Innovation Powered Narrative Inference

Regis Barnichon (FRB San Francisco) Geert Mesters (Universitat Pompeu Fabra, BSE & CREI) July 11, 2024

Dynamic causal effects

Key task in macro: estimate θ_h from

$$y_{t+h} = c + heta_h p_t + u_{t+h}$$
 , for $t \in \mathcal{N}$

where

- y_{t+h} outcome variable h periods ahead
- pt, e.g., interest rate, spending, tax, etc

General concern is endogeneity: $cov(p_t, u_{t+h}) \neq 0$

- ordinary least squares is biased
- some identification strategy is needed

An empirical technique where one gathers systematic evidence from contemporaneous qualitative sources (such as newspapers, government reports, and policy meeting transcripts), and incorporates it into statistical analysis to establish causal relationships

Romer & Romer 2023

- Narrative records to construct series z_t : exogenous changes in p_t
- Use z_t as instrumental variable to avoid endogeneity bias

Classic Narrative Series zt

- Hamilton (1985) oil price
- Romer and Romer (1989, 2023) monetary policy
- Ramey and Shapiro (1998) defense spending news
- Romer and Romer (2000) tax
- Reinhart and Rogoff (2009) financial shocks
- and many more recent ones:

Ramey (2011), De Vries et al (2011), Cloyne (2013), Jalil (2015), Romer and Romer (2017), Ramey and Zubairy (2018), Alesina, Favero and Giavazzi (2019), Gil et al (2019), Carriere-Swallow, David, and Leigh (2021), Rojas, Vegh and Vuletin (2022), Drechsel (2023), Cloyne, Dimsdale and Postel-Vinay (2023), Bi and Zubairy (2023), Fieldhouse and Mertens (2023), ...

A less noticed feature

Paper	# obs	# zeros	% zeros
Bi and Zubairy (2023)	590	464	79%
Carriere-Swallow, David and Leigh $(2021)^{\dagger}$	28	22	81%
Cloyne (2013)	248	94	38%
Cloyne, Dimsdale and Postel-Vinay (2023)	89	69	77%
Fieldhouse and Mertens (2023)	292	228	78%
Guajardo, Leigh and Pescatori $(2014)^{\dagger}$	32	22	68%
Gil et al. (2019)	120	87	72%
Hamilton (1985)	140	121	86%
Jalil (2015)	90	83	92%
Ramey and Shapiro (1998)	200	197	98%
Ramey (2011)	280	194	69%
Ramey and Zubairy (2018)	504	396	79%
Romer and Romer (2023)	852	842	99%
Romer and Romer (1989)	852	845	99%
Romer and Romer (2010)	252	207	82%
Romer and Romer (2017) [†]	91	81	88%
Rojas, Vegh and Vuletin (2022) [†]	106	86	81%

Average

80%

Implications of many Zeros

- (i) zeros are not informative
 - weaker instruments \rightarrow larger confidence bands
 - \Rightarrow efficiency problem

- (ii) small number of non-zeros
 - finite sample correlation with other structural shocks e.g. Hoover & Perez 1994 monetary - oil relationship
 - \Rightarrow possible endogeneity problem

This paper

- ▲ Conceptually: treat uninformative/endogenous z_t as missing $z_t = \begin{cases} f(\varepsilon_t) & \text{if } t \in \mathcal{G} = \text{good periods: narrative is clear} \\ \text{missing } \text{if } t \in \mathcal{B} = \text{bad periods: narrative is inconclusive} \\ \text{adopt ideas from$ *missing data* $literature} \end{cases}$
- Innovation Powered (IP) Inference
 - Objective: reduce variance conventional (zeroes-IV) estimates
 - Approach:
 - (i) Compute innovations v_t using time series model/identification e.g. short-run, long-run, max-share ...
 - (ii) v_t to compute inconsistent but low variance IV estimate/test

(iii) Use z_t and v_t on \mathcal{G} to correct endogeneity bias

 \Rightarrow Innovation Powered Anderson-Rubin test

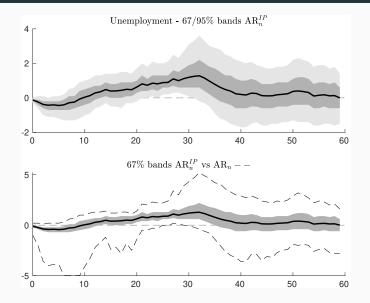
This paper: underlying idea

- Macro has little uncontroversial exogenous variation
 - small bits of narrative evidence seem convincing
- At the same time there is a wealth of great time series methods
 - identification: short-run, long-run, heteroskedasticity, non-Gaussian, structural, ...
 - model: svar, svarma, state space, dsge ...

can use to **predict** shocks – relaxes identification/modeling

 \Rightarrow Paper: combine clean narrative evidence with powerful time series

US Monetary Policy — Romer & Romer (1989,2023)



Literature

- Narrative methods: Ludvigson, Ma & Ng (2017), Antolin-Diaz & Rubio-Ramirez (2018), Giacomini, Kitagawa & Read (2022,2023), Plagborg-Møller (2022)
 - we do not require correctly specified svar model
 narrative can be contaminated by measurement error
 narrative events are not assumed to arrive randomly
- Missing data: Robins, Rotnitzky & Zhao (1994), Robins & Rotnitzky (1995), Kang and Schafer (2007), Chaudhuri & Guilkey (2016), Abrevaya & Donald (2017), Little & Rubin (2019)
 - instruments z_t are missing not y, x
 many time series opportunities for constructing v_t
 allow for weak identification

- (a) Illustrative static example
- (b) Innovation powering in a dynamic macro environment
- (c) Empirical evidence US monetary policy

Toy model

Object of interest is $\boldsymbol{\theta}$ in

$$\underbrace{\begin{pmatrix} p_t \\ y_t \end{pmatrix}}_{=\mathbf{w}_t} = \underbrace{\begin{pmatrix} 1 & \rho \\ \theta & 1 \end{pmatrix}}_{=\mathbf{A}} \underbrace{\begin{pmatrix} \varepsilon_t \\ u_t \end{pmatrix}}_{\eta_t} \qquad \eta_t \stackrel{iid}{\sim} (0, \mathbf{D}) \qquad t \in \mathcal{N}$$

with **A** non-singular and $n = |\mathcal{N}|$

Narrative series

$$\mathbf{z}_t = f(\varepsilon_t) + \zeta_t$$
, $\mathbb{E}(\zeta_t) = 0$, $\zeta_t \perp (\varepsilon_t, u_t)$

Implies

$$y_t = heta p_t + e_t$$
, $\mathbb{E}(\mathbf{z_t} e_t) = 0$, $\mathbb{E}(\mathbf{z_t} p_t) \neq 0$

Missing instruments

Indicator for z_t valid and informative instrument

$$s_t = \begin{cases} 0 & \text{if } t \in \mathcal{B} = \{t \in \mathcal{N} : \mathbf{z_t} \text{ missing}\} \\ 1 & \text{if } t \in \mathcal{G} \end{cases}$$

,

Selection assumption

$$P(s_t = 1 | \boldsymbol{\eta}_t, \boldsymbol{\zeta}_t) = P(s_t = 1 | \boldsymbol{\eta}_t) \equiv \pi_t > 0$$

- No selection on measurement error ζ_t
- Allows s_t function of structural shocks η_t
- Assume π_t is known, for now ...

Simple IV moment condition

$$\mathbb{E}(\mathbf{z}_t(\mathbf{y}_t - \theta \mathbf{p}_t)) = \mathbb{E}(\mathbf{s}_t \mathbf{z}_t(\mathbf{y}_t - \theta \mathbf{p}_t) / \pi_t) = \mathbf{0}$$

We get **consistent** IV estimate

$$\hat{\theta}_{\mathcal{G}} = \frac{\sum_{t \in \mathcal{G}} \mathbf{z}_t y_t / \pi_t}{\sum_{t \in \mathcal{G}} \mathbf{z}_t p_t / \pi_t} \quad \text{but high variance: } \operatorname{var}(\hat{\theta}_{\mathcal{G}}) = O(n_{\mathcal{G}}^{-1})$$

 \Rightarrow uses only $\mathcal G$ periods !!!

Innovations

Construct prediction for $z_t = f(\varepsilon_t) + \zeta_t$ using observables w_t , e.g.

 $v_t = p_t - \beta y_t$ i.e. innovation in policy equation

- Generally v_t depends on u_t and is not exogenous instrument
- Therefore we refer to v_t as an **innovation**, not a shock

Leads to inconsistent IV estimate

$$\hat{\theta}_{\mathcal{N}}^* = \frac{\sum_{t \in \mathcal{N}} v_t y_t}{\sum_{t \in \mathcal{N}} v_t p_t} \quad \text{but low variance: } \operatorname{var}(\hat{\theta}_{\mathcal{N}}^*) = O(n^{-1})$$

 \Rightarrow uses all ${\cal N}$ periods, but not correct shocks !!!

Innovation powering

$$\hat{\theta}_{IP} = \underbrace{\frac{\sum_{t \in \mathcal{N}} \mathbf{v}_{t} \mathbf{y}_{t}}{\sum_{t \in \mathcal{N}} \mathbf{v}_{t} \mathbf{p}_{t}}}_{=\hat{\theta}_{\mathcal{N}}^{*}} + \underbrace{\frac{\sum_{t \in \mathcal{G}} \mathbf{z}_{t} \mathbf{y}_{t} / \pi_{t}}{\sum_{t \in \mathcal{G}} \mathbf{z}_{t} \mathbf{p}_{t} / \pi_{t}}}_{=\hat{\theta}_{\mathcal{G}}} - \underbrace{\frac{\sum_{t \in \mathcal{G}} \mathbf{v}_{t} \mathbf{y}_{t} / \pi_{t}}{\sum_{t \in \mathcal{G}} \mathbf{v}_{t} \mathbf{p}_{t} / \pi_{t}}}_{=\hat{\theta}_{\mathcal{G}}^{*}}$$

- $\hat{\theta}^*_{\mathcal{N}}$: IV estimate using \mathbf{v}_t on \mathcal{N}
- $\hat{\theta}_{\mathcal{G}}$: IV estimate using \mathbf{z}_t on \mathcal{G}
- $\hat{\theta}_{\mathcal{G}}^{*}$: IV estimate using \mathbf{v}_{t} on \mathcal{G}

$$\hat{\theta}_{IP} = \underbrace{\frac{\sum_{t \in \mathcal{G}} \mathbf{z}_{t} y_{t} / \pi_{t}}{\sum_{t \in \mathcal{G}} \mathbf{z}_{t} p_{t} / \pi_{t}}}_{=\hat{\theta}_{\mathcal{G}}} + \underbrace{\frac{\sum_{t \in \mathcal{N}} \mathbf{v}_{t} y_{t}}{\sum_{t \in \mathcal{N}} \mathbf{v}_{t} p_{t}}}_{=\hat{\theta}_{\mathcal{N}}^{*}} - \underbrace{\frac{\sum_{t \in \mathcal{G}} \mathbf{v}_{t} y_{t} / \pi_{t}}{\sum_{t \in \mathcal{G}} \mathbf{v}_{t} p_{t} / \pi_{t}}}_{=\hat{\theta}_{\mathcal{G}}^{*}} \xrightarrow{\mathbf{P}} \theta$$

- Simple IV estimate is consistent $\hat{\theta}_{\mathcal{G}} \xrightarrow{p} \theta$
- Biases of second and third term cancel:

$$\hat{\theta}_{\mathcal{N}}^{*} - \hat{\theta}_{\mathcal{G}}^{*} \xrightarrow{p} \mathbf{b} - \mathbf{b} = 0$$

Innovation powering: variance reduction

$$\hat{\theta}_{IP} = \underbrace{\frac{\sum_{t \in \mathcal{N}} \mathbf{v}_t \mathbf{y}_t}{\sum_{t \in \mathcal{N}} \mathbf{v}_t \mathbf{p}_t}}_{=\hat{\theta}_{\mathcal{N}}^*} + \underbrace{\frac{\sum_{t \in \mathcal{G}} \mathbf{z}_t \mathbf{y}_t / \pi_t}{\sum_{t \in \mathcal{G}} \mathbf{z}_t \mathbf{p}_t / \pi_t}}_{=\hat{\theta}_{\mathcal{G}}} - \underbrace{\frac{\sum_{t \in \mathcal{G}} \mathbf{v}_t \mathbf{y}_t / \pi_t}{\sum_{t \in \mathcal{G}} \mathbf{v}_t \mathbf{p}_t / \pi_t}}_{=\hat{\theta}_{\mathcal{G}}^*}$$

- + $\hat{\theta}^*_{\mathcal{N}}$ has low variance \rightarrow uses all observations
- but

$$\hat{\theta}_{\mathcal{G}} - \hat{\theta}_{\mathcal{G}}^* = \frac{\sum_{t \in \mathcal{G}} \mathbf{z}_t y_t / \pi_t}{\sum_{t \in \mathcal{G}} \mathbf{z}_t p_t / \pi_t} - \frac{\sum_{t \in \mathcal{G}} \mathbf{v}_t y_t / \pi_t}{\sum_{t \in \mathcal{G}} \mathbf{v}_t p_t / \pi_t}$$

can also have low variance if $z_t \approx v_t$, i.e. good predictions

Ensuring efficiency via method of moments

Underlying innovation powered IV are moment conditions:

$$\underbrace{\mathbb{E}(s_t z_t (y_t - \theta p_t) / \pi_t) = 0}_{\text{conventional IV}} \quad \text{and} \quad \underbrace{\mathbb{E}((1 - s_t / \pi_t) v_t (y_t - \theta p_t)) = 0}_{\text{innovation powering}}$$

combine moments optimally to ensure improvements over zeros IV

Can show estimator based on

$$\mathbb{E}(s_t \mathbf{z}_t (y_t - \theta p_t) / \pi_t + \gamma (1 - s_t / \pi_t) \mathbf{v}_t (y_t - \theta p_t)) = 0$$

with $\gamma = \mathbb{E}(\mathbf{v}_t^2)^{-1}\mathbb{E}(\mathbf{v}_t \mathbf{z}_t)$ has minimal variance if

$$\mathbb{E}(\mathbf{z}_t | \mathbf{w}_t) = \gamma \mathbf{v}_t$$

Summary : Innovation Powering

- 1. Construct innovation: $v_t = p_t \beta y_t$
- 2. IP Moment condition

$$E(\underbrace{s_t \mathbf{z}_t(y_t - \theta p_t) / \pi_t}_{\text{clean narrative}} + \gamma \underbrace{(1 - s_t / \pi_t) \mathbf{v}_t(y_t - \theta p_t)}_{\text{powerful time series}}) = 0$$

- 3. Build estimators/tests
 - GMM estimate
 - Anderson-Rubin test

 \Rightarrow 2. and 3. are similar in general dynamic environment

- (a) Illustrative static example
- (b) Innovation powering in a dynamic macro environment
- (c) Empirical evidence US monetary policy

Interested in θ_h in

$$y_{t+h} = heta_h p_t + eta_h' \mathbf{x}_t + u_{t+h}$$
 , for $t \in \mathcal{N}$

Project out controls

$$y_{t+h}^{\perp} = heta_h p_t^{\perp} + u_{t+h}^{\perp}$$
 , for $t \in \mathcal{N}$

Missing indicator

$$s_t = \begin{cases} 0 & \text{if } t \in \mathcal{B} = \{t \in \mathcal{N} : \mathbf{z_t} \text{ missing}\} \\ 1 & \text{if } t \in \mathcal{G} \end{cases}$$

Determine \mathbf{v}_t with common sense:

A What do structural shocks predict? e.g. ε_t monetary

 $i_{t+h} = \beta_h \varepsilon_t + \text{controls}_t + \text{error}_t$

reverse regression

 $\varepsilon_t = \gamma_h i_{t+h} + \text{controls}_t + \text{error}_t$

use **current/future** interest rate residuals, i.e. $\mathbf{v}_t = (i_t^{\perp}, \dots, i_{t+H}^{\perp})'$

In general

$$\mathbf{v}_t = (\mathbf{v}_{1t}, \dots, \mathbf{v}_{d_v t})', \quad \mathbf{v}_{it} \in \{\mathbf{w}_{t+h}^s - \operatorname{Proj}(\mathbf{w}_{t+h}^s | \mathbf{x}_t^s), h = 0, 1, \dots, H\}.$$

includes several time series models/identification strategies

Main Assumptions

1. Narrative:
$$\mathbb{E}(z_t^{\perp} u_{t+h}^{\perp}) = 0$$
 for all t

2. Missings: Let $\mathbf{d}_t^{\pi} = (y_{t+h}^{\perp}, p_t^{\perp}, \mathbf{v}_t')'$. We have

$$\pi_t \equiv P(s_t = 1 | \mathbf{d}_t^{\pi}) = P(s_t = 1 | \mathbf{d}_t^{\pi}, \mathbf{z}_t^{\perp})$$
 ,

and $\pi_t > 0$ with probability 1. Further,

$$\pi_t = \kappa(\mathbf{d}_t^{\pi}; \boldsymbol{\gamma}_{\pi})$$
 ,

where κ is known function differentiable wrt γ_{π}

3. Innovations: $\mathbb{E}(\mathbf{v}_t(\mathbf{z}_t^{\perp} - \gamma'_v \mathbf{v}_t)) = \mathbf{0}$ for all t

IP-GMM estimate

Let
$$\boldsymbol{\psi} = (\theta_h, \gamma_\pi, \gamma_v)$$
 and

$$g(\boldsymbol{\psi}; \mathbf{d}_t) = \begin{bmatrix} s_t \mathbf{z}_t^{\perp} (y_{t+h}^{\perp} - \theta_h p_t^{\perp}) / \pi_t + (1 - s_t / \pi_t) \gamma_v' \mathbf{v}_t (y_{t+h}^{\perp} - \theta_h p_t^{\perp}) \\ s_t \mathbf{v}_t (\mathbf{z}_t^{\perp} - \gamma_v' \mathbf{v}_t) / \pi_t \\ \kappa^{(1)} (\mathbf{d}_t^{\pi}; \gamma_\pi) (s_t - \pi_t) / (\pi_t (1 - \pi_t)) \end{bmatrix}$$

with $\kappa^{(1)}(\mathbf{d}^{\pi}_t;\gamma_{\pi}) = \partial \kappa(\mathbf{d}^{\pi}_t;\gamma_{\pi})/\partial \gamma_{\pi}$

$$(\hat{\theta}_{nh}^{\mathrm{IP}}, \hat{\gamma}_{\pi}, \hat{\gamma}_{\nu}) = \underset{\tilde{\psi} \in \Psi}{\operatorname{argmin}} \, \widehat{g}_{n}(\tilde{\psi})' \widehat{\Omega}_{n}^{-1}(\tilde{\psi}) \widehat{g}_{n}(\tilde{\psi})$$

with

- $\widehat{g}_n(\boldsymbol{\psi}) = \frac{1}{n} \sum_{t=1}^n g(\boldsymbol{\psi}; \mathbf{d}_t)$
- $\widehat{\Omega}_n(\psi)$ consistent HAC for $\Omega_n(\psi) = \operatorname{Var}(n^{-1/2}\sum_{t=1}^n g(\psi; \mathbf{d}_t))$

To get weak-IV robust confidence bands, we test

$$H_0: \theta_h = \bar{\theta}_h$$
 against $H_1: \theta_h \neq \bar{\theta}_h$

IP-AR test statistic

$$\mathrm{AR}_{n}^{\mathrm{IP}}(\bar{\theta}_{h}) = \min_{\tilde{\gamma} \in \Gamma} n \widehat{g}_{n}(\bar{\theta}_{h}, \tilde{\gamma})' \widehat{\Omega}_{n}^{-1}(\hat{\theta}_{h}, \tilde{\gamma}) \widehat{g}_{n}(\hat{\theta}_{h}, \tilde{\gamma}) ,$$

Proposition

Given assumptions 1-3 + regularity conditions we have that under H_0

$$\lim_{n \to \infty} P_{\psi}(\mathrm{AR}_{n}^{\mathrm{IP}}(\bar{\theta}_{h}) > c_{\chi^{2}(1),\alpha}) = \alpha$$

where $c_{\chi^2(1),\alpha}$ denotes the 1- α quantile of the $\chi^2(1)$ distribution

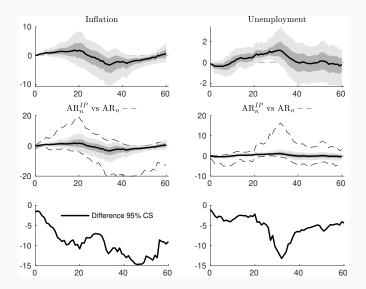
- (a) Illustrative static example
- (b) Innovation powering in a dynamic macro environment
- (c) Empirical evidence US monetary policy

Empirical study: US monetary policy

Revisit Romer & Romer (1989, 2023)

- Sample 1954M7-2016M12, n = 749, z_t as RR, but
 - set missing coincidental monetary-oil events
 - only zero if no meeting occurred
 - all else is missing ... implying 79% zeros
- Model $y_{t+h} = \theta_h p_t + \text{controls} + u_t$ with
 - y_{t+h} unemployment or CPI inflation
 - pt is fed funds rate
 - controls is constant + 12 lags of y_t , p_t
- Model selection probability: logit with $\mathbf{d}_t^{\pi} = (1, y_{t+h}^{\perp}, p_t^{\perp})$
- Innovations: $\mathbf{v_t} = (1, p_t^{\perp})'$

US Monetary Policy — Romer & Romer (1989,2023)



- Simulation study link
- Alternative narrative treatments link
- Alternative innovation models Link
- Alternative selection models link

Conclusion

- Narrative classification is difficult:
 - many zeros lead to inefficiency
 - and possible endogeneity bias
- We introduce Innovation Powered inference
 - combines narrative evidence with time series evidence
 - improve the power of conventional narrative methods
- Empirically we document
 - accurate dynamic causal effects of US monetary policy
 - despite many missing narrative shocks

- (a) Illustrative static example
- (b) Innovation powering in a dynamic macro environment
- (c) Empirical evidence US monetary policy
- (d) Appendix

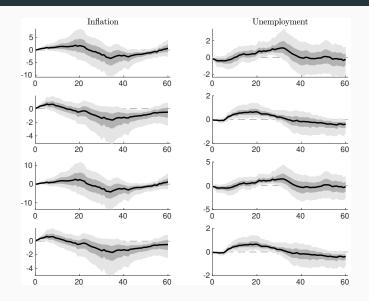
Consider $\mathbf{w}_t = (g_t, \pi_t, i_t)'$ and $\varepsilon_t = (\varepsilon_t^g, \varepsilon_t^\pi, \varepsilon_t^{mp})'$

- Fit SVAR(12) to US data from 1959M1-2007M4, short run id
- Simulate data from fitted SVAR for different n, n_G
- Compare
 - Zeroes IV
 - IP-GMM-(i): $\mathbf{v}_t = i_t^{\perp}$
 - IP-GMM-(ii): $\mathbf{v}_t = g_t^{\perp}$

Simulation results

Monthly Monetary VAR – $n = 400, p = 12$								
	π_t^1			π_t^2				
	h = 0	<i>h</i> = 20	<i>h</i> = 40	h = 0	<i>h</i> = 20	<i>h</i> = 40		
MAE								
$\hat{\theta}_{hn}^{\text{IV}}$	0.039	1.333	1.668	0.033	1.103	1.400		
$\hat{\theta}_{hn}^{\text{IP}} - (i)$	0.041	0.560	0.701	0.044	0.591	0.685		
$\hat{\theta}_{hn}^{\mathrm{IP}} - (ii)$	0.039	1.329	1.758	0.034	1.169	1.506		
ERP								
$AR_n(\bar{\theta}_h)$	0.041	0.048	0.049	0.042	0.047	0.052		
$\operatorname{AR}_{n}^{\operatorname{IP}}(\bar{\theta}_{h}) - (i)$	0.049	0.054	0.042	0.047	0.054	0.045		
$AR_n^{IP}(\bar{\theta}_h) - (ii)$	0.055	0.058	0.067	0.043	0.061	0.066		
wCS								
CS _{nh}	0.338	2.296	2.603	0.301	2.122	2.374		
$CS_{nh}^{IP} - (i)$	0.231	1.251	1.416	0.239	1.255	1.395		
$CS_{nh}^{IP} - (ii)$	0.257	1.977	2.267	0.227	1.811	2.045		

Alternative Narrative Treatments



Alternative Selection and Innovation models

