fuels and

carbon capture. Labor input to energy production is comparatively small as a share of the total

labor force. Existing production of raw materials like lithium and copper are likely insufficient to

cover the energy transition, but there is little reason to think that production could be increased

through further exploration and production.

If the productivity and depreciation-adjusted price of fossil fuel capital (adjusted for produc-

tivity) is less than that of clean energy capital, only fossil fuel capital is used and µ̃c > 0. In the

opposite case, only clean energy capital is used. The steady level of energy generation, output and

consumption satisfy the following conditions:

pi
Ai

(r + δi) = Fe
(
AiKi, N̄

)
Y = F

(
AiKi, N̄

)
C = Y − δipiKi

where i is the lowest cost energy production technology and r = 1/β− 1. From these expressions,

it is clear that a net zero steady state is feasible and that, if clean energy capital is more costly than

fossil fuel capital, energy generation, total output and consumption will be lower while the price

of energy will rise. The implications for investment are ambiguous, as higher investment may be

needed due to a higher capital stock or higher relative price of capital. From these expressions,
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the long-run cost of attaining net zero emissions is simply the difference in consumption between

the clean and fossil fuel steady states.

Under net zero, the switch from fossil to clean energy reduces the marginal product of labor

- a negative labor demand shock - reducing the labor input as wages fall. So long as the income

effect is not too strong, labor input falls and output falls by more relative to the case of inelastic

labor supply.

An upper bound to the consumption loss from a net zero target can also be derived under

conditions of perfect substitutability and constant returns. A feasible allocation is one in which

energy production is kept constant between the net zero and fossil fuel steady state. In this case,

output remains unchanged across the two steady states and consumption is only lower because

of the higher required investment needed to maintain energy production. The consumption cost

of net zero ∆Cnz is:

∆Cnz =

(
pc
pf

δc
δf

Af
Ac
− 1

)
pfIf (1)

The consumption loss is proportional to the productivity and depreciation adjusted price pre-

mium in capital cost between clean and fossil fuels and is linear in the initial level of energy

investment. Consumption losses will be modest in the long run if capital costs, productivity dif-

ferences are small and/or steady state energy investment If is low.

2.3 Net Zero Transition Path

I now turn to characterizing the transition path to net zero. The net zero transition path is the

planner’s choice of clean and fossil capital between date 0 and date Tnz after which point fossil

fuel capital can no longer be utilized (i.e. Kf
t = 0 or Af = 0). The optimal allocation of capital is a

constrained version of the optimality conditions shown above:

pct + µct =
βλt+1

λt

[
pet+1Gc

(
Kc
t+1,K

f
t+1

)
+ pct+1 (1− δc)

]
t < Tnz

pft =
βλt+1

λt

[
pet+1Gf

(
Kc
t+1,K

f
t+1

)
+ pft+1 (1− δf )

]
t < Tnz

pct =
βλt+1

λt

[
pet+1Gc

(
Kc
t+1, 0

)
+ pct+1 (1− δc)

]
t ≥ Tnz

For t ≥ Tnz , the transition path is analogous to a standard neoclassical growth model with one

type of capital. But prior to the net zero date, the planner can generically invest in both forms of

capital.

In general, it will be difficult to characterize the transition paths for output, consumption and

capital stocks analytically without strong assumptions. However, to illustrate the key forces at

work in the transition, I consider two specific cases.

As shown earlier, assuming that the clean technology is more costly than the fossil technology,

consumption must be lower in the net zero steady state. With full depreciation, the technology
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Figure 1: Transition path: Anticipated productivity shock

shift around net zero requires a discrete shift to the more costly technology. The following propo-

sition summarizes the dynamics of consumption:

Proposition 1. If δ = 1 and pc > pf , consumption starts above its long run level and falls monotonically

to its net zero consumption level Cnz .

The case of full depreciation illustrates how the net zero transition mimics an anticipated neg-

ative productivity shock. The intuition is straightforward in this case - future consumption must

be lower since energy production will be more costly. While the productivity change is abrupt

around the net zero date, the drop in consumption is gradual as the planner smoothes out the con-

sumption response along the transition. Since the timer period is arbitrary in this simple model,

a net zero transition with a relatively long transition period can best approximated by the full

depreciation case.

In the case of log consumption, full capital depreciation and Cobb-Douglas production, the

model is isomorphic to an RBC model with productivity shocks and full depreciation. Saving

and investment are a constant share of output. From the initial steady state with only fossil cap-

ital, energy can only be produced by clean energy capital after Tnz . Prior to the net zero date,

consumption, output and investment are at their pre-net-zero steady state level and clean energy

capital is zero. At Tnz − 1, investment shifts to clean energy capital, but that level of investment

is insufficient for output to remain unchanged in Tnz , resulting in a decline in consumption. This

result is summarized in the following lemma, with Figure ?? illustrating the transition path:

Lemma 1. If utility function is log and the final good production function is Cobb-Douglas, then the saving

rate is constant and consumption falls monotonically to Cnz < C0
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Figure 2: Transition path: Anticipated capital shock

The alternative case is the case of no depreciation δf = δc = 0, irreversibility and pc = pc+ ε. In

this case, steady state consumption with and without a net zero target are comparable, since the

underlying technologies are similar in cost. However, the transition dynamics around the net zero

target will be pronounced. At the net zero date, the economy experiences a negative capital shock

and fall in output. By investing in clean energy capital prior to the net zero date Tnz , the planner

can mitigate the fall in output. However, to do so, returns on capital must therefore be depressed

prior to Tnz and consumption must be falling. After Tnz the clean energy capital stock grows to its

long-run value just as in a standard capital accumulation model after a capital destruction shock.

This result is summarized by the following proposition and illustrated in Figure 2:

Proposition 2. If δ = 0 and capital is irreversible, consumption growth is weakly negative before the net

zero date Tnz

The case of no depreciation and irreversibility captures a key element of the climate transition:

stranded assets. Fossil fuel capital is long-lived and may need to be retired before the end of its

economic life. This premature retirement of economic useful assets functions like a negative capi-

tal shock (or a war shock). Since this shock is anticipated, the consumption response is smoothed

out and consumption declines to the net zero date and must approach the eventual steady state

level of consumption from below.

To summarize, these cases illustrate how the climate transition is the composition of an antici-

pated negative productivity and capital shock.
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2.4 Implications for monetary and fiscal policy

The characterization above of the energy transition path has clear implications for the behavior of

the natural rate of interest (i.e. the interest rate that monetary policy wishes to track). The interest

rate over the climate transition is derived below:

1 + r0,Tnz =

T∏
j=0

(1 + rj,j+1)

1 + rt,t+1 =
1

β

uc (Ct)

uc (Ct+1)

⇒ =
1

βT
uc (C0)

uc (CT )

In both the cases of a negative productivity shock and negative capital shock, consumption

growth is negative between the initial date and the net zero date. Since consumption growth is

negative, on average, the real interest rate over this period falls below its steady state level (i.e.

1/β − 1). The generic decline in the real interest rate along the transition path stands in sharp

contrast to conventional wisdom among central bankers and monetary policymakers that interest

rates may be structurally higher due to the investment demands of the climate transition.5 Inter-

estingly, this intuition holds after the net zero date where the clean energy capital stock continues

growing to its steady state level.

In the presence of pricing frictions in the labor market, a net zero target acts as a negative shock

to aggregate demand (hence the decline in the natural rate). If monetary policy fails to track the

declining natural rate, consumption demand will fall but investment demand will not rise com-

mensurately, resulting in lower labor demand and higher unemployment. While the productivity

component is a negative demand shock, the negative capital shock component turns to a positive

aggregate demand shock after the net zero date Tnz as the marginal product of capital rises. It is

worth emphasizing that expectation effects on current consumption would need to be quite strong

to induce a negative output gap from the adoption of a net zero target.

This result could potentially be reversed to the extent that the net zero economy is actually

more productive than the baseline case; one way this may be true if clean energy investment ben-

efits from learning-by-doing that drives down capital costs or boost productivity of clean energy

capital. The result of a declining natural rate could also be reversed if emission damages are suf-

ficiently reduced to raise future consumption relative to the baseline.

The implications for fiscal policy are likewise clear. The planner can implement the net zero

allocation by either raising the relative cost of fossil capital or lowering the relative cost of clean

energy capital. The combination of a carbon tax τf and clean energy subsidy τc that implements

the net zero allocation must ensure that the after tax cost of capital is higher than the after subsidy

5See, for example, a Peterson Institute discussion on the future of interest rates or this Wall Street Journal piece.
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cost of clean energy capital. The expression below shows this condition:

pf
Af − τf

(r + δf ) =
pc

Ac + τc
(r + δc)

In steady state, the carbon tax that implements the net zero allocation raises zero revenue and

has no broader economic impacts via fiscal policy. However, if implemented solely with a clean

energy subsidy, the subsidy will be strictly positive in steady state to keep fossil capital uncompet-

itive and output and energy will be unchanged relative to the fossil case. Any output costs from

distortionary capital or income taxes represent an additional macroeconomic cost of attaining net

zero due to fiscal implementation. It can be shown that the optimal fiscal implementation both in

the long-run and along the transition path is solely via a carbon tax (see Bistline, Mehrotra and

Wolfram (2023) for extensive discussion).

Consider a distortionary labor tax that is used to finance a clean energy subsidy that renders

fossil capital uncompetitive. In steady state, the labor tax must collect sufficient revenues to fund

the subsidy to clean energy capital as shown below:

τN = τcδcKc

Both N and Kc are decreasing in the labor income tax so long as labor supply is not completely

inelastic. As a result, a non-zero labor income tax lowers both employment N and clean energy

capital Kc, lowering output. The steady state cost of attaining net zero can be expressed as the

sum of the upper bound consumption cost without distortionary taxes (see equation (1)) and a

second term that reflects the additional steady state output lost from the fiscal instrument used to

implement the net zero allocation:

∆Cnz,τ =

(
pc
pf

δc
δf

Af
Ac
− 1

)
pfIf − (Ynz − Ynz,τ )

3 Quantitative Model and Calibration

In this section, I present the full quantitative model used to analyze decarbonization in US electric

power generation. The quantitative model includes both energy and non-energy capital, capital

adjustment costs and several distinct energy capital stocks. This section also describes in some de-

tail the way that electric power generation is represented in the model and the mapping between

energy systems models of decarbonization and the aggregate production function used here.

3.1 Full Model

A representative household maximizes the discounted present value of consumption subject to an

aggregate resource constraint and electric power production functions. The planner’s problem is
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given below:

max
∞∑
t=0

βtu (Ct)

Ct +
∑
i

pitI
i
t + S

(
Iit ,K

i
t

)
= F

(
Kne
t , Et, N̄

)
Et = G

(
Kc
t , E

dis
t

)
Edist = Gdis

(
Kf
t ,K

ccs
t

)
Ki
t+1 = Iit + (1− δi)Ki

t

There are four types of capital: unabated fossil fuel capital Kf
t , abated fossil fuel (carbon capture)

capital Kccs
t , clean energy capital Kc

t , and non-energy capital Kne
t . Each capital stock has a rela-

tive price given by pit and is subject to capital adjustment costs given by the function Si
(
Iit ,K

i
t

)
.

Adjustment costs appear in the aggregate resource constraint. Capital accumulation equations for

each type of capital are standard but capital may differ in depreciation rates. Electricity produc-

tion is a nested function of the three types of energy capital and is discussed in further detail in

the next section.

The optimality conditions for the planner’s problem are given below:

uc (Ct) = λt

λet = λtFe
(
Kne
t , Et, N̄

)
λetG2

(
Kc
t , E

dis
t

)
= λdist

µit = λt
(
pit + S1

(
Iit ,K

i
t

))
µnet − βµnet+1 (1− δne) = βλt

(
Fk
(
Kne
t+1, Et+1, N̄

)
− S2

(
Inet+1,K

ne
t+1

))
µct − βµct+1 (1− δc) = βλetG1

(
Kc
t+1, E

dis
t+1

)
− βλtS2

(
Ict+1,K

c
t+1

)
µft − βµ

f
t+1 (1− δf ) = βλdist Gdis1

(
Kf
t+1,K

ccs
t+1

)
− βλtS2

(
Ift+1,K

f
t+1

)
µccst − βµccst+1 (1− δccs) = βλdist Gdis2

(
Kf
t+1,K

ccs
t+1

)
− βλtS2

(
Iccst+1,K

ccs
t+1

)
where µit are the Lagrange multipliers on the capital accumulation equation, λt is the Lagrange

multiplier on the aggregate resource constraint, and λet and λdist are the Lagrange multipliers on

the nests of the electricity production function. The quantitative model simplifies to the analytical

model considered earlier if adjustments costs are zero and there is no non-energy capital or abated

fossil energy capital.

3.2 Electricity Production

The modeling of electric power production merits further discussion. The most cost competitive

clean sources of electric power generation are solar and wind power. These sources of electric
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power generation are classified as intermittent because the times at which they produce power

(and the quantity produced) cannot be adjusted to meet demand. Intermittent power sources

stand in contrast to dispatchable power - power generation sources that can be adjusted up or

down to meet fluctuations in demand. To model electricity power generation, it is necessary to

account for the need of dispatchable power generation to meet fluctuations in demand or periods

in which solar and wind sources are not producing.6

Given the importance of dispatchable generation, I rely on a variable elasticity of substitution

production function to represent aggregate electric power generation. The variable elasticity of

substitution production function was introduced by Revankar (1971) and used in the context of

substitution between clean and fossil energy in Fries (2023). I assume that electric power genera-

tion is a variable elasticity of substitution aggregate of intermittent Eintt and dispatchable power

Edist :

Et =
(
Edist

)α (
Eintt + αρEdist

)1−α
where ρ is a parameter that determines how the elasticity of substitution varies as the share of

dispatchable generation varies.

As can be seen in the expression below, an increase in intermittent power generation relative

to dispatchable generation lowers the elasticity of substitution when ρ > 0.

σt =

(
1 + ρ

Edist
Eintt

)
The variable elasticity of substitution production function has constant returns to scale, decreasing

returns to each type of power generation, and has the feature that intermittent power generation

is not essential for production (i.e. Eintt = 0, Et > 0 is feasible). This can also be seen by looking

at the expression for the elasticity of substitution σt, which has the property that σt → ∞ as

Edist /Eintt → 0.

In steady state, the share of intermittent and dispatchable power will depend on relative prices.

Assume that dispatchable power is unabated fossil energy and intermittent power is clean energy.

In steady state and with constant returns, a simple relationship between the relative price of fossil

versus clean energy and their share in power generation can be derived:

pf
pc

=
Af
Ac

α

1− α

(
Eint
Edis

+ ρ

)
− µ̃c

where µ̃c is a Lagrange multiplier on the constraint that clean energy capital must be non-negative.

When ρ > 0, the Lagrange multiplier is binding if productivity-adjusted clean energy capital

pc/Ac > pf/Af . Intuitively, clean energy generation will only be utilized if its price is less than

6Solar and wind power generation can be made less intermittent by pairing these sources with storage. Lithium

batteries can provide short-term storage (typically 2-4) hours. Longer term storage is significantly more expensive at

current prices (i.e. pumped hydro power or fuel conversion).
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dispatchable generation because of the intermittency penalty. As clean energy capital becomes

cheaper, more intermittent energy is utilized but its market penetration is limited by a growing

intermittency penalty.

In the quantitative application, clean energy capital generates intermittent power and some

combination of unabated fossil or fossil energy with carbon capture is used to generate dispatch-

able power. Full decarbonization of the power sector is not feasible with clean intermittent sources

alone. There is a range of non-fossil dispatchable generation that could be utilized: hydropower,

nuclear power, and geothermal power are all potential zero-carbon dispatchable generation. How-

ever, these technologies generally play a limited role in energy systems modeling of net zero path-

ways due to cost (as shown below) or frictions in siting/permitting new generation.

The remaining functional forms for the quantitative model are given below:

u (C) = ln (C)

F (Kne, E,N) = Kκ
neE

νN1−κ−ν

or F (Kne, E,N) =
(
ηEν + (1− η)

(
Kκ
neN

1−κ)ν) 1
ν

Gdis (Kf ,Kccs) =
(
ηeAfK

ε
f + (1− ηe) (AccsKccs)

ε) 1
ε

Si (I,K) =
γi
2

(
I − δK
K

)2

K

I assume log consumption and quadratic capital adjustment costs. The final good production

function is assumed to be Cobb-Douglas with electricity, non-energy capital, and labor as inputs. I

also consider the case where final good production is a constant elasticity of substitution aggregate

between electricity and non-electricity inputs. In this case, energy and non-energy inputs are

assumed to be moderate complements. The production function for dispatchable electric power

generation is assumed to be a constant elasticity of substitution aggregate of unabated fossil fuel

and carbon capture fossil fuel power generation.7

3.3 Data

Calibration of the model requires choosing key parameters such as the relative price of energy cap-

ital, the productivity of energy capital, and the parameters in the variable elasticity of substitution

production function. To do this, we draw on both historic electric power capacity and power

generation data from the Energy Information Administration and projections from energy system

modeling for how electric power generation is likely to evolve in a business-as-usual scenario and

with a net zero target.

7It would be natural to assume perfect substitutability, but most decarbonization scenarios rely on a mix of carbon-

capture technologies and unabated fossil energy that serves as backup generation.

15



0

200

400

600

800

1000

1200

1400

1600

2000 2005 2010 2015 2020

In
st

al
le

d 
ca

pa
ci

ty
 (G

W
)

Coal Nuclear/hydro Natural gas Solar Wind Other/batteries

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2000 2005 2010 2015 2020

G
en

er
at

io
n 

 (T
W

h)

Coal Nuclear/hydro Natural gas Solar Wind

Figure 3: Nameplate capacity and generation by technology

The capital stocks Ki
t for different types of energy capital and the productivity of these tech-

nologies are taken from historical data on electric power generation capacity and generation data

from the Energy Information Administration. Figure 3 shows the evolution of the electric power

capacity and generation since 2000 in the US. Capacity is a quantity measure of the capital stock

Ki
t , representing the rated maximum output for by technology (measured in gigawatts); genera-

tion Eit = Gi
(
Ki
t

)
is the electric power output over a year (measured in terawatt hours). Clean

technologies like solar and wind differ from fossil technologies in that their share of generation

lags their share in capacity. Capacity factors Ait are generally substantially higher for fossil power

compared to wind and solar, with wind and solar logging capacity factors of 0.3 or 0.4.8

As the left-hand panel of Figure 3 shows, wind and solar capacity have grown markedly as

share of installed capacity since 2000 and particularly in the last decade. Installed wind and solar

capacity now exceeds that of coal, hydropower, and nuclear. However, as a share of power gener-

ation (shown in the right panel), the gains have been more modest, with wind power accounting

for the bulk of increased non-hydro renewable power generation. Overall electricity production

has remained flat since 2005. The clearest trend evident in this figure is the displacement of coal

by natural gas, which accounts for much of the reduction in carbon dioxide emissions from the

power generation sector since its peak in 2005.

Energy systems models are used to project the future evolution of electric power capacity and

generation based on projections for electricity demand, technology costs, fuel costs, and policy.

8For example, a gigawatt of installed wind power could theoretically generate 8760 = 365 x 24 gigawatt hours (8.8

terawatt hours) of electric power over the course of a year with constant maximum wind speed and no downtime. Of

course, in reality, wind speeds are variables and therefore realized power generation is closer to 3-4 terawatt hours.
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Figure 4: Business-as-usual projections for electric power capacity and generation

These energy systems models are also used to study the impact of policies like the Inflation Reduc-

tion Act and model power generation under a net zero emissions target. Figure 4 shows projected

capacity and generation in a business-as-usual scenario and in a net zero scenario, drawing from

six energy systems models.9 The first bar in both panels shows US electric power capacity and

generation in 2020 across four categories: clean (solar and wind), NG (natural gas), NG CCS (nat-

ural gas with carbon capture), Exo (all other - mostly legacy hydropower, nuclear, and coal). The

remaining bars in each panel show projections for electric power capacity and generation across

the six models in 2050 under a business-as-usual case.

Absent a net zero target, projected declines in cost ensure that solar and wind become a larger

share of capacity and generation. However, natural gas still accounts for about 50% of power

generation. Across models, projections see declines in legacy power generation (coal and nuclear)

and see very little role for carbon capture and sequestration. The business-as-usual projections

show large variations in both capacity and generation (relative to 2020 levels), with most modeling

seeing a more than 40% increase in capacity and 30% increase in power generation. Differences

in capacity and generation levels are driven by different assumptions about underlying electricity

demand and pace of electrification of final energy use.

Capacity and generation are shown in the net zero scenarios in Figure 5. As before, the first

bar shows capacity (or generation) in 2020 and the remaining bars show projections for 2050 for

different models in a net zero scenario. Across models, capacity is projected to more than double

9These energy systems models are drawn from the 5th National Climate Assessment and include prominent models

from the RIO-REPEAT Net Zero America study and the EPRI’s REGEN model used in Bistline, Mehrotra and Wolfram

(2023) and Bistline et al. (2024).
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Figure 5: Net zero projections for electric power capacity and generation

relative to current levels by 2050 and generation is rises sharply as electrification boosts demand.

As in the baseline model, natural gas capacity remains significant, with carbon capture playing a

more role in both capacity and generation. As the generation figure shows, installed natural gas

capacity is used less intensively than in the business-as-usual, with natural gas capacity serving

as a backup for intermittent solar and wind power. Carbon capture also accounts for a significant

share of generation in some models.

Finally, I assemble data on the current and projected costs of different power generation tech-

nology. Table 1 shows the current and projected capital cost of different types of generation tech-

nology. The table also shows the current and projected levelized cost of electricity for these dif-

ferent technologies. Levelized cost of electricity is a measure of the breakeven price of electricity

needed to recoup the initial capital expenditure and fixed and variable costs, including fuel costs

over the lifetime of a project. Table 1 is sorted from lowest to highest current levelized cost. Tech-

nology cost data is obtained from the National Renewable Energy Laboratories (NREL) Annual

Technology Baseline and are reported in constant 2023 dollars.10

As this table shows, wind and solar are the lowest cost current technologies while natural gas

is lowest cost fossil technology. Capital costs and levelized cost are projected to fall across all

technologies in 2050, with solar showing the biggest drop in capital cost. As noted earlier, other

zero emissions dispatchable sources of power - hydropower, nuclear, and geothermal - are as or

more expensive than the cheapest form of natural gas with carbon capture. Bioenergy with carbon

10NREL Annual Technology Baseline is available from https://atb.nrel.gov/electricity/2023/technologies using de-

fault technologies and moderate assumption for cost reductions from learning-by-doing. Capital cost and levelized cost

of electricity for bioenergy CCS obtained from Fajardy et al. (2020).
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Technologies Emissions 2023 2050 2023 2050
Wind 0 30 19 1447 924
Solar 0 39 18 1331 632
Natural Gas + 48 42 1271 985
Hydro 0 78 75 3008 2887
Natural Gas CCS 0 83 66 2521 1630
Nuclear 0 87 73 8811 6668
Coal + 112 99 3530 2824
Geothermal 0 128 77 12931 7334
Distributed solar 0 149 58 2842 1119
Biomass 0 157 145 5031 3871
Coal CCS 0 180 149 5960 4256
Bioenergy CCS - 270 270 10000 10000

Levelized cost of 
electricity 
($/MWh)

Capital cost 
($2022/kW)

Table 1: Electric power generation, technology costs

capture is the most expensive option but, importantly for some net zero scenarios, is a negative

emissions technology.

3.4 Calibration Strategy

The calibration strategy use historical data, technology cost projections, and energy systems mod-

eling projections to calibrate the parameters of the quantitative model. Current and future tech-

nology costs shown in Table 1 are used to obtain paths for the relative price of energy capital

pit.11 Time paths for energy capital productivity Ait can be taken directly from both historical and

projected paths for installed capacity and generation.

The parameters ρ and α in the variable elasticity of substitution electric power production

function are chosen to match the share of intermittent (clean) power generation in the business-

as-usual scenarios from an range of energy systems models. Specifically, I use the equation below

to estimate values of α and ρ to fit model projections of intermittent energy share, capital costs,

and capacity factors:
pf
pc

=
Af
Ac

α

1− α

(
Eint
Edis

+ ρ

)
I rely on two modeling exercises. First, I use baseline capacity and generation projections from

11 energy systems models discussed in a recent multi-systems analysis of the energy market ef-

11Since fuel and other operating costs are not present in the model, capital cost in Table 1 is adjusted to include the

net present value of fuel and other variable and fixed costs. This adjustment is akin to levelized cost of electricity but

does not include an adjustment for capacity factor.
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fects of the Inflation Reduction Act shown in Bistline et al. (2023). The baseline projections show

the share of solar and wind power projected in 2035 absent any IRA subsidies. Second, I use

business-as-usual projections shown in Figure 4 obtained from the Fifth National Climate Assess-

ment. Given a vector of intermittent energy share and relative price of clean versus fossil energy,

the two parameters in the variable elasticity of substitution power generation function are esti-

mated by minimizing the sum of squared errors.

The remaining energy capital parameters are fairly standard. Fossil, clean and carbon capture

capital are all assumed to depreciate over 40 years (i.e. δi = 0.025). While this is at the longer end

of assumed payback periods, a lower depreciation rate for energy capital is needed to match the

share of aggregate investment in electric power generation in US data. The price of fossil capital is

normalized to unity in the baseline, with 2020 prices of clean and carbon capture and 2050 prices

of fossil, clean, and carbon capture expressed as relative to the 2020 price of fossil capital. The

elasticity of substitution

The capital share and electricity share in the aggregate production function κ and ν are set to

match non-energy investment share of GDP of 14.5% and an electric power expenditure share of

GDP of 1.5%. The rate of time preference is set so that the real interest rate is 4 percent annu-

ally. The price of non-energy capital pne is normalized to unity. Capital adjustment costs γi are

assumed to be symmetric for all types of capital and are set at γi = 2, consistent with business

cycle estimates of quadratic capital adjustment costs (see, for example, Canzoneri et al. (2006)).

4 Results

In this section, I present the results from the full quantitative model that is calibrated to US electric

power generation. This section shows how macroeconomic aggregates and electric power sector

indicators change in a net zero scenario. For the US, net zero scenarios in 2050 shows small losses

- less than 0.2% in consumption - relative to the reference case of no net zero emissions target.

4.1 Steady State

Table 2 shows the business as usual and net zero steady state under moderate complementarity

between electricity and non-electricity inputs in final good production. The elasticity of substi-

tution between electricity and non-electricity inputs is set at 0.5. As before, the top rows show

output, consumption (expressed as percent deviations from the current period) and the invest-

ment rate while the bottom rows show measures of power sector investment and production. In

the baseline period (column (1)), 18% of the energy capital stock is in clean technologies (solar and

wind).

Column (2) shows the business as usual case. In this case, the price of both fossil and clean
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Baseline 
(2016-2020) BAU (2050)

Net zero 
(2050)

CCS subsidy 
(2050)

Energy 
subsidy 
(2050)

No 
technological 

progress 
(2050)

(1) (2) (3) (4) (5) (6)
Aggregates:

Output (% dev. from baseline) 0.00 0.12 0.02 0.22 0.12 -0.76
Consumption (% dev. from baseline) 0.00 0.17 0.08 0.18 0.13 -0.80
Investment rate (% of GDP) 0.1510 0.1506 0.1505 0.1513 0.1509 0.1513

Power generation:
Elec. investment rate (% of GDP) 0.0060 0.0055 0.0055 0.0061 0.0062 0.0071
Fossil tech price (2020 = 100) 1.00 0.95 1.20 0.95 0.95 2.21
Clean tech price (rel. to 2020 fossil) 0.49 0.34 0.34 0.34 0.27 0.69
Tax/subsidy -0.30 0.27 -0.22 -0.21 1.21
Electricity production 0.0 5.8 1.0 11.1 13.6 -25.8
Ratio of clean to fossil capital 0.2 1.2 4.9 3.9 4.9 3.6

Table 2: Steady state macro and energy outcomes

energy capital are expected to fall 5% and 31% relative to current levels. Both fall due to underly-

ing declines in unsubsidized capital cost. The price decline in clean energy is mitigated since our

calibration assumes that there is a 30% subsidy in the the baseline period to account for currently

installed wind and solar energy. The decline in both fossil and clean capital prices imply higher

electricity production (an 6% rise) and a slight decline in energy sector investment.12 Higher en-

ergy production raises output and consumption by 12 and 17 basis points respectively.

Column (3) shows the net zero scenario. In this scenario, a tax on fossil capital is imposed such

that the share of electric power generation from fossil capital equals the average of the six net zero

model scenarios shown in the previous section.13 A 27% tax on fossil capital is needed to achieve

this level of generation from fossil capital; the required tax on fossil capital represents an effective

carbon tax of $31 per ton in 2050.14 The ratio of clean to fossil capital triples relative to the business

as usual case and electric power generation rises by 1%.

Overall, the results in column (3) suggest very mild impacts in steady state from achieving net

zero in electricity production. The difference in steady state output and consumption between the

net zero and BAU case are just 10 and 9 basis points respectively. Even under the net zero scenario,

consumption rises relative to current levels due to declines in the relative price of both clean and

fossil capital. Lower fossil capital costs lower required investment in energy capital.

Columns (4) and (5) consider alternative scenarios in which unabated fossil use is mitigated

through subsidies for carbon capture or subsidies for both carbon capture and clean energy. A

12If electricity and non-electricity inputs are complements, a lower relative price for energy capital lowers the in-

vestment share and vice versa.
13Importantly, fossil capital also includes legacy nuclear and hydropower that continue to provide dispatchable

zero-carbon power generation across the six energy systems models considered in the previous section.
14The levelized cost of electricity for natural gas is $42 per MWh and assumes a price of natural gas of $2.50 per

MMBtu. The carbon dioxide emission coefficient for natural gas is 52.9 kg/MMBtu.
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Baseline 
(2016-2020) BAU (2050)

Net zero 
(2050)

CCS subsidy 
(2050)

Energy 
subsidy 
(2050)

No 
technological 

progress 
(2050)

(1) (2) (3) (4) (5) (6)
Aggregates:

Output (% dev. from baseline) 0.00 0.21 0.04 0.39 0.21 -1.09
Consumption (% dev. from baseline) 0.00 0.24 0.09 0.30 0.20 -1.01
Investment rate (% of GDP) 0.1510 0.1510 0.1510 0.1510 0.1510 0.1510

Power generation:
Elec. investment rate (% of GDP) 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060
Fossil tech price (2020 = 100) 1.00 0.95 1.20 0.95 0.95 2.21
Clean tech price (rel. to 2020 fossil) 0.49 0.34 0.34 0.34 0.27 0.69
Tax/subsidy -0.30 0.27 -0.22 -0.21 1.21
Electricity production 0.0 11.9 2.0 23.4 28.4 -44.7
Ratio of clean to fossil capital 0.2 1.2 4.9 3.9 4.8 3.6

Table 3: Steady state macro and energy outcomes, with Cobb-Douglas production

roughly 20% subsidy to CCS is sufficient to reduce the fossil generation share to the net zero target.

In column (5), the subsidy is chosen to ensure that output match the BAU case. By subsidizing

CCS and clean energy capital, electric power production rises substantially in each case by 11 to

14%. The energy investment rate is also slightly higher than in the BAU or net zero scenarios.

Output and consumption are higher in the subsidized case than in the net zero scenario but are

comparable to the BAU case.

Column (6) considers the case of no technological progress between now and 2050; both capi-

tal costs and productivity in power generation are fixed at current levels. This case sees the largest

drops in output, consumption, and electricity production. Absent technological progress, a sub-

stantial tax on fossil capital is required to induce switching to clean energy capital and carbon

capture technologies. The implied carbon tax required is $170 per ton and price of natural gas (in-

cluding the tax) rises from $2.50 per MMBtu to $11.50 per MMBtu. Electricity production becomes

substantially more expensive and falls by almost a quarter relative to the current period. This drop

in electricity production reduces output and consumption by about 70 basis points. Compared to

the BAU case, the drop in output and consumption is close to 1 percentage point. This case under-

scores how expected cost reductions in both clean and carbon capture technologies substantially

mitigate the macroeconomic cost of achieving net zero.

It should be noted that the modest macroeconomic cost, even in the most pessimistic case of no

technological progress and with moderate complementarity, is due to small share of electric power

investment relative to total investment or GDP. The carbon tax required to achieve the net zero

target is large, particularly in the case no technological progress. Moreover, energy investment in

steady state increases 20%. However, this additional investment remains small and subtracts only

modestly from household consumption.

Table 3 shows a comparison of steady states from the 2016-2020 current period to 2050 with and
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without a transition to net zero emissions under the assumption of Cobb-Douglas final good pro-

duction.Golosov et al. (2014) argue that energy shares are fairly constant over time and, therefore,

the elasticity of substitution over a moderate time horizon is unity for energy versus non-energy

inputs. In this case, the investment share in electric power generation is constant as relative price

changes are offset by proportional changes in quantities. In the BAU case, output and consump-

tion rises 0.2% relative to its 2020 level due to projected price declines in both clean and fossil

technology costs. Electricity production rises by 12% and the ratio of clean capacity to fossil ca-

pacity rises from 0.2 to 1.2; the change in ratios of clean to fossil production is the same as the base

case of moderate complementarity.

Column (3) shows the net zero scenario calibrated using the average net zero pathway. The

fossil energy tax needed to drive the capacity share of fossil to its net zero level is the same as in the

Cobb-Douglas case (i.e. 27%), as capacity and generation shares are independent of assumptions

on final good production. On net, electricity production rises because of the price decline in clean

energy capital. Under Cobb-Douglas, electricity production rises 2% (as opposed to only 1% under

moderate complementarity), and output rises by 4 basis points. Consumption rises by 9 basis

points, similar to the consumption increase under moderate complementarity.

Columns (4) and (5) show the impact of policies with subsides to carbon capture or subsidies

to both clean energy and carbon capture. Electricity production rises 23% and 28% respectively

with Cobb-Douglas production, roughly double the increase from the case of complementarity.

Output and consumption also rise by larger magnitudes, as non-energy inputs are more elastic. A

reduction in the price of energy thereby increases the non-energy capital stock, raising output and

consumption.

Lastly, column (6) looks at the case of no technological progress. The large increase in the

fossil capital tax results in a 40% decline in electric power generation. Reductions in output and

consumption exceed 1 percentage point relative to 2020 levels; output and consumption are 1.2

percentage points lower than the BAU case.

4.2 Transition Path

Figure 6 shows the transition path of the economy in the net zero scenario. The orange line shows

the transition path for a carbon tax that rises to its steady state level over 30 years. Energy and

non-energy inputs are moderate complements, and the x-axis shows time in years. Technology

prices drop smoothly over the first 30 periods and clean energy productivity improves over the

same time horizon.

The path of clean energy capital is similar in both the baseline and net zero scenario. The

biggest differences across the baseline and net zero scenarios are in the evolution of unabated

fossil capital versus carbon capture capital. The level of fossil capital falls sharply in the net zero
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Figure 6: Transition path to net zero

scenario but also falls in the BAU case. Given adjustment costs, fossil and carbon capture capital

stocks are still somewhat above (below) their steady state values. Consumption falls initially and

gradually rises under both transition paths, with the difference in the consumption paths largely

driven by long-run (steady state) differences. The dynamics for output and non-energy capital are

similar.

The yellow lines displays the transition path under a more aggressive carbon tax that ramps up

towards the net zero date. This more aggressive carbon tax path is chosen to ensure that the fossil

capital stock converges to its net zero value in 30 years. Relative to the transition under the less

aggressive carbon tax, the transitions are faster for both carbon capture and clean energy capital,

with the latter overshooting its long-run steady state value. The transition paths for consumption,

output and non-energy capital are more volatile but the fluctuations are small relative to long-run

differences.

For each transition path, I compute the Lucas consumption-equivalent welfare cost. The con-

sumption cost of the gradual net zero transition (orange line) is just 4 basis points of steady-state

BAU consumption and just 8 basis points for the net zero transition that attains the 2050 target

(yellow target). The welfare cost is lower than what is shown in Tables 2 and 3 due to discounting;

the consumption cost of getting to net zero is largely dominated by the long-run differences in

consumption between net zero and BAU that are only realized in the future.

Figure 7 shows the transition path to net zero under a subsidy for carbon capture technologies.

The transition path for energy capital is broadly similar to the transition under a carbon tax. Fos-

sil capital falls smoothly towards its steady state value with carbon capture (or, more generally,
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Figure 7: Transition path to net zero with subsidy

clean firm) capital replacing it. Clean energy capital rises more quickly, with the transition to its

new steady state values largely completed by the net zero date. Output and consumption rise in

the net zero case in the long-run due to the subsidy, however consumption is lower over much

of the intermediate transition (relative to the BAU case). Indeed, the Lucas consumption cost un-

der the subsidy is 5 basis points of steady-state BAU consumption, higher than under a carbon

tax. This verifies quantitatively the finding in Bistline, Mehrotra and Wolfram (2023) that a car-

bon tax is generically preferred to a clean energy subsidy absent learning-by-doing or innovation

externalities.

5 Conclusion

In this paper, I analyze the macroeconomic consequences of achieving net zero greenhouse gas

emissions. I introduce a simple analytical model to consider the long-run (steady state) and transi-

tional dynamics of a net zero emissions target. Through the lens of this simple model, the macroe-

conomic cost of achieving net zero emissions is function of technology costs between clean and

fossil fuel capital. The reduction in consumption in the long-run can be decomposed into a com-

ponent from higher energy prices leading to lower output and higher required investment in more

costly capital. The model provides an upper bound for the steady state cost of attaining net zero

that is proportional to the energy investment share of GDP and the cost premium of the decar-

bonized technology relative to the fossil technology.

The transition path for consumption and investment in a net zero scenario can also be char-
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acterized. The announcement of a net zero target date operates as a combination of a negative

technology shock and a negative capital shock. Both of these shocks mean that consumption

must decrease up to the net zero date, implying a decline in the real interest rate along the tran-

sition path. Importantly this decline in consumption occurs alongside an increase in investment.

As a result, the natural rate of interest generically falls during the energy transition in contrast

to conventional wisdom. Since a net zero transition is both an anticipated negative technology

shock and an anticipated negative capital shock, the net zero transition is a negative aggregate de-

mand shock. In the presence of price rigidities and imperfect stabilization, these negative demand

shocks would lower output and employment.

To quantify the cost of decarbonizing electric power generation in the US, power generation is

modeled via a variable elasticity of substitution production function between intermittent (clean)

and dispatchable (fossil or other ”clean-firm”) power generation. The power generation model is

calibrated using a range of scenarios for US electric power capacity and generation from energy

systems modeling and estimates of current and future technology costs.

I find that, in a net zero scenario, consumption falls by less than 0.1% relative to the scenario

of no net zero target. Output declines and consumption declines are larger to the extent that

energy and non-energy inputs are Cobb-Douglas instead of moderate complements. The largest

macroeconomic costs occur in scenarios where lower capital costs for solar, wind and CCS do not

materialize, but even in this scenario that macroeconomic cost of net zero in electricity production

is comparatively modest, despite a relatively high carbon tax needed to attain net zero.

Future work will broaden the quantitative model to take into account decarbonization in trans-

portation and buildings, which, alongside power generation, account for over 60% of US green-

house gas emissions. A preliminary analysis based on investment shares and technology costs

suggest that the cost of decarbonization in these sectors may actually be negative. Lifecycle costs

for light-duty electric vehicles, space and water heating are already comparable to that of fossil

fuel incumbents and expected to continue to fall. The intrinsic efficiency gains of electric motors

and heat pumps will also lower primary energy demand. Capital lifetimes are also shorter than

those for power generation lowering the likelihood of stranded capital.

Technology costs, particularly for dispatchable clean power, are particularly important for the

long-term macroeconomic costs of net zero emissions. How quickly learning-by-doing can drive

down costs for these technologies is an open question. Solar and wind power have seen impressive

cost declines in recent decades, and the costs, speed of transition, and nature of optimal climate

policy hinge on how strong these learning effects are for nascent technologies like carbon capture,

batteries and other long duration storage.

Lastly, future work should also focus on open economy considerations for the net zero tran-

sition. The framework developed here could be applied to other countries or regions where the

capital and industry mix and underlying technology costs may be different and can inform efforts
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to speed up decarbonization efforts outside of advanced economies. Decarbonization in advanced

economies may have significant ramifications for global prices for oil, natural gas and coal (see,

for example, Bistline et al. (2024)). Major fossil fuel exporters like the US and Australia may seek

to limit fossil fuel exports to lower global emissions. Lower demand for fossil fuels in Europe and

China could increase fossil fuel demand elsewhere and mitigate emissions reductions in those

regions. Incentives to decarbonize globally could be at odds with developing country aims of

industrializing and growing their manufacturing base.
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