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1 Introduction

In recent years, the narrative identification approach has become a cornerstone of causal

identification in macroeconomics (Romer and Romer, 2023).1 In a nutshell, it consists in ex-

ploiting real time narrative records (e.g., newspapers, government reports, or policy meeting

transcripts) in order to identify exogenous movements in a variable of interest —construct

a narrative instrumental variable— that can be used to learn a causal effect of interest in

an IV regression.2 Intuitively, the idea is that the information contained in the narrative

accounts allow to overcome reverse causality and omitted variable biases and thereby more

firmly establish causal linkages.

The narrative approach has been a major step forward for identification in macro, but

it is constrained by an important limitation: instances of clear and indisputable exogenous

variations are rare, and the narrative instrument series contain many zeros. In the context of

monetary policy for instance, Romer and Romer (2023) isolate only 10 exogenous monetary

policy events in 70 years of monetary history, the rest are coded as zeros. More generally,

the typical narrative instrument features about 80% of zeros (see Table 1). While this

situation does not invalidate the approach — the instrument is still valid—, it can lead to

an efficiency problem, i.e., large and uninformative confidence bands and/or estimates that

are overly sensitive to specification choices. In other words, narrative instruments are often

weak.

In this work, we propose a method that can solve, or at least considerably alleviate,

the low power of the narrative identification approach, and we do so by leveraging another

popular, though arguably less convincing, identification approach in macro: the time series

identification approach pioneered by Sims (1980).

Our key innovation is to view identification in macro as a missing data problem —

instances of clear and indisputable shocks are rare in the narrative records, and most shocks

escape detection—. Instead of imputing zeros for the narrative instrument when the records

are inconclusive, we treat inconclusive dates as missing entries and use time series identifi-

cation —short-run, long-run, max share, etc... (e.g., Ramey, 2016)— to predict the missing

entries —the missing shocks— with time series innovations.3 By explicitly predicting the

1Popular narratively identified series include the oil shocks of Hamilton (1983, 1985), the monetary event
series of Romer and Romer (1989), the government spending news shocks of Ramey (2011), the tax shocks
of Romer and Romer (2010); Cloyne (2013), and the financial shocks of Reinhart and Rogoff (2009), Jalil
(2015) and Romer and Romer (2017), among many others.

2Going beyond the estimation of dynamic causal effects, narrative instruments can also be used to tackle
other important macro questions, such as the estimation of structural equations (Barnichon and Mesters,
2020; Lewis and Mertens, 2023) or counter-factual policy analyses (Barnichon and Mesters, 2023; McKay
and Wolf, 2023).

3Crucially, we will not assume that the time series identification scheme is correct. We therefore refer to
these time series predictions as innovations —not shocks—.
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Table 1: Zero Events in Narrative Studies

Paper # obs # zeros % zeros

Bi and Zubairy (2023) 590 464 79%
Carriere-Swallow, David and Leigh (2021)† 28 22 81%
Cloyne (2013) 248 94 38%
Cloyne, Dimsdale and Postel-Vinay (2023) 89 69 77%
Fieldhouse and Mertens (2023) 292 228 78%
Guajardo, Leigh and Pescatori (2014)† 32 22 68%
Gil et al. (2019) 120 87 72%
Hamilton (1985) 140 121 86%
Jalil (2015) 90 83 92%
Ramey and Shapiro (1998) 200 197 98%
Ramey (2011) 280 194 69%
Ramey and Zubairy (2018) 504 396 79%
Romer and Romer (2023) 852 842 99%
Romer and Romer (1989) 852 845 99%
Romer and Romer (2010) 252 207 82%
Romer and Romer (2017)† 91 81 88%
Rojas, Vegh and Vuletin (2022)† 106 86 81%

Average 80%

Notes: Number and percentage of zeros across different narrative series. Here † indicates that the reported

values are per unit averages from the panel data setting considered. We omit narrative accounts reported

in books, e.g. Reinhart and Rogoff (2009) and Alesina, Favero and Giavazzi (2019), as they include several

datasets. Inspection reveals that the fractions of zeros in such texts are not different from the ones reported.

missing data instead of systematically imputing zeros, we can more efficiently handle the

missing data and ultimately improve the efficiency of the narrative identification method.

The intuition underlying our approach is simple: by construction a time series identifica-

tion exploits the entire time series variation —variation over the entire sample period— and

thus has typically much higher power than a narrative method. At the same time however,

a time series identification method may not be entirely convincing and can lead to a biased

causal effect estimate. Fortunately, and this is key, the bias can be estimated from the narra-

tive identification approach: on the dates where the narrative records speak clearly, we can

estimate the bias of the time series identification approach and thus ultimately correct for

it. In other words, by combining the narrative and the time series identification approach,

it is possible to construct an estimator that is both consistent and efficient.

Specifically, we show that our “innovation-powered narrative estimator can be cast in

a GMM framework where the moment conditions include both the conventional moments
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based on the narrative instrument as well as the (bias corrected) innovation powered moment

conditions based on using the innovations as instruments. The additional moment condi-

tions do not have a first order effect on the estimator but reduce the asymptotic variance

of the baseline GMM estimator under mild assumptions and provide a way to merge the

credible, but limitedly available, narrative evidence with evidence from conventional time

series methods, where identification is often perceived as less credible, but the strategies can

be adopted for all time periods.

The GMM framework is completed by a model for the selection probability for observing

an informative narrative shock. This allows the arrival of narrative shocks to depend on the

state of the economy. Further, despite adding the innovation-powered moment conditions

the narrative instruments often remain weak instruments. Therefore our preferred inference

approach follows the weak instrument literature and we develop an innovation powered

version of the subset Anderson and Rubin (1949) statistic, see also Stock and Wright (2000)

and Andrews and Guggenberger (2019).

We illustrate innovation powering by revisiting the seminal work of Romer and Romer

(1989, 2023). We reevaluate the original narrative series and set dates where the narrative

evidence is uninformative to missing, leaving only the identified dates of Romer and Romer

(2023) and the periods where no policy meeting occurred as observed. We combine this series

with an innovation series that is constructed by assuming a conventional timing assumption

on the impact of monetary policy. Together this allows to implement our innovation powering

method and infer the effect of monetary policy on inflation and output. We find large

reductions in the length of the confidence intervals relative to using the current approach

which includes the many zeros in the instrument. These differences are robust to numerous

specification changes and various reasonable choices for the innovations.

Our paper relates to two strands of literature. First, an alternative approach for incorpo-

rating narrative evidence in time series models is presented in Ludvigson, Ma and Ng (2017)

and Antoĺın-Daz and Rubio-Ramı́rez (2018) who suggest restricting the shocks in a struc-

tural VAR to conform with the narrative evidence. A prior robust Bayesian version of this

idea, with frequentist guarantees, is developed in Giacomini, Kitagawa and Read (2023), see

also Giacomini, Kitagawa and Read (2022) for more discussion. Relative to this approach

innovation powered narrative inference addresses the following limitations (some were also

highlighted in Plagborg-Møller (2022)): (i) we do not require specifying an invertible SVAR

model nor a likelihood, (ii) we allow for narrative instruments that are contaminated with

measurement error and (iii) we account for selection and relax the assumption that narrative

events arrive at random.

Second, our approach is inspired by viewing identification in macro as a missing data

problem — clearly interpretable shocks are often missing from the historical narrative ac-
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counts —. As such our methodology builds on the missing data literature (e.g. Little and

Rubin, 2020), and most closely on the augmented inverse probability weighted (AIPW) es-

timators developed in Robins, Rotnitzky and Zhao (1994), see also Robins and Rotnitzky

(1995), Rotnitzky, Robins and Scharfstein (1998), Bang and Robins (2005), Wooldridge

(2007), Kang and Schafer (2007), Rotnitzky et al. (2012) and Jing Qin and Leung (2017)

for numerous refinements of this approach. More generally, such estimators are widely used

for estimating treatment effects in the causal inference literature. The main difference in

our setting is that we work in an aggregate macro time series setting where instruments are

often weak allowing us to combine the main idea from the AIPW estimator with time series

prediction routines and weak identification robust methods (e.g. Andrews, Stock and Sun,

2019). Further, in our setting the instrumental variable is missing and not the explanatory

or outcome variable, which relaxes the implications of the missing-at-random assumption,

see also Chaudhuri and Guilkey (2016); Abrevaya and Donald (2017).

The remainder of this paper is organized as follows. The next section presents a simple

illustrative example that highlights the main ideas. Section 3 presents the general dynamic

framework and Section 4 discusses the empirical results. Section 5 concludes.

2 Motivating example

We informally introduce innovation powered narrative inference by means of a simple static

example where the macro environment is given by the simultaneous equations model(
pt

yt

)
︸ ︷︷ ︸

=wt

=

(
1 ρ

θ 1

)
︸ ︷︷ ︸

=A

(
εt

ut

)
︸ ︷︷ ︸

=ηt

, for t ∈ N , (1)

with wt = (yt, pt)
′ the observed macro variables, ηt = (εt, ut)

′ the structural shocks and

the non-singular matrix A includes the structural parameters θ and ρ. We emphasize that

the existence of an invertible SVAR(0) model is only imposed for exposition purposes and

in the main treatment no such underlying model is defined. The shocks are assumed to be

serially and mutually independent with mean zero and diagonal variance matrix D. Time

periods are indexed by t and the available periods are collected in the set N with n = |N |.
We are interested in learning θ: the causal effect of εt on yt, and note that without further

assumptions θ is not point identified.

For expositional purposes, we can think of yt as the output gap and pt as the central

bank policy rate and εt as a monetary shock.
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The narrative identification approach

The narrative identification approach consists in using narrative accounts (official records,

newspaper articles, speeches, etc..) in order to isolate dates (events) with uncontroversial

movements in εt. Formally, we can view the narrative identification approach as a function

f(·) that constructs a narrative instrument time series zt defined as

zt = f(εt) + ζt , t ∈ N , (2)

where f(εt) is a function of the shock of interest (εt), and ζt captures any additional mea-

surement error, which is independent from the structural shocks.

In its current practice, the narrative approach f(·) constructs zt as follows: (i) on dates

when the narrative account is sufficiently informative, construct an estimate for εt,
4, (ii)

on all other dates, i.e., when the narrative account is inconclusive, set zt to zero. Together,

these two steps ensure that zt is a valid instrument for θ: E(ztpt) 6= 0 and E(zt(yt−ptθ)) = 0,

and we can estimate θ from the regression

yt = θpt + et

using zt as instrument variable for pt.

The narrative approach has been a major step forward for identification in macro, but

it is constrained by an important limitation: instances of clear and indisputable εt shocks

are rare. This has a number of implications. First, the narrative records are inconclusive in

most cases, and most values of zt end up coded as zeroes. In the context of monetary policy

for instance, Romer and Romer (2023) isolate 10 exogenous monetary policy events, such

that 99 percent of the values of zt are coded as zeroes. While this does not invalidate using

zt as an instrumental variable, this means that researchers exploit only a small share of the

variance of pt in order to infer θ. This can lead to an efficiency problem, i.e., large error

bands.

Second, with few non-zero entries, a narrative instrument may suffer from finite sample

confounding, i.e., an unlucky finite sample correlation between some correctly identified

subset of shocks εt and other structural shocks. For instance, Hoover and Perez (1994)

argue that the few uncontroversial monetary shocks of Romer and Romer (1989) coincide

(by chance) with oil shocks, see also the discussion in Nakamura and Steinsson (2018).

Third, even with extensive documentation, researchers engaged in narrative identification

must often use judgment calls, which benefit from the benefit of hindsight. This could lead

4Should pt be some aggregate variable like taxes or government spending, one can construct an estimate
for a shock to a sub-component of pt, for instance individual income tax (Mertens and Ravn, 2013) or defense
spending (Ramey and Zubairy, 2018).
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to subconscious endogeneity biases, see for instance the critique of the Friedman-Schwartz

dates in Romer and Romer (1989) and the discussion in Romer and Romer (2023).

Together, low power and endogeneity biases can compound each other: a researcher

willing to only entertain uncontroversial dates without possible confounders or judgment

calls can be left with very few exogenous variations, leading to even larger share of zeroes

and more efficiency problems.

From zeros to missings

In this paper, we propose a method to improve the efficiency of the narrative approach. Our

key starting idea is to view identification in macro as a missing data problem, which will

ultimately allow us to improve inference by more efficiently handling the missing data —the

missing shocks—, than imputing zeroes.

Formally, we introduce the notation

st =

{
0 if t ∈ B = {t ∈ N : zt missing}
1 if t ∈ G

, (3)

where on the “bad” periods B the entry for zt is treated as missing and on the “good” periods

G the value for zt is regarded as informative and credible. As such the indicator st records

when the informative and reliable narrative events occur.5

Importantly, we will not assume that missing/non-missing entries arrive at random, and

we explicitly allow the event of observing zt to depend on the structural shocks. Formally,

we let πt denote the probability of narratively detecting a shock εt and assume that

πt = P (st = 1|ηt, ζt) = P (st = 1|ηt) . (4)

This rules out that zt is set to missing based on the measurement error ζt. At the same

time it allows st to be a function of all structural shocks in the economy. For instance

it is likely easier to identify exogenous movements in the central bank policy rate after

times of persistently high inflation, such as the Volcker nomination by President Carter or

the beginning of the post-COVID tightening cycle (Romer and Romer, 2023). For clarity

of exposition, we treat the probability of detecting an εt as a given function of structural

shock, and we postpone the estimation of a model for πt to the general treatment.

With missing entries for zt, we can still estimate θ consistently using the narrative in-

5We have that G ∪ B = N , G ∩ B = ∅, nG = |G| and nB = |B|. As Table 1 highlights, in practice we have
that nG � nB.
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strument zt from the moment conditions moment condition becomes

E(zt(yt − θpt)) = E(stzt(yt − θpt)/πt) = 0 , and E(ztpt) 6= 0 . (5)

where the first equality follows directly from the imposed assumption on the missing instru-

ment mechanism (4). From this the simple IV estimate is computed as

θ̂G =

∑
t∈N stztyt/πt∑
t∈N stztpt/πt

=

∑
t∈G ztyt/πt∑
t∈G ztpt/πt

, (6)

which is a conventional IV estimate, except perhaps for the weighting by the selection prob-

abilities. When the narrative events arrive at random (i.e. πt = π) the IV estimate (6) is

standard. Including additional periods where zt = 0 does not change the estimate.

However, and this is low-efficiency problem inherent to the narrative approach, the vari-

ance of θ̂G will typically be large as only nG observations are used to construct the estimate,

i.e. the conventional variance of θ̂G is of order O(n−1
G ). The objective of innovation pow-

ered inference is to reduce the variance of the simple IV estimate without introducing any

inconsistencies.

From missings to innovations

From the perspective of the data imputation literature, imputing zeros for all missing shocks

is not the most efficient approach to address the missing data problem, see e.g., Little and

Rubin (2020) for the limitations of mean imputation. Instead, we propose to use the time

series identification approach to predict the missing shocks.

By filling the missing values with predictions about the likely values of εt instead of

systematically imputing zeros, we can improve estimation efficiency for θ inference. Impor-

tantly, while the time series identification may not be correct and thus introduce a bias if

used in isolation, we will see that it is possible to combine the narrative and time series

identification methods to construct an estimator that is both consistent and more efficient

than the traditional narrative estimator based on zt alone.

To illustrate our approach, consider a simple prediction model for the structural shock

εt given by

vt = pt − βyt , for t ∈ N , (7)

where β is considered fixed for simplicity. We can think about vt as a prediction for εt that

is obtained by regressing pt on the observable macro variables and taking the residual.

In our general treatment below such predictions are obtained from identified time series

models and make use of popular identification schemes such as short-run, long-run or max
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share schemes as typically adopted in VAR or local projection models (e.g., Plagborg-Møller

and Wolf, 2019). The example in equation (7) can be viewed as a special case of a short run

identification. We refer to vt as an innovation to make clear that we do not require the time

series identification to be correct. Indeed vt in (7) generally depends on ut and not only on

the shock of interest εt, making it an invalid instrument for identifying the causal effect of

εt.

We define two IV estimates based on the innovation vt:

θ̂∗N =

∑
t∈N vtyt∑
t∈N vtpt

and θ̂∗G =

∑
t∈G vtyt/πt∑
t∈G vtpt/πt

. (8)

These two estimators have two features. First, the estimators θ̂∗N and θ̂∗G will in general

not be consistent and lead to biased estimates of θ. However, and this is key, the two

estimators will have the same bias. By exploiting this property, we can build a consistent

estimator.

Second, the first estimator uses the entire sample period, so that its variance can be much

smaller than the variance of the baseline narrative estimator θ̂G in (6), typically an order of

magnitude smaller for the typical narrative instruments containing about 80 percent missing

entries.

Innovation-Powered IV

The key idea in this paper is to combine the best features of the estimators above; combining

the consistency of the narrative instrument with the efficiency of the time series identification.

To see that, consider the baseline Innovation Powered Instrumental Variable (IPIV)

estimator

θ̂ = θ̂∗N + θ̂G − θ̂∗G (9)

The innovation powered estimate starts from the inconsistent but precise estimate θ̂∗N and

applies the bias correction θ̂G − θ̂∗G to ensure that θ̂ is consistent.

Further, while the variance of the IPIV estimator is dominated by the bias correction

term θ̂G − θ̂∗G this variance can be smaller when compared to the variance of the simple IV

estimator θ̂G whenever the innovations vt are sufficiently accurate for the narrative series

zt. In such case the variance of the IPIV estimate will be smaller when compared to the

variance of the simple IV estimate. To see this in a simple way, suppose for a moment that

vt = zt for t ∈ G, e.g. the narrative identification coincides perfectly with say a recursive

identification strategy, then the bias correction θ̂G − θ̂∗G cancels and the variance of the IPIV

estimator coincides with the low variance of the full sample estimator θ̂N .

The baseline IPIV estimate intuitively illustrates how we can boost the power of the
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narrative instrument approach using the time series identification method. In practice, we

do not advocate using the estimator (9), as it is not the most efficient way to combine

narrative and time series identification. To see this note that (9) is determined by three

moment conditions: (i) E(stzt(yt− θpt)/πt) = 0 yielding θ̂G, (ii) E(vt(yt− θ∗pt)) = 0 yielding

θ̂∗N and (iii) E(stvt(yt−θ∗pt))/πt = 0 yielding θ̂∗G. Each of the corresponding sample moment

conditions is solved separately and given equal weight in (9). We can improve efficiency by

(a) solving the moment conditions jointly and (b) optimally weighting them. We note that

conditions (ii) and (iii) must receive equal weight as otherwise the bias term does not cancel

out. This leaves us to choose the weight on (ii)-(iii) vs (i).

Specifically, we may freely choose γ̃ in

E((stzt(yt − θpt)/πt)︸ ︷︷ ︸
baseline IV

+γ̃ E((1− st/πt)vt(yt − θpt))︸ ︷︷ ︸
innovation powering

= 0 , (10)

which is a weighted average of the baseline moment conditions noting that the innovation

powering term is the sum of (ii)-(iii). Our objective is to choose γ̃ such that the resulting

moment estimate for θ has low variance. In line with the intuition presented in the previous

section we propose to choose γ̃ such that vt explains the most variation in zt.

To see under which conditions this is an efficient choice consider the estimator θ̂(γ̃) that

is defined by solving the sample moments for an arbitrary fixed γ̃:

1

n

n∑
t=1

stzt(yt − θ̂(γ̃)pt)/πt + γ̃(1− st/πt)vt(yt − θ̂(γ̃)pt) = 0 .

The asymptotic variance of θ̂(γ̃) is of the form Avar(θ̂(γ̃)) = V (γ̃)/G2, where G is the

expected gradient that does not depend on γ̃ and V (γ̃) can be written as

V (γ̃) = Var[zt(yt − θpt)− (1− st/πt)(zt − vtγ̃)(yt − θpt)]

= Var[zt(yt − θpt)] + E[E{(zt − vtγ̃)2|wt}(yt − θpt)2(1− πt)/πt] .

To minimize V (γ̃) with respect to γ̃ we need to solve a problem of the form minµ E{(zt −
µ)2|wt} for which the solution is µ̂ = E(zt|wt). In our work we propose to approximate this

conditional expectation by γvt, where γ is the linear projection coefficient of projecting zt on

vt, i.e. γ = E(v2
t )
−1E(vtzt). It follows that choosing such γ in (10) minimizes the asymptotic

variance of θ̂(γ̃) whenever E(zt|wt) = γvt.

Combining our preferred moment conditions take the form

Eg(dt, ψ) = 0 , g(dt, ψ) =

[
stzt(yt − θpt)/πt + γ(1− st/πt)vt(yt − θpt)
stvt(zt − vtγ)/πt

]
, (11)
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where dt = (yt, pt, zt, st, vt)
′ collects all data and the second moment condition identifies

γ as the desired projection estimate. Based on these moments we can compute innovation

powered GMM estimates and conduct weak identification robust inference using conventional

methods (e.g. Hall, 2005; Andrews, Stock and Sun, 2019). The advantage of such moment

estimates over the baseline IPIV estimate is that the correlation between the narrative

instruments and the innovations is maximized and hence the variance of the estimate for θ

is minimized.

3 General framework

We discuss innovation powered inference for a general macro environment where we are

interested in estimating a dynamic causal effect using a narrative series as instrument.

3.1 Model and assumptions

Let wt = (yt, pt, w3t, . . . , wKt)
′ denote a vector of macro variables that includes, among

others, the outcome variable yt and the explanatory variable of interest pt. The object of

interest is the dynamic causal effect θh ∈ Θ ⊂ R defined in the linear model

yt+h = θhpt + β′hxt + ut+h , for t ∈ N , (12)

where xt denotes a vector of pre-determined control variables whose effect is captured by

βh. Typically, xt includes a constant and some lags of wt. Equation (12) can be derived

from an underlying structural vector moving average model (e.g. Stock and Watson, 2018),

but such additional structure is not necessary here. Similar as above we identify θh using

the narrative instrument zt which is treated as missing whenever it takes value zero or when

there is a suspicion that zt depends on ut+h. The indicator for this event is given by

st = 1(t ∈ G) = 1(zt observed) , (13)

where G ⊂ N are the good periods.

For exposition purposes we start by projecting out the control variables to obtain

y⊥t+h = θhp
⊥
t + u⊥t+h , for t ∈ N , (14)

where l⊥t+j = lt+j − Proj(lt+j|xt) for l = y, p, u, z and j = 0, 1, 2, . . ., with Proj(a|b) denoting

the linear projection of a on b. Throughout we treat the projected variables as observed,

noting that no changes occur when replacing the population projection by its empirical
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counterpart. The narrative instrument z⊥t is assumed to satisfy the following exogeneity

assumption.

Assumption 1. E(z⊥t u
⊥
t+h) = 0 for all t with u⊥t+h as defined in (14).

This imposes that the narrative instrument is uncorrelated with the error term after

projecting out the control variables (e.g. Stock and Watson, 2018).

Let vt denote the vector of innovations used for innovation powering (a formal definition

is given below). The assumption for the mechanism that generated the (un)informative

narrative events is as follows.

Assumption 2. Let dπt = (y⊥t+h, p
⊥
t ,v

′
t)
′. We have

π(dπt ) ≡ P (st = 1|dπt ) = P (st = 1|dπt , zt) ,

and π(dπt ) > 0 with probability 1. Further,

π(dπt ) = κ(dπt ;γπ) , (15)

where κ is some known function that is differentiable with respect to γπ ∈ Γπ ⊂ Rdγ .

In contrast to the simple example we state the missing assumption directly in terms of

the observable variables and not in terms of the underlying structural shocks. Nonetheless,

the condition has the same implications: the probability of having a good narrative period

is allowed to depend on the endogenous variables and only arrives at random conditional

on these variables. Further, we assume a parametric model for the selection probabilities,

where the most common modeling choice would be to take κ(dπt ;γπ) as a logit function.6

Innovations from time series models

Next, we discuss the construction of the innovations vt ∈ Rdv . The requirements are that vt

depends only on observable variables and is available for all time periods. Further, ideally

the innovations should be good predictors for z⊥t . While this is inherently an application

specific task, there is a general route that follows naturally from the macro literature.

Specifically, since z⊥t usually aims to capture a specific type of structural shock, say εt

denoting e.g. a monetary, fiscal or oil shock, we can use virtually all structural time series

models to obtain innovations. From fully fledged DSGE to structural VARs with short run

restrictions any of these can provide useful proxies for the structural shock of interest.

6In principal, non-parametric methods can also be adopted for estimating π(dπt ). However, for most
narrative studies the sample size is prohibitively small to do so in a reliable manner.
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We will not discuss all possible options but confine ourselves to a class of local projec-

tion and VAR models where the identifying restrictions can be implemented using control

variables, see Plagborg-Møller and Wolf (2021) for examples. Specifically, consider the proto-

typical macro regression ws
t+h = δhεt+ β̃

s′

h xst +ust+h where ws
t+h and xst are selected outcome

and control variables. Usually, the literature provides guidance on which variables are af-

fected by the shock at which horizons. Further, since shocks are not observed a wealth of

time series identification strategies have been proposed to identify δh, several of these can

be implemented by selecting xst appropriately. We propose to exploit these strategies and

reverse the regression to obtain good predictions for εt, i.e. we consider

εt = γs
′

h ws
t+h + βs

′

h xst + ust+h ,

where ust+h is the error error term that is uncorrelated (by construction) with (ws
t+h,x

s
t).

Note that this reverse model is a projection model that has no causal interpretation and the

coefficients γsh are the best linear projection coefficients. The innovations vt are taken as the

predictors from this model after projecting out the controls. By construction these should

be good predictors for εt.

In practice, we would like to exploit predictors from different horizons, e.g. for monetary

policy the contemporaneous interest rate may be a good predictor for a monetary policy

shock, but inflation eight quarters ahead may also be a good predictor. To accommodate

including both we define

vt = (v1t, . . . , vdvt)
′ , with vit ∈ {ws

t+h − Proj(ws
t+h|xst), h = 0, 1, . . . , H} . (16)

We note that the theory places no restrictions on the specific innovations needed. In our

empirical work below we always consider innovations from the class (16), but this is motivated

by good practical performance not theoretical necessity.

The innovations model is formalized in the following (non-structural) assumption.

Assumption 3. E(vt(z
⊥
t − γ ′vvt)) = 0 for all t with vt as defined in (16).

The assumption defines γv as the prediction coefficients that minimize the mean squared

error for explaining z⊥t ; our narrative proxy for εt. The innovation parameters will be

estimated jointly with the other unknown parameters that we collect in ψ = (θh,γ
′)′ ∈ Ψ =

Θ× Γ with γ = (γ ′π,γ
′
v)
′ ∈ Γ = Γπ × Γv.

13



3.2 Innovation powered inference

We discuss innovation powered inference for θh as defined in (14) subject to assumptions

1-3. The required moment conditions are collected in

Eg(ψ; dt) = 0 ,

with observations dt = (dπ
′
t , st, z

⊥
t )′ and

g(ψ; dt) =

 stz
⊥
t (y⊥t+h − θhp⊥t )/κ(dπt ;γπ) + (1− st/κ(dπt ;γπ))γ ′vvt(y

⊥
t+h − θhp⊥t )

stvt(z
⊥
t − γ ′vvt)/κ(dπt ;γπ)

κ(1)(dπt ;γπ)(st − κ(dπt ;γπ))/(κ(dπt ;γπ)(1− κ(dπt ;γπ)))

 ∈ Rdg ,

(17)

with κ(1)(dπt ; γπ) = ∂κ(dπt ; γπ)/∂γπ. The moments can be intuitively separated into two

parts. The first and second lines are exactly as in the simple example (see equation (11)), ex-

cept that the innovations are now vector valued and the selection probability is parametrized,

i.e. πt = κ(dπt ;γπ). The third line is new and can be recognized as the score function for

the binary response model based on assumption 2. These moments allow to identify the

parameters γπ of the selection model.

To obtain parameter estimates and confidence sets we first define the sample average

ĝn(ψ) = 1
n

∑n
t=1 g(ψ; dt) and we let Ω̂n(ψ) denote any consistent estimate for Ωn(ψ) =

Var(n−1/2
∑n

t=1 g(ψ; dt)), which is usually obtained use some HAC type estimator (e.g.

Newey and West, 1987; Andrews, 1991).

Innovation powered GMM estimation

Given the moment conditions we adopt conventional GMM methods for parameter estima-

tion. Our preferred estimator, which aligns with our approach for constructing confidence

bands, is the continuous updating GMM estimator of Hansen, Heaton and Yaron (1996) here

defined as

(θ̂IP
nh, γ̂

′)′ = ψ̂ = argmin
ψ̃∈Ψ

ĝn(ψ̃)′Ω̂−1
n (ψ̃)ĝn(ψ̃) (18)

where θ̂IP
nh is the innovation powered dynamic causal effect estimate. Under the assumption

of strong instruments and some regularity conditions this estimate is consistent and asymp-

totically normal for θh. In practice, strong instrument assumptions are questionable for

macro applications and our preferred inference approach will be based on weak instrument

robust methods.
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Innovation powered weak identification robust confidence bands

We discuss how to construct weak identification robust confidence bands for θh by inverting

hypothesis tests for

H0 : θh = θ̄h against H1 : θh 6= θ̄h , (19)

for some constant θ̄h. Our preferred test statistic is an innovation powered version of the

subvector Anderson and Rubin (1949) statistic which was developed for GMM by Stock and

Wright (2000).

The IP-AR test statistic is given by

ARIP
n (θ̄h) = min

γ̃∈Γ
nĝn(θ̄h, γ̃)′Ω̂−1

n (θ̂h, γ̃)ĝn(θ̂h, γ̃) , (20)

where θh is fixed at its null value and the minimum over the nuisance parameters γ is

computed numerically. Under mild regularity conditions that we formalize in Assumption 4

in the appendix we have the following result.

Proposition 1. Given assumptions 1-4 we have that under H0

lim
n→∞

Pψ(ARIP
n (θ̄h) > cχ2(1),α) = α

where cχ2(1),α denotes the 1-α quantile of the chi-squared distribution with 1 degree of freedom.

The proof is collected in the appendix. The proposition shows that the null rejection

probability is equal to the nominal level of the test α when we reject the null using critical

values from the chi-squared one distribution. This result can be used to define the following

confidence set for θh.

CSIP
nh = {θh ∈ Θ : ARIP

n (ψ̄n) ≤ cχ2(1),α} . (21)

In practice, we compute CSIP
nh by searching over the parameter space Θ and collecting all

values for which the IP-AR test statistic takes values below cχ2(1).

3.3 Simulation study

We summarize the results from a simulation study that we conducted to evaluate the gains

in efficiency from innovation powering.

Simulation design. We simulate data from a conventional vector autoregressive model for

monetary policy resembling either a quarterly or monthly design. For the quarterly design

we fit the model with 4 lags to GDP growth gt, PCE inflation πt and the short term interest

rate it over the 1959Q1-2007Q2 period using US data. For the monthly model we consider
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the same variables but now replace GDP growth by the unemployment rate and use 12 lags.

For both models the structural shocks are denoted by εt = (εgt , ε
π
t , ε

mp
t )′, where εmpt is the

monetary policy shock. This shock is identified by imposing a lower triangular assumption

on the impact matrix of the SVAR model. Importantly, when implementing the innovation

powering methods we will not make use of this short run restriction.

Given the fitted models we simulate time series of length n = 200 (quarterly model)

or n = 400 (monthly model), and we are interested in estimating θh in model (12) where

yt+h = gt+h, pt = it and xt includes lags of gt, πt, it where the number of lags is chosen using

the Akaike information criteria. The narrative series is observed with probability πt which is

modeled by using a logit specification and the value is equal to the monetary policy shock,

possibly contaminated by measurement error.

zt =

{
εmpt + ζt w.p. πt

missing w.p. 1− πt
,

where we consider two different choices for πt:

π1
t = 0.2 , and π2

t =
exp(γ1π + γ2π|εmpt |)

1 + exp(γ1π + γ2π|εmpt |)
,

where the second choice implies that the narrative is more likely to be observable when the

monetary policy shock is large.

Importantly the selection model that we implement is always based on fitting a logit

model using observables (1, y⊥t+h, p
⊥
t ,v

′
t)
′. As such the selection model is either not parsimo-

nious (for π1
t ) or only an approximation of the true selection model (for π2

t ). The parameters

for generating π2
t are chosen to ensure that on approximately 80% of the time periods zt is

missing: γπ = (−2, 0.5)′. The measurement error ζt is iid normal with variance calibrated

such that the effective F -statistic of the first stage is equal to 10.

To implement the innovation powering method we need to choose which innovations vt

are used. While ad hoc choices are in principle fine choosing the innovations in a smart way

can reduce the mse of the IP estimates. To illustrate we consider the following two choices:

(i) vt = i⊥t and (ii) vt = g⊥t . Intuitively, (i) which uses interest rate innovations is more

promising as the monetary policy shock is typically more pronounced in these series. In

contrast, (ii) uses GDP innovations and variance decompositions show that monetary policy

explains little variation in output. Note that neither choice makes use of the lower triangular

ordering in the SVAR used for simulating the data.

We compare the mean absolute error (MAE) of θ̂IP
h to the conventional narrative IV

estimator that uses zt with the missing values replaced by zeros as instrument.7 We note

7Due to the relatively weak instruments in the simulation design some outliers in the parameter estimates
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that (i) zt with imputed zeros remains a valid instrument as it is only a function of εmpt and

independent measurement error, and (ii) even though zt includes many zeros, after projecting

out xt these zeros are replaced by linear combinations of the lagged variables.

Further, we compare the innovation powered confidence sets CSIP
nh to the conventional

weak IV robust confidence set that do not use innovation powering. Specifically, since we

have a single instrument for a single endogenous variable we use the conventional Anderson

and Rubin (1949) statistic which is efficient in this setting. For each model specification we

generate M = 5000 data sets. We report the mean squared error estimate, the empirical

size of the test under H0 and the average confidence set length.

Results. The results are shown in Table 2: the top panel shows the results for the quarterly

model whereas the bottom panel shows the monthly model results.

For both specifications the mean absolute error estimates indicate that the innovation

powered GMM estimates that use the residuals of the contemporaneous interest rate as

innovations vt = i⊥t are nearly always more accurate when compared to the conventional IV

estimates. Moreover, the gains in accuracy can be very large, often reducing the errors two

to three times.

In contrast when using vt = g⊥t (or vt = u⊥t in the monthly model) we find that innovation

powering generally leads to a small increase in the MAE relative to the conventional IV

estimate. This finding corresponds to our intuition as g⊥t does not depend on the monetary

policy shock and effectively only introduces noise in the estimation routine. The take away

point is that a smart choice for the innovations is important for the success of innovation

powering.

When comparing the mean absolute errors across the different selection models we find

little differences. The mild mis-specification for π2
t does not seem to materially affect the

results.

The empirical rejection frequencies of the different Anderson-Rubin tests are always close

to the nominal level of the test. This holds regardless of which innovations are chosen and

reassures us that with on average 80% of instruments missing the IP-AR test still has a

reliable rejection probability.

The key advantage of innovation powering is revealed when looking at the CSIP
nh confi-

dence bands. When using vt = i⊥t as innovations the confidence bands are typically 2-3

times smaller when compared to the conventional AR-based confidence bands that include

zeros instead of missing values for the instruments. This finding holds regardless of the

specification considered.

occur (notably in the conventional IV estimator). This makes the comparison based on mean squared error
somewhat distorted.
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4 Empirical study: US monetary policy

In this section we revisit the seminal work of Romer and Romer (1989, 2023) which studies

the effects of monetary policy. This is an inherently difficult task as omitted variable bias is

a central concern: both monetary policy actions and macro outcome variables, e.g. inflation

and unemployment, are likely to be influenced by other variables, e.g. expectations, fiscal

policy, financial stress and so on.

To identify the effect of monetary policy actions Romer and Romer (1989) conducted

a narrative study that identified periods where the Federal Reserve changed the interest

rate for reasons unrelated to current or prospective real economic activity. These periods

are labeled as policy “shocks” as they are not driven by output or other factors affecting

output. The study was updated in Romer and Romer (2023) resulting in a binary series

zt that contains ten monetary events, i.e. ten ones, that are associated with periods in

which exogenous changes in monetary policy occurred. This series is subsequently used in

a autoregressive distributed lag model Romer and Romer (1989), or local projection Romer

and Romer (2023), to capture the effects of monetary policy on output and prices.

In our work we will follow recommendations in Stock and Watson (2018) and use zt as an

instrumental variable to identify exogenous variation in the interest rate it. This approach

avoids possible bias from measurement error and quantifies the effects of monetary policy in

terms of policy relevant interest rate changes. As the interest rate we use the Fed Funds rate

which implies that our monthly data sample starts in 1954M7 and is taken until 2016M12.

This has the consequence that we do not include the October 1947 monetary shock, but this

omission does not lead to much changes.8

The model that we consider, i.e. equation (12), is completed by selecting either inflation

or unemployment as the dependent variable yt+h, setting pt = it and defining the controls xt

as a constant and twelve lags of pt and yt.

To implement the innovation powered narrative method we treat the uninformative pe-

riods of the Romer and Romer (2023) narrative series as missing. Specifically, our baseline

specification uses the original series, but sets all zero months to missing except for the months

where there was no FOMC meeting. For these months it seems reasonable to assume that

there was no monetary policy news and hence zt = 0 is an informative value. This gives

us nG = 156 good periods and nB = 593, which implies that 79% of values are treated as

missing. Robustness to alternative treatments of the narrative information are presented

below.

Our baseline specification uses the contemporaneous interest rate as the innovation vt

after projecting out xt. This simple approach is intuitive as it amounts to using the residual

8One could argue that dropping the October 1947 shock may be preferable as this shock closely coincides
with the December 1947 oil shock of Hamilton (1985), see Hoover and Perez (1994).
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from a simple backward looking Taylor rule as the predictor for the monetary policy shocks.

Note that this implies that vt = p⊥t and the projected interest rate is used twice: once as the

endogenous variable in the IV model and once as the innovation, which implies that on the

missing periods we are simply using least squares and we correct for the endogeneity bias

using the innovation powered inference method.

The baseline model is completed by the selection model for which we use the same

specification as in the simulation study: a logit model for st with explanatory variables

(1, y⊥t+h,vt)
′. The robustness of the choices for the innovations and selection model are

investigated below.

Main results

Figure 1 shows the results for the baseline specification; the left panels shows the results for

inflation as measured by normalized year-on-year CPI differences and the right panels shows

the results for unemployment. The top row show the point estimates θ̂IP
hn from equation

(18) together with the 67% and 95% confidence sets CSIP
nh computed as in (21). The middle

row compares the CSIP
nh confidence sets to the conventional Anderson and Rubin (1949)

confidence sets that use the original narrative series as an instrument. The bottom row,

plots the differences in the length of the confidence sets.

Qualitatively our findings are similar as in Romer and Romer (2023): the inflation re-

sponse shows a small price puzzle but becomes negative after 24 months whereas the unem-

ployment response is positive and peaks after approximately 30 months.

Crucially however, when we compare the innovation powered confidence sets to conven-

tional weak instrument robust confidence sets we find that innovation powering reduces the

length width of the confidence set by a large amount. For inflation conventional confidence

range between -20 and +20, whereas the innovation powered sets are between -10 and 10.

Similar differences are found for the unemployment response. We conclude that without

innovation powering little can be learned from the Romer and Romer (2023) series when

taking weak identification serious, yet innovation powering largely restores the identification

power of the narrative series.

Alternative usage of the narrative instrument

We consider various alternative specifications for the narrative instrument. First, as a varia-

tion on baseline approach we consider replacing the occurrences of zt = 1 by residuals from a

standard Taylor rule regression that includes inflation, unemployment and the lags of these

variables. In this set-up innovation powering allows the researcher to use a standard short

run restriction, but only believe its validity on the narrative dates.
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The second row of Figure 2 shows the innovation powered dynamic causal effects for this

specification (the first row repeats the baseline specification). We find minor differences in

terms of the shape of the responses: the unemployment response peaks slightly earlier and the

inflation response becomes negative earlier and for a longer period. The most notable change

is found in the confidence bands; when using the more informative residuals as instruments

the confidence bands shrink considerably.

Second, Hoover and Perez (1994) show that some of the Romer and Romer (1989) dates

coincide with the oil shocks identified by Hamilton (1985). To investigate the consequences

of such co-occurrence we consider an additional specification where the coinciding October

1979 date is also set to missing. Recall that we already removed the October 1947 dates

which is also close to the oil shock of Hamilton (1985).

The third row of Figure 2 shows that removing this date increases the uncertainty in the

response substantially. For inflation the 95% confidence bands never exclude zero whereas

the 67% bands dip below zero only for a short period. The unemployment response remains

significantly positive similar as we found in the baseline specification.

Finally, we consider using only the nine dates identified by Romer and Romer (2023) as

observable (omitting October 1947) and set all other dates to missing including the instances

where there was no meeting. To ensure that there still is variation in zt we replace the nine

ones by the aforementioned Taylor rule residuals.

Figure 2-row four shows that the treating the remaining zeros as missing does not mate-

rially change the results. The confidence bands only increase very slightly when compared to

the second row. This is understandable as the zeros provide little information anyway and

treating them as missing has little influence. Nonetheless, with only nine observations the

central limit theorem that is used to obtain the asymptotic approximation in Proposition 1

becomes questionable and we discuss an modification of the innovation powering method for

fixed number of narrative events below.

Alternative selection and innovation models

Innovation powering requires the researcher to specify a model for the selection probabilities

and decide which innovations to use. In our baseline approach we used a logit model that

is linear in dπt = (1, y⊥t+h,vt)
′. Possibly such specification is too restrictive and we consider

a quadratic specification to investigate. On the other hand, the existing literature assumes

that narrative events arrive at random which would suggest that a constant would suffice for

the selection model. We also explore this option. Further, we used vt = p⊥t as the innovation

whereas here we consider adding future values of inflation and unemployment as additional

innovations, see equation (16). Specifically, we add the innovation y⊥t+30 to see if we can

improve inference.

20



The results are shown in Figure 3 where the top row again shows the baseline dynamic

causal effects. With quadratic selection probabilities the confidence bands become slightly

wider, notably for inflation, but the overall shape remains the same. For a constant selection

model the confidence bands shrink slightly, but no major differences occur. The final row

shows the dynamic causal effect estimates for vt = (p⊥t , y
⊥
t+30)′. We find that the confidence

bands reduce quite a bit for inflation but little differences are found for unemployment.

5 Conclusion

We introduced a new inference method —innovation-powered narrative inference—, which

combines the benefits of two well known identification approaches by using innovations from

time series models to boost the power of narrative methods while preserving consistency. We

introduced the method for the purpose of conducting inference on a dynamic causal effect

in a linear model specification.

Given that narrative shocks can be used to identify structural equation like the Phillips

curve or the Euler equation (Barnichon and Mesters, 2020; Lewis and Mertens, 2023), it is

natural to adopt the innovation powering approach for inference in these problems as well.

Further, while linearity assumptions are common when estimating dynamic causal effects in

macro linearity is not a requirement for innovation powering and the method can be easily

adopted when considering state dependent or other nonlinear moment equations.

We have illustrated innovation powering using the narrative monetary series of Romer

and Romer (1989, 2023). Clearly the method can be used to improve inference for other

narrative studies as well. Moreover, using narrative series as the baseline is not necessary;

any instrument that is informative on a subset of good periods can be innovation powered.
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Antoĺın-Daz, Juan, and Juan F. Rubio-Ramı́rez. 2018. “Narrative Sign Restrictions
for SVARs.” American Economic Review, 108(10): 2802–29.

Bang, Heejung, and James M. Robins. 2005. “Doubly Robust Estimation in Missing
Data and Causal Inference Models.” Biometrics, 61(4): 962–973.

Barnichon, Regis, and Geert Mesters. 2020. “Identifying Modern Macro Equations
using Old Shocks.” Quarterly Journal of Economics, 135: 22552298.

Barnichon, Regis, and Geert Mesters. 2023. “A Sufficient Statistics Approach for
Macroeconomic Policy.” American Economic Review, 113(11): 2809–45.

Bi, Huixin, and Sarah Zubairy. 2023. “Public Pension Reforms and Retirement
Decisions: Narrative Evidence and Aggregate Implications.” American Economic
Journal: Economic Policy, 15(4): 142–82.

Carriere-Swallow, Yan, Antonio C. David, and Daniel Leigh. 2021.
“Macroeconomic Effects of Fiscal Consolidation in Emerging Economies: New Narrative
Evidence from Latin America and the Caribbean.” Journal of Money, Credit and
Banking, 53(6): 1313–1335.

Chaudhuri, Saraswata, and David K. Guilkey. 2016. “GMM with Multiple Missing
Variables.” Journal of Applied Econometrics, 31(4): 678–706.

Cloyne, James. 2013. “Discretionary Tax Changes and the Macroeconomy: New
Narrative Evidence from the United Kingdom.” American Economic Review,
103(4): 1507–28.

22



Cloyne, James, Nicholas Dimsdale, and Natacha Postel-Vinay. 2023. “Taxes and
Growth: New Narrative Evidence from Interwar Britain.” The Review of Economic
Studies, rdad081.

Fieldhouse, Andrew J., and Karel Mertens. 2023. “The Returns to Government
R&D: Evidence from U.S. Appropriations Shocks.” working paper.

Giacomini, Raffaella, Toru Kitagawa, and Matthew Read. 2022. “Narrative
Restrictions and Proxies.” Journal of Business & Economic Statistics, 40(4): 1415–1425.

Giacomini, Raffaella, Toru Kitagawa, and Matthew Read. 2023. “Identification
and Inference Under Narrative Restrictions.” working paper.

Gil, Paula, Francisco Mart́ı, Richard Morris, Javier J. Pérez, and Roberto
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Figure 1: US Monetary Policy: Romer and Romer (1989, 2023)
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Notes: The top row shows the CSIP
nh 67% and 95% confidence bands. The middle row compares the CSIP

nh

95% bands as based on the ARIP
n (θ̄h) statistic, to the conventional Anderson-Rubin bands that use the

narrative instrument with zeros. The bottom row report the difference in the length of the 95% bands.
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Figure 2: Alternative Narrative Treatments
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Notes: The figures show the CSIP
nh 67% and 95% confidence bands for various specifications of the narrative

instrument. The top row shows the baseline from Figure 1. The second row replaces zt = 1 by the residuals

from a Taylor rule. The third row drops the October 1947 monetary policy shock. The final row sets all

zero to missing except for the nine Romer and Romer dates.
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Figure 3: Alternative Selection and Innovation models
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Notes: The figures show the CSIP
nh 67% and 95% confidence bands for various specifications of the selection

and innovations model. The top row shows the baseline from Figure 1. The second row considers a quadratic

logit model. The third row considers the constant logit model. The fourth row considers vt = (1, p⊥t , y
⊥
t+30).
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Table 2: Innovation Powering – Simulation Evidence

Quarterly Monetary VAR – n = 200, p = 4
π1
t π2

t

h = 0 h = 5 h = 10 h = 15 h = 0 h = 5 h = 10 h = 15
MAE

θ̂IV
hn 0.224 0.592 0.774 0.799 0.186 0.480 0.656 0.730

θ̂IP
hn − (i) 0.075 0.183 0.254 0.274 0.079 0.202 0.248 0.297

θ̂IP
hn − (ii) 0.241 0.626 0.861 0.876 0.222 0.539 0.738 0.841

ERP
ARn(θ̄h) 0.041 0.043 0.042 0.045 0.040 0.039 0.041 0.044
ARIP

n (θ̄h)− (i) 0.067 0.066 0.068 0.072 0.076 0.063 0.065 0.064
ARIP

n (θ̄h)− (ii) 0.045 0.051 0.052 0.058 0.041 0.039 0.039 0.041

wCS
CSnh 3.242 4.513 4.814 4.856 3.004 4.358 4.706 4.698
CSIP

nh − (i) 1.379 2.268 2.626 2.733 1.387 2.296 2.664 2.754
CSIP

nh − (ii) 2.560 3.761 4.090 4.167 2.296 3.520 3.890 3.886

Monthly Monetary VAR – n = 400, p = 12
π1
t π2

t

h = 0 h = 20 h = 40 h = 60 h = 0 h = 20 h = 40 h = 60
MAE

θ̂IV
hn 0.039 1.333 1.668 1.584 0.033 1.103 1.400 1.341

θ̂IP
hn − (i) 0.041 0.560 0.701 0.665 0.044 0.591 0.685 0.637

θ̂IP
hn − (ii) 0.039 1.329 1.758 1.691 0.034 1.169 1.506 1.377

ERP
ARn(θ̄h) 0.041 0.048 0.049 0.042 0.042 0.047 0.052 0.046
ARIP

n (θ̄h)− (i) 0.049 0.054 0.042 0.066 0.047 0.054 0.045 0.062
ARIP

n (θ̄h)− (ii) 0.055 0.058 0.067 0.061 0.043 0.061 0.066 0.065

wCS
CSnh 0.338 2.296 2.603 2.597 0.301 2.122 2.374 2.386
CSIP

nh − (i) 0.231 1.251 1.416 1.421 0.239 1.255 1.395 1.403
CSIP

nh − (ii) 0.257 1.977 2.267 2.257 0.227 1.811 2.045 2.049

Notes: The table reports the mean absolute error (MAE), Empirical Rejection Probability (ERP) and

the width of the confidence interval (wCS) for the standard IV estimator with AR confidence set and the

innovation powered versions given in equations (18) and (21).
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