Changes in the College Mobility Pipeline Since 1900

Zachary Bleemer Princeton University Vanderbilt University and NBFR

Sarah Quincy and NBFR

July 2024

College-going became regressive over the 20th century

-0	Overall	_▲-	College Deg.
	Any College		HS Deg.

Research question: when and why did the labor market returns to college-going become positively correlated with childhood parental income?

What we do:

- Measure changes in the observational and causal **return to college** enrollment by parental income for men since 1900.
- Measure and decompose the contributions of changes in the composition and value-added of collegiate majors and institutions since 1900.
- Simulate magnitude of collegiate regressivity in **mediating intergenerational income transmission**.

- Collegiate regressivity starts rising in the 1960s. This does not align with many high-level US higher education trends (e.g. rising enrollment, rising tuition). Differential selection plays a secondary role.
- ▶ Three trends explain 70% of the trend toward collegiate regressivity:
 - The less-selective and public institutions that disproportionately enroll lower-income students have seen large declines in value-added since 1960.
 - Shifts between four-year institutions play a secondary role.
 - Lower-income students have been increasingly diverted to community colleges since the 1980s.
 - Higher-income students have disproportionately exited humanities majors and flowed into computer science since the 2000s.
- College-going provided equitable returns before 1960, but collegiate regressivity now mediates 20 percent of intergenerational income transmission.

- Collegiate regressivity starts rising in the 1960s. This does not align with many high-level US higher education trends (e.g. rising enrollment, rising tuition). Differential selection plays a secondary role.
- ► Three trends explain 70% of the trend toward collegiate regressivity:
 - The less-selective and public institutions that disproportionately enroll lower-income students have seen large declines in value-added since 1960.
 - Shifts between four-year institutions play a secondary role.
 - Lower-income students have been increasingly diverted to community colleges since the 1980s.
 - Higher-income students have disproportionately exited humanities majors and flowed into computer science since the 2000s.
- College-going provided equitable returns before 1960, but collegiate regressivity now mediates 20 percent of intergenerational income transmission.

- Collegiate regressivity starts rising in the 1960s. This does not align with many high-level US higher education trends (e.g. rising enrollment, rising tuition). Differential selection plays a secondary role.
- ▶ Three trends explain 70% of the trend toward collegiate regressivity:
 - The less-selective and public institutions that disproportionately enroll lower-income students have seen **large declines in value-added** since 1960.
 - Shifts between four-year institutions play a secondary role.
 - Lower-income students have been increasingly diverted to community colleges since the 1980s.
 - Higher-income students have disproportionately exited humanities majors and flowed into computer science since the 2000s.
- College-going provided equitable returns before 1960, but collegiate regressivity now mediates 20 percent of intergenerational income transmission.

Main Findings:

- Collegiate regressivity starts rising in the 1960s. This does not align with many high-level US higher education trends (e.g. rising enrollment, rising tuition). Differential selection plays a secondary role.
- ▶ Three trends explain 70% of the trend toward collegiate regressivity:
 - The less-selective and public institutions that disproportionately enroll lower-income students have seen large declines in value-added since 1960.
 - Shifts between four-year institutions play a secondary role.
 - Over-income students have been increasingly diverted to community colleges since the 1980s.
 - Higher-income students have disproportionately exited humanities majors and flowed into computer science since the 2000s.

 College-going provided equitable returns before 1960, but collegiate regressivity now mediates 20 percent of intergenerational income transmission.

- Collegiate regressivity starts rising in the 1960s. This does not align with many high-level US higher education trends (e.g. rising enrollment, rising tuition). Differential selection plays a secondary role.
- ▶ Three trends explain 70% of the trend toward collegiate regressivity:
 - The less-selective and public institutions that disproportionately enroll lower-income students have seen large declines in value-added since 1960.
 - Shifts between four-year institutions play a secondary role.
 - Output: Control of the students have been increasingly diverted to community colleges since the 1980s.
 - Higher-income students have disproportionately exited humanities majors and flowed into computer science since the 2000s.
- College-going provided equitable returns before 1960, but collegiate regressivity now mediates 20 percent of intergenerational income transmission.

- Collegiate regressivity starts rising in the 1960s. This does not align with many high-level US higher education trends (e.g. rising enrollment, rising tuition). Differential selection plays a secondary role.
- ▶ Three trends explain 70% of the trend toward collegiate regressivity:
 - The less-selective and public institutions that disproportionately enroll lower-income students have seen large declines in value-added since 1960.
 - Shifts between four-year institutions play a secondary role.
 - Output: Control of the students have been increasingly diverted to community colleges since the 1980s.
 - Higher-income students have disproportionately exited humanities majors and flowed into computer science since the 2000s.
- College-going provided equitable returns before 1960, but collegiate regressivity now mediates 20 percent of intergenerational income transmission.

- Add university heterogeneity to the long literature on the relationship between education, inequality, and economic mobility.
 - Rising Inequality among the College-Educated: Goldin and Katz 1999, 2009; Lemieux 2006; Autor et al 2008, 2020; Acemoglu and Autor, 2011; Torche 2011.
 - Changes in Education and Economic Mobility: Aaronson and Mazumder 2008; Bailey and Dynarski 2011; Chetty et al 2014, 2017, 2020; Rothstein 2019; Jackson and Holzman 2020; Jácome, Kuziemko, and Naidu 2024.
- Link the large microeconomic literature on heterogeneity in returns to higher education to long-run macro trends.

- ► Add university heterogeneity to the long literature on the relationship between education, inequality, and economic mobility.
- Link the large microeconomic literature on heterogeneity in returns to higher education to long-run macro trends.
 - We extend estimates of major value-added (and composition by parental income) by 50 (35) years: Arcidiacono 2004; Fairlie, Hoffman, and Oreopoulos 2014; Altonji *et al* 2016; Kirkeboen, Leuven, and Mogstad 2016; Arcidiacono, Aucejo, and Hotz 2016; Patnaik *et al* 2022; Bleemer and Mehta 2023, 2024.
 - We extend estimates of institutional value-added (and composition by parental income) by 35 (50) years: Chetty et al 2020; Zimmerman 2019; Dynarski et al 2021,2023; Bleemer 2021, 2022; Mountjoy and Hickman 2021; Mountjoy 2022; Abramitzky et al 2022; Michelman et al 2023; Black et al 2023; Chetty, Deming, and Friedman 2023.

- Data-Collection Goal: Collect longitudinal surveys covering the past 100 years in the U.S., observing:
 - Parental income while child is in high school
 - Child test score in high school
 - Schild income in early 30s
 - Child postsecondary institution (if attended college)
 - Ohild college major (if attended college)
- ▶ We restrict our main sample to high school graduates to measure college returns relative to the HS baseline.
- National representativeness is preferable, but we use state records when otherwise unavailable.

- ▶ 1920-1950 U.S. Census records (Ruggles et al 2020).
 - ▶ 1920: Parental LIDO. 1940: Wage income, education.
 - ► Linked using the Census Linking Project (Abramitzky et al 2020).

WWII draft cards

- ▶ WWII enrollment cards (AGCT and education) from the National Archives.
- Linked to 1950 education following ABE on name, birth year, and birth state.
- Sample Size: 329,000 overall; 2,804 with AGCT matches.

- ▶ 1947 survey of all US college graduates with last names beginning with "FA".
- Contains income, major, and institution, but not family income*.
- Sample Size: 1,818.

- CPS Occupational Change in a Generation study sampled from CPS participants.
- Contains parental income proxies (occupation, education, and geography), education, and income, along with institution and major in the latter survey.
- Sample Size: 1,711 ('62) and 2,778 ('73) for ages 30-35; 6,411 across cohorts with observable collegiate institutions and majors.

- Wisconsin Longitudinal Survey sampled from 1957 Wisconsin high school graduates.
- Contains parental income, IQ, income, major, and institution.
- Sample Size: 3,297.

- Nationally-representative longitudinal survey of American freshmen and sophomores enrolled in 1960.
- Contains parental income, IQ, income, major, and institution.
- Sample size: 37,751, which is large enough to estimate institutional value-added for 403 institutions and 43 state-level pairs.

- Seven U.S. national longitudinal surveys have collected parental income and relevant fields:
 - NLSM (1,171), NLS72 (3,865), NLSY79 (1,938), and NLSY97 (2,690) have test scores, child income, and major.
 - ▶ NELS (4,570) and ELS (4,212) have test scores and major.
 - ADD Health (1,279) has child income.

► Nationally-representative panel longitudinal survey of US households.

[►] Sample size: 1,991.

- Comprehensive University of California administrative data for six campuses: Berkeley, Davis, Irvine, Riverside, UCSB, and UCSC.
- Census-linked, Census tract, or Zip code income (from Census and IRS SOI), major, and institution. Sample size: 439,719.

Institution- and major-level Pell funding, which proxies low-income enrollment. Sample size: 159,741 + 18,135.

College Enrollment in the United States

Male college enrollment rose following WWII but has been unchanged since the late 1960s...

College Enrollment in the United States by Income Tercile

...and higher-income children have always been more likely to enroll, especially following the GI bill (Stanley 2003).

We estimate the observational wage return to higher education by family income:

$$Wage_{it} = \zeta_t + \alpha_t FamInc_{it} + \beta_t College_{it} + \delta_t (FamInc_{it} \times College_{it}) + \epsilon_{it}$$
 (1)

over high school graduates *i* in year *t*, where:

- ▶ *Wage_{it}* is measured in rank or log \$ between ages 30 and 35;
- ► *FamInc_{it}* is measured in rank between ages 14 and 17 and centered;
- College_{it} indicates at least one year of college; and
- Estimation is weighted by sample weights and standard errors are robust.

The Regressivity of U.S. Higher Education

Average Return to College Enrollment (β_t)

Average returns to college attendance haven't changed much in rank over time...

The Regressivity of U.S. Higher Education

Differential Return to College Enrollment by SES (δ_t)

Zachary Bleemer and Sarah Quincy

The Regressivity of U.S. Higher Education

Differential Return to College Enrollment by SES (δ_t)

Zachary Bleemer and Sarah Quincy

What Explains the Rise in Observational Regressivity?

Let $p_t(i) = p_t(a_i, u_i, m_i, Pl_i)$ denote *i*'s college-going premium, where:

- ▶ a_i: pre-college aptitude
- *u_i*: enrollment institution

- *m_i*: college major
- Pl_i: parental income

Then define regressivity between top (T) and bottom (B) tercile parental incomes:

$$D_t \equiv \Delta_q \left[E[p_t|q] \right] = E[p_t|T] - E[p_t|B]$$

We define $v_t^x(j)$ as the value of a given j for $x \in \{A, U, M\}$ and decompose D_t into the following seven components:

What Explains the Rise in Observational Regressivity?

Let $p_t(i) = p_t(a_i, u_i, m_i, Pl_i)$ denote *i*'s college-going premium, where:

▶ a_i: pre-college aptitude

m_i: college major

► *u_i*: enrollment institution

Pl_i: parental income

Then define regressivity between top (T) and bottom (B) tercile parental incomes:

$$D_t \equiv \Delta_q \bigg[E[p_t|q] \bigg] = E[p_t|T] - E[p_t|B]$$

We define $v_t^x(j)$ as the value of a given j for $x \in \{A, U, M\}$ and decompose D_t into the following seven components:

$$D_{t} = \sum_{x \in \{A, U, M\}} \left(\underbrace{\int_{j} v_{0}^{x}(j) \Delta_{q} \left[P_{t}(j|q) \right] dj}_{j} + \underbrace{\int_{j} \Delta_{q} \left[P_{t}(j|q) \right] \left(v_{t}^{x}(j) - v_{0}^{x}(j) \right) dj}_{j} \right) + \epsilon_{t}$$
Twice Out The Main Querties we find the content of the function

What Explains the Rise in Observational Regressivity?

Let $p_t(i) = p_t(a_i, u_i, m_i, Pl_i)$ denote *i*'s college-going premium, where:

▶ a_i: pre-college aptitude

Tuition Over Time

Zachary Bleemer and Sarah Quincy

m_i: college major

u_i: enrollment institution

Pl_i: parental income

Then define regressivity between top (T) and bottom (B) tercile parental incomes:

$$D_t \equiv \Delta_q \bigg[E[p_t|q] \bigg] = E[p_t|T] - E[p_t|B]$$

We define $v_t^x(j)$ as the value of a given j for $x \in \{A, U, M\}$ and decompose D_t into the following seven components:

$$D_{t} = \sum_{x \in \{A, U, M\}} \left(\overbrace{\int_{j} v_{0}^{x}(j) \Delta_{q} \left[P_{t}(j|q) \right] dj}^{\text{Composition}} + \overbrace{\int_{j} \Delta_{q} \left[P_{t}(j|q) \right] \left(v_{t}^{x}(j) - v_{0}^{x}(j) \right) dj}^{\text{Wage Value}} \right) + \epsilon_{t}$$

Return to Pre-College Human Capital

The labor market value of pre-college aptitude has risen (conditional on family income rank and child education)...

Differential Test Score Selection into College Enrollment by SES (δ_t)

...but selection into college-going has not changed since the 1960s.

Selection into Attainment

Zachary Bleemer and Sarah Quincy

Decomposition of University Regressivity

Slope comes from log-dollars version of the change in regressivity over time, converting to difference between top and bottom income tercile.

Decomposition of University Regressivity

Decomposition of University Regressivity

Selection-on-Observables Forecast Coefficients of Average Wages by Major

Sample:	Sa	me Sample			Split Sample			
Add'l Cov.:	Fam. Inc.	+ AFQT	+Race	None	Fam. Inc.	+ AFQT	+Race	
A. Discipline	1.02	1.03	1.03	0.83	0.88	0.92	0.91	
Premiums	(0.02)	(0.02)	(0.03)	(0.09)	(0.09)	(0.09)	(0.09)	
Obs.	7				7	7		
1st Stg. Obs.	842				41	418		
B. Det. Major	1.00	1.01	1.00	0.66	0.68	0.68	0.67	
Premiums	(0.06)	(0.08)	(0.08)	(0.28)	(0.27)	(0.28)	(0.28)	
Obs. 1st Stg. Obs.		14 753			14 372			

Takeaway: $\bar{w_m}$ seems to be a reasonable proxy for ATT_m .

Difference in Major Premium Between Students from Bottom- and Top-Tercile Par. Inc.

Decomposition of University Regressivity

Decomposition of University Regressivity

Decomposition of University Regressivity

Major Composition II (cross-hatches): Add detailed majors.

Decomposition of Recent Rising Major Regressivity by Discipline

Value-Added Statistics Over Time

Slope: 0.29

Relationship between average parental income and log wage value-added goes from -0.002 to 0.02 per 10 ranks.

Distribution by Avg. Test Scores

Zachary Bleemer and Sarah Quincy

Selection-on-Observables Forecast Coefficients of Institutional Value-Added

Add'l Cov.:	Base.	+Tests	+ Grades	$+ \mathrm{HS}~\mathrm{FE}$	+Extra.						
Same Sample											
Inst FF		0 97	0.95	0.82	0.82						
		(0.004)	(0.006)	(0.027)	(0.026)						
		()	· · · ·	. ,	· · · ·						
Obs.	396										
1st Stg. Obs.		22,099									
Split Sample											
Inst. FE	0.552	0.523	0.511	0.385	0.389						
	(0.041)	(0.041)	(0.040)	(0.051)	(0.049)						
Obs.	()	()	396	()	(. , ,						
1st Stg. Obs.			10.956								

Takeaway: With large-enough samples, 60-80 percent of institutional VA is treatment effect.

Difference in Inst. VA Between Students from Bottom- and Top-Tercile Par. Inc.

Decomposition of University Regressivity

Decomposition of University Regressivity

Decomposition of Rising Institutional Stratification

CC Enrollment

Zachary Bleemer and Sarah Quincy

Overall Decomposition

Decomposition of University Regressivity

- ▶ US higher education has become **regressive** since 1960 for men **and women**.
- ► Three key factors explain 70% of the trend:
 - **()** Less-selective and public institutions' decreased value-added since 1960.
 - **2** Lower-income students' **diversion to community college** since the 1980s.
 - **Observe and a set of a set of**
- The current rank-rank correlation is 0.29. We conduct two simulations in NLSY97:
 - Equalize return to college, assuming 15% of collegiate regressivity is selection. Resulting rank-rank correlation: 0.23
 - Q Equalize college attainment. Resulting rank-rank correlation: 0.18
- About 20 percent of intergenerational income persistence is mediated by differential value to college-going. In 1960, that share was 0.

College Attainment in the United States by Income Tercile

College Attainment Shares

Similar pattern when looking at four-year college attainment.

College Enrollment in the United States by Income Tercile

Top-Tercile Students' Percent Higher College-Going Relative to Bottom-Tercile Students

College Enrollment in the United States by Income Tercile

College Enrollment Among Female Students

Average Return to College **Attainment** (β_t)

Differential Return to College **Attainment** by SES (δ_t)

Average Return to College Enrollment in Log (β_t)

Zachary Bleemer and Sarah Quincy

Differential Return to College Enrollment by SES in Log (δ_t)

Average Return to College **Attainment in Log \$** (β_t)

Differential Return to College **Attainment** by SES in Log (δ_t)

Root Mean Squared Error from Regressivity Models with Kink Points

High-Level Trends in US Higher Education

Sticker and Net Cost of College Over Time

Explanation I: Selection

College Major Attainment Over Time

Explanation I: Selection

Ivy and Ivy+ Enrollment Over Time

Explanation I: Selection

Pre-College Human Capital-Based Selection into College Attainment

Annual Share of Declared College Majors by Parental Income Tercile

Geographic Distribution of Mid-Century Institutional Value-Added

Institutional Value-Added by testing tercile in the 1960s and 1990s

Average Parental Income of Pell and Non-Pell Students (NPSAS)

Institutional Enrollment by Pell Eligibility Indexed by Average Wage or Value-Added

Enrollment Share in Two-Year Institutions by Income Tercile or Pell

