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Abstract

We document that professional forecasters adjust inflation forecasts in a lumpy way—

forecasts are changed infrequently, and when adjusted, they are revised by a significant

amount. As the forecasting horizon shrinks, the frequency of revisions, the size of revisions,

and forecast errors decrease. Using a fixed-event forecasting framework, we assess the role

of the consensus forecast and private information in shaping forecast revisions, both at the

extensive and the intensive margins. A model of Bayesian belief formation with forecast

revision costs and strategic concerns (i) delivers lumpy forecasts consistent with the survey

evidence, (ii) rationalizes forecast efficiency tests without introducing behavioral biases, and

(iii) generates state-dependent responses to inflation volatility. We discuss implications for

the transmission of monetary policy and forecast survey design.
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1 Introduction

Expectations and belief formation are central to macroeconomics. Both theoretical and empirical

work has questioned the Full Information Rational Expectations (FIRE) paradigm in favor of

other rigidities.1 For instance, Coibion and Gorodnichenko (2015) argues that professional fore-

casters deviate from the traditional rational expectations full-information hypothesis as they form

expectations facing limitations on the rate by which they observe and acquire information. A

common assumption at the core of the literature is that forecasts accurately reflect agents’ beliefs.

We challenge this assumption, ask to what extent forecasts may differ from agents’ beliefs, and

explore why it is the case.

First, using a relatively understudied survey of professional forecasters and a fixed-event fore-

casting framework (Nordhaus, 1987; Patton and Timmermann, 2012, 2011), we document that

end-of-year inflation forecasts are lumpy : Forecasts are characterized by periods of inaction fol-

lowed by significant revisions. Forecast lumpiness is present despite relevant information becoming

available during the forecasting period, which should, in principle, change agents’ beliefs. Thus,

forecasts are a rather imperfect measure of agents’ information sets. This evidence casts doubts

on how forecasts proxy for individual beliefs and has important implications for monetary and

other policy tools that rely on these forecasts.

Second, we build a forecasting model with three features to rationalize the evidence. First,

beliefs are formed using past information and noisy signals using Bayes’ Law. Second, forecasters

prefer forecast stability, which we operationalize through fixed revision costs. Third, forecasters

engage in strategic behavior in that the distance to the consensus (the average) forecast matters

for their payoffs. The model allows us to back out the beliefs (what agents have in their minds)

and separate them from forecasts (what they would report). We estimate the model parameters

to match cross-sectional statistics from the survey data. The model delivers lumpy forecasts

consistent with the survey evidence.

Third, we use the calibrated model to shed light on the relevance of lumpy forecasts in different

dimensions: (i) we assess the role of forecaster ex-ante heterogeneity in fixed costs and strategic

concerns, (ii) we rationalize forecast efficiency tests without introducing behavioral biases, and

(iii) we generate the observed response to increases in inflation volatility.

Next, we explain in more detail the empirical and theoretical contributions.

Facts on lumpy forecasts The first part of the paper documents new facts on lumpy forecast

revisions. Using the Economic Forecasts ECFC survey conducted by Bloomberg for the US for

2010-2020, we document the evolution of monthly inflation forecasts about end-of-year inflation.

1For instance, sticky information model (Mankiw and Reis, 2002), rational inattention (Sims, 2003) and (Mack-
owiak and Wiederholt, 2009), higher-order uncertainty (Morris and Shin, 2002) and (Woodford, 2003), level-k
thinking (Garćıa-Schmidt and Woodford, 2019), over- and under-reaction to private information (Bordalo, Gen-
naioli, Ma and Shleifer, 2018), to name a few.
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We show that the frequency of revisions, the variance of revisions, and forecast errors fall as the

date the forecasted variable is released approaches. Since we focus on predictions for the same

variable (annual inflation) at different horizons, these patterns are puzzling as they are precisely at

shorter horizons when the most significant amount of relevant information is available. We should,

in principle, expect more revisions. We also study agents’ learning rates, adjustment hazards, and

other revision patterns along the forecasting horizon, which we label the “term structure” of

forecast revisions and errors.

Decreasing hazard rate is a common feature of Bayesian learning models with fixed adjustment

costs in actions (Baley and Veldkamp, 2025). The quantitative model in section 3 builds on

these elements to generate a decreasing hazard of forecast revisions. Additionally, we exploit the

observed hazard’s slope to calibrate some of the model’s parameters.

Related to the triggers of revisions, we show that the consensus gap—the distance from an

individual forecast to the average forecast (the consensus) triggers revisions. This effect is signifi-

cant both at the extensive and the intensive margin. The probability of revision increases with the

gap, and conditional on a revision, new forecasts are closer to the consensus. The results suggest

that strategic complementarities are at play, in which forecasts depend on the forecasts of others,

reflecting, on the one hand, correlated information and, on the other hand, reputational costs.

Forecasting model with fixed revisions costs In the second part of the paper, we build a

novel forecasting model with fixed revision and strategic concerns. We interpret the fixed revision

cost as a stand for preference for forecast stability. It may reflect the implicit costs of disclosing

private information, which is particularly important for consulting companies and other financial

institutions that provide forecasting services to their clients. Alternatively, it may reflect forecast

congruence; forecasters make decisions based on their forecasts (e.g., investment) and thus do not

change them to harm their valuations.

Revision costs reduce the frequency and size of revisions. Using a simulated method of mo-

ments (SMM), we estimate the model parameters to match average cross-sectional statistics. We

emphasize the importance of matching the shape of the hazard rate. The estimation suggests

the presence of significant revision costs, strategic complementarity, and idiosyncratic noise. The

model delivers horizon-dependent frequency and variance of revisions and forecast errors that

match the empirical term structure of these moments. Alternative calibrations that shut down

either motive cannot jointly explain the term structure of revisions and forecast errors.

Three applications We use the calibrated model to illuminate the relevance of lumpy forecasts

in three ways.

First, we use the model to investigate the strength of strategic concerns and the preference for

forecast stability across the four types of forecasters in our data: (i) banks, (ii) financial institu-

tions, (iii) consulting companies, and (iv) universities and research centers. For this purpose, we
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recalibrate the model to match type-specific moments. The most significant differences in these

moments occur between consulting companies and universities. For instance, relative to universi-

ties, consulting companies adjust 1.4 times more frequently than universities and do revisions that

are 1.3 times more dispersed. Through the model’s lens, these moments imply that universities

face higher revision costs and stronger concerns for forecast stability. Thus, our results suggest

that forecasters’ ex-ante heterogeneity is an important dimension when working with this type

of survey. These results complement studies focusing on model heterogeneity as a driver behind

professional forecasters’ reports being different predictions for the same macroeconomic outcome

(Giacomini, Skreta and Turen, 2020).

Second, we assess forecast efficiency regression tests in the spirit of Bordalo, Gennaioli, Ma

and Shleifer (2020). By regressing forecast errors on forecast revisions, the test investigates the

predictability of forecast errors at the individual level, and thus, it is a test for rational expec-

tations. Following Broer and Kohlhas (2022) and Valchev and Gemmi (2023), we extend the

baseline test to incorporate the consensus forecast as a public information source. Consistent

with the empirical regressions, we find a non-significant bias, a negative and significant coefficient

on forecast revisions (interpreted as an over-reaction to private information), and a positive and

significant coefficient on the distance to the consensus (interpreted as an under-reaction to public

information). Importantly, our results are generated in a model with Bayesian agents without

needing behavioral biases (e.g., extrapolating expectations) as in Bordalo et al. (2020).

Third, we investigate the forecasts’ response to increases in underlying inflation volatility. We

motivate this exercise by the observation that during turbulent years—the years of the Great

Recessions (2008-2009) and the COVID-19 pandemic (2020-2021)—monthly inflation volatility

spiked by 40% relative to normal years (2010-2019). In the same period, forecast revision became

more frequent and dispersed, sharply increasing forecast errors. In the model, we implement this

change by increasing the volatility of the underlying state to the same amount as in the data

and simulating the economy under two scenarios. In the first scenario, we give forecasters the

information that volatility has changed (disclosed volatility shock). In the second scenario, we

do not give this information and thus keep the policy functions as in the benchmark calibration

(undisclosed volatility shock). In both cases, the cross-sectional moments of forecast revisions and

errors increase as in the data. However, the forecasts’ response under the undisclosed volatility

shock better matches the large increase in the empirical moments, especially the forecast errors.

Contributions We contribute to the literature that uses survey data to elicit expectations (see

Bachmann, Topa and van der Klaauw (2022) for a comprehensive review).

On the empirical side, our facts on forecast lumpiness complement evidence by Andrade and

Le Bihan (2013) showing that expectations from professional forecasters are sticky. More recently,

using the well-known Ifo Survey of firms in Germany, Born, Enders, Müller and Niemann (2022)

confirms that firms’ expectations are also sticky as they are adjusted only infrequently.
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On the theoretical side, we contribute to the vast literature on fixed-event forecasting (Nord-

haus, 1987; Patton and Timmermann, 2012, 2011; Capistrán and López-Moctezuma, 2014), by

developing and estimating a model with fixed revision costs and strategic concerns. Regarding

lumpiness, Mankiw and Reis (2002) builds a model where agents update their expectations in-

frequently because they collect and update information relatively infrequently. In contrast, our

model assumes that beliefs are continuously updated with new information, but forecasts are re-

vised infrequently because of adjustment costs. Building on the “sticky information” theory of

Mankiw and Reis (2002), Bec, Boucekkine and Jardet (2023) develop a forecasting model applying

the price-setting model of Alvarez, Lippi and Paciello (2011); Álvarez, Lippi and Paciello (2018)

that features both fixed observation and revision costs.

We also contribute to the literature on heterogeneous agents with aggregate shocks. Solving our

model’s rational expectations equilibrium is infeasible. Because the whole distribution of forecasts

matters in determining current and future consensus, agents must forecast this distribution. In-

stead, we use an equilibrium concept called restricted perceptions equilibrium (RPE) that deviates

from rational expectations. This equilibrium concept has been used in signal extraction models

like ours, in which agents observe a noisy signal about an underlying state variable, by Evans

and Honkapohja (1993), Marcet and Nicolini (2003), and Molavi (2022). footnoteWe borrow the

equilibrium term from Evans and Honkapohja (2001).

2 The Anatomy of Inflation Forecasts

This section begins by describing data sources and the fixed-event forecasting framework. Then,

we document how forecast revisions and errors evolve over the forecasting horizon.

2.1 Inflation

We construct annual inflation in the United States using the Consumer Price Index (CPI). For

any year t, we let cpij be the CPI measured j months before the end of year and we let cpit =
1
12

∑11
j=0 cpij be the average CPI in year t. The annual inflation rate πt in year t is calculated as

(1) πt = log(cpit)− log(cpit−1).

Following Giacomini, Skreta and Turen (2020), we approximate the annual inflation rate using

the sum of year-on-year monthly inflation rates, xm,t, as follows:2

(2) πt ∼=
12∑
m=1

xm,t, with xm,t =
log(cpim,t)− log(cpim−12,t)

12
, ∀m = 1, . . . , 12

2See Appendix A.1 for the derivation and conditions under which this approximation holds.
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Figure I plots the series of annual inflation πt (solid black line) and year-on-year monthly inflation

xm,t (in red dots) for the sample period. Annual inflation varies from −0.3% in 2010 to 4.7% in

2022.

Figure I – US Annual Inflation and Year-On-Year Monthly Inflation
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Notes: CPI inflation rates in the US for 2008-2022. Annual inflation rates πt are
shown in a solid black line; year-on-year monthly inflation rates xm,t is in red dots.

2.2 Survey forecasts

We analyze revisions of US annual (year-on-year) CPI inflation forecasts from the “Economic

Forecasts ECFC” survey of professional forecasters conducted by Bloomberg. This survey is com-

parable to other surveys of professional forecasters regarding the number of participants and their

institutional background. There are four main types of forecasters: banks, financial institutions,

consulting firms, and universities and research centers.3 Besides its similarities, one of the most

appealing features of this particular survey is that the most recent forecasts of any other forecaster,

the date when each prediction was last updated, and the consensus forecast (the mean forecast)

are visible to users of the Bloomberg terminal in real-time.

Sample We examine monthly fixed-event forecasts of annual US inflation. Our sample covers

the years 2008 to 2022. In the main analysis, we focus on low-volatility years 2010-2019. Section

6 analyses the turbulent years of the Great Recession, 2008-2009, and the COVID-19 pandemic,

2020-21, in which the inflation process was more volatile. For each year, we consider survey

participants who forecast inflation for all 12 months before the final figure (end-of-year inflation)

is officially published. We remove forecasters who fail to provide at least one annual inflation

3See Giacomini, Skreta and Turen (2020) for further details related to the comparison between the Bloomberg
survey and other existing surveys.
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revision. This criteria leaves approximately 100 forecasters per year. The panel dataset contains

the history of forecast updates for all forecasters over a12-month horizon each year.4

Incentives Participants in the survey are not anonymous. In fact, through the terminal, it

is possible to trace out the entire time series of predictions for any institution across years. As

discussed by Croushore (1997), we anticipate that forecasters face reputational concerns given

this feature. One typical concern of these financial analysts’ surveys is whether the reported

forecasts drive the posterior trading behavior of forecasters. Using predictions also collected from

Bloomberg surveys, Bahaj, Czech, Ding and Reis (2023) provides empirical evidence that supports

this claim. Building on this evidence, we argue that the ultimate investment decisions of these

analysts are indeed linked with their reported predictions and, therefore, with their incentives to

provide accurate forecasts.

2.3 Fixed-event forecasting

Inflation forecasts Within each year, we denote with f ih the inflation forecast in the percentage

of forecaster i at horizon h (to save on notation, we do not explicitly use the year):

(3) f ih, i = 1...N, h = 12, ...1.

We count the horizon backward so that the index h = 12, ..., 1 indicates that the forecast was

produced h months before the end of each corresponding year (the fixed event).

The fixed event is the end-of-year inflation π. All forecasts f ih refer to the fixed event. Monthly

inflation rates xh are usually published between the month’s second and third week. Figure II

illustrates the fixed-event forecasting framework. Each month, participants can provide a predic-

tion f ih for the end-of-year inflation while entertaining the possibility of keeping the prediction

constant through time.

f ih =
12∑

j=h+1

xj︸ ︷︷ ︸
past realizations

+ P ih︸︷︷︸
projection

+ h = 12, . . . , 1

The forecast consists of two terms: a “sunk” component given by the sum of past realizations∑12
j=h+1 xj and a projection component P ih that reflects the “true” forecasting activity.

4Although we have information on the precise dates when a forecast was revised, we analyze a monthly frequency
as there are only very few weekly updates. In particular, we use the forecast available on the terminal on the last
day of the month to construct our monthly panel data.
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Figure II – Fixed-event forecasting

Notes: The figure illustrates how fixed-event forecasts work. The fixed event is the end-of-year inflation π. All
forecasts f ih refer to the fixed event. Bloomberg allows for multiple revisions within any month, so there is no
restriction on the amount of revisions that a participant can do.

2.4 Forecasts revisions and errors

Forecast revisions At any given year, we define the forecast revision at horizon h, denoted by

∆f ih, as the one-period difference between the forecast in two consecutive horizons:

(4) ∆f ih ≡ f ih − f ih+1.

Since forecasts are in percentages, revisions are measured in percentage points. Table I reports

summary statistics of forecast revisions averaged across years, forecasters, and horizons. The

average revision is close to zero, E[∆f ] = −0.013, which suggests a symmetric environment in

which positive and negative revisions, on average, cancel out. The average revision size (in absolute

value) equals E[abs(∆f)] = 0.110 and E[abs(∆f)|∆f 6= 0] = 0.247 depending if we condition on

all revisions or we include non-zero revisions only. There are approximately five forecast revisions

in a given year, which means forecasts are inactive for 1.6 months on average. The adjustment

frequency is 0.427, and downward revisions (0.231) are slightly more likely than upward revisions

(0.196). The spike rate, which counts the proportion of significant adjustments (above 20%), is

close to 3%.

Forecast errors At any given year, we let eih be the forecast error of individual i at horizon h,

defined as the difference between the actual end-of-year inflation π and the reported forecast f ih.

(5) eih ≡ π − f ih.

Table II provides summary statistics on individual and aggregate forecast errors, averaged

across years and horizons. Individuals make small errors on average E[e] = −0.055 and tend to
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Table I – Summary Statistics of Forecast Revisions

Average revision E[∆f ] −0.013
Size non-zero revisions E[abs(∆f)|∆f 6= 0] 0.247
Variance non-zero revisions Var[∆f |∆f 6= 0] 0.110

Avg. number of revisions count[∆f 6= 0] 5.059
Months of inaction E[τ ] 1.594

Adjustment frequency Pr[∆f 6= 0] 0.427
Upward Pr[∆f > 0] 0.196
Downward Pr[∆f < 0] 0.231

Spike rate Pr[abs(∆f) > 0.2] 0.028

Serial correlation (all ∆f) corr[∆f,∆f−1] −0.043
Serial correlation (non-zero ∆f) corr[∆f,∆f−1] −0.107

Observations N 9,256

Notes: Bloomberg data for 2010-2019. Cross-sectional statistics are averaged across
years and horizons.

overpredict inflation and thus a negative error eih.

Table II – Summary Statistics of Forecast Errors

Average error E[e] −0.055
Mean squared error E[e2] 0.235
Serial correlation corr[e, e−1] 0.877

Observations N 9,256

Notes: Bloomberg data for 2010-2019. Between-year averages
of within-year statistics.

2.5 Term structure of revisions and errors

Next, we examine the “term structure” of forecast revisions and errors—how they evolve along

the forecasting horizon h. Figure IIIa shows that the magnitude of revisions becomes smaller as

the horizon h shrinks. Figure IIIb shows the term structure of forecast errors across horizons. The

average squared forecast errors decrease with the horizon. As expected, as the fixed event (end

of the year) approaches, more information is accumulated, making the prediction more precise.

Despite the monotonic decrease, the forecast error does not converge to zero, even at h = 1. This

is a tell-tale sign that forecast accuracy is not the only driving force behind forecasters’ activities.

Random walk benchmark We compare the Bloomberg forecasts with a “naive” random walk

benchmark to isolate mechanical drivers of the term structure of revisions and errors. In this case,

the projection is given by Ph = hxh+1. The random-walk projection implies forecast revisions
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Figure III – Term Structure of Forecast Revisions and Errors

(a) Size of Non-Zero Revision (b) Mean Squared Error

Notes: Bloomberg data for normal years. Panel (a) plots the absolute value of non-zero revisions E[|∆f |adjust].
Panel (b) plots the mean squared forecast error E[(π − f ih)2].

∆f rwh and forecast errors erwh the evolve with the horizon according to

∆f rwh = (h+ 1)∆xh+1,(6)

erwh =
h∑
j=1

xj − hxh+1.(7)

The random-walk case is shown as a dashed black line. We see that the size of revisions and

forecast errors drop faster under the random walk than the Bloomberg forecasts. This behavior is

a tell-tale that forecasts may reflect motives other than accuracy. Next, we explore two potential

explanations: forecast lumpiness and strategic concerns.

2.6 Forecasts are lumpy

Figure IVa shows the unconditional probability of updating a forecast across the horizon. Forecasts

are updated infrequently. On average, around 38% of forecasters choose to update their predictions

throughout the year. The share of updaters also drops as the date of publication of the final

inflation figure approaches. The increasing inaction is puzzling as relevant information arrives

monthly, which could be used to improve the accuracy of the prediction further.

To see the forecast lumpiness from a different but related angle, we consider the hazard rate

of revisions. The hazard rate is a dynamic cross-sectional moment that helps study learning,

assess learning speeds, and discriminate across models. It equals the probability of a revision

conditional on the forecast’s “age”, that is, conditional on the time elapsed since the last revision:

h(age) = Pr[∆f 6= 0|age]. Figure IVb plots the estimated hazard that controls for observed

heterogeneity, conditioning on forecaster and year-fixed effects. The hazard is downward slopping:

The probability of adjusting a newly set forecast is 0.5; it drops below 0.3 for six-month-old
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Figure IV – Term Structure of Forecast Revisions

(a) Revision Frequency (b) Hazard Rate

Notes: Bloomberg data for normal years. The left panel shows the frequency of non-zero revisions Pr[∆f 6= 0].
The right panel shows the hazard rate of forecast revision h(age).

forecasts and reaches 0.1 for eleven-month-old forecasts.5

2.7 Gap to consensus triggers revisions

Next, we explore the role of the consensus forecast in triggering revisions. At each horizon, the

consensus forecast is the average forecast across participants:

(8) Fh ≡
1

N

N∑
i=1

f ih.

Forecasters observe the consensus in real-time through the terminal. Let cih be the gap between

individual i’s forecast at horizon h+ 1 and the consensus forecast at horizon h:

(9) cih ≡ f ih+1 − Fh.

We examine how the consensus gap cih affects the probability of updating a prediction, that is, the

extensive margin.

Extensive margin We adopt the empirical strategy used in Karadi, Schoenle and Wursten

(2021) in the context of firms’ price-setting decisions to our setup. First, we divided the gap

interval into 15 equally sized bins and computed the frequency of revising a forecast for each

bin. The two extreme bins allow the consensus gap to be lower or greater than 1.3%. Second,

we run a linear probability model for the probability of a forecaster doing either positive or

5Appendix A.4 shows the adjustment hazard conditional on the number of revisions. The age dependence of
forecast updating (i.e., the slope of the hazard rate) changes with the number of revisions.
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Figure V – Consensus Triggers Revisions

(a) Frequency of revision (b) Size of revision

Notes: Bloomberg data.

negative revisions (we run two separate specifications depending on the sign), where we include

bin dummies as independent variables. In this case, the consensus gap bin −0.1% < cih < 0.1%

acts as the reference group. In the specification, we also include forecaster (αi) and year-horizon

(αt,h) fixed effects:

(10) Pr[∆f it,h 6= 0] = β0 +
B∑
j=1

βj1(cit,h(j)) + αi + αt,h + εit,h

Where 1(cih(j)) corresponds to the dummies for each of the B = 15 bins. As noticed, by estimating

the βj’s coefficients, we pin down any possible non-linearities in the relationship between the

extensive margin of revisions and cih. Moreover, we run separate regressions for upward and

downward forecast revisions to account for potential asymmetries in the dependence on the gap.

Figure Va plots the estimated coefficients associated with each dummy, showing the effect of the

consensus gap on the probability of positive and negative revisions, respectively, relative to the

omitted category.

Two interesting features arise. First, as the relative distance between the forecasts and either

gap increases, the probability of a revision increases as well; however, the likelihood of revising

upward or downward depends on the sign of the gap. When gaps are above zero, the probability

of doing a positive revision (f ih > f ih+1) drops while the probability of revising downwards (f ih <

f ih+1) significantly increases. Likewise, when gaps are negative, the probability of revising upward

substantially increases, and the probability of revising downward decreases. Second, the extensive

margin reaction appears asymmetric; the updating probability reacts differently depending on

whether the forecast is below or above the focal point. Overall, the evidence suggests that distance

to the consensus is relevant as it triggers forecast revisions.

Conditioning on agent revisions, we now study the determinants behind the magnitude of
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revisions as a function of the consensus gap. Figure Vb plots the average revision as a function of

the consensus gap cih. As with the extensive margin, we plot residual revisions that control for a

battery of fixed effects. All figures show that positive deviations call for negative revisions and the

contrary for negative deviations. The strong negative correlation implies that larger deviations call

for larger revisions. When either gap is positive (negative), the agent partially revises downwards

(upwards) to close this gap.

2.8 Taking stock

To summarize, forecasts are lumpy: they exhibit significant periods of inaction that are followed

by large adjustments. The frequency and magnitude of revisions fall with the forecasting horizon.

Forecast errors also decrease with the horizon but do not converge to zero. The distance to

consensus forecasts (the average predictions of participants) matters for the extensive margin as

it triggers forecast revisions.

3 A model of lumpy forecasts

This section builds a fixed-event Bayesian forecasting model with frequent information revelation,

strategic concerns, and fixed forecast revision costs.

3.1 Forecasting problem

Many forecasters, indexed by i ∈ N , generate forecasts of end-of-year inflation π. End-of-year

inflation inflation π equals the sum of within-year monthly inflations xh, namely π ≡
∑12

h=1 xh.

Payoffs At each horizon h, forecaster i chooses a forecast f ih based on their information set I ih.
Changing a forecast entails paying a fixed revision cost κ > 0 measured in utility units. For a

given initial forecast f i13, forecasts minimize the yearly sum of monthly quadratic losses:

(11) min
{f ih}

1
h=12

E

[
1∑

h=12

(f ih − π)2︸ ︷︷ ︸
accuracy

+ r (f ih − Fh)
2︸ ︷︷ ︸

strategic

+ κ1{f ih 6=f ih+1}︸ ︷︷ ︸
stability

∣∣∣I i0
]
.

The first term in the payoff function is the distance between the forecast and the actual end-of-

year inflation, reflecting losses from the lack of accuracy. The second term is the distance between

the forecast and the consensus (the average) Fh = N−1
∑N

i=1 f
i
h, multiplied by the parameter r

that measures the strength of strategic concerns. If r > 0, there is strategic complementarity,

as the payoff increases when the forecast is close to the consensus. If r < 0, there is strategic

13



substitutability, as the payoff increases when the forecast is far from the consensus. The third term

is the fixed cost κ > 0 paid for any forecast revision, capturing preference for forecast stability.

Inflation process Forecasters believe monthly inflation follows an autoregressive process:

(12) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x),

where cx is a constant, φx is the persistence parameter, and εxh is an iid normally distributed noise

with volatility σ2
x. The parameters cx, φx and σ2

x are common knowledge.

Public signal At the beginning of each horizon h, previous monthly inflation xh+1 is revealed,

reflecting the official release from the statistical agency. The AR(1) assumption for the inflation

process implies a public signal about the current monthly inflation. Using xh+1, we construct the

following common prediction:

(13) xARh ≡ E[xh|xh+1] = cx + φxxh+1.

The variance of the public signal is σ2
x.

Private signal Following Patton and Timmermann (2010), at the beginning of each horizon,

each forecaster receives an unbiased private signal x̃ih about what inflation in that month will be

(recall that the actual monthly inflation is only released at the end of the month):

(14) x̃ih = xh + ζ ih, ζ ih
iid∼ N (0, σ2

ζ ).

The idiosyncratic signal noise σ2
ζ reflects the heterogeneity in beliefs or models across agents.6

Information dynamics At the end of the period, and after f ih is decided, monthly inflation xh

and the consensus forecast Fh are observed by everyone.7 Therefore, the individual information

set I ih at the time of choosing the forecast is

(15) I ih = x̃ih ∪ Ih = x̃ih ∪ {xh+1, xh+2, . . . , Fh+1, Fh+2, . . .}.

We denote the public information set at horizon h as Ih ≡ {(xj, Fj) : j ≥ h + 1}, which includes

releases of past inflation and past consensus.8

6We do not explicitly include public (correlated) noise in this signal because the AR(1) signal plays this role.
See Valchev and Gemmi (2023) for a model explicitly introducing correlated noise.

7These timing assumptions eliminate a fixed point between individual choices and the consensus, as in a beauty
contest (Morris and Shin, 2002), greatly simplifying the model solution with revision costs.

8Compare here to the lumpy observation model by Bec, Boucekkine and Jardet (2023).
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Figure VI – Timeline of events

Notes: The figure illustrates the timeline of information revelation, belief formation, and forecast revisions for
three contiguous horizons h+ 1, h, h− 1.

3.2 Belief formation

Proposition 1 writes the sequential problem in (11) as a function of inflation and consensus beliefs,

using the law of iterated expectations and conditioning payoffs on horizon-specific information sets.

All proofs are in the Appendix.

Proposition 1. Let π̂ih ≡ E[π|I ih] and Σπ
h ≡ E[(π̂ih−π)2|I ih] be the conditional mean and variance

of end-of-year inflation beliefs. Let F̂h ≡ E[Fh|I ih] and ΣF ≡ E[(F̂h − Fh)2|I ih] be the conditional

mean and variance of consensus beliefs. Then, for given initial forecasts f i13, forecasters solve the

following problem:

(16) min
{f ih}

1
h=12

1∑
h=12

E
[
Σh + E[(f ih − π̂ih)2|I ih] + rE[(f ih − F̂h)2|I ih] + κ1{f ih 6=f ih+1}

∣∣∣I i0] .
where Σh ≡ Σπ

h + rΣF is a weighted sum of inflation and consensus uncertainty .

Next, we characterize individual beliefs about end-of-year inflation π̂ih and the consensus F̂h.

To guide the characterization, Figure VI shows how information becomes available and how these

two beliefs are formed.
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Consensus Beliefs The consensus is the average forecast Fh = N−1
∑N

i=1 f
i
h. However, since

the consensus is observed with delay (e.g., at horizon h, Fh+1 is observed), forecasters must form

expectations about the contemporaneous consensus when choosing their forecasts. Forecasters

entertain random walk beliefs:

(17) Fh = Fh+1 + εFh , εFh ∼ N (0, σ2
F ),

where volatility σ2
F is common knowledge. Given this assumption, the common horizon-specific

consensus beliefs are Fh|I ih ∼ N (Fh+1, σ
2
F ).

Monthly Inflation Beliefs Forecasters combine the public signal xARh in (13) and their private

signal x̃ih in (14) to construct an individual monthly inflation belief x̂ih:

(18) x̂ih ≡ E[xh|I ih] =
σ−2
x xARh + σ−2

ζ x̃ih

σ−2
x + σ−2

ζ

= (1− α)xARh + αx̃ih.

where we define the Bayesian weight on the private signal as α ≡ σ−2
ζ /(σ−2

x + σ−2
ζ ). The weight α

increases in the precision of the private signal σ−2
ζ and decreases in the precision of inflation σ−2

x .

End-of-Year Inflation Beliefs At each horizon, forecasters form end-of-year inflation beliefs

π|I ih ∼ N (π̂ih,Σ
π
h) by projecting their monthly beliefs using the AR(1) structure. These beliefs are

normal. Forecasters combine past “official” releases {xj}j>h with their individual monthly beliefs

x̂ih to obtain the conditional mean π̂ih:

(19) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
︸ ︷︷ ︸

AR(1) projection using h info

+
12∑

j=h+1

xj︸ ︷︷ ︸
realized, j>h

, h = 12, . . . , 1.

The first part of the expression (19) uses the AR(1) statistical model to project the monthly belief

x̂ih into the future. The second part equals the sum of the true monthly inflation values released to

date. The conditional variance Σπ
h ≡ E[(π − π̂ih)2] is a function of the AR(1) parameters {φx, σ2

x}
and signal noise σ2

ζ ; it decreases with the horizon and is independent of agents’ identity:9

(20)

Σπ
h = [(1− α)2σ2

x + α2σ2
ζ ]

(
1− φhx
1− φx

)2

+
σ2
x

(1− φx)2

[
(h− 1)− 2φx(1− φh−1

x )

1− φx
+
φ2
x(1− φ

2(h−1)
x )

1− φ2
x

]
.

The first term of Σπ
h corresponds to the uncertainty driven by the AR(1) projection and the

noisy signal (weighted by α) for the current release of monthly inflation. Likewise, the second

9Appendix C.1 presents a detailed derivation of zih and Σzh.
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part of (20) reflects the accumulated uncertainty caused by the remaining (h− 1) unforecastable

shocks that will hit the process until the release date.

Aggregate beliefs Given the public releases of monthly past values, the AR(1) assumption

implies a public signal zh about yearly inflation, given by:

(21) zh = h

(
cx

1− φx

)
+
φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj, h = 12, . . . , 1.

It is useful to establish a relationship between individual beliefs π̂ih under the information set I ih
in (15) and public beliefs zh under the information set Ih in (21). The following relationship likes

individual and common beliefs:

(22) π̂ih = zh + νih, with νih ∼ N

(
0,

[
1− φhx
1− φx

]2

α2(σ2
x + σ2

ζ )

)
.

where α is the updating weight defined in (18).

Discussion of assumptions Although participants interpret public information differently, the

prediction that builds on an AR(1) process is a tractable and accurate proxy for a fixed-event

forecast. We provide further discussion about the features and accuracy of the proxy in Section

G. See Giacomini, Skreta and Turen (2020). In our setup, given timing assumptions and the fact

that past monthly inflation is known, forecasters do not learn from the consensus.

3.3 Optimal forecast revision policy

Proposition 2 writes the problem in recursive form as a stopping-time problem using the principle

of optimality. The individual state includes the past forecast, the mean and variance of inflation

beliefs, and the mean and variance of consensus beliefs. It is equivalent to working with posterior

beliefs instead of the signals. The aggregate state includes past realizations of monthly inflation

and consensus. Because total uncertainty evolves deterministically and is common across agents,

we include it in the aggregate state. We thus index value function with the horizon h to account

for the aggregate state.

Proposition 2. The value of a forecaster i at horizon h with state (π̂ih, F̂h, f
i
h+1) equals

(23) Vh(π̂ih, F̂h, f ih+1) = min{ VIh(π̂ih, F̂h, f
i
h+1)︸ ︷︷ ︸

inaction

, VAh (π̂ih, F̂h)︸ ︷︷ ︸
action

}
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where the value of inaction VIh and the value of action VAh are, respectively,

VIh(π̂ih, F̂h, f
i
h+1) = Σh + (f ih+1 − π̂ih)2 + r(f ih+1 − F̂h)

2 + E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|I ih]

VAh (π̂ih, F̂h) = κ + Σh + min
f ih

{
(f ih − π̂ih)2 + r(f ih − F̂h)2 + E[Vh−1(π̂ih−1, F̂h−1, f

i
h)|I ih]

}
subject to the evolution of inflation beliefs in (19) and (20), and consensus beliefs in (17).

Optimal policy The solution entails an horizon-specific inaction region

(24) Rh ≡ {(π̂ih, F̂h, f ih+1) : VIh(π̂ih, F̂h, f
i
h+1) ≥ VAh (π̂ih, F̂h)}

and a reset forecast f ih
∗
(π̂ih, F̂h), such that, for given the beliefs, the forecast remains unchanged

f ih = f ih+1, i.e., a zero revision ∆fh = f ih− f ih+1, whenever f ih+1 ∈ Rh. The forecast changes to f ih
∗
,

i.e., a revision of size ∆fh = f ih
∗ − f ih+1, whenever f ih+1 /∈ Rh.

For a given past forecast f ih+1, we can express the inaction region as a function of beliefs

Rh(π̂
i
h, F̂h|f ih+1). It includes the set of beliefs such that it is optimal not to reset the forecast.

3.4 Equilibrium

Definition 1. A restricted perceptions equilibrium (RPE) consists of:

(i) perceived consensus process {F̂h} given by a function g parametrized by (δ, σF )

(25) F̂h = g(F̂h+1, δ) + εF̂h , εF̂h ∼ N (0, σ2
F )

(ii) inflation beliefs {π̂ih} and forecasts {f ih} for all agents i and horizons h

such that:

1. given inflation beliefs {π̂ih} in (19) and the perceived consensus process {F̂h} in (25), forecasts

{f ih} are optimal and solve the stopping-time problem (23) with optimal values Vh(π̂ih, F̂h, f ih+1);

2. parameters (δ, σF ) are such that the forecast errors arising from predicting the actual con-

sensus using the perceived law of motion, i.e., εFh ≡ Fh − g(Fh+1, δ), satisfy: Cov[εFh , ε
F
j ] = 0

and Var[εFh ] = σ2
F .

Note that under the RPE, the actual consensus process given by the aggregation of individual

forecasts, Fh = N−1
∑N

i=1 f
i
h, differs from the prediction. However, in this equilibrium concept,

agents are assumed to use the δ, σF that best predicts future prices given (25). For this reason,

Marcet and Nicolini (2003) described this as a learning model that is “internally consistent”.
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Model solution We compute the decision rules of forecasters using backward induction. Ap-

pendix D.2 derives expressions to compute the distributions of expected beliefs needed to compute

the value functions.

3.5 Calibration

Externally set parameters We feed the AR(1) parameters estimated directly from the data.

By relying on the available information to forecasters in real time, we estimate the AR(1) process

parameters using a rolling window over the sample years. For the year-on-year monthly inflation

process xt, we estimate (cx, φx, σx) = (0.013, 0.932, 0.036). More details are in Appendix B.

Internally calibrated parameters Using the simulated method of moments, we estimate val-

ues for the six remaining parameters by matching the cross-sectional moments in normal years.

We calibrate three parameters: the strength of strategic concerns r; the fixed revision cost κ, and

the private noise σζ . We target three moments: the frequency of revisions Pr[∆f 6= 0] = 0.43,

the average absolute value of revisions E[abs(∆f)||adjust] = 0.25 and the slope of the hazard rate

between horizons 12 and 6 equal to −0.04.

The value of the hazard’s slope informs the value of idiosyncratic signal noise. Learning is slow

when signals are very noisy, and the hazard rate declines slowly. In contrast, learning is faster

when signals are less noisy, and the hazard rate declines faster.10

Internal consistency of consensus beliefs Finally, recall that agents in our model assume a

random walk process for the consensus in (17). We thus have an additional parameter to set, the

perceived volatility of the consensus process σF . Assuming rational expectations, the consensus’s

perceived and actual probability distributions should coincide. This assumption imposes structure

and disciplines the value of σF . See Appendix D.4.

Table III shows the baseline parameterization, the moments in the data, and the model fit.

The calibrated parameters are as follows. First, the fixed adjustment cost of κ = 0.05 implies a

preference for forecast stability. Second, the positive value for r = 0.41 signals strategic comple-

mentarities. Lastly, the private noise σζ = 0.04 is as significant as the volatility of the inflation

process, σx = 0.036. Given their relative precision, the weight on private signals equals α = 0.56.

Finally, setting σF = 0.11 delivers consistent consensus beliefs.11

10Alvarez, Lippi and Paciello (2011), Baley and Blanco (2019) and Argente and Yeh (2022) apply the idea that
signal noise modulates the slope of the hazard rate to calibrate signal noise in price-setting models.

11See Appendix D.4 for more details on the consistency of consensus beliefs.
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Table III – Internally calibrated parameters

Parameter Value Moment Data Model
κ revision cost 0.05 Pr[∆f 6= 0] 0.43 0.42
r strategic concerns 0.41 E[abs(∆f)|adjust] 0.25 0.22
σζ signal noise 0.04 hazard slope −0.04 −0.04

3.6 Suggestive evidence

Participants of the Bloomberg survey can log into the system and change their predictions as

many times as they want during any month. To keep participation active, Bloomberg sets a

regular monthly reminder asking forecasters for their latest predictions.

4 The model in action

This section explores various dimensions of the forecasting model.

4.1 Illustration for one forecaster

To explain the model’s workings, Figure VII illustrates how one agent’s beliefs, forecasts, revisions,

and uncertainty evolve during one year.

The fist panel shows the agent’s inflation beliefs π̂ih (green line) and consensus beliefs F̂ i
h (blue

line). Both beliefs change from period to period. However, the agent’s forecast f ih (gray line)

exhibits lumpy behavior, remaining fixed for some periods, followed by considerable revisions that

bring the forecasts closer to a linear combination of the two beliefs. We see that, towards the

year’s end, inflation beliefs are very close to the actual inflation realization, but the forecast is

not. Revision costs do not compensate for higher accuracy in forecasting.

The third panel shows the extensive margin of adjustment (gray areas), marking the periods of

inaction between horizons 9 and 7 and 3 and 1. It also shows the intensive margin of adjustment

given by the revision size ∆f (dark line). Lastly, the fourth panel shows belief uncertainty (dashed

pink line), which equals the weighted sum of conditional variances of inflation beliefs Σπ
h and

consensus beliefs σ2
F and is continuously decreasing; it also shows the mean squared forecast error

(solid pink line), which equals the average error computed using forecasts and is non-monotonic.

Moreover, uncertainty falls to zero while the mean-squared error remains positive at the end of

the year.

4.2 Forecasts vs. beliefs

The left panel plots the realized value for the end-of-year inflation π = 1.85 (solid red line) and

the cumulative sum of monthly inflation realizations
∑1

h=12 xh (dashed-dotted red line), which by

definition equals π at h = 1. We also show the average belief Π̂h ≡ N−1
∑N

i=1 π̂
i
h (black solid
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Figure VII – Simulation for one forecaster
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Notes: Illustration of one forecaster for one year.

line) and the average or census forecast Fh ≡ N−1
∑N

i=1 f̂
i
h (blue dashed line). We observe that

these two aggregate series get closer to π as the year goes by, and at the end of the year, average

forecasts do not fully close the gap with the target variable. We also see that average beliefs are

more volatile than the average forecast.

To highlight the difference between forecasts and beliefs, the right panel in Figure VIII shows

the distribution of non-zero forecast revisions ∆f ih in the data and the model, as well as inflation

belief revisions ∆π̂ih recovered from the model, across all years and horizons. Both distributions

are centered around zero. The belief distribution is unimodal, while the forecast distribution is

bimodal in both data and model.

4.3 Term structure of cross-sectional statistics

We assess the model’s capacity to generate the term structure of cross-sectional statistics across

horizons. Figure D.8 shows the term structure of frequency of revisions, variance of revisions, and

forecast errors. While we only targeted average values, the model does a great job tracking their

patterns along the forecasting period. Both the frequency of revisions (extensive margin, figure

IXa) and the size of revisions conditioning on adjustment (intensive margin, figure D.8a). The

slope of the hazard is matched throughout all forecast ages.

Volatility vs. option effects The model predicts these two margins would decrease over

the horizon in both cases. Hence, although the inaction region is horizon-dependent, at longer

horizons, the volatility effect dominates (when there is higher uncertainty about π) relative to the

option value effect. At shorter horizons, the option value effects dominate, leading to less updating
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Figure VIII – Time-series and cross-sectional distributions
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frequency. Moreover, it is precisely at shorter horizons when the contribution of each extra piece

of information (monthly release) would only marginally affect the inflation belief, making it less

likely to hit out of the bands, leading to fewer revisions as predicted by the data. The contribution

of each extra bit of information only marginally affects the inflation beliefs, which is also reflected

in the decreasing magnitude of forecast revisions. These implications, taken together, imply a

decreasing hazard rate. The “volatility” effect dominates the ”option value” effect.

Hazard rate The downward-sloping hazard observed in the data is a tell-tale sign of learning

with a state-dependent model of forecast revisions. To see this, consider two alternative models.

First, consider a model in which forecasters do not face revision costs but instead are “inattentive”

and revise forecasts with a constant probability (or degree of attention) at random dates as in

Andrade and Le Bihan (2013). In that model, the hazard rate is flat as the likelihood of revision is

the same across all forecast ages (akin to the Calvo (1983) price-setting model). Second, consider

a model with revision costs but without learning (uncertainty is constant). In that model, the

hazard rate is increasing over the forecast’s age, as a recently set forecast is at the center of the

inaction region, and it takes time for each to reach either border of action. The combination of

learning and revision costs delivers a decreasing hazard.

4.4 Untargeted moments

We present additional suggestive evidence of lumpy forecast revisions.

Consensus response We examine how the consensus gap cih shapes the probability of updating

a prediction. Figure X plots the average frequency of upward revisions (left column) and the
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Figure IX – Cross-sectional statistics across horizons
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average frequency of downward revisions (right column). The patterns are qualitatively consistent

with the data, although the model is much more responsive.12

Mean squared forecast errors Mean squared forecast errors E[(π− f ih)2] (figure XI) decrease

with the horizon; this is unsurprising as more information accumulates as the end-of-year event

approaches.

Table IV – Autocorrelations: Model vs. Data

Data Model

Forecast errors corr[e, e−1] 0.877 0.626
All revisions corr[∆f,∆f−1] −0.043 -0.161
Non-zero revisions corr[∆f,∆f−1|∆f 6= 0] −0.107 -0.296

Notes: Data for normal years. Model with benchmark calibration.

Autocorrelations Second, we present autocorrelations of forecast errors and revisions. Table

IV presents autocorrelations for forecast errors and revisions (for all and non-zero revisions). The

model values are very close to those in the data.

12Introducing free adjustment opportunities, in the spirit of the CalvoPlus model of price-setting, which combines
state and time-dependent adjustments, may bring the model closer to data.
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Figure X – Consensus and Probability of Revision: Data vs. Model

(a) Prob. of Upward Adjustment (b) Prob. of Downward Adjustment

Notes: Data for normal years. The model with benchmark calibration.

Figure XI – Mean squared error
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4.5 Forecaster heterogeneity

In our first exercise, we explore heterogeneity across forecaster types. The survey contains four

types of forecasters: (i) banks, (ii) financial and investment institutions, (iii) economic consulting

companies, and (iv) universities and research centers. Table V shows substantial heterogeneity in

average cross-sectional moments in normal years. The most significant differences occur between

consulting firms and universities. For instance, relative to universities, consulting firms adjust

30% more than universities.

24



Table V – Cross-sectional moments by forecaster type

All Financial Inst. Banks Consulting Universities
Moment Data Model Data Model Data Model Data Model Data Model

Pr[∆f 6= 0] 0.43 0.43 0.45 0.46 0.38 0.37 0.47 0.45 0.34 0.34
Var[∆f ] 0.05 0.05 0.06 0.06 0.06 0.07 0.08 0.07 0.06 0.07

E[(π − f)2] 0.23 0.21 0.28 0.21 0.22 0.23 0.25 0.23 0.24 0.24
Observations 12,355 5,366 2,567 2,982 1,440

Notes: Bloomberg data. Data for normal years 2010-2019.

Calibration by forecaster type The differences in the cross-sectional moments of forecast

revisions and forecast errors reflect potential differences in strategic concerns (r) and preference

for forecast stability (κ). Given the observed heterogeneity, we recalibrate four versions of the

model, each matching type-specific moments. We consider heterogeneity in two parameters: fixed

costs κG and strategic concerns rG. Results are reported in Table VI. Through the lens of the

model, these moments imply that universities face higher revision costs and stronger concerns for

forecast stability. Thus, our results suggest that forecast heterogeneity is an important dimension

to consider when working with this type of survey.

Table VI – Calibration by forecaster type

Parameter All Financial Inst. Banks Consulting Universities

κ 0.05 0.06 0.07 0.05 0.08
r 0.41 0.70 0.45 0.66 0.14
σζ 0.04 0.04 0.03 0.03 0.05
σF 0.11 0.14 0.13 0.11 0.15

Notes: Calibration that targets the group-specific moments reported in Table V. The last line reports the
RPE-implied consensus volatility σF .

Next, we show the parameters relative to the values obtained for financial institutions.

Table VII – Calibration by forecaster type, relative to financial institutions

Parameter Financial Inst. Banks Consulting Universities

κ 1.00 1.17 0.83 1.33
r 1.00 0.64 0.94 0.20
σζ 1.00 0.75 0.75 1.25

Notes: Parameters relative to financial institutions

5 Forecast rationality tests

In this section, we show how lumpy forecasts affect forecast efficiency tests.
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5.1 Rationality tests using forecast errors

The first type of forecast rationality analyzes forecast error predictability at the individual level.

The tests build on the work by Bordalo, Gennaioli, Ma and Shleifer (2020), extended by Broer

and Kohlhas (2022) and Valchev and Gemmi (2023) to incorporate the consensus as a source of

public information.

Test specification and interpretation Let πt−fht−h be the individual forecast error at horizon

h about annual inflation (known at time t), f it−h−f it−h+1 be the forecast revision between consecu-

tive months for the same variable, and Ft,h−f it,h+1 be the surprise contained in public information.

Relying on the panel structure, we consider the following OLS regression with forecaster (αi) and

year (αt) fixed effects:

(26) πt − f it,h = γh0 + γh1 (f it,h − f it,h+1) + γh2 (Ft,h − f it,h+1) + αi + αt + εit,h.

Relative to the literature, which runs this regression at fixed horizon h, we obtain different coeffi-

cients for each horizon.

The coefficients are interpreted in the following way. If γh1 > 0, a positive revision predicts a

higher realization of inflation relative to the forecast, meaning that the average forecaster under-

reacts to their information. In contrast, if γh1 < 0 indicates that the average forecasters overreact

to his information. Analogously, the sign of γh2 reflects how information in public surprises affects

forecast errors.

We run the regression in the survey data (red line) and model-generated data under the baseline

calibration (blue line). Results are plotted in Figure XII. Consistent with the empirical regressions,

forecasts in our model feature (i) the zero bias (left panel), (ii) over-reaction to private information

(middle panel), and (iii) under-reaction to the consensus (right panel). These patterns hold across

all horizons. Standard errors are two-way clustered at the forecaster and year level.

Next, we repeat the regressions using inflation beliefs π̂i,t recovered from the model (green line).

The results can be interpreted as those that would arise in a frictionless environment without a

preference for stability κ = 0 and without strategic concerns r = 0. In this case, the consensus

becomes the average inflation belief, denoted by Π̂t,h ≡ N−1
∑N

i=1 π̂i,t. The specification is as

follows:

πt − π̂it,h︸ ︷︷ ︸
error

= γh0︸︷︷︸
bias

+ γh1 (π̂it,h − π̂it,h+1)︸ ︷︷ ︸
revision

+ γh2 (Π̂t,h − π̂it,h+1)︸ ︷︷ ︸
public info

+ εih.(27)

Proposition (3) shows that model-implied beliefs are rational (γh0 = γh1 = 0), even under

information frictions.
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Figure XII – Beliefs rationality tests

(a) No bias (b) Overreaction to private info (c) Underreaction to public info

Notes: Data for normal years. Model under benchmark calibration.

Proposition 3. Assume there is no preference for forecast stability (κ = 0) and no strategic

concerns (r = 0). Then:

(i) individual forecasts are equal to individual beliefs: f ih = π̂ih

(ii) efficiency tests confirm rationality (forecast errors are unpredictable): γh0 = γh1 = γh2 = 0.

5.2 Rationality tests using multi-horizons predictions

The previous tests build on the potential predictability of forecast errors at different horizons.

While informative, the muti-horizon framework we exploit in this paper allows us to test rationality

in a much richer context where we can rely on all the available information across the term structure

of the forecasts. We are interested in extending the previous results to stress whether the evidence

deviates from the presence of joint rationality throughout all horizons h. Thus, we rely on tests

for forecast rationality that exploit the information across multi-horizons.

We follow Patton and Timmermann (2012)’s rationality test, which proposed and estimated

a battery of different tests aiming to uncover the internal consistency of the set of forecasts.

Specifically, the paper introduces ten different implications of rational behavior that should be

fulfilled under the assumption that the forecaster’s loss function is quadratic and the predicted

process is covariance stationary. In each case, an empirical test for these implications can be

derived. Seven conditions imply methods for handling multivariate inequality tests. On the

other hand, the three are traditional coefficient tests after the MZ regressions. Notably, for all

cases, Patton and Timmermann (2012) proposed tests constructed under the null hypothesis of

rationality. Hence, situations when we fail to reject the null support the presence of internal

consistency of predictions in line with rational behavior. Given all the tests, the authors rely on

Bonferroni bounds to obtain a joint test.

Table VIII shows the p-values associated with each rationality test. The last three rows of the

Table report the Bonferroni-based combination tests. We conduct the tests for the Bloomberg
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data (Column I), the simulated forecasts from the calibrated model (Column II), and simulated

beliefs from the calibrated model. According to the results for both the data and the baseline

model, we rejected the presence of rationality across the multi-horizons. Moreover, only for the

“Beliefs” scenario are the results consistent with the internal consistency of forecasters.

Table VIII – Multi-horizon fixed-event rationality tests

Test (I) Data (II) Forecasts (III) Beliefs

Inequality-based
1. Increasing MSE 0.879 0.966 0.985
2. Increasing MSRr 0.851 0.931 0.972
3. Decreasing MSFr 0.038 0.94 0.944
4. Decreasing covariance 0.071 0.937 0.966
5. Decreasing covariance with proxyr 0.067 0.907 0.959
6. Variance bound 0.16 0.774 0.771
7. Variance bound with proxyr 0.092 0.711 0.825

MZ Regresion-based
8. Univar opt revision NaN 1.000 1.000
9. Univar opt revision with proxy 1.000 1.000 1.000
10. Univar MZ short h 0.000 0.000 0.194

Joint tests
Bonferroni I (1+4 +6 +8 +10) 0.000 0.000 0.968
Bonferroni II (2+ 3+ 5+ 7+9) 0.192 1.000 1.000
Bonferroni All (1-10) 0.000 0.000 1.000

Notes: r = test does not rely on target variable.

6 Response to inflation volatility

Vavra, Lippi

In our third and last exercise, we investigate the forecasts’ response to changes in underlying

inflation volatility. In four years in our sample, economic conditions were far from ordinary. In

particular, at the two ends of the sample, we have the Great Recession between 2008 and 2009 and

the COVID-19 pandemic between 2020 and 2021. The volatility of monthly inflation differed over

these two episodes: in turbulent years, inflation volatility is 10% higher than in normal years. We

split the sample between normal years, 2010-2019, and turbulent years, 2008-2009 and 2020-21.

Figure XIII below shows the term structure of (a) frequency of revisions, (b) variance of

revisions, and (c) forecast errors squared. In turbulent years, forecast revisions are more frequent

and dispersed, and forecast errors sharply increase.

We explore the model’s ability to deliver these changes in cross-sectional moments. We imple-

ment increasing monthly inflation volatility as in the data, 1.1×σ2
x. We also consider two different

unconditional means. Low cx for 2008-2009 and high cx for 2020-2021.
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Figure XIII – Term Structure of Forecast Revisions: Normal vs. Turbulent Tears
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Notes: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21.

We give forecasters the information that volatility and mean have changed. Figure XIV shows

the results. Relative to the baseline calibration (solid line that matches moments in normal years),

higher volatility increases all moments, regardless of the change in the mean.

Figure XIV – Response to changes in inflation volatility
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7 Conclusion

TBC. In parallel work, we study how lumpy forecasts affect the transmission of monetary policy

shocks to expectations. Implications for survey design.
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A Data

A.1 Inflation definitions

We show how to approximate yearly inflation with year-on-year monthly inflation. Let cpit =
1
12

∑12
h=1 cpit,h be the average cpi in year t. Then, the annual inflation equals:

πt = log(cpit)− log(cpit−1)(A.1)

= log

(
1

12

12∑
h=1

cpit,h

)
− log

(
1

12

12∑
h=1

cpit−1,h

)

≈Jensen 1

12

12∑
h=1

log (cpit,h)−
1

12

12∑
h=1

log (cpit−1,h)

=
1

12

12∑
h=1

(log (cpit,h)− log (cpit−1,h))

=
1

12

12∑
h=1

(log (cpih)− log (cpih+12))

=
12∑
h=1

1

12
(log (cpih)− log (cpih+12))︸ ︷︷ ︸

xh

=
12∑
h=1

xh

When is year-on-year monthly inflation a good approximation of annual inflation? To answer,
consider a second-order Taylor approximation of log(p) around E[p], which yields:

log(p) ≈ log(E[p]) +
1

p̄
(p− E[p]) − 1

2E[p]2
(p− E[p])2(A.2)

Take expectations on both sides (note that E[p] is a constant):

E[log(p)] ≈ log(E[p]) − Var[p]
2E[p]2

= log(E[p]) − CV2[p]

2
(A.3)

Applying the decomposition to annual inflation, letting p, p′ be the CPI in consecutive years, we
obtain:

(A.4) π = log(E[p])− log(E[p′]) = E[log(p)− log(p′)]︸ ︷︷ ︸
average year-on-year inflation E[x]

+
CV2[p]− CV2[p′]

2︸ ︷︷ ︸
differences in within-year dispersion

Therefore, for similar within-year price dispersion (CV2[p] ≈ CV2[p′]), then π ≈ E[x].
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A.2 Inflation summary statistics

Table A.1 shows the mean and the variance of yearly inflation for all years in our sample, separated
between normal (2010-2019), Turbulent (2008-2009 & 2020-2021) and Pandemic years (2020-2021).
years. We focus our analysis on normal and pandemic years, mostly since the observed inflation
dynamics were very different between the Great Recession and the COVID-19 pandemic. While
in the former episode, the US experienced a deflation (in fact, inflation was -0.3% in 2009), in the
latter, during the COVID-19 pandemic, inflation spiked up to 4.7% during 2021. Given this fact
and since these two episodes are also wide apart, we focus only on these two groups of years.

Table A.1 – Summary Statistics of Inflation

All Normal Turbulent Pandemic

Average E[π] 1.896 1.795 2.175 2.95
Volatility Var[π] 1.621 0.622 4.267 2.478

Years 14 10 4 2

Notes: CPI Index.
Normal years = 2010-2019. Turbulent years = 2008-09 and 2020-21.
Pandemic years = 2020-2021.

A.3 Cross-sectional statistics by year

Figure A.1 – Adjustment Frequency and Size by Horizon and Year
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(c) Forecast errors

0
1

.5
3

4
.5

6
M

e
a

n
 f

o
re

c
a

s
t 

e
rr

o
rs

 2
0

2
1

0
.5

1
1

.5
2

2
.5

M
e

a
n

 f
o

re
c
a

s
t 

e
rr

o
rs

036912
Forecast horizon

Forecast errors by year

Notes: Bloomberg data.
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A.4 Hazard rates by number of revisions

We compute the hazard rates based on the number of revisions the forecasters have done in the
past. In this sense, we explore whether the age-dependence of updating probabilities changes as a
function of the revision being the first, second, third, and so forth. This is shown in Figure A.2.

Figure A.2 – Hazard Rates by revisions

(a) Hazard Rate: 1st, 2nd and 3rd Rev.
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(b) Hazard Rate: 4th, 5th and 6th Rev.
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Notes: Bloomberg data.

Independently of the revision, the decaying pattern of the hazard rates remains across specifi-
cations. While the chance of an immediate revision right at age one is roughly the same across the
number of revisions (between 45% and 50%), the likelihood drops as more revisions accumulate
throughout the year. Although the relations are not monotonic, in most cases, the age proba-
bilities are not statistically different across groups. We interpret the decaying probability as a
function of revisions as an implication of the fixed-event scheme. In contrast, with age growths,
we get closer to the final release date, and the fact that, as time passes, we accumulate more
relevant information to predict annual inflation.

A.5 Cross-sectional statistics at long horizons

Notice that from 18 to 13 months ahead, there is information about future end-of-year inflation,
but only for horizons 12 to 1 months ahead, inflation is realized.

A.6 Cross-sectional statistics by forecaster type

Figure A.4 shows the term structure of adjustment frequency, size, and hazard rate for each of
the four groups. These term structures are broadly consistent with the general patterns observed
for the average moments, with universities being the group that adjusts less often but for more
significant amounts across horizons while consulting firms do the opposite. The hazard rates
for forecasters belonging to either “Financial & Investment” or “Economic Consulting” are the
steepest relative to the other two groups. Hence, although they decrease, the updating probability
is less sensible to the age of both Banks and Universities.
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(a) Frequency of revisions (b) Size of non-zero revisions

(c) Variance of revisions (d) Mean squared error

Figure A.4 – Term Structure of Revisions and Errors: By Forecaster Type
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A.7 Cross-sectional statistics in turbulent times
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Figure A.5 – Forecast Errors by Groups
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Table A.2 – Summary Statistics of Forecast Revisions

All Turbulent Normal

Average E(∆f) −0.002 0.028 −0.013
Size E(abs(∆f)|∆f 6= 0) 0.307 0.453 0.247
Dispersion Var(∆f) 0.104 0.227 0.055

Number of revisions count(∆f 6= 0) 5.204 5.602 5.059
Duration (months) E(τ) 1.497 1.231 1.594

Inaction rate Pr(∆f = 0) 0.523 0.392 0.569
Frequency Pr(∆f 6= 0) 0.444 0.492 0.427

Upward Pr(∆f) > 0 0.228 0.318 0.196
Downward Pr(∆f) < 0 0.216 0.173 0.231

Spike rate abs(∆f/f) > 0.2 0.081 0.231 0.028
Positive spikes ∆f/f > 0.2 0.076 0.227 0.023
Negative spikes ∆f/f < −0.2 0.005 0.004 0.005

Serial correlation (all) corr(∆f,∆f−1) −0.035 −0.035 −0.043
Serial correlation (non-zero) corr(∆f,∆f−1) −0.085 −0.078 −0.107

Annual Inflation π 1.896 2.175 1.795

Observations N 12,619 3,363 9,256

Sources: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21. Numbers

are averages across sample years and 12 horizons.
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Table A.3 – Summary Statistics of Forecast Errors

All Turbulent Normal

Average E(e) 0.023 0.237 -0.055
Size E(abs(e)) 0.434 0.789 0.305
Positive Pr(e > 0) 0.414 0.606 0.345
Negative Pr(e < 0) 0.510 0.340 0.572
Dispersion σ(e) 0.663 1.105 0.502

Serial correlation corr(e, e−1) 0.882 0.878 0.877

Observations N 12,619 3,363 9,256

Sources: Bloomberg data. Notes: Normal years = 2010-2019. Turbulent years = 2008-2009 and 2020-21. Numbers

are between-year averages of within-year statistics.

Figure A.6 – Time series

(a) Revision frequency
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Notes: Data for normal years. Standard errors are clustered two ways at the forecaster and year level. Model
with benchmark calibration.
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B Estimate of inflation process

Let the monthly inflation rate xh follow an AR(1) process:

(B.5) xh = cx + φxxh+1 + εxh, εxh ∼ N (0, σ2
x),

where cx is a constant, φx is the persistence parameter, and εxh is an iid normally distributed noise
with volatility σ2

x. We estimate the three parameters (cx, φx, σ
2
x) = (0.013, 0.932, 0.036) using the

monthly inflation rate from the CPI for 2010-2019. Figure B.7 plots the resulting estimates and
95% confidence intervals.

Figure B.7 – Rolling Estimates for Inflation Parameters
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C Proofs

C.1 Inflation process

Demeaned monthly inflation We begin with the assumption of an AR(1) process for monthly
inflation:

(C.1) xh = cx + φxxh+1 + εxh.

This process has an unconditional mean of cx
1−φx and an unconditional variance of σ2

x

1−φ2x
. For any

h, we can rewrite (C.1) as deviations from the unconditional mean:

(C.2) xh −
cx

1− φx
= φx

(
xh+1 −

cx
1− φx

)
+ εxh.

Annual inflation Annual inflation π is approximately equal to the sum of the twelve realizations
of monthly inflation xh within each target year π =

∑12
h=1 xh. See appendix A.1. Without loss of

generality, we can derive π as a function of the initial value of monthly inflation x12:

x1 =
cx

1− φx
+ φ11

x

(
x12 −

cx
1− φx

)
+

10∑
j=0

φjxε
x
j+1

. . .

x10 =
cx

1− φx
+ φ2

x

(
x12 −

cx
1− φx

)
+ φxε

x
11 + εx10

x11 =
cx

1− φx
+ φx

(
x12 −

cx
1− φx

)
+ εx11,

Summing up the monthly values x1, x2, . . . , x12 we get an expression for annual inflation at horizon
h = 12:

π = 12

(
cx

1− φx

)
+

1− φ12
x

1− φx

(
x12 −

cx
1− φx

)
+

11∑
j=1

1− φjx
1− φx

εxj .(C.3)

Similarly, for any h within the year, we can derive an expression for π. Importantly, as h shrinks
(as we get closer to the release date), we start summing the actual lagged values of inflation
starting at h = 12 until h while we project the remaining months of the year using the last piece
of available information xh. In particular, annual inflation at any given horizon h = 12, 11, . . . , 1
can be written as follows:

π = h

(
cx

1− φx

)
+

(1− φhx)
1− φx

(
xh −

cx
1− φx

)
+

12∑
i=h+1

xj +
h−1∑
j=1

1− φjx
1− φx

εxj ,(C.4)
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where
∑12

i=h+1 xj = 0 for i = 12. If h = 1 then π =
∑12

h=1 xh. The unconditional mean and
variance of end-of-year inflation are:

E[π] =
12cx

1− φx
(C.5)

Var[π] = σ2
x

h−1∑
j=1

(
1− φjx
1− φx

)2

.(C.6)

To compute annual inflation from the perspective of h = 13, we use the fact that

(C.7) x12 −
cx

1− φx
= φx

(
x13 −

cx
1− φx

)
+ εx12.

Thus, when summing up the monthly values x1, x2, . . . , x12, we get

π = 12

(
cx

1− φx

)
+ φx

1− φ12
x

1− φx

(
x13 −

cx
1− φx

)
+

12∑
j=1

1− φjx
1− φx

εxj .(C.8)

C.2 End-of-year inflation beliefs

At each horizon, forecasters form end-of-year inflation beliefs π|I ih ∼ N (π̂ih,Σ
π
h) by projecting their

monthly beliefs using the AR(1) structure. In turn, the monthly beliefs are constructed using the
AR(1) one-period ahead prediction and the private signal x̃ih = xh+ζih. In addition, the historical
values of lagged monthly inflation are observed without noise. Thus, the forecasters information
set at each horizon I ih = {x̃ih, xh+1, xh+2, . . . }.

Conditional mean Taking the conditional expectation of equation (C.4), given information up
to horizon h, delivers the conditional mean π̂ih ≡ E[π|I it ]:

(C.9) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
i=h+1

xj for h = 12, . . . , 1

which corresponds to equation (19) in the text.

Conditional variance To compute the conditional variance, we first define forecast errors as
the difference between end-of-year inflation π in (C.4) and the conditional mean εih ≡ π − π̂ih in
(C.9):

εih = π − π̂ih =
1− φhx
1− φx

((1− α)εxh + αζih) +
h−1∑
j=1

1− φjx
1− φx

εxj ∀h(C.10)
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Where α ≡ σ−2
ζ

σ−2
x +σ−2

ζ

as discussed in the main text. Squaring and taking expectations, we obtain

the variance of the forecast error Σπ
h ≡ E[(εih)

2] at each horizon h:

Σπ
h =

(
1− φhx
1− φx

)2

((1− α)2σ2
x + α2σ2

ζ ) +
σ2
x

(1− φx)2

h−1∑
j=1

(1− φjx)2 ∀h(C.11)

where we used that shocks are i.i.d εxh
iid∼ N (0, σ2

x), ζ
i
h

iid∼ N (0, σ2
ζ ), ηh

iid∼ N (0, σ2
η) and uncorrelated

E[ζ ih, ηh] = 0. We simplify the last term with the sum as follows:

h−1∑
j=1

(1− φjx)2 = (1− φx)2 + (1− φ2
x)

2 + . . . + (1− φh−1)2

= 1 − 2φx + φ2
x + 1 − 2φ2

x + φ4
x + . . . + 1 − 2φh−1 + φ2(h−1)

= (h− 1)− 2(φx + φ2
x + · · ·+ φh−1

x ) + (φ2
x + φ4

x + . . .+ φ2(h−1))

= (h− 1)− 2φx(1− φh−1
x )

1− φx
+
φ2
x(1− φ

2(h−1)
x )

1− φ2
x

Substituting back into (C.11), we obtain the expression for the signal variance in
(C.12)

Σz
h = [(1− α)2σ2

x + α2σ2
ζ ]

(
1− φh

1− φ

)2

+
σ2
x

(1− φ)2

[
(h− 1)− 2φ(1− φh−1)

1− φ
+
φ2(1− φ2(h−1))

1− φ2

]
.

The conditional variance is common across forecasters; thus, we denote it as Σz,h.

C.3 Relationship between individual vs. aggregate beliefs

The public signal zh in (21) projects the past release xh+1 to obtain the yearly forecast:

(C.13) zh = h

(
cx

1− φx

)
+

φx(1− φhx)
1− φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj.

In contrast, the private signal π̂ih in (??) projects the noisy observation x̃ih to obtain the yearly
forecast (note the extra φ in the second term of the expression above, reflecting the timing of the
information):

(C.14) π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
j=h+1

xj.

Next, we establish a relationship between the public and the private signals about yearly
inflation. In the first line, we substitute the expression for the noisy signal x̃ih = xh + ζ ih. In
the second line, we substitute the expression for the (demeaned) actual monthly inflation xh −
cx/(1 − φx) = φx(xh+1 − cx/(1 − φx)) + εxh. Lastly, in the third line, we define the noise term

12



νih ≡
1−φhx
1−φx (εxh + ηh) and compute its noise.

π̂ih = h

(
cx

1− φx

)
+

1− φhx
1− φx

(
xh −

cx
1− φx

+ ζ ih

)
+

12∑
j=h+1

xj

= h

(
cx

1− φx

)
+

1− φhx
1− φx

(
φx

(
xh+1 −

cx
1− φx

)
+ εxh + ζ ih

)
+

12∑
j=h+1

xj

= zh + νih, νiη ∼ N

(
0,

[
1− φhx
1− φx

]2

α2(σ2
v + σ2

ζ )

)
.(C.15)

C.4 Martingale property of beliefs

Beliefs follow a martingale: expected of future belief equal current beliefs, i.e., E[zih−1|I ih] = π̂i.
First, we use the relationship between public and private beliefs in (C.15) to set the expectation
of individual noise ν to zero.

(C.16) E[zih−1|I ih] = E[zh−1 + νih−1|I ih] = E[zh−1|I ih].

Next, we show that the expected public belief equals current public belief. Substituting in the
expression for zh−1 in (21) and applying the expectation conditional on I ih, we get:

E[zh−1|I ih] = (h− 1)
cx

1− φx
+

φx(1− φh−1
x )

1− φx

(
x̂ih −

cx
1− φx

)
+ x̂ih +

12∑
j=h+1

xj.

In the last sum, we separate x̂ih ≡ E[xh|I ih] that is not yet released from the rest of known values
for h = 12, ..., h+ 1. Finally, we rearrange the expression to recover the expression for individual
beliefs π̂i plus three summands that cancel out:

E[zh−1|I ih] = h
cx

1− φx
+

1− φhx
1− φx

(
x̂ih −

cx
1− φx

)
+

12∑
j=h+1

xj︸ ︷︷ ︸
= π̂i

− cx
1− φx

− 1− φx
1− φx

(
x̂ih −

cx
1− φx

)
+ x̂ih︸ ︷︷ ︸

= 0

.

We conclude that E[zh−1|I ih] = π̂i. As data on monthly inflation arrives, forecasters add the
new observations to their dataset and update their estimates. Belief changes tend to be very
persistent, even if the shocks that caused the beliefs to change are transitory. As a result, any
changes in beliefs induced by new information are approximately permanent (Kozlowski, Veldkamp
and Venkateswaran, 2020a,b).

C.5 Proof of Proposition 1

First, using the law of iterated expectations, we condition payoffs on the horizon-specific informa-
tion sets:

E

[
1∑

h=12

E[(f ih − π)2|I ih] + r E[(f ih − Fh)2|I ih] + κ1{f ih 6=f ih+1}
∣∣∣I i0
]

13



Second, we add and subtract beliefs π̂ih ≡ E[π|I ih] and F̂ i
h ≡ E[Fh|I ih] and open the squares:

E

[
1∑

h=12

E[(f ih − π̂ih + π̂ih − π)2|I ih] + r E[(f ih − F̂ i
h + F̂ i

h − Fh)2|I ih] + κ1{f ih 6=f ih+1}
∣∣∣I i0
]

= E

[
1∑

h=12

E[(f ih − π̂ih)2|I ih] + E[(π̂ih − π)2|I ih] + 2E[(f ih − π̂ih)(π̂ih − π)|I ih]
∣∣∣I i0
]

+ rE

[
1∑

h=12

E[(f ih − F̂ i
h)

2|I ih] + E[(F̂ i
h − Fh)2|I ih] + 2E[(f ih − F̂ i

h)(F̂
i
h − Fh)|I ih]

∣∣∣I i0
]

+ κE

[
1∑

h=12

1{f ih 6=f ih+1}
∣∣∣I i0
]

Third, we rewrite using conditional variances Σπ
h ≡ E[(π̂ih − π)2|I ih] and ΣF

h ≡ E[(F̂ i
h − Fh)2|I ih]

and the fact that beliefs are unbiased E[(π̂ih − π)|I ih] = E[(F̂ i
h − Fh)|I ih] = 0:

1∑
h=12

E
[
Σπ
h + rΣF

h + E[(f ih − π̂ih)2|I ih] + rE[(f ih − F̂ i
h)

2|I ih] + κ1{f ih 6=f ih+1}
∣∣∣I i0] .

C.6 Proof of Proposition 2

Given the stationarity of the problem and the stochastic processes, we apply the Principle of
Optimality to the sequential problem and express it as a sequence of stopping-time problems Let
τ be the stopping data associated with the optimal decision given the state (π̂ih, F̂

i
h). The stopping

time problem is given by:

C.7 Benchmark without fixed costs (κ = 0)

As a benchmark, we assume away the adjustment cost and set κ = 0. The problem becomes static,
and the optimal forecast at horizon h minimizes per-period losses:

(C.17) min
{f ih}

(f ih − π̂ih)2 + r(f ih − F̂h)2

The FOC yields:

(C.18) f ih =
1

1 + r

(
π̂ih + rF̂h

)
.

Substituting the Bayesian beliefs yields:

(C.19) f ih = zh + r (cF + φFFh+1) + νih, with νih ∼ N

(
0,

[
1− φhx
1− φx

]2

α2(σ2
x + σ2

ζ )

)
.

where α is the weight on private signals: α ≡ σ−2
ζ

σ−2
x )+σ−2

ζ

.
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MSE without fixed costs

E[eih] = E[(π − f ih)2] = E[(π − 1

1 + r
π̂ih −

r

1 + r
F̂h)

2]

= E

[(
1

1 + r
(π − π̂ih)−

r

1 + r
(F̂h − π)

)2
]

=

(
1

1 + r

)2

Σπ
h +

(
r

1 + r

)2

E
[
(F̂h − π)2

]
+ 2r

(
1

1 + r

)2

E
[
(π − π̂ih)(π − F̂h)

]
=

(
1

1 + r

)2

Σπ
h +

(
r

1 + r

)2

E
[
(Fh+1 − Fh)2 + (Fh − π)2

]
=

(
1

1 + r

)2

Σπ
h +

(
r

1 + r

)2

σ2
F +

(
r

1 + r

)2

E
[
(Fh − π)2

]
=

(
1

1 + r

)2

Σπ
h +

(
r

1 + r

)2

σ2
F +

(
r

1 + r

)2

E
[
E2
h

]

15



D Computational strategy

Solving the problem requires computing expectations of future beliefs. Since all random variables
are normal, this amounts to knowing the first two moments of these distributions. Next, we
characterize these moments. Afterward, we use these moments to compute expectations.

D.1 Initial forecast

At the beginning of each year, we assume initial forecasts equal the 13-months ahead belief, which
is optimal without frictions (κ = r = 0):

(D.20) f i13 = π̂i13 = z13 + νi13, νi13 ∼ N (0, σ2
13)

where z13 is constructed using the projection formula in (21)

z13 = 12

(
cx

1− φx

)
+ φx

1− φ12
x

1− φx

(
x̂13 −

cx
1− φx

)
(D.21)

and the monthly belief equals x̂i13 = α[cx + φxx14] + (1− α)x̃i13.

D.2 Distributions of expected beliefs

The law of motion of individual states implies the following values at h− 1:

π̂ih−1 =

(
Σz,h−1

σ2
o + Σz,h−1

)
µo +

(
1− Σz,h−1

σ2
o + Σz,h−1

)
π̂iπ̂ih−1(D.22)

F̂h−1 = cF + φFFh(D.23)

Expected consensus beliefs The mean and variance of the distribution of expected consensus
beliefs at h− 1, from the perspective of horizon h (with knowledge up to Fh+1), are:

E[F̂h−1|I ih] = cF + φFE[Fh|I ih] = cF (1 + φF ) + φ2
FFh+1(D.24)

Var[F̂ i
h−1|I ih] = φ2

FVar[Fh|I ih] = φ2
Fσ

2
F(D.25)

Expected inflation beliefs The mean and variance of the distribution of expected inflation
beliefs at h− 1, from the perspective of horizon h, are:

E[π̂ih−1|I ih] =

(
Σz,h−1

σ2
o + Σz,h−1

)
µo +

(
1− Σz,h−1

σ2
o + Σz,h−1

)
E[π̂ih−1|I ih](D.26)

Var[π̂ih−1|I ih] =

(
σ2
oΣz,h−1

σ2
o + Σz,h−1

)2

Var[π̂ih−1|I ih](D.27)

Now we compute the mean E[π̂ih−1|I ih] and variance Var[π̂ih−1|I ih] of the idiosyncratic signal from
the perspective of horizon h—inputs into the formulas above.
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Expected signals We evaluate the formula for π̂ih in (??) at h−1, and separate the observation
xh from the sum yields:

(D.28) π̂ih−1 = (h− 1)

(
cx

1− φx

)
+

1− φh−1
x

1− φx

(
x̃ih−1 −

cx
1− φx

)
+ xh +

12∑
j=h+1

xj.

Then, we take the expectation conditional on I ih:

(D.29) E[π̂ih−1|I ih] = (h− 1)

(
cx

1− φx

)
+

1− φh−1
x

1− φx

(
E[x̃ih−1|I ih]−

cx
1− φx

)
+ E[xh|I ih] +

12∑
j=h+1

xj

Next, we use the fact that E[x̃ih−1|I ih] = E[xh−1|I ih] (because public and private noise have zero
mean) and E[xh−1|I ih] = cx+φxE[xh|I ih] (by the AR(1) assumption). Substituting into the previous
expression:

E[π̂ih−1|I ih] = (h− 1)

(
cx

1− φx

)
+

1− φh−1
x

1− φx

(
cx + φxE[xh|I ih]−

cx
1− φx

)
+ E[xh|I ih] +

12∑
j=h+1

xj

Rearranging, we obtain:

E[π̂ih−1|I ih] = h

(
cx

1− φx

)
+ φx

1− φh−1
x

1− φx

(
E[xh|I ih]− cx

1− φx

)
+ E[xh|I ih]−

cx
1− φx

+
12∑

j=h+1

xj

Lastly, we substitute the AR(1) assumption E[xh|I ih] = cx + φxxh+1:

(D.30) E[π̂ih−1|I ih] = h

(
cx

1− φx

)
+ φ2

x

1− φh−1
x

(1− φx)2
xh+1 + φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj.

For the variance, we apply the variance operator to (D.28) and note that the terms in the sum
disappear because they are known at h. Thus we are left with two terms.

Var[π̂ih−1|I ih] =

(
1− φh−1

x

1− φx

)2

Var[x̃ih−1|I ih] + Var[xh|I ih]

=

(
1− φh−1

x

1− φx

)2 (
φ2
xVar[xh|I ih] + σ2

x + σ2
ζ + σ2

η

)
+ Var[xh|I ih]

=

(
1− φh−1

x

1− φx

)2 (
φ2
xσ

2
x + σ2

x + σ2
ζ + σ2

η

)
+ σ2

x

where we use Var[xh|I ih] = σ2
x and the structure of the signal and the AR(1) assumption to write

(D.31) x̃ih−1 = xih−1 + ζ ih−1 + ηh−1 = cx + φxxh + εxh−1 + ζ ih−1 + ηh−1.
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D.3 Computing expectations

We approximate the expected continuation value of the value of action and inaction derived in
Proposition 2 as follows

(D.32) E[Vh−1(π̂ih−1, F̂h−1, f
i
h+1)|I ih] =

∑
π̂ih−1

∑
F̂h−1

Vh−1(π̂ih−1, F̂h−1, f
i
h+1)ω(π̂i)ω(F̂ )

where weights {ω(π̂i), ω(F̂ )} are constructed with Gaussian quadrature over grids for π̂i and F̂ .
Integration weights ωF̂ are such that F̂h−1|I ih ∼ N (E[F̂h−1|I ih],Var[F̂ i

h−1|I ih]) with

E[F̂h−1|I ih] = cF (1 + φF ) + φ2
FFh+1

Var[F̂ i
h−1|I ih] = φ2

Fσ
2
F

Integration weights ωπ̂i are such that π̂ih−1|I ih ∼ N
(
E[π̂ih−1|I ih],Var[π̂ih−1|I ih]

)
, with

E[π̂ih−1|I ih] =
Σz,h−1

σ2
o + Σz,h−1

µo +
σ2
o

σ2
o + Σz,h−1

[
h

(
cx

1− φx

)
+ φ2

x

1− φh−1
x

(1− φx)2
xh+1 + φx

(
xh+1 −

cx
1− φx

)
+

12∑
j=h+1

xj

]

Var[π̂ih−1|I ih] =

(
σ2
oΣz,h−1

σ2
o + Σz,h−1

)2
[
σ2
x +

(
1− φh−1

x

1− φx

)2 (
φ2
xσ

2
x + σ2

x + σ2
ζ + σ2

η

)]

D.4 Consistency of consensus process

The perceived law of motion for consensus is Fh = Fh+1 +εFh with εFh ∼ N (0, 0.112). The perceived
process is

(D.33) F̂t = F̂t−1 + εF̂t , εFh ∼ N (0, 0.112)

The actual law of motion is

(D.34) Fh = −0.03 + 1.01Fh+1 + εFh , εFh ∼ N (0, 0.112).
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Figure D.8 – Consensus belief consistency

(a) Time series
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(b) Perceived vs. Actual Consensus

Notes: Model, benchmark calibration.

E Rationality tests

E.1 A history of rationality tests

Underlying the Rationality tests is the hypothesis that forecast errors can not be predicted using
the information available when each forecast is made. Building on these implications, Coibion and
Gorodnichenko (2015) proposed to test if forecast errors are predictable using forecast revisions.
The underlying assumption is that forecast revisions f ih − f ih+1 about the same targeted variable
(as in our setup) constitute an accurate reflection of the reaction to recently available news. The
original test uses the consensus forecast made at horizon h about yearly inflation. In terms of our
notation and the definition of the consensus forecast, the rationality test

π − Fh = γ0 + γ1(Fh − Fh+1) + ηh.

Under FIRE, forecasters entail rational expectations (RE) and share the same full information
set (FI). Therefore, under FIRE, γ1 = 0, i.e., forecast errors are not predictable from revisions.
Bordalo et al. (2020) challenges this interpretation and argues that while γ1 6= 0 rejects FIRE, it
does not necessarily challenges RE. In fact, at the individual level, although a forecaster observes
noisy signals about inflation, she still can rationally use them to update their forecasts. Bordalo
et al. (2020) argues that a rationality test where unpredictable forecast errors must be performed
at the individual level. They proposed the following test:

(E.35) π − f ih = γ0 + γ1(f ih − f ih+1) + ηih, E[ηih] = 0.

With the individual information set assumed in our model I ih = x̃ih ∪ Ih = x̃ih ∪
{xh+1, xh+2, . . . , Fh+1, Fh+2, . . .}. Thus, the new information available between consecutive pe-
riods h and h + 1 is (x̃ih, xh+1, Fh+1). Combining these two last bits of information and using the
assumed known structure for the variables, each forecaster can back out εxh+1, ζ

i
h+1, ε

F
h+1. Moreover,

certainty about the lag shock for monthly inflation and noise realization for the signal allows the

19



forecasters to back out νih+1.

E.2 Rationality tests in the literature

Table E.4 – Rationality Tests in the Literature

Coibion-Gorodnichencko (2015) Bordalo et.al (2020) Broer and Kohlhas (2022)

Horizon Constant Revision F-test Constant Revision F-test Constant Revision Consensus F-test

1 -0.0341 5.7198 0.0720 -0.0657 -0.5379 0.0008 -0.0651 -0.2359 0.0026 0.0008
(.0418) (2.7197) (.0003) (.1092) (.0220) (.1101) (.0133)

2 -0.1001 7.1433 0.0004 -0.0665 -0.3284 0.0080 -0.0648 -0.1006 0.0011 0.0184
(.0233) (1.0654) (.0008) ( .0969) (.0227) (.2296) (.0136)

3 -0.0318 5.9955 0.0007 -0.0657 -0.5048 0.0001 -0.0555 -0.2895 0.0001 0.0078
(.0426) (1.0723) (.0002) (.0729) (.0236) (.1396) (.01415)

4 -0.0172 7.9209 0.2830 -0.0707 -0.3527 0.0022 -0.0678 -0.1225 0.0076 0.0112
(.0775) (5.3897) (.00001) (.0833) (.02543) (.1012) (.0153)

5 -0.1020 -0.5235 0.3723 -0.0820 -0.3501 0.0030 -0.1044 -0.2546 0.0221 0.0000
(.1352) (2.1798) ( .0001) (.0867) ( .0286) (.0674) (.0169)

6 -0.0812 1.4816 0.0458 -0.1054 -0.4286 0.0012 -0.1676 -0.2687 0.0440 0.0000
(.1394) (2.2645) (.00112) (.0916) (.0285) (.1175) (.01667)

7 -0.0441 2.9080 0.0023 -0.1363 -0.5388 0.0013 -0.2014 -0.3205 0.0476 0.0000
(.1261) (1.2488) (.0037) (.1172) (.0273) (.1273) (.0159)

8 -0.1902 3.4327 0.0050 -0.1471 -0.5098 0.0020 -0.2788 0.0075 0.0783 0.0000
(.0622) (1.2121) (.0006) (.1186) (.0282 (.0912) (.0161)

9 -0.2616 5.8216 0.0019 -0.1326 -0.3888 0.0396 -0.3447 0.0146 0.1217 0.0000
(.0736) (1.0557) (.0042) (.1616) (.0328) (.12729 (.01879)

10 -0.2470 4.3845 0.0059 -0.1031 -0.4776 0.0011 -0.4016 0.2655 0.1671 0.0000
(.0695) (1.0055) (.0034) (.1016) (.0433) (.0805) ( .0247)

11 -0.0247 2.2792 0.0236 -0.1018 -0.5368 0.0000 -0.5377 -0.1216 0.2778 0.0000
(.1140) (1.0906) (.00007) (.0619) (.0507) (.1007) (.0293)

12 0.1126 2.5178 0.0010 -0.1590 -0.8157 0.0016 -0.4858 0.1883 0.2381 0.0000
(.2179) (.9034) (.0142) (.1737) (.0717) (.1163) (.0363)

Notes: The first columns of the table reports the estimates of running Coibion and Gorodnichenko (2015)’s aggregate Rationality Test.
Standard are estimated using a HAC matrix. The middle columns present the results of Bordalo et al. (2020)’s individual test. Finally,
the last columns shows the estimates of Broer and Kohlhas (2022). The panel estimations include individual fixed-effects. Standard errors
are robust and clustered by forecaster and time. All the tests are estimated using the “Normal years” sample (2010-2019).
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E.3 Rationality tests for beliefs (κ = r = 0)

Consider the case κ = r = 0. In this case, forecasts equal agent’s beliefs f ih = π̂ih. Denote the
average belief in horizon h as Π̂h =

∑N
i=1 π̂

i
h.

For beliefs, the rationality regression reads:

(E.36) π − π̂ih+1 = γ0 + γ1(π̂ih − π̂ih+1) + γ2(Π̂i
h − π̂ih+1) + ηih, E[ηih] = 0.

First, we note that the last term equals:

Π̂h − π̂ih+1 = Π̂h − π̂ih + π̂ih − π̂ih+1 = νih + π̂ih − π̂ih+1

Thus, we can rewrite it as:

(E.37) π − π̂ih+1 = γ0 + γ̃(π̂ih − π̂ih+1) + η̃ih, E[η̃ih] = 0.

where γ̃ ≡ (γ1 + γ2) and η̃ih ≡ γ2ν
i
h + ηih. This equation will pin down the expected value for γ̃.

As a preliminary, note that the difference (between consecutive horizons) in the zh’s equals to:

zh − zh+1

= (h− (h+ 1))

(
cx

1− φx

)
+
φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
− φx(1− φh+1

x )

1− φx

(
xh+2 −

cx
1− φx

)
+

12∑
j=h+1

xj −
12∑

j=h+2

xj

= −
(

cx
1− φx

)
+
φx(1− φhx)

1− φx

(
xh+1 −

cx
1− φx

)
− φx(1− φh+1

x )

1− φx

(
xh+2 −

cx
1− φx

)
+

1− φx
1− φx

xh+1

= −(1− φh+1)

(
cx

1− φx

)
+

(1− φh+1
x )

1− φx
(xh+1 − φxxh+2)

= −1− φh+1

1− φx
cx +

1− φh+1
x

1− φx
(cx + εxh+1)

=
1− φh+1

x

1− φx
εxh+1

Let us provide an expression for belief revisions in terms of shocks:

π̂ih − π̂ih+1 =
[

(zh − zh+1) + (νih − νih+1)
]

=
1− φh+1

x

1− φx
εxh+1 +

[
1− φh

1− φ
α(εxh + ζ ih)−

1− φh+1

1− φ
α(εxh+1 + ζ ih+1)

]
=

1− φh+1
x

1− φx
[(1− α)εxh+1 + αζ ih+1]︸ ︷︷ ︸

A

+
1− φhx
1− φx

α(εxh + ζ ih)︸ ︷︷ ︸
B

For the first term, we used the previous result. Moreover, the second component in the second
row comes from the definition of νih at any horizon.
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On the other hand, the forecast error π − π̂ih can be written in terms of shocks:

π − π̂ih =
1− φhx
1− φx

((1− α)εxh − αζ ih)︸ ︷︷ ︸
C

+
h−1∑
j=1

1− φjx
1− φx

εxj︸ ︷︷ ︸
D

The first term (C) accounts for the forecast error due to the uncertainty about the actual value
of the current monthly inflation xh. We interpreted this part as the weighted error between the
AR(1) and the private signals, ultimately projected towards the end of the year. The second
component (D) accounts for the unforecastable part of the process over the remaining horizons
h− 1, . . . , 1.

The estimated coefficient γ̃ equals:

γ̃ =
Cov((f ih − f ih+1), π − π̂ih)

V ar(f ih − f ih+1)

=
Cov(A,C) + Cov(A,D) + Cov(B,C) + Cov(B,D)

V ar[π̂ih − π̂ih+1]

= 0

We can show that in this case, all the covariance terms in the numerator are equal to zero.
In fact, Cov(A,C) = Cov(A,D) = Cov(B,D) = 0. All these covariance terms depend on i.i.d.
shocks realized at different times. Moreover, the term Cov(B,C) is equal to:

Cov(B,C) = Cov
(

1− φhx
1− φx

α(εxh + ζ ih),
1− φhx
1− φx

((1− α)εxh − αζ ih)
)

=

(
1− φhx
1− φx

)2

α(1− α)Cov(εxh + ζ ih)−
(

1− φhx
1− φx

)2

α2Cov(εxh + ζ ih, ζ
i
h)

=

(
1− φhx
1− φx

)2

α(1− α)σ2
x −

(
1− φhx
1− φx

)2

α2σ2
ζ

=

(
1− φhx
1− φx

)2

α[(1− α)σ2
x − ασ2

ζ ]

=

(
1− φhx
1− φx

)2

α

[(
σ−2
x

σ−2
x + σ−2

ζ

)
σ2
x −

(
σ−2
ζ

σ−2
x + σ−2

ζ

)
σ2
ζ

]
= 0

Therefore, in the Belief case, we expect γ̃ = γ1 + γ2 = 0, which is consistent with the idea that

agents have rational expectations. Given the process for the error, γ2 = 0. Finally, γ0 =
∑N
i=0 π−f ih
N

,
for each horizon. As forecasters are indeed rational, their forecast error must remain unpredictable,
i.e., γ0 = 0
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E.4 Rationality tests without fixed costs (κ = 0)

From the FOC in the frictionless case:

(E.38) f ih =
1

1 + r
(zh + rF̂h + νih), with νih ∼ N

(
0,

[
1− φhx
1− φx

]2

α2(σ2
x + σ2

ζ )

)
.

Individual forecast revisions across consecutive horizons can be unpacked into three different news
terms:

f ih − f it+1 =
1

1 + r

 (zh − zh+1)︸ ︷︷ ︸
I

+ r
(
F̂h − F̂h+1

)
︸ ︷︷ ︸

II

+ (νih − νih+1)︸ ︷︷ ︸
III

(E.39)

• News I, the difference in the zh’s, equals to:

zh − zh+1 =
1− φh+1

x

1− φx
εxh+1

• News II, the difference in the F̂h’s, equals to:

F̂h − F̂h+1 = cF + φFFh+1 − cF + φFFh+2

= φF (Fh+1 − Fh+2)

• News III, the difference in νih, equals to:

νih − νih+1 = π̂ih − π̂ih+1 − (zh − zh+1)

Similarly, in this case the forecast error π − f ih, can be written as:

π − f ih =
1

1 + r

 (π − π̂ih)︸ ︷︷ ︸
I*

+ rπ︸︷︷︸
II*

− rF̂h︸︷︷︸
III*

(E.40)

• Where I*, the difference π − π̂ih, equals to:

π − π̂ih =
1− φhx
1− φx

((1− α)εxh − αζih) +
h−1∑
j=1

1− φjx
1− φx

εxj

As shown in equation (C.10).

• II*, equals to:

rπ = r
12∑
h=1

xh
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• III*, equals to:

rF̂h = r(cf + φFFh+1)

Hence, in this case, the regression coefficients are:

(E.41) γ1 =
Cov(f ih − f ih+1, π − f ih)

Var(f ih − f ih+1)

where the numerator Cov(f ih − f ih+1, π − f ih) =
(

1
1+r

)2 Cov(I + II + III, I* + II* + III*),
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E.5 Rationality tests using forecast revisions

Notation In what follows, we incorporate the subindices s = short, m = medium, and l = long
to describe the forecasts horizons when the forecasts were made. Then s < m < l. All the tests
below rely on average moments across the cross-section of forecasters. All testable implications
exploit the variability across targeted years t, conditioning on the forecast horizons. Let the
consensus forecast be denoted by Ft,h = N−1

∑N
i=1 f

i
t,h. To fix the notation, let the consensus error

be Et,h = πt − Ft,h; the mean-squared consensus error be MSEh ≡ E[(πt − Ft,h)
2], the average

consensus revision between consecutive periods as ∆Ft,h|h+1 ≡ Ft,h−Ft,h+1, and the mean-squared
consensus revision be MSRh ≡ E[(Ft,1 − Ft,h)2]

E.5.1 Multivariable inequality tests of rationality

The first seven conditions imply methods for handling multivariate inequality tests.

1. Weakly increasing mean-squared consensus errors

(E.42) MSEs ≤ MSEm ≤ MSEl, ∀s < m < l

Forecast accuracy increases as the horizon shrinks.

2. Weakly increasing variance of consensus revisions

(E.43) Var[∆Ft,1|2] ≤ Var[∆Ft,1|3] ≤ · · · ≤ Var[∆Ft,1|H ].

The variance of mean squared revisions must increase in the forecast horizon.

Proof. By definition ∆Ft,1|H = Ft,1 − Ft,H =
∑H−1

j=1 ∆Ft,j|j+1 for H > 1. Take variance on

both sides Var[∆Ft,1|H ] =
∑H−1

j=1 Var[∆Ft,j|j+1], then we get the result.

3. Weakly decreasing consensus variance

(E.44) Var[Ft,s] ≥ Var[Ft,m] ≥ Var[Ft,l], ∀s < m < l

Proof. By definition of consensus error: Var(πt) = Var(Ft,h) + Var(Et,h) + 2Cov(Ft,h, Et,h).
By rationality, the covariance term is zero and thus Var(Ft,h) = Var(πt)−Var(Et,h). Since
mean squared errors must be weakly increasing, then forecasts must be weakly decreasing
as well. Note that unlike tests using forecast errors, this test does not rely on data for the
targeted variable.

4. Weakly decreasing covariance between consensus and target

(E.45) Cov(Ft,s, πt) ≥ Cov(Ft,l, πt).

Proof. The covariance between the average prediction and the target is Cov(Ft,h, πt) =
Cov(Ft,h, Ft,h + Et,h). By rationality, the covariance term is zero and thus Cov(Ft,h, πt) =
Var(Ft,h). Since the variance of predictions decreases as the forecast horizon increases, the
covariance does, too.
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5. Weakly decreasing covariance between consensus and proxy

(E.46) Cov(Ft,m, Ft,s) ≥ Cov(Ft,l, Ft,s).

Proof. This test relies on the previous one but builds on the fact that shorter predictions must
better reflect the targeted variable. Then, short-term predictions are used as a proxy for πt.
In particular, as we know that Cov(Ft,s, πt) ≥ Cov(Ft,l, πt) it must hold that Cov(Ft,m, Ft,s) ≥
Cov(Ft,l, Ft,s). Again, this test does not rely on having information about the target.

6. Bounded variance of consensus revisions

(E.47) Var(∆Ft,s|l) ≤ 2Cov(πt,∆Ft,s|l).

Proof. Under rationality Var(Et,l) ≥ Var(Et,s) ⇒ Var(πt − Ft,l) ≥ Var(πt − Ft,s). We
can express the short-horizon average forecast as Ft,s = Ft,l + Ft,s − Ft,l = Ft,l + ∆Ft,s|l.
The left-hand side of the variance of forecast errors inequality is Var(πt − Ft,l) = Var(πt) +
Var(Ft,l) − 2Cov(πt, Ft,l). Likewise, the right hand side of the inequality Var(πt − Ft,s) =
Var(πt) + Var(Ft,l) + Var(∆Ft,s|l) − 2Cov(πt, Ft,l) − 2Cov(πt,∆Ft,s|l), where we use the
expression for Ft,s along with the fact that Cov(Ft,l,∆Ft,s|l) = 0. Therefore, by removing
terms we show that the variance of revisions is bounded, In other words, the variability of
forecast revisions is limited by the covariance of revisions with the target variable.

7. Bounded variance of forecast revisions with proxy

As a result of the previous implications, it is possible to express the bound using the short-
term forecast for πt under rationality:

Var(∆Ft,s|l) ≤ 2Cov(Ft,s,∆Ft,s|l)

E.5.2 Regression-based rationality tests

The three remaining regression-based tests build on Mincer and Zarnowitz (1969) rationality
regressions. The original MZ test regresses the actual target variable on forecasts, πt = αh +
βhFt,h + vt,h, and tests the null that the intercept is zero and the slope is one for each horizon h:
Hh

0 : αh = 0 ∩ βh = 1. The following three tests re-express this test using forecast revisions or
eliminating the target variable.

8. MZ Revision test (Univar opt revision) Express the MZ test using forecast revisions:

πt = α + βHFt,h=H +
H−1∑
j=2

βj∆Ft,j−1|j + vt

and jointly testing H0 : α = 0 ∩ (β1 = · · · = βH = 1).

9. MZ Revision test with proxy (Univar opt revision with proxy) Building on the
previous specification, substitute the target variable with its short-term expectation (πt ≈
Ft,1):

Ft,1 = α + βHFt,h=H +
H−1∑
j=2

βj∆Ft,j−1|j + vt
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and jointly testing H0 : α = 0 ∩ (β1 = · · · = βH = 1).

10. MZ Regression-based (Univar MZ short h) Finally, running a MZ regression-based
test without relying on the target variable

Ft,1 = αh + βhFt,h + vt,h

and testing Hh
0 : αh = 0 ∩ βh = 1 for each h.
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Figure F.9 – Cross-sectional moments across model configurations
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Notes: Bloomberg data for normal years = 2010-2019. Benchmark calibration uses parameters from Table III:
κ = 0.083, r = 0.263, σζ = 0.098. No fixed costs: sets κ = 0 and re-estimates parameters. No strategic concerns:
sets r = 0 and re-estimates parameters.

F On the role of fixed revision costs and strategic concerns

We explore two alternative model versions of the model to assess the role of fixed costs κ and
strategic concerns r. In each panel of Figure F.9, we plot four lines: data (red), benchmark (blue),
zero fixed costs κ = 0 (dashed pink), and zero strategic concerns r = 0 (dotted blue). In each
alternative, we re-estimate the model’s parameters to fit a subset of the target moments.

As expected, the model with zero fixed costs implies a frequency of revisions close to one for
all horizons and thus fails dramatically in replicating the observed empirical patterns. The model
with zero strategic concerns delivers steeper profiles in frequency and variance. Notably, all model
configurations deliver very similar patterns for the square of forecast errors.

Table F.5 – Parameterization of alternative models

Data (1) Baseline (2) Zero fixed (3) No strategic (4) No signal
Parameters revision costs concerns noise
κ 0.11 0.00 0.07
r 0.51 0.43 0.00
σ2
ζ 1.50 1.48 1.70 0.00

Moments
Pr[∆f 6= 0] 0.43 0.43∗ 1.00 0.42∗

Var[∆f ] 0.05 0.05∗ 0.05∗ 0.04
E[(π − f)2] 0.23 0.21∗ 0.18∗ 0.17∗

Notes: Bloomberg data for normal years = 2010-2019. Baseline uses parameters from Table III. Alternative
models: No fixed costs (κ = 0), No strategic concerns (r = 0), No idiosyncratic noise (σζ = 0). Targeted
moments in each estimation are marked with ∗.
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G Accuracy of AR(1) forecast vs. consensus

Since yearly inflation π equals to the sum of year-on-year monthly inflation xh: π =
∑12

h=1 xh, then
monthly inflation releases xh are relevant information strictly related to the forecasted variable.
We assume forecasters believe monthly inflation follows an AR(1) process:13 As noticed by Ih, the
public belief is formed using the available information at each horizon, corresponding to the lagged
values of xh. By relying on the available information for forecasters in real time, we estimate
the AR(1) process parameters using a rolling window over the sample years. The parameters
are (cx, φx, σ

2
x) = (0.013, 0.932, 0.036). The estimates are presented in Appendix B. Given these

estimates, we compute our proxy for public beliefs each month.
Given the estimates, we compare the forecast errors from the AR(1) project and the average

prediction of forecasters (consensus). We compute the evolution of forecast errors over the horizon
using these two forecasts, where

(G.48) eh = π − fh, where fh ∈ {zh, Fh}.

The results are presented in Figure G.10.

Figure G.10 – Accuracy of AR(1) proxy and Consensus Forecasts
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As expected, the accuracy of the AR(1) process increases monotonically as the release date
of inflation approaches. This feature is particularly salient for normal years. As more relevant
information is accumulated, the accuracy improvements are notorious. If we focus on normal years
at longer and medium horizons, the forecast error of the consensus forecast is relatively better than
the AR(1). This could be caused by the possible combination of public and private information
from forecasters that makes predictions more accurate. However, at shorter horizons, the accuracy
of the public belief is slightly better than the average prediction. Interestingly, the consensus is
consistently more accurate during turbulent years.

13Although participants interpret public information differently, we argue that the prediction that builds on the
AR(1) is a tractable and accurate proxy for a fixed-event forecast. We provide further discussion about the features
and accuracy of the proxy in Appendix YY. See Giacomini, Skreta and Turen (2020).
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