Global Value Chains: Evidence from U.S. Manufacturing Firms

Aaron Flaaen¹ Fariha Kamal² Eunhee Lee³ Kei-Mu Yi⁴

¹Federal Reserve Board

²U.S. Census Bureau

³Seoul National University

⁴University of Houston, Federal Reserve Bank of Dallas, and NBER

July 15, 2024 NBER – CRIW

Disclaimer

Any views expressed are those of the authors and not those of the U.S. Census Bureau, the Federal Reserve Bank of Dallas, the Board of Governors of the Federal Reserve System, or their research staff. The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product. This research was performed at a Federal Statistical Research Data Center under FSRDC Project Number 2631 (CBDRB-FY23-0248).

Motivating Questions

Recent events confirm the central importance of **global value chains (GVCs)** for a host of economic outcomes.

Motivating Questions

Recent events confirm the central importance of **global value chains (GVCs)** for a host of economic outcomes.

- How exposed are U.S. manufacturing firms to shocks? (e.g. COVID-19 pandemic, U.S.-China tariff war, Russian invasion of Ukraine)
- How do GVCs shape the aggregate impacts of such shocks? How have GVCs adapted to such shocks?

Yet, existing research relies heavily on proportionality and other assumptions to connect GVCs across countries

This paper: Addressing above questions requires granular data.

- By definition, GVCs exist and evolve at the firm or establishment level
- Such micro-level heterogeneity matters for aggregate outcomes

- Construct novel granular estimates of GVCs moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and link exports to production for individual plants
 - $_{\circ}\,$ Measure GVCs over time in the U.S. manufacturing sector

- Construct novel granular estimates of GVCs moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and link exports to production for individual plants
 - $_{\circ}\,$ Measure GVCs over time in the U.S. manufacturing sector
- New Lessons from Micro-Level Perspective
 - Aggregation Bias Can Distort Core Patterns of Global Value Chains
 - Imported content of U.S. exports has grown more rapidly than aggregate data would suggest

- Construct novel granular estimates of GVCs moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and link exports to production for individual plants
 - $_{\circ}\,$ Measure GVCs over time in the U.S. manufacturing sector
- New Lessons from Micro-Level Perspective
 - Aggregation Bias Can Distort Core Patterns of Global Value Chains
 - Imported content of U.S. exports has grown more rapidly than aggregate data would suggest
 - New Understanding of the Determinants of Multi-Country Supply Chains
 - Complementarities between input and output markets (Round-trip linkages)
 - ▶ Evidence for interaction of regional trade agreements between input and output markets
 - $_{\circ}~$ Proportionality & aggregation limit visibility of these patterns in multi-country I-O tables

- Construct novel granular estimates of GVCs moving through the United States
 - $_{\circ}\,$ Classify imports by intended use and link exports to production for individual plants
 - $_{\circ}\,$ Measure GVCs over time in the U.S. manufacturing sector
- New Lessons from Micro-Level Perspective
 - Aggregation Bias Can Distort Core Patterns of Global Value Chains
 - Imported content of U.S. exports has grown more rapidly than aggregate data would suggest
 - New Understanding of the Determinants of Multi-Country Supply Chains
 - Complementarities between input and output markets (Round-trip linkages)
 - Evidence for interaction of regional trade agreements between input and output markets
 - Proportionality & aggregation limit visibility of these patterns in multi-country I-O tables
 - Teaser: Refining cross-country spillovers from GVC Linkages

Literature Review

- Input-Output Table-Based GVC: Hummels, Ishii, Yi (2001); Johnson & Noguera (2011, 2017); Koopman, Wang, Wei (2014); Timmer *et al.* (2014, 2021); Antràs & de Gortari (2020)
 - Contribution: Establishment-level GVC measures for the U.S. manufacturing sector, trilateral impacts of RTA on GVCs
- Firm-Level GVC: Kee and Tang (2016) ; Bems & Kikkawa (2021)
 - · Contribution: Establishment-level GVC, multi-industry firms
- Global Supply Chains and U.S Manufacturing: Bernard & Fort (2015); Boehm, Flaaen, Pandalai-Nayar (2019); Ding, Fort, Redding, Schott (2022); Feenstra & Jensen (2012); Fort (2017, 2023)
 - Contribution: Document and characterize changes in the imported content of U.S. manufactured exports by sector and country

Outline

Data and GVC Measurement

Aggregation Bias Can Distort Core Patterns of Global Value Chains

Understanding the Determinants of Multi-Country Supply Chains

Teaser: Refining cross-country spillovers from GVC Linkages

Measuring Disaggregated GVC

GVC: use of imported inputs in producing goods that are exported

$$GVC_{efst} = rac{\sum_{m,r} IMP_{efrmt}^{I}}{GO_{efst}} \sum_{n} EXP_{efsnt}$$

- establishment e; firm f; producing industry s; supplying industry r; destination country n; source country m; year t
- ► *IMP*¹: direct imports of goods used in further production (inputs)
- *EXP*: direct exports of goods produced in U.S.
- ► *GO*: gross output

Data and Measurement Challenges

- Gross Output GO_{efst}
 - Source: CMF (2002, 2007, 2012, 2017)

Data and Measurement Challenges

▶ Gross Output GO_{efst}

- Source: CMF (2002, 2007, 2012, 2017)
- ► Imports *IMP*^{*I*}_{efrmt}
 - Source: LFTTD (2002, 2007, 2012, 2017)
 - Challenges
 - 1. only firm-level identifiers
 - 2. identify inputs imported by establishments/firms

Data and Measurement Challenges

▶ Gross Output GO_{efst}

- Source: CMF (2002, 2007, 2012, 2017)
- ▶ Imports IMP^I_{efrmt}
 - o Source: LFTTD (2002, 2007, 2012, 2017)
 - Challenges
 - 1. only firm-level identifiers
 - 2. identify inputs imported by establishments/firms

Exports EXP_{efsnt}

- Source: LFTTD (2002, 2007, 2012, 2017)
- Challenges
 - 1. only firm-level identifiers
 - 2. identify manufactured exports

Imported Input Classification

Challenge: Separate inputs from final goods imports, AND connect imported inputs to individual plants

Solution: Match imports to *establishment-level* input usage from CMF Material Trailer

Imported Input Classification

Challenge: Separate inputs from final goods imports, AND connect imported inputs to individual plants

Solution: Match imports to *establishment-level* input usage from CMF Material Trailer

	Intermediate Share of Firm Imports	Import Cost Share
2002	56.9	14.0
2007	60.9	17.6
2012	62.9	16.9
2017	58.5	18.4

- About 40% of firms' imports are sold without further processing (final goods)
- In 2017, imported inputs represent about 18% of material costs for the representative (sales-weighted) plant Separating Inputs from Output

Produced Export Classification

Challenge: Match exports to establishment-level production

Solution: Link exports to products produced in CMF Product Trailer

Produced Export Classification

Challenge: Match exports to establishment-level production

Solution: Link exports to products produced in CMF Product Trailer

	"Produced" Export Share of Total	Export Share of Shipments
2002	69.8	7.7
2007	70.6	9.1
2012	69.8	10.3
2017	68.9	10.4

- About 30% of firms' exports are not produced by its manufacturing plants
- In 2017, produced exports represent about 10% of the total shipments for the representative (sales-weighted) plant Separating Inputs from Output

Sectoral GVC

Start with...

$$GVC_{est} = \frac{\sum_{m,r} IMP_{emrt}^{I}}{GO_{est}} \sum_{n} EXP_{enst}$$

Sectoral GVC

Start with...

$$GVC_{est} = \frac{\sum_{m,r} IMP_{emrt}^{I}}{GO_{est}} \sum_{n} EXP_{enst}$$

For sectoral measures, we aggregate and scale by overall exports:

$$gvc_{st}^{E} = \frac{\left[\sum_{e \in E_{st}} GVC_{est}\right]}{\sum_{e \in E_{st}} EXP_{est}}$$

Generate our own industry-level analogues:

$$gvc_{st}^{\prime} = \frac{\left[\left(\sum_{e \in E_{st}} EXP_{est} \right) \frac{\sum_{e \in E_{st}} IMP_{est}^{\prime}}{\sum_{e \in E_{st}} GO_{est}} \right]}{\sum_{e \in E_{st}} EXP_{est}}$$

Industry Estimates

Data and GVC Measurement

Aggregation Bias Can Distort Core Patterns of Global Value Chains

Understanding the Determinants of Multi-Country Supply Chains

Teaser: Refining cross-country spillovers from GVC Linkages

Aggregation Bias

- Arises due to aggregating out firm and/or establishment level heterogeneity in export and import intensities
- U.S. firm's export and import intensities positively correlated (Bernard *et al*, 2012)

Industry Aggregation Bias Worsens Over Time

Establishment vs. Industry:

higher levels

gap widens over time

Simple Illustration

Industry-Level Bias Measures

Why is Aggregation Bias Worsening?

- We answer this question in recent short note (Flaaen et al (2024))
 - Decomposition along the lines of Bems and Kikkawa (2021)
 - Main takeaway: increased correlation of export and import intensities by U.S. manufacturers

Why is Aggregation Bias Worsening?

- ▶ We answer this question in recent short note (Flaaen et al (2024))
 - Decomposition along the lines of Bems and Kikkawa (2021)
 - Main takeaway: increased correlation of export and import intensities by U.S. manufacturers

- Two additional findings on aggregation bias:
 - 1. Is there aggregation bias from establishment to firm? Details
 - 2. Is there aggregation bias from grouping firms into a single industry? Details

Data and GVC Measurement

Aggregation Bias Can Distort Core Patterns of Global Value Chains

Understanding the Determinants of Multi-Country Supply Chains

Teaser: Refining cross-country spillovers from GVC Linkages

New Patterns in Multi-Country GVC Chains

- Our data provide a unique environment to explore patterns of multi-country supply chains.
- ▶ We adapt the well-known Gravity framework to model determinants of GVCs

- Distance is typically used to proxy for trade frictions
- **Combined** distance from country *m* to US to country *n* : $d_{m,US,n} = d_{m,US} + d_{US,n}$

- New: How are input and output markets linked?
- **Direct** distance from country *m* to $n : d_{m,n}$

- Does proximity support or detract from GVC flows?
- Detract (positive coeff): Greater relative cost moving goods through middle country
- Support (negative coeff): Complementarities between input and output markets.

 Extreme example of potential complementarities between input and output markets is Round-trip behavior (m = n)

Analysis of Three-Country Pairs

Formally, we evaluate gravity regressions of the form:

$$log(GVC_{mnt}) = \delta_{m,t} + \eta_{n,t} + \beta \mathbb{I}(m = n) + \gamma d_{m,US,n} + \lambda d_{m,n} + \varepsilon_{mnt},$$

In this environment, we can also explore the role of regional trade agreements

- **RTA(m,n)**: Countries *m* and *n* have an RTA
- **RTA (m & US, n & US)**: Both countries have RTAs with U.S.
- **RTA (m, n, US)**: All three countries have RTA

Basic Gravity: Pooled Results for 2002-2017

	Depend	ent Variable:	Log Bilat	eral GVC
Variable	(1)	(2)	(3)	(4)
Log Distance $(m \rightarrow US \rightarrow n)$	-1.64***			-0.414***
	(0.106)			(0.118)
Log Distance (<i>m</i> to <i>n</i>)		-0.26***		-0.175***
· · · · · ·		(0.009)		(0.011)
Round-trip (<i>m</i> = <i>n</i>)		· · /	2.33***	1.38***
			(0.112)	(0.121)
Exporter-Year F.E.	yes	yes	yes	yes
Importer-Year F.E.	yes	yes	yes	yes
Observations	117,000	117,000	117,000	117,000
R ²	0.861	0.861	0.861	0.861

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

- Distance detracts from GVC flows (combined distance more important)
- Strong links between input and output markets
- Very large round-trip effects (even after controlling for distance)

RTAs and GVCs: Pooled Results for 2002–2017

	Dependent	t Variable: I	og Bilateral GVC
Variable	(1)	(2)	(3)
Log Distance $(m \rightarrow US \rightarrow n)$	-1.38***	-1.39***	-1.35***
,	(0.105)	(0.104)	(0.104)
Round-trip (<i>m</i> = <i>n</i>)	2.20***	2.23***	2.21***
	(0.112)	(0.111)	(0.112)
RTA (<i>m & n</i>)	0.044**	, ,	, , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , ,	(0.020)		
RTA (<i>m</i> & US, <i>n</i> & US)	· · · ·	0.198***	
		(0.059)	
RTA (<i>m</i> , <i>n</i> , US)		· /	0.438***
			(0.112)
			. ,

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Includes Exporter-Year F.E. and Importer-Year F.E. More Evidence

 Unsurprisingly, an RTA that does NOT include the U.S. has little impact on GVC flows

- Bilateral RTAs have important effects on multi-country GVC activity
- Effect is magnified when all three countries are in an RTA

Existing Data Unfit for this Type of Analysis

	Dep. Variable: Log Bilateral GVC	
Variable	CENSUS	WIOD
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	-0.02
Round-trip (<i>m</i> = <i>n</i>)	(0.104) 2.21***	(0.045) 0.08***
RTA (<i>m</i> , <i>n</i> , US)	(0.112) 0.44***	(0.008) -0.02
	(0.112)	(0.034)
Data	Census	WIOD
Basis	Estab	Agg.
Country Sample	All–Data	WIOD-43
Observations	117,000	7,100
R-Squared	0.86	0.99

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.

Includes Exporter-Year F.E. and Importer-Year F.E.

- Use multi-country input-output data (WIOD) to conduct similar analysis...
- ...But these patterns are not evident
- Visibility limited due to proportionality, aggregation, and sample coverage
Proportionality Assumptions

Import Proportionality Assumption is used in a wide range of empirical work studying global supply chains **Aquick refresher**

 Given the recent availability of multi-country I-O tables, such as the WIOD, underlying assumptions may not be obvious to researchers

Proportionality Assumptions

Import Proportionality Assumption is used in a wide range of empirical work studying global supply chains **Aquick refresher**

- Given the recent availability of multi-country I-O tables, such as the WIOD, underlying assumptions may not be obvious to researchers
- While issues are discussed in de Gortari (2019) and Antràs and Chor (2022), there exists no systematic assessment of proportionality with micro-level data.

Proportionality Assumptions

Import Proportionality Assumption is used in a wide range of empirical work studying global supply chains **Aquick refresher**

- Given the recent availability of multi-country I-O tables, such as the WIOD, underlying assumptions may not be obvious to researchers
- While issues are discussed in de Gortari (2019) and Antràs and Chor (2022), there exists no systematic assessment of proportionality with micro-level data.

For benchmarking, we aggregate our data to the level of detail given in WIOD

- 18 manufacturing industries
- ▶ 42 countries plus ROW aggregate

Benchmarking Proportionality Against Reality

Summary of what we find:

- Captures cost shares reasonably well
 - $_{\circ}~$ Correlation of country cost shares across industries: 0.64
- Linking bilateral GVC Country Pairs pretty good Details
 - $_{\circ}~$ Correlation of GVC bilateral pairs across industries: 0.42
- Proportionality Makes GVC Linkages Too Diffuse

 $_{\circ}\,$ Unlike proportionality, common to see zero GVC flows between bilateral country-pairs in data

Proportionality mis-measures extent of round-trip linkages

WIOD under-estimates "Round-Trip" GVC

- Round-Trip GVC: where input market=output market
- Proportionality appears to systematically under-estimate this form of GVC

	Dependent Variable: Log Bilateral GVC						
Variable	(1)	(2)	(3)	(4)	(5)	(6)	
	1 26***					0.02	
$Log Distance (m \to 0.5 \to n)$	(0.104)					-0.02 (0.045)	
Round-trip $(m=n)$	2.21***					0.08***	
	(0.112)					(0.008)	
RTA (<i>m</i> , <i>n</i> , US)	0.44***					-0.02	
	(0.112)					(0.034)	
Data	Census					WIOD	
Basis	Estab					Agg.	
Country Sample	All–Data					WIOD-43	
Observations	117,000					7,100	
R-Squared	0.86					0.99	

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Includes Exporter-Year F.E. and Importer-Year F.E.

Our findings do not replicate in the WIOD

	Dependent Variable: Log Bilateral GVC					
Variable	(1)	(2)	(3)	(4)	(5)	(6)
Log Distance (m. 115 , n)	1 26***	0.26				0.02
$Log Distance (m \to 0.5 \to n)$	(0.104)	(0.280)				(0.045)
Round-trip (<i>m</i> = <i>n</i>)	2.21***	1.71***				0.08***
	(0.112)	(0.119)				(800.0)
RTA(m, n, OS)	(0.112)	(0.220)				(0.034)
Data	Census	Census				WIOD
Basis	Estab	Estab				Agg.
Country Sample	All–Data	WIOD-43				WIOD-43
Observations	117,000	7,100				7,100
R-Squared	0.86	0.94				0.99

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Includes Exporter-Year F.E. and Importer-Year F.E.

Importance of Round-Trip still evident with reduced sample

	Dependent Variable: Log Bilateral GVC					
Variable	(1)	(2)	(3)	(4)	(5)	(6)
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	0.26	0.11**	-0.011		-0.02
	(0.104)	(0.280)	(0.049)	(0.045)		(0.045)
Round-trip $(m=n)$	2.21***	1.71***	0.17***	0.21***		0.08***
	(0.112)	(0.119)	(0.0426)	(0.0396)		(0.008)
RTA (<i>m</i> , <i>n</i> , US)	0.44***	-0.13	0.16***	0.17***		-0.02
	(0.112)	(0.220)	(0.046)	(0.045)		(0.034)
Data	Census	Census	Census	Census		WIOD
Basis	Estab	Estab	Agg.	Agg.		Agg.
Country Sample	All–Data	WIOD-43	All–Poss	All–Data		WIOD-43
Observations	117,000	7,100	139,000	117,000		7,100
R-Squared	0.86	0.94	0.96	0.96		0.99

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. Includes Exporter-Year F.E. and Importer-Year F.E.

... but nearly disappears with aggregation/proportionality

	Dependent Variable: Log Bilateral GVC					
Variable	(1)	(2)	(3)	(4)	(5)	(6)
Log Distance $(m \rightarrow US \rightarrow n)$	-1.36***	0.26	0.11**	-0.011	-0.28**	-0.02
	(0.104)	(0.280)	(0.049)	(0.045)	(0.114)	(0.045)
Round-trip (<i>m=n</i>)	2.21***	1.71***	0.17***	0.21***	0.18***	0.08***
	(0.112)	(0.119)	(0.0426)	(0.0396)	(0.0282)	(0.008)
RTA (<i>m</i> , <i>n</i> , US)	0.44***	-0.13	0.16***	0.17***	0.06	-0.02
	(0.112)	(0.220)	(0.046)	(0.045)	(0.087)	(0.034)
Data	Census	Census	Census	Census	Census	WIOD
Basis	Estab	Estab	Agg.	Agg.	Agg.	Agg.
Country Sample	All–Data	WIOD-43	All–Poss $/$	All–Data	WIOD-43	WIOD-43
Observations	117,000	7,100	139,000	117,000	7,100	7,100
R-Squared	0.86	0.94	0.96	0.96	0.99	0.99

 $\label{eq:result} \mbox{Robust standard errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. and Importer-Year F.E. } \mbox{Product of the standard errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. } \mbox{Product errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. } \mbox{Product errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. } \mbox{Product errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. } \mbox{Product errors in parentheses *** } p < 0.01, ** p < 0.05, * p < 0.1. \mbox{ Includes Exporter-Year F.E. } \mbox{Product errors in parentheses *** }$

... but nearly disappears with aggregation

Outline

Data and GVC Measurement

Aggregation Bias Can Distort Core Patterns of Global Value Chains

Understanding the Determinants of Multi-Country Supply Chains

Teaser: Refining cross-country spillovers from GVC Linkages

Refining cross-country spillovers from GVC Linkages

- Results can inform how to adapt models with joint sourcing and exporting decisions to capture round-trip patterns
- Preliminary exploration demonstrates that heterogeneous fixed costs with idiosyncratic (firm-level) factors that are symmetric in source-destination country would create stronger round-trip effects

 Implication: Countries receive secondary transmission of originated shocks through round-trip trade linkages

Summary and Future Work

Summary

- Novel supply chain measurement for the U.S. manufacturing sector
- Unpack aggregation bias and assess validity of import proportionality
- New evidence on complementarities in input and output markets
- Strong role for roundtrip GVC linkages a feature that is hidden with proportionality
- RTAs promote GVC relationships within the agreement

Summary and Future Work

Summary

- ▶ Novel supply chain measurement for the U.S. manufacturing sector
- Unpack aggregation bias and assess validity of import proportionality
- New evidence on complementarities in input and output markets
- Strong role for roundtrip GVC linkages a feature that is hidden with proportionality
- RTAs promote GVC relationships within the agreement

Ongoing and Future Work

- Refine measurement add in indirect imports and exports through extended GVC framework.
- Pair model with detailed Census data that matches these empirical features

Appendix Slides

Input-Output Overlap: How Big is the Diagonal?

Over	Overlap Between Input Products and Output Products						
	Share of Input Codes Matching Product Codes						
		(by v	alue)				
	2002	2007	2012	2017			
6-digit	14.5%	16.0%	14.5%	19.4%			
4-digit	25.8%	28.7%	29.6%	29.0%			
3-digit	44.5%	46.8%	45.0%	44.2%			

Back

Trends in Establishment GVC by Sector

Back

Downward Aggregation Bias: Establishment to Industry

	Imports	Gross Output	Exports	GVC	GVC/Exports
Estab 1	50	100	50	25	
Estab 2	10	100	10	1	
Industry true			60	26	0.43
Industry <mark>biased</mark>	60	200	60	18	0.3

Note: Adapted from Bems & Kikkawa (2021). Back

Industry Aggregation Bias by Sector (2012)

Back

9 Computer & Electronics Electrical Equip., Appliances Establishment-Based Measure 4 Primary Metal Plastic & Rubbe 2 analia dein & abbacco 0 .ż .6 Industry-Aggregate Measure

Establishment or Firm as Relevant Unit?

Appropriate level of aggregation is not obvious!

Establishment or Firm as Relevant Unit?

Appropriate level of aggregation is not obvious!

Benefits of Firm-Level

- Level at which sourcing decisions are made?
- Would capture inter-plant transfers

Establishment or Firm as Relevant Unit?

Appropriate level of aggregation is not obvious!

Benefits of Firm-Level

- Level at which sourcing decisions are made?
- Would capture inter-plant transfers

Benefits of Establishment-Level

- Firm-level aggregation bias?
- Firm-level industry is not a well-defined concept

Aggregation Bias: Establishment to Firm

Downward bias Imports Output Exports GVC GVC/Exports Estab 1 20 80 20 5 Estab 2 0 80 0 0 Estab basis 20 5 0.25 Firm basis 20 160 20 2.5 0.125

Aggregation Bias: Establishment to Firm

Downward bias

	Imports	Output	Exports	GVC	GVC/Exports
Estab 1	20	80	20	5	
Estab 2	0	80	0	0	
Estab basis			20	5	0.25
Firm basis	20	160	20	2.5	0.125

Upward bias

	Imports	Output	Exports	GVC	GVC/Exports	
Estab 1	20	80	0	0		
Estab 2	0	80	20	0		Back
Estab basis			20	0	0	
Firm basis	20	160	20	2.5	0.125	

GVC: Manufacturing

- On net, slight upward bias in firm aggregation
- Despite small net bias, gross biases (both upward/downward) could be large!

Back

Multi-Industry Firms Affect GVC Measurement

- Industry-level estimates based on firm-level data will include bias!
- Trading firms typically span many industries

Average Number of Industries per firm

Year	4-digit Industry	6-digit Industry
2002	5.7	9.5
2007	4.9	8.2
2012	4.7	7.6
2017	4.8	7.4

Notes: Exporter-Importer Firms. By Trader Type

Multi-Industry Firms Affect GVC Measurement

- Industry-level estimates based on firm-level data will include bias!
- Trading firms typically span many industries

Average Number of Industries per firm

Year	4-digit Industry	6-digit Industry			
2002	5.7	9.5			
2007	4.9	8.2			
2012	4.7	7.6			
2017	4.8	7.4			
Notes: Exporter-Importer Firms, By Trader Type					

Bias from this dimension is modest (at 3-digit NAICS aggregation).

GVC: Alternate Industry Definition

$$gvc_{s^{*}t}^{F'} = \frac{\sum_{f \in F_{s^{*}}} \left[EXP_{ft} \left(\frac{IMP_{ft}'}{GO_{ft}} \right) \right]}{\sum_{f \in F_{s^{*}}} EXP_{ft}}$$
$$gvc_{s^{*}t}^{I'} = \frac{\left(\sum_{f \in F_{s^{*}}} EXP_{ft} \right) \left(\frac{\sum_{f \in F_{s^{*}}} IMP_{ft}'}{\sum_{f \in F_{s^{*}}} GO_{ft}} \right)}{\sum_{f \in F_{s^{*}}} EXP_{ft}}$$

 F_{s^*t} set of firms reporting s^* as their primary industry in time t

- à la Bems and Kikkawa (2021)
- Issue: EXP, IMP, and GO include values not belonging to sector s* in case of multi-industry firms

Firm GVC Comparisons by Sector, 2012

 At WIOD industry basis (roughly 3-digit NAICS) this bias is relatively small (correlation is 0.87)

 Interpretation: Primary Metal estabs whose firm is NOT in primary metals have much higher GVC

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$800	\$200	\$0
Pharma	\$120	\$0	\$480

 Two industries (chemicals, pharmaceuticals) source the same commodity from different locations

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$800	\$200	\$0
Pharma	\$120	\$0	\$480

- Two industries (chemicals, pharmaceuticals) source the same commodity from different locations
- But, I-O tables do not have source detail!

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland	Data	
Chemicals	\$800	\$200	\$0	\$1000	
Pharma	\$120	\$0	\$480	\$600	
Data	\$920	\$200	\$480		

Instead, I-O Tables have aggregate commodity usage, by industry...

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland	Data
Chemicals	\$800	\$200	\$0	\$1000
Pharma	\$120	\$0	\$480	\$600
Data	\$920	\$200	× \$480	

• ... which are combined with aggregate commodity usage by source (but not industry!) from i.e. import data

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland	Data
Chemicals	\$800	\$200	\$0	\$1000
Pharma	\$120	\$0	\$480	\$600
Data	\$920	\$200	\$480	

 Hence, the *Proportionality Assumption* is applying the industry-level commodity proportions to all aggregate sources

Reality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$800	\$200	\$0
Pharma	\$120	\$0	\$480

Proportionality: Input Usage of Given Commodity

	Domestic	Germany	Ireland
Chemicals	\$575	\$125	\$300
Pharma	\$345	\$75	\$180

Census-WIOD Input Cost Share Correlations, 2012

NAICS	Input Costs
Food, Beverage, and Tobacco	0.83
Textiles, Apparel, Leather	0.67
Wood and Wood Products	0.87
Paper and Paper Products	0.81
Printing	0.73
Coke and Petroleum Products	0.68
Pharmaceutical	0.30
Chemicals and Chemical Products	0.62
Rubber and Plastics	0.67
Non-metallic Mineral Products	0.86
Basic Metals	0.94
Fabricated Metal Products	0.79
Machinery and Equipment	0.87
Computer, Electronic and Optical	0.62
Electrical Equipment	0.75
Motor Vehicles and Trailers	0.90
Other Transport Equipment	0.85
Furniture and Other Mfg	0.58
Overall Manufacturing	0.64

- Overall correlation of cost shares is positive, but well below one
- Proportionality works well in motor vehicles, basic metals, but less so in pharmaceuticals

Census-WIOD Bilateral GVC Country Correlations, 2012 (Back)

NAICS	Bilateral Pair GVC
Food, Beverage, and Tobacco	0.92
Textiles, Apparel, Leather	0.56
Wood and Wood Products	0.63
Paper and Paper Products	0.76
Printing	0.64
Coke and Petroleum Products	0.94
Pharmaceutical	0.26
Chemicals and Chemical Products	0.81
Rubber and Plastics	0.49
Non-metallic Mineral Products	0.66
Basic Metals	0.69
Fabricated Metal Products	0.77
Machinery and Equipment	0.85
Computer, Electronic and Optical	0.83
Electrical Equipment	0.69
Motor Vehicles and Trailers	0.86
Other Transport Equipment	0.81
Furniture and Other Mfg	0.48
Overall Manufacturing	0.42

- Correlation of bilateral country pairs is generally lower
- Proportionality works well in coke and petroleum products and food, beverage, and tobacco
Where Import Proportionality Performs Less Well

Proportionality Makes GVC Linkages Too Diffuse

- Proportionality implies positive values for ALL bilateral input-output linkages
- ▶ Even within set of WIOD countries, zero input-output flows are common

NAICS	Percent	NAICS	Percent
Food, Beverage, and Tobacco	14%	Wood and Wood Products	37%
Textiles, Apparel, Leather	11%	Non-metallic Mineral Products	13%
Paper and Paper Products	14%	Basic Metals	6%
Printing	28%	Fabricated Metal Products	1%
Coke and Petroleum Products	20%	Machinery and Equipment	0%
Pharmaceutical	4%	Computer, Electronic and Optical	0%
Chemicals and Chemical Products	2%	Electrical Equipment	0%
Rubber and Plastics	3%	Motor Vehicles and Trailers	1.6%
		Other Transport Equipment	0.2%
		Furniture and Other Mfg	0.1%

Fraction of Zero Bilateral Pair Linkages, by Sector, 2012

Top GVC Country Pairs, Overall Manufacturing 2012

Source	Destination	GVC (\$bill)	GVC/Exports
Mexico	Canada	5.2	0.45%
China	Canada	4.6	0.39%
Mexico	Mexico	4.3	0.37%
Canada	Canada	3.6	0.31%
Canada	Mexico	2.7	0.23%
Japan	Canada	1.9	0.17%
China	Mexico	1.5	0.13%
Singapore	Canada	1.2	0.10%
Germany	Canada	1.1	0.10%

Source Country Destination Country		GVC/Exports
Mo	otor Vehicles and Traile	er
Mexico	Canada	1.31%
Mexico	Mexico	1.27%
Canada	Canada	0.83%
Japan	Canada	0.74%
Germany	Mexico	0.38%
Canada	Mexico	0.37%
Japan	Mexico	0.24%
Germany	Canada	0.24%
Germany	Germany	0.19%
South Korea	Canada	0.18%

Source Country	Destination Country	GVC/Exports					
Other Transport Equipment							
France	France	0.24%					
Japan	Japan	0.24%					
Japan	United Arab Emirates	0.21%					
Japan	China	0.21%					
Japan	France	0.17%					
Canada	France	0.15%					
United Kingdom	France	0.15%					
France	Brazil	0.14%					
United Kingdom	United Arab Emirates	0.12%					
France	Japan	0.12%					

Source Country	Destination Country	GVC/Exports
Ma	chinery and Equipmen	t
Mexico	Canada	0.21%
Canada	Canada	0.19%
Germany	Canada	0.17%
Japan	Canada	0.15%
China	Canada	0.12%
Mexico	Mexico	0.12%
United Kingdom	Canada	0.11%
Mexico	Australia	0.11%
Mexico	Germany	0.11%
Canada	Australia	0.10%

Source Country	Destination Country	GVC Share				
	Pharmaceuticals					
Ireland	Italy	0.72%				
Ireland	Japan	0.41%				
Ireland	Belgium	0.40%				
Ireland	South Korea	0.33%				
Ireland	France	0.32%				
Ireland	Ireland	0.28%				
Ireland	Canada	0.26%				
Ireland	Brazil	0.16%				
Ireland	Mexico	0.14%				

Not Elsewhere Specified (NESOI) Products Share of Costs/Shipments

Material Trailer File		
2002	29.5%	
2007	28.1%	
2012	21.6%	
Product Trailer File		
2002	N/A	
2007	0.3%	
2012	0.3%	

Source: Authors' calculations using Economic Census, U.S. Census Bureau.

Fraction of Indirect (NESOI) Imported Inputs

Indirect Imported Inputs

Share of Total

2002	43.5%
2007	42.3%
2012	42.4%
2017	56.8%

Source: Authors' calculations using Economic Census, U.S. Census Bureau.

Additional Results on RTAs and GVCs: 2002–2017

Variable	Dependen (1)	t Variable: (2)	Log Bilateral GVC (3)
RTA (<i>m & n</i>)	-0.08** (0.037)		
RTA (<i>m</i> & US, <i>n</i> & US)	、 ,	0.135* (0.075)	
RTA (<i>m</i> , <i>n</i> , US)		. ,	0.196** (0.099)
Exporter-Importer F.E. Observations R ²	Yes 112,000 0.92	Yes 112,000 0.92	Yes 112,000 0.92

 Results support findings in Johnson and Noguera (2019)

Back

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Imported Input Classification Details

- 1. Harmonize product classifications
 - Use Pierce/Schott Concordances for common NAICS product basis
- 2. Match imports and material product codes (NAICS-basis)
 - $_{\circ}\,$ Direct: Import products match CMF-MT product
 - Indirect: Import products that *do not* match to any CMF-PT product
 - Concern: Significant "Not elsewhere specified or indicated" (NESOI) in CMF-MT
- 3. Allocate imported inputs to individual establishments
 - $_{\circ}~$ Matches to one establishment \rightarrow straightforward
 - $_{\circ}~$ Matches to >1 establishment \rightarrow split value by material usage share

 Begin with set of imports of a particular firm...

 First step: use material trailer files for all establishments...

- First step: use material trailer files for all establishments...
- …to identify imports that match to material input usage…

- First step: use material trailer files for all establishments...
- ...to identify imports that match to material inputs of establishments...
- ... and allocate import value as input to that establishment.

If import product matches to multiple establishments...

- If import product matches to multiple establishments...
- Split value of imported input according to ratio of material input usage

- Remaining imports could be:
 - $_{\circ}~$ final goods, or
 - input, but not identified explicitly by CMF-MAT (NESOI)

 For remaining imported products, check to see whether products align with produced output according to CMF-PROD file

- For remaining imported products, check to see whether products align with produced output according to CMF-PROD file
- If so, then define as final good and remove those imports.

 For all remaining imported products, we assume they represent the "Other" material usage categories in the CM-MAT.

- For all remaining imported products, we assume they represent the "Other" material usage categories in the CM-MAT.
- We split the value of imported inputs according to share of total "Other" material usage for the firm as a whole...

Firm and Establishment Counts by Trader Type

	Firm Trade Status	Year	Firms	Establishments
_	Non-Trader	2002	118,000	126,000
	Non-Trader	2007	98,000	103,000
_	Non-Trader	2012	86,000	91,000
_	Exporter-Only	2002	11,000	14,000
	Exporter-Only	2007	24,000	29,000
_	Exporter-Only	2012	21,000	25,000
	Importer-Only	2002	13,000	18,000
	Importer-Only	2007	10,000	11,000
_	Importer-Only	2012	10,000	12,000
_	Exporter-Importer	2002	11,000	43,000
	Exporter-Importer	2007	20,000	55,000
	Exporter-Importer	2012	20,000	51,000

Industries per Firm by Trader Type

Firm Trade Status	Year	4-digit Industry	6-digit Industry
Non-Trader	2002	1.08	1.12
Non-Trader	2007	1.04	1.06
Non-Trader	2012	1.03	1.04
Exporter-Only	2002	1.13	1.26
Exporter-Only	2007	1.12	1.24
Exporter-Only	2012	1.11	1.18
Importer-Only	2002	1.32	1.52
Importer-Only	2007	1.28	1.42
Importer-Only	2012	1.26	1.35
Exporter-Importer	2002	5.68	9.54
Exporter-Importer	2007	4.91	8.21
Exporter-Importer	2012	4.74	7.56

Point 1

Back

No Aggregation Bias: Establishment to Firm

	Imports	Gross Output	Exports	GVC	GVC/Exports
Firm 3					
Estab 1	20	80	20	5	0.25
Estab 2	20	80	0	0	0
Firm true			20	5	0.25
Firm biased	40	160	20	5	0.25

Concording Product Classification Systems

Implement common product-level basis for trade, material use, and production (Pierce and Schott , 2012):

- 1. Goods Trade
 - \circ Source: LFTTD
 - Native codes: Schedule B HS (exports), HTS (imports)
- 2. Material Inputs
 - Source: CM Materials Trailer File
 - Native codes: MNAICS
- 3. Production
 - Source: CM Products Trailer File
 - Native codes: NAICSPC

Goal: Concord each to common 6-digit NAICS (baseroot)

Examples

	HS		NAICS	
HTS-NAICS	8419895040		333999	
	Electrical Actuators		General Purpose Machinery	
_	HS		NAICS	_
HS-NAICS	6902205020		327125	
	Refractory bricks	No	nclay Refractory	_

<u>Census Product-NAICS</u>

Census Product	NAICS
3261121	326112
Single-web film/rolls/sheets for flexible packaging uses	Plastics Packaging

Unmatched Imported Products

- Not all imported products of the firm match directly to a reported material code
 - $_{\circ}\,$ Firms find it difficult to report material usage at establishment level
 - $_{\circ}~$ Consolidation of MNAICS
 - $_{\circ}\,$ Prioritizing most important MNAICS to be pre-populated on forms
- For the imported products that do not match directly, we first ensure that they are not on the list of produced product codes for any of the firm's establishments
- Of the remaining unmatched imported products, apportion the value per the establishment's share of NESOI in the firm's total imports