Lumpy Forecasts

Isaac Baley UPF, CREI, BSE, CEPR Javier Turén PUC Chile

NBER SI — July 12, 2024

• Expectations and belief formation are central in macroeconomics

- Expectations and belief formation are central in macroeconomics
- Recently, exponential use of survey data to:
 - elicit beliefs and information sets
 - test theories of expectations (e.g., rational, sticky, behavioral...)

Assumption: **Forecasts** (what agents disclose) = **Beliefs** (what they truly expect)

- Expectations and belief formation are central in macroeconomics
- Recently, exponential use of survey data to:
 - elicit beliefs and information sets
 - test theories of expectations (e.g., rational, sticky, behavioral...)

Assumption: **Forecasts** (what agents disclose) = **Beliefs** (what they truly expect)

• Does this assumption hold for inflation surveys? If not, what drives the difference?

- Expectations and belief formation are central in macroeconomics
- Recently, exponential use of survey data to:
 - elicit beliefs and information sets
 - test theories of expectations (e.g., rational, sticky, behavioral...)

Assumption: **Forecasts** (what agents disclose) = **Beliefs** (what they truly expect)

- Does this assumption hold for inflation surveys? If not, what drives the difference?
- Crucial implications for survey design and for conducting monetary policy

- New facts: Survey of professionals that forecast end-of-year inflation
 - Forecast are lumpy (period of inaction + large revisions)
 - Horizon-dependent revisions
 - ① Distance to consensus triggers revisions

- New facts: Survey of professionals that forecast end-of-year inflation
 - Forecast are lumpy (period of inaction + large revisions)
 - Horizon-dependent revisions
 - ID Distance to consensus triggers revisions
- New model: Bayesian + Preference for Stability + Strategic Concerns
 - Ss model for forecasts, not for beliefs
 - o Structural estimation that matches empirical facts

- New facts: Survey of professionals that forecast end-of-year inflation
 - Forecast are lumpy (period of inaction + large revisions)
 - Horizon-dependent revisions
 - ID Distance to consensus triggers revisions
- New model: Bayesian + Preference for Stability + Strategic Concerns
 - Ss model for forecasts, not for beliefs
 - o Structural estimation that matches empirical facts
- Implications of lumpy forecasts:
 - * Micro: Forecast rationality (efficiency) tests
 - * Macro: State-dependent responses to volatility

1 Data and fixed-event forecasting

2 Term structure of forecast revisions and errors

3 A model of lumpy forecasts

Implications

• CPI inflation in the US

- CPI inflation in the US
- Bloomberg's ECFC survey of professional forecasters

1 High-frequency: monthly observations (aggregated from daily)

2 Consensus: average forecast observed in real time

- CPI inflation in the US
- Bloomberg's ECFC survey of professional forecasters

High-frequency: monthly observations (aggregated from daily)
Consensus: average forecast observed in real time

• Around 100 forecasters per year \times 14 years \sim 12,600 obs

Normal years: 2010–2019 & Turbulent years: 2008–2009, 2020–2021

- CPI inflation in the US
- Bloomberg's ECFC survey of professional forecasters

High-frequency: monthly observations (aggregated from daily)
Consensus: average forecast observed in real time

- Around 100 forecasters per year imes 14 years \sim 12,600 obs
 - Normal years: 2010–2019 & Turbulent years: 2008–2009, 2020–2021
- Four types of forecasters:
 - banks, financial institutions, consulting companies, universities & research centers

- CPI inflation in the US
- Bloomberg's ECFC survey of professional forecasters

High-frequency: monthly observations (aggregated from daily)
Consensus: average forecast observed in real time

- Around 100 forecasters per year imes 14 years \sim 12,600 obs
 - Normal years: 2010–2019 & Turbulent years: 2008–2009, 2020–2021
- Four types of forecasters:
 - banks, financial institutions, consulting companies, universities & research centers
- Incentives:
 - Public exposure, citations in newsletters
 - Forecasts drive trading behavior [Bahaj et.al. (23)]

$$\pi_t = \underbrace{\log(\overline{cpi}_t) - \log(\overline{cpi}_{t-1})}_{\text{annual inflation}} \approx \sum_{m=1}^{12} \underbrace{\frac{1}{12} \left[\log(cpi_{m,t}) - \log(cpi_{m-12,t})\right]}_{x_m \equiv \text{ year-on-year monthly inflation}} = \sum_{m=1}^{12} x_m$$

- In a given year, fixed event $\pi = \sum_{h=1}^{12} x_h$
 - ▶ horizon $h \in \{12, 11, 10, ..., 2, 1\}$ runs backward
 - \blacktriangleright x_h's are publicly observed every month

- In a given year, fixed event $\pi = \sum_{h=1}^{12} x_h$
 - ▶ horizon $h \in \{12, 11, 10, ..., 2, 1\}$ runs backward
 - \blacktriangleright x_h's are publicly observed every month
- Forecast f_h^i about π by agent i at horizon h

$$f_h^i = \underbrace{\mathcal{P}_h^i}_{\text{projection}} + \underbrace{\sum_{j=h+1}^{12} x_j}_{\text{past realizations}} \quad h = 12, \dots, 1$$

Example of three forecasters in a year

1 Data and fixed event forecasting

@ Term structure of forecast revisions and errors

3 A model of lumpy forecasts

Implications

• Target:
$$\pi = \sum_{h=1}^{12} x_h$$

- **Target:** $\pi = \sum_{h=1}^{12} x_h$
- Forecast: $f_h^i = \mathcal{P}_h^i + \sum_{j=h+1}^{12} x_j$

- **Target:** $\pi = \sum_{h=1}^{12} x_h$
- Forecast: $f_h^i = \mathcal{P}_h^i + \sum_{j=h+1}^{12} x_j$
- Outcomes:
 - Forecast revisions: $\Delta f_h^i \equiv f_h^i f_{h+1}^i$
 - Forecast errors: $e_h^i \equiv \pi f_h^i$

- **Target:** $\pi = \sum_{h=1}^{12} x_h$
- Forecast: $f_h^i = \mathcal{P}_h^i + \sum_{j=h+1}^{12} x_j$
- Outcomes:

• Forecast revisions:
$$\Delta f_h^i \equiv f_h^i - f_{h+1}^i$$

- Forecast errors: $e_h^i \equiv \pi f_h^i$
- Random walk "naive" benchmark

▶ Projection:
$$\mathcal{P}_h = h \cdot x_{h+1}$$

$$\blacktriangleright \Delta f_h = (h+1) \cdot \Delta x_{h+1} \text{ and } e_h = \sum_{j=1}^h x_j - h \cdot x_{h+1}$$

Term structure of revisions and errors

- Size of revision: $\mathbb{E}[|\Delta f_b^i|| \text{adjust}] = 0.25$
- Mean squared error: $\mathbb{E}[(e_h^i)^2] = 0.24$

(b) Mean Squared Error

Larger revisions and errors relative to a random walk

- Size of revision: $\mathbb{E}[|\Delta f_h^i|| \text{adjust}] = 0.25 \text{ vs. } 0.16 \text{ random walk}$
- Mean squared error: $\mathbb{E}[(e_h^i)^2] = 0.24$ vs. 0.15 random walk

Forecast revisions are *lumpy*

- Frequency: $\Pr[\Delta f_h^i \neq 0] = 0.43$ (5 revisions/year, avg. duration 1.6 months)
- Decreasing hazard: $h(age) = \Pr[\Delta f \neq 0 | age]$

Gap to consensus triggers revisions

- Consensus: $F_h = \frac{1}{N} \sum_{h=1}^{12} f_h^i$
- Gap to consensus: $c_h^i \equiv f_{h+1}^i F_h$

A1. Rounding - Consensus Economics

- A1. Rounding Consensus Economics
- A2. Longer horizons (18 months)

- A1. Rounding Consensus Economics
- A2. Longer horizons (18 months)
- A3. Other surveys

A3a. Professionals in ECB survey [Andrade and Le Bihan (2013)]

A3b. Firms' expectations also lumpy [Born, et.al., Handbook of Economic Expectations]

1 Data and fixed event forecasting

2 Term structure of forecast revisions and errors

A model of lumpy forecasts

Implications

• End-of-year inflation: $\pi = \sum_{h=1}^{12} x_h$

• Consensus: $F_h = N^{-1} \sum_{i=1}^N f_h^i$

- End-of-year inflation: $\pi = \sum_{h=1}^{12} x_h$
 - AR(1) structure: $x_h = c_x + \phi_x x_{h+1} + \varepsilon_h^x$, $\varepsilon_h^x \sim \mathcal{N}(0, \sigma_x^2)$ (one period delay)

• Private signal: $\tilde{x}_{h}^{i} = x_{h} + \zeta_{h}^{i}$, idiosyncratic noise $\zeta_{h}^{i} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_{\zeta}^{2})$

- Consensus: $F_h = N^{-1} \sum_{i=1}^N f_h^i$
 - · Observed with one period delay

- End-of-year inflation: $\pi = \sum_{h=1}^{12} x_h$
 - AR(1) structure: $x_h = c_x + \phi_x x_{h+1} + \varepsilon_h^x$, $\varepsilon_h^x \sim \mathcal{N}(0, \sigma_x^2)$ (one period delay)

• Private signal: $\widetilde{x}_{h}^{i} = x_{h} + \zeta_{h}^{i}$, idiosyncratic noise $\zeta_{h}^{i} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_{\zeta}^{2})$

- Consensus: $F_h = N^{-1} \sum_{i=1}^N f_h^i$
 - Observed with one period delay
- Information set: $\mathcal{I}_{h}^{i} = \widetilde{x}_{h}^{i} \cup \mathcal{I}_{h} = \widetilde{x}_{h}^{i} \cup \{x_{h+1}, x_{h+2}, \dots, F_{h+1}, F_{h+2}, \dots\}$

• Using the law of iterated expectations:

$$\min_{\{f_h^i\}_{h=12}^1} \sum_{h=12}^1 \underbrace{\sum_{h=12} h}_{\text{sunk}} + \underbrace{(f_h^i - \mathbb{E}[\pi | \mathcal{I}_h^i])^2}_{\text{accuracy}} + r \underbrace{(f_h^i - \mathbb{E}[F_h | \mathcal{I}_h^i])^2}_{\text{strategic}} + \underbrace{\mathbb{E}[\mathbb{1}_{\{f_h^i \neq f_{h+1}^i\}} | \mathcal{I}_h^i]}_{\text{stability}}$$
• Using the law of iterated expectations:

$$\min_{\{f_h^i\}_{h=12}^1} \sum_{h=12}^1 \underbrace{\sum_{h=12} \mathbf{E}_h}_{\text{sunk}} + \underbrace{(f_h^i - \mathbb{E}[\pi | \mathcal{I}_h^i])^2}_{\text{accuracy}} + \mathbf{r} \underbrace{(f_h^i - \mathbb{E}[F_h | \mathcal{I}_h^i])^2}_{\text{strategic}} + \underbrace{\mathbb{E}[\mathbbm{1}_{\{f_h^i \neq f_{h+1}^i\}} | \mathcal{I}_h^i]}_{\text{stability}}$$

• Inflation beliefs: $\pi | \mathcal{I}_h^i \sim \mathcal{N}(\hat{\pi}_h^i, \Sigma_h^{\pi})$

$$\circ \hat{\pi}_{h}^{i} = \underbrace{h\left(\frac{c_{x}}{1-\phi_{x}}\right) + \frac{1-\phi_{x}^{h}}{1-\phi_{x}}\left(\hat{x}_{h}^{i} - \frac{c_{x}}{1-\phi_{x}}\right)}_{\text{AR(1) projection}} + \underbrace{\sum_{j=h+1}^{12} x_{j}}_{\text{realized, } j > h}, \quad h = 12, \dots, 1$$

where
$$\hat{x}_h^i \equiv \mathbb{E}[x_h | \mathcal{I}_h^i] = \alpha [c_x + \phi_x x_{h+1}] + (1 - \alpha) \tilde{x}_h^i$$
, w/weight $\alpha \equiv \frac{(\sigma_x^2)^{-1}}{(\sigma_x^2)^{-1} + (\sigma_\zeta^2)^{-1}}$

Belief formation

• Using the law of iterated expectations:

$$\min_{\{f_h^i\}_{h=12}^{h}} \sum_{h=12}^{1} \underbrace{\sum_{h}}_{\text{sunk}} + \underbrace{(f_h^i - \mathbb{E}[\pi | \mathcal{I}_h^i])^2}_{\text{accuracy}} + r \underbrace{(f_h^i - \mathbb{E}[F_h | \mathcal{I}_h^i])^2}_{\text{strategic}} + \underbrace{\mathbb{E}[\mathbb{1}_{\{f_h^i \neq f_{h+1}^i\}} | \mathcal{I}_h^i]}_{\text{stability}}$$

- Inflation beliefs: $\pi | \mathcal{I}_h^i \sim \mathcal{N}(\hat{\pi}_h^i, \Sigma_h^{\pi})$
- Consensus beliefs: $F_h | \mathcal{I}_h^i \sim \mathcal{N}(\hat{F}_h, \sigma_F^2)$

•
$$\hat{F}_h = \hat{F}_{h+1} + \eta_h^{\hat{F}}$$
 (agents' perceive a unit root process)

Restricted perceptions equilibrium

Belief formation

• Using the law of iterated expectations:

$$\min_{\{f_h^i\}_{h=12}^1} \sum_{h=12}^1 \underbrace{\sum_{h}}_{\text{sunk}} + \underbrace{(f_h^i - \mathbb{E}[\pi | \mathcal{I}_h^i])^2}_{\text{accuracy}} + r \underbrace{(f_h^i - \mathbb{E}[F_h | \mathcal{I}_h^i])^2}_{\text{strategic}} + \underbrace{\mathbb{E}[\mathbb{1}_{\{f_h^i \neq f_{h+1}^i\}} | \mathcal{I}_h^i]}_{\text{stability}}$$

- Inflation beliefs: $\pi | \mathcal{I}_h^i \sim \mathcal{N}(\hat{\pi}_h^i, \Sigma_h^{\pi})$
- Consensus beliefs: $F_h | \mathcal{I}_h^i \sim \mathcal{N}(\hat{F}_h, \sigma_F^2)$

• $\hat{F}_h = \hat{F}_{h+1} + \eta_h^{\hat{F}}$ (agents' perceive a unit root process)

Restricted perceptions equilibrium

- Total uncertainty: $\Sigma_h \equiv \Sigma_h^{\pi} + r \sigma_F^2$
 - Σ_h^{π} falls deterministically with h and independent of i

Timeline

Recursive problem and optimal policy

$$\mathcal{V}_{h}(\hat{\pi}, \hat{F}, f) = \min\{\underbrace{\mathcal{V}_{h}^{I}(\hat{\pi}, \hat{F}, f)}_{\text{inaction}}, \underbrace{\mathcal{V}_{h}^{A}(\hat{\pi}, \hat{F})}_{\text{action}}\}$$

$$\begin{aligned} \mathcal{V}_{h}'(\hat{\pi},\hat{F},f) &= \Sigma_{h} + (f-\hat{\pi})^{2} + r(f-\hat{F})^{2} + \mathbb{E}[\mathcal{V}_{h-1}(\hat{\pi}',\hat{F}',f)|\mathcal{I}] \\ \mathcal{V}_{h}^{A}(\hat{\pi},\hat{F}) &= \kappa + \Sigma_{h} + \min_{f^{*}} \left\{ (f^{*}-\hat{\pi})^{2} + r(f^{*}-\hat{F})^{2} + \mathbb{E}[\mathcal{V}_{h-1}(\hat{\pi}',\hat{F}',f^{*})|\mathcal{I}] \right\} \end{aligned}$$

Recursive problem and optimal policy

$$\mathcal{V}_{h}(\hat{\pi}, \hat{F}, f) = \min\{\underbrace{\mathcal{V}'_{h}(\hat{\pi}, \hat{F}, f)}_{\text{inaction}}, \underbrace{\mathcal{V}'_{h}(\hat{\pi}, \hat{F})}_{\text{action}}\}$$

$$\mathcal{V}'_{h}(\hat{\pi}, \hat{F}, f) = \sum_{h} + (f - \hat{\pi})^{2} + r(f - \hat{F})^{2} + \mathbb{E}[\mathcal{V}_{h-1}(\hat{\pi}', \hat{F}', f)|\mathcal{I}]$$

$$\mathcal{V}'_{h}(\hat{\pi}, \hat{F}) = \kappa + \sum_{h} + \min_{f^{*}} \left\{ (f^{*} - \hat{\pi})^{2} + r(f^{*} - \hat{F})^{2} + \mathbb{E}[\mathcal{V}_{h-1}(\hat{\pi}', \hat{F}', f^{*})|\mathcal{I}] \right\}$$

• Optimal policy is horizon-dependent:

▶ Inaction region: $\mathcal{R}_h \equiv \{(\hat{\pi}, \hat{F}, f) : \mathcal{V}_h^{\prime}(\hat{\pi}, \hat{F}, f) \geq \mathcal{V}_h^{A}(\hat{\pi}, \hat{F})\}$

Calibration

• Externally set

 \circ Inflation process $(c_x,\phi_x,\sigma_x^2) = (0.013,0.932,0.0013)$ (Estimation Inflation

• Externally set

 \circ Inflation process $(c_x,\phi_x,\sigma_x^2) = (0.013,0.932,0.0013)$ Estimation Inflation

• Calibration

Parameter		Value	Moment	Data	Model
κ	adjustment cost	0.06	$\Pr[\Delta f eq 0]$	0.43	0.41
r	strategic concerns	0.79	$\mathbb{E}[\Delta f $ adjust]	0.25	0.19
σ_{ζ}	private noise	0.05	hazard slope	-0.04	-0.04

 $\,\circ\,$ Consensus volatility $\sigma_{\scriptscriptstyle F}^2=0.11$ yields belief consistency

Consistency

Externally set

 \circ Inflation process $(c_x,\phi_x,\sigma_x^2) = (0.013,0.932,0.0013)$ Estimation Inflation

Calibration

Parameter		Value	Moment	Data	Model
κ	adjustment cost	0.06	$\Pr[\Delta f eq 0]$	0.43	0.41
r	strategic concerns	0.79	$\mathbb{E}[\Delta f $ adjust]	0.25	0.19
σ_{ζ}	private noise	0.05	hazard slope	-0.04	-0.04

 \circ Consensus volatility $\sigma_F^2=0.11$ yields belief consistency

• Microdata implies:

- * Stability: $\kappa > 0$
- * Complementarity: r > 0
- * Private information: $\alpha = 0.45$

Model in action

Forecasts vs. Beliefs (one forecaster)

Forecasts vs. Beliefs (in the aggregate)

Untargeted term structures

Other untargeted moments

Mean squared error

Autocorrelations

	Data	Model
Forecast errors	0.88	0.70
Belief errors	N/A	0.60
All revisions	-0.04	-0.06
Non-zero revisions	-0.11	-0.15

Gap to consensus triggers adjustments

• Gap to consensus: $c_h^i \equiv f_{h+1}^i - F_h$

Heterogeneity

Heterogeneity across forecaster types

• Cross-sectional moments by forecaster type

	Financ	ial Inst.	Ba	nks	Cons	ulting	Unive	rsities
Moment	Data	Model	Data	Model	Data	Model	Data	Model
$\Pr[\Delta f \neq 0]$	0.45	0.40	0.38	0.37	0.47	0.49	0.34	0.35
$\mathbb{E}[\Delta f adjust]$	0.25	0.18	0.26	0.24	0.27	0.18	0.29	0.30
hazard slope	-0.05	-0.05	-0.02	-0.02	-0.05	-0.05	-0.01	-0.01
N		5,366		2,567		2,982		1,440

Heterogeneity across forecaster types

• Cross-sectional moments by forecaster type

	Financ	ial Inst.	Ba	nks	Cons	ulting	Unive	rsities
Moment	Data	Model	Data	Model	Data	Model	Data	Model
$\Pr[\Delta f \neq 0]$	0.45	0.40	0.38	0.37	0.47	0.49	0.34	0.35
$\mathbb{E}[\Delta f adjust]$	0.25	0.18	0.26	0.24	0.27	0.18	0.29	0.30
hazard slope	-0.05	-0.05	-0.02	-0.02	-0.05	-0.05	-0.01	-0.01
N		5,366		2,567		2,982		1,440

• Relative parameters by forecaster type, within group consensus

Parameter	Financial Inst.	Banks	Consulting	Universities
κ	1.00	1.17	0.83	1.33
r	1.00	0.64	0.94	0.20
σ_{ζ}	1.00	0.75	0.75	1.25

Note: Parameters relative to financial institutions

 $\star\,$ University forecasts are the lumpiest, least strategic and noisiest

1 Data and fixed event forecasting

2 Term structure of forecast revisions and errors

3 A model of lumpy forecasts

4 Implications

• Predictability of <u>individual</u> forecast errors (assumption: forecasts = beliefs)

$$\underbrace{\frac{\pi - f_h^i}{\text{forecast error}}}_{\text{forecast error}} = \underbrace{\gamma_0^h}_{\text{bias}} + \gamma_1^h \underbrace{(f_h^i - f_{h+1}^i)}_{\text{revision}} + \gamma_2^h \underbrace{(F_{h+1} - f_{h+1}^i)}_{\text{consensus}} + \epsilon_h^i$$

• Predictability of <u>individual</u> forecast errors (assumption: forecasts = beliefs)

$$\underbrace{\pi - f_h^i}_{\text{forecast error}} = \underbrace{\gamma_0^h}_{\text{bias}} + \gamma_1^h \underbrace{(f_h^i - f_{h+1}^i)}_{\text{revision}} + \gamma_2^h \underbrace{(F_{h+1} - f_{h+1}^i)}_{\text{consensus}} + \epsilon_h^i$$

• Rational expectations: $\gamma_0^h = \gamma_1^h = \gamma_2^h = 0$

• Predictability of <u>individual</u> forecast errors (assumption: forecasts = beliefs)

$$\underbrace{\pi - f_h^i}_{\text{forecast error}} = \underbrace{\gamma_0^h}_{\text{bias}} + \gamma_1^h \underbrace{(f_h^i - f_{h+1}^i)}_{\text{revision}} + \gamma_2^h \underbrace{(F_{h+1} - f_{h+1}^i)}_{\text{consensus}} + \epsilon_h^i$$

- Rational expectations: $\gamma_0^h = \gamma_1^h = \gamma_2^h = 0$
- Literature finds deviations:
 - Overreaction to private info: γ₁^h < 0 Bordalo *et.al.* (2020) for h = 9, Afrouzi *et.al.* (2023)
 - Underreaction to public info: $\gamma_2^h > 0$

Broer and Kohlhas (2022) and Gemmi and Valchev (2022) for h = 6,9

• Predictability of <u>individual</u> forecast errors (assumption: forecasts = beliefs)

$$\underbrace{\pi - f_h^i}_{\text{forecast error}} = \underbrace{\gamma_0^h}_{\text{bias}} + \gamma_1^h \underbrace{(f_h^i - f_{h+1}^i)}_{\text{revision}} + \gamma_2^h \underbrace{(F_{h+1} - f_{h+1}^i)}_{\text{consensus}} + \epsilon_h^i$$

- Rational expectations: $\gamma_0^h = \gamma_1^h = \gamma_2^h = 0$
- Literature finds deviations:
 - Overreaction to private info: γ₁^h < 0 Bordalo *et.al.* (2020) for h = 9, Afrouzi *et.al.* (2023)
 - Underreaction to public info: $\gamma_2^h > 0$ Broer and Kohlhas (2022) and Gemmi and Valchev (2022) for h = 6,9
- We distinguish forecasts from beliefs, and run test for each horizon

Rationality tests (data)

$$\pi - f_h^i = \gamma_0^h + \gamma_1^h (f_h^i - f_{h+1}^i) + \gamma_2^h (F_{h+1} - f_{h+1}^i) + \epsilon_h^i$$

- Forecasts over-react to private info $(\gamma_1^h < 0)$
- Forecasts under-react to public info $(\gamma_2^h > 0)$

Rationality tests (data and model)

$$\pi - f_{h}^{i} = \gamma_{0}^{h} + \gamma_{1}^{h} (f_{h}^{i} - f_{h+1}^{i}) + \gamma_{2}^{h} (F_{h+1} - f_{h+1}^{i}) + \epsilon_{h}^{i}$$

- Forecasts over-react to private info $(\gamma_1^h < 0)$
- Forecasts under-react to public info $(\gamma_2^h > 0)$

Rationality tests (using beliefs)

$$\pi - \hat{\pi}_{h}^{i} = \gamma_{0}^{h} + \gamma_{1}^{h} \left(\hat{\pi}_{h}^{i} - \hat{\pi}_{h+1}^{i} \right) + \gamma_{2}^{h} \left(\hat{\Pi}_{h+1} - \hat{\pi}_{h+1}^{i} \right) + \epsilon_{h}^{i}$$

• Beliefs consistent with rational expectations $(\gamma_0^h=\gamma_1^h=\gamma_2^h=0)$

Rationality tests with multi-horizons, [Patton and Timmermann, 2012]

Test	(I) Data	(II) Forecasts	(III) Beliefs
Inequality-based			
1. Increasing MSE	0.879	0.966	0.985
2. Increasing MSR ^r	0.851	0.931	0.972
3. Decreasing MSF ^r	0.038	0.94	0.944
4. Decreasing covariance	0.071	0.937	0.966
5. Decreasing covariance with proxy ^r	0.067	0.907	0.959
6. Variance bound	0.16	0.774	0.771
7. Variance bound with proxy ^r	0.092	0.711	0.825
MZ Regresion-based			
8. Univar opt revision	NaN	1.000	1.000
9. Univar opt revision with proxy	1.000	1.000	1.000
10. Univar MZ short h	0.000	0.000	0.194
Joint tests			
Bonferroni I $(1+4+6+8+10)$	0.000	0.000	0.968
Bonferroni II $(2+3+5+7+9)$	0.192	1.000	1.000
Bonferroni All (1-10)	0.000	0.000	1.000

Responses to volatility

Changes in inflation volatility (in data)

- Turbulent years 2008-09 and 2020-21: $\sigma_x^2 \uparrow$ Time-series
- Frequency, variance, and errors increase at all horizons

Changes in inflation volatility

- Model Increase in inflation volatility: $1.4 \times \sigma_x^2$
- Captures qualitative changes in cross-sectional moments

Conclusions

• Forecasts are lumpy

• Lumpiness amplified by strategic concerns

• Forecasts are lumpy

- Lumpiness amplified by strategic concerns
- Bayesian learning + fixed revision cost + strategic concerns
 - Explain the microdata

• Forecasts are lumpy

- Lumpiness amplified by strategic concerns
- Bayesian learning + fixed revision cost + strategic concerns
 - Explain the microdata
- Lumpy forecasts help us understand...
 - Forecast rationality tests
 - Responses to changes in volatility
• Forecasts are lumpy

- Lumpiness amplified by strategic concerns
- Bayesian learning + fixed revision cost + strategic concerns
 - Explain the microdata
- Lumpy forecasts help us understand...
 - Forecast rationality tests
 - Responses to changes in volatility

• Policy implications:

- Survey design: incentives/prizes (e.g., Brazilian FOCUS) [Issler, et.al 2022]
- Transmission of monetary policy (companion project)

Thank you!

isaac.baley@upf.edu

jturen@uc.cl

Lumpy Forecasts

Isaac Baley UPF, CREI, BSE, CEPR Javier Turén PUC Chile

NBER SI — July 12, 2024

Backup material

Appendix Index

- A. Sample selection
- B. Summary statistics
 - B1. Forecast revisions
 - B2. Forecast revisions, all years
 - B3. Forecast errors
 - B3. Forecast errors, all years
- C. Robustness
 - C1. Weekly data
 - C2. Rounding
 - C3. Consensus Economics Survey
 - C4. Longer horizon
- D. Estimation
 - D1. Inflation process
 - D2. Consensus process

- E. Extensive and Intensive Margins
- F. Forecast Efficiency
 - F1. Bordalo, et. al. (2020)
 - F2. Broer and Kolhas (2022)
 - F3. Gemmi and Valchev (2023)
- G. Robustness
 - G1. Weekly data
 - G2. Rounding
 - G3. Consensus Economics Survey

• Forecast lumpiness

Mankiw & Reis (02), Reis (06), Andrade & Le Bihan (13), Gaglianone, Giacomini, Issler & Skreta (22)

 \star We provide direct evidence with high frequency data

• Forecast lumpiness

Mankiw & Reis (02), Reis (06), Andrade & Le Bihan (13), Gaglianone, Giacomini, Issler & Skreta (22)

 \star We provide direct evidence with high frequency data

• Inaction with learning

Álvarez, Lippi & Paciello (11), Baley & Blanco (19), Baley, Figueiredo & Ulbricht (22), Bonomo, et. al. (23)

 \star We develop Ss forecasting model and discipline it with microdata

Forecast lumpiness

Mankiw & Reis (02), Reis (06), Andrade & Le Bihan (13), Gaglianone, Giacomini, Issler & Skreta (22)

 \star We provide direct evidence with high frequency data

• Inaction with learning

Álvarez, Lippi & Paciello (11), Baley & Blanco (19), Baley, Figueiredo & Ulbricht (22), Bonomo, et. al. (23)

 \star We develop Ss forecasting model and discipline it with microdata

• Strategic concerns

Ottaviani & Sørensen (06), Hansen, McMahon & Velasco (14), Broer & Kohlhas (22), Valchev & Gemmi (23)

 \star We quantify the strength of strategic concerns with microdata

Forecast lumpiness

Mankiw & Reis (02), Reis (06), Andrade & Le Bihan (13), Gaglianone, Giacomini, Issler & Skreta (22)

 \star We provide direct evidence with high frequency data

• Inaction with learning

Álvarez, Lippi & Paciello (11), Baley & Blanco (19), Baley, Figueiredo & Ulbricht (22), Bonomo, et. al. (23)

 \star We develop Ss forecasting model and discipline it with microdata

• Strategic concerns

Ottaviani & Sørensen (06), Hansen, McMahon & Velasco (14), Broer & Kohlhas (22), Valchev & Gemmi (23)

 \star We quantify the strength of strategic concerns with microdata

Rationality tests

Nordhaus (87), Vives (93), Patton & Timmermann (10, 12), Capistrán and López-Moctezuma (13), Coibion & Gorodnichenko (12, 15), Giacomini, Skreta & Turen (20), Bordalo, Gennaioli, Ma & Schleifer (20)

\star We show that lumpiness accounts for behavioral biases

• Weekly observations, aggregated at the monthly level

• Keep forecaster with a minimum of 1 revision per year (at a monthly frequency)

• Eliminate extreme revisions

From yearly inflation to sum of year-on-year monthly inflation

- Let $\overline{cpi}_t = \frac{1}{12} \sum_{h=1}^{12} cpi_{t,h}$ be the average cpi in year t.
- The annual inflation equals:

$$\begin{aligned} \pi_t &= \log(\overline{cpi}_t) - \log(\overline{cpi}_{t-1}) \\ &= \log\left(\frac{1}{12}\sum_{h=1}^{12}cpi_{t,h}\right) - \log\left(\frac{1}{12}\sum_{h=1}^{12}cpi_{t-1,h}\right) \\ &\approx^{Jensen} \quad \frac{1}{12}\sum_{h=1}^{12}(\log(cpi_{t,h}) - \log(cpi_{t-1,h})) \\ &= \quad \frac{1}{12}\sum_{h=1}^{12}(\log(cpi_h) - \log(cpi_{h+12})) \\ &= \quad \sum_{h=1}^{12}\frac{1}{12}(\log(cpi_h) - \log(cpi_{h+12})) \\ &= \quad \sum_{h=1}^{12}\frac{1}{12}(\log(cpi_h) - \log(cpi_{h+12})) \\ &= \quad \sum_{h=1}^{12}\frac{1}{12}\left(\log(cpi_h) - \log(cpi_{h+12})\right) \\ &= \quad \sum_{h=1}^{12}\frac{1}{12}\left(\log(cpi_{h+12})\right) \\ &= \quad \sum_{h=$$

When is year-on-year monthly inflation a good approximation?

• A second-order Taylor approximation of log(p) around $\mathbb{E}[p]$ yields:

$$\log(
ho) \quad pprox \quad \log(\mathbb{E}[
ho]) \ + \ rac{1}{ar
ho}(
ho-\mathbb{E}[
ho]) \ - \ rac{1}{2\mathbb{E}[
ho]^2}(
ho-\mathbb{E}[
ho])^2$$

• Take expectations on both sides (note that $\mathbb{E}[p]$ is a constant):

$$\mathbb{E}[\log(p)] \approx \log(\mathbb{E}[p]) - \frac{\mathbb{V}ar[p]}{2\mathbb{E}[p]^2} = \log(\mathbb{E}[p]) - \frac{\mathbb{C}\mathbb{V}^2[p]}{2}$$

• Applying the decomposition to annual inflation (letting p, p' be the CPI in consecutive years)

$$\pi = \log(\mathbb{E}[p]) - \log(\mathbb{E}[p']) = \underbrace{\mathbb{E}[\log(p) - \log(p')]}_{\text{average year-on-year inflation } \mathbb{E}[x]} + \underbrace{\frac{\mathbb{CV}^2[p] - \mathbb{CV}^2[p']}{2}}_{\text{differences in within-year dispersion}}$$

• For similar within-year price dispersion $(\mathbb{CV}^2[p] \approx \mathbb{CV}^2[p'])$, then $\pi \approx \mathbb{E}[x]$.

B1. Statistics of Forecast Revisions

Back Index

Forecast revisions $\Delta f_h^i = f_h^i - f_{h+1}^i$				
Average	$\mathbb{E}[\Delta f]$	-0.013		
Size	$\mathbb{E}[abs(\Delta f) \Delta f eq 0]$	0.247		
Variance	\mathbb{V} ar[Δf]	0.055		
Number of revisions in a year	$count[\Delta f eq 0]$	5.059		
Months of inaction	$\mathbb{E}[au]$	1.594		
Adjustment frequency	$\Pr[\Delta f eq 0]$	0.427		
Upward	$Pr[\Delta f > 0]$	0.196		
Downward	$Pr[\Delta f < 0]$	0.231		
Spike rate	$Pr[abs(\Delta f) > 0.2]$	0.028		
Serial correlation (all Δf)	$corr[\Delta f, \Delta f_{-1}]$	-0.043		
Serial correlation (non-zero Δf)	$\mathit{corr}[\Delta f, \Delta f_{-1}]$	-0.107		
Observations	N	9,256		

Notes: Bloomberg data for normal years 2010-2019. Cross-sectional statistics are averaged across years and horizons.

		All	Turbulent	Normal
Average	$\mathbb{E}(\Delta f)$	-0.002	0.028	-0.013
Size	$\mathbb{E}(abs(\Delta f) \Delta f \neq 0)$	0.307	0.453	0.247
Variance	\mathbb{V} ar (Δf)	0.104	0.227	0.054
Frequency	$\Pr(\Delta f eq 0)$	0.444	0.492	0.427
Upward	$\Pr(\Delta f) > 0$	0.228	0.318	0.196
Downward	$\Pr(\Delta f) < 0$	0.216	0.173	0.231
Inaction rate	$\Pr(\Delta f = 0)$	0.556	0.508	0.573
Number of revisions	$count(\Delta f \neq 0)$	5.204	5.602	5.059
Duration (months)	$\mathbb{E}(au)$	1.497	1.231	1.594
Spike rate	$abs(\Delta f/f) > 1.2$	0.081	0.231	0.028
Positive spikes	$\Delta f/f > 1.2$	0.076	0.227	0.023
Negative spikes	$\Delta f/f < -1.2$	0.005	0.004	0.005
Serial correlation (all)	$corr(\Delta f, \Delta f_{-1})$	-0.035	-0.035	-0.043
Serial correlation (non-zero)	$corr(\Delta f, \Delta f_{-1})$	-0.085	-0.078	-0.107
Annual Inflation	π	1.896	2.175	1.795
Observations	Ν	12,619	3,363	9,256

Forecast errors $e_h^i = \pi - f_h^i$					
Average	$\mathbb{E}[e]$	-0.055			
Average of squares	$\mathbb{E}[e^2]$	0.235			
Size	$\mathbb{E}[abs(e)]$	0.305			
Positive	Pr[e>0]	0.345			
Negative	$\Pr[e < 0]$	0.572			
Variance	$\mathbb{V}ar[e]$	0.252			
Serial correlation	$corr[e, e_{-1}]$	0.877			
Observations	N	9,256			

Notes: Bloomberg data for normal years 2010-2019. Cross-sectional statistics are averaged across years and horizons.

Table: Summary Statistics of Forecast Errors

		All	Turbulent	Normal
Average	$\mathbb{E}(e)$	0.023	0.237	-0.055
Size	$\mathbb{E}(abs(e))$	0.434	0.789	0.305
Positive	$\Pr(e > 0)$	0.414	0.606	0.345
Negative	$\Pr(e < 0)$	0.510	0.340	0.572
Dispersion	$\sigma(e)$	0.663	1.105	0.502
Serial correlation	$corr(e, e_{-1})$	0.882	0.878	0.877
Observations	N	12,619	3,363	9,256

Time Series: Normal vs. Turbulent Back

- Normal years: 2010-19
- Turbulent years: 2008-09 and 2020-21

(a) Frequency by year \times horizon

(b) Size by year \times horizon

• We repeat the analysis using the weekly data directly.

• Assess true lumpiness from rounding

• We repeat the analysis for revisions above threshold $arphi \in \{0.01, 0.05, 0.1\}$

• Monthly data, 40 forecasters, three decimal points

• Monthly data, 40 forecasters, three decimal points

Back

Index

C4. Longer Horizon Back Index

- 18 to 13 months ahead (information about future end-of-year inflation)
- 12 to 1 months ahead (inflation is realized)

• A restricted perceptions equilibrium consists of

▶ a perceived consensus process \hat{F}_h given by a function g parametrized by (δ, σ_F)

$$\hat{F}_h = g(\hat{F}_{h+1}, \delta) + \epsilon_h^{\hat{F}}, \quad \epsilon_h^{\hat{F}} \sim_{i.i.d.} \mathcal{N}(0, \sigma_F^2)$$

- ▶ inflation beliefs $\{\hat{\pi}_h^i\}_{i,h}$ and forecasts $\{f_h^i\}_{i,h}$ for all agents *i* and horizons *h*
- such that
 - **1** Given perceived consensus \hat{F}_h , forecast policies $\{f_h^i\}_{i,h}$ are optimal
 - **2** (δ, σ_F) are such that prediction errors $\epsilon_h^F \equiv F_h g(F_{h+1}, \delta)$ satisfy:

•
$$Cov[\epsilon_h^F, \epsilon_j^F] = 0$$

• $Var[\epsilon_h^F] = \sigma_F^2$

Consistency of perceived vs. actual consensus (back

- Perceived process: $\hat{F}_t = \hat{F}_{t-1} + \eta_t^{\hat{F}} \quad \eta_t^{\hat{F}} \sim_{i.i.d.} \mathcal{N}(0, 0.11^2)$
- Let $\eta_t^F \equiv F_t F_{t-1}$ be forecast errors of actual consensus under perceived process.

•
$$Cov[\eta_h^F, \eta_j^F] = 0$$
 and $Var[\eta_h^F] = 0.11^2$

• Dickey-Fuller tests cannot reject H_0 : F_t is a random walk

D1. Estimation of Inflation Process π

- We estimate (c_x, ϕ_x, σ_x) with a rolling structure.
- Average estimates (across time): $\hat{c}_x = 0.013$, $\hat{\phi}_x = 0.932$ and $\hat{\sigma}_x = 0.036$.

Rolling Estimates AR(1) parameters

back

Relative losses from frictions

Rationality tests à la Bordalo, et.al, 2020

$$\pi - f_{h}^{i} = \gamma_{0} + \gamma_{1} \left(f_{h}^{i} - f_{h+1}^{i}
ight) + \epsilon_{h}^{i}$$

(a) No bias

Role of each friction

• We shut down each friction and reestimate parameters

	Data	(1) Baseline	(2) No fixed	(3) No strategic
Parameters			revision costs	concerns
κ		0.05	0.00	0.05
r		0.41	-0.38	0.00
σ_{ζ}^2		0.04	0.05	0.02
Moments				
$\Pr[\Delta f \neq 0]$	0.43	0.42*	1.00	0.59
$\mathbb{E}[\Delta f \Delta f eq 0]$	0.25	0.22*	0.25*	0.22*
Hazard Slope	-0.04	-0.04^{*}	N/A	-0.04^{*}

Role of fixed cost κ and strategic concerns r

Bahaj, Czech, Ding and Reis (2023) Back Index

Figure 22 EXPECTATIONS AND HETEROGENEITY IN TRADING

• High correlation between trading activities and inflation expectations in the data.

Rationality tests à la Broer and Kolhas, 2022

$$\pi - f_{h}^{i} \;=\; \gamma_{0} \;+\; \gamma_{1} \;(f_{h}^{i} - f_{h+1}^{i}) \;+\; \gamma_{2} \;F_{h+1} \;+\; \epsilon_{h}^{i}$$

(b) Overreaction to private info

(c) Underreaction to public info

Rationality tests in lumpy model

(a) No bias

(b) Overreaction to private info

(c) Underreaction to public info

Extensive and intensive margins: Gap to AR(1)

• Gap to AR(1) projection: $b_h^i \equiv f_{h+1}^i - \hat{\pi}_h$

Normal times

- Inflation process $(c_x, \phi_x, \sigma_x^2) = (0.013, 0.932, 0.0013)$
- \circ Consensus process σ_F = 0.11

Parameter		Value	Moment	Data	Model
κ	adjustment cost	0.05	$Pr[\Delta f eq 0]$	0.43	0.42
r	strategic concerns	0.41	$\mathbb{E}[\Delta f $ adjust]	0.25	0.22
σ_{ζ}	private noise	0.04	hazard slope	-0.04	-0.04

• Turbulent times

- $\circ~$ Inflation volatility $\sigma_{\rm x}=0.036 \rightarrow \sigma_{\rm x}'={\bf 1.1}\times 0.036$
- Consensus process $\sigma_F =$

Parameter		Value	Moment	Data	Model
κ'	adjustment cost	0.10	$\Pr[\Delta f eq 0]$	0.50	0.48
r'	strategic concerns	-0.35	$\mathbb{E}[\Delta f $ adjust]	0.45	0.51
σ'_{ζ}	private noise	0.18	hazard slope	-0.04	-0.04
Suggestive evidence of preference for stability

- Horizon overlap:
 - Long term revisions: f_{18}^i to f_{12}^i about π_{t+1}
 - Short term revisions: f_6^i to f_1^i about π_t
- Stability: Inactive in short-term while active in long term

